JP4066773B2 - Projection display device - Google Patents

Projection display device Download PDF

Info

Publication number
JP4066773B2
JP4066773B2 JP2002300791A JP2002300791A JP4066773B2 JP 4066773 B2 JP4066773 B2 JP 4066773B2 JP 2002300791 A JP2002300791 A JP 2002300791A JP 2002300791 A JP2002300791 A JP 2002300791A JP 4066773 B2 JP4066773 B2 JP 4066773B2
Authority
JP
Japan
Prior art keywords
optical system
light
display panel
concave reflecting
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300791A
Other languages
Japanese (ja)
Other versions
JP2004138667A5 (en
JP2004138667A (en
Inventor
淳 石原
靖昌 澤井
隆志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2002300791A priority Critical patent/JP4066773B2/en
Priority to US10/689,391 priority patent/US7066609B2/en
Publication of JP2004138667A publication Critical patent/JP2004138667A/en
Publication of JP2004138667A5 publication Critical patent/JP2004138667A5/ja
Application granted granted Critical
Publication of JP4066773B2 publication Critical patent/JP4066773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は投影型表示装置に関するものであり、更に詳しくは、画像投影を行うための照明に反射型の照明光学系を備えた投影型表示装置に関するものである。
【0002】
【従来の技術】
投影型表示装置に用いられる反射型の表示パネルとして、デジタル・マイクロミラー・デバイス(Digital Micromirror Device)が知られている。デジタル・マイクロミラー・デバイスは複数のマイクロミラーを備えており、その長辺又は短辺に対し所定の傾き(例えば45°)を持つ方向の軸を中心として、各マイクロミラーが回動可能に構成されている。画素毎のON/OFF状態は、各マイクロミラーが2つの傾き状態(例えば±12°)をとることにより得られる。マイクロミラーがON状態の場合には、反射された照明光が投影光学系の入射瞳に導かれた後、スクリーンに到達する。一方、マイクロミラーがOFF状態の場合には、反射された照明光が投影光学系の入射瞳位置とは異なる方向に反射されるため、スクリーンには何も表示されない。
【0003】
上記のように動作するデジタル・マイクロミラー・デバイスを搭載した投影型表示装置では、デジタル・マイクロミラー・デバイスの画面全体に対して斜め方向から照明を行い、ON状態のマイクロミラーで反射した照明光が投影光学系の入射瞳に効率的に導かれるようにする必要がある。それとともに、OFF状態のマイクロミラーで反射した照明光が投影光学系の入射瞳に入らないようにする必要もある。そのため様々なタイプの照明光学系が従来より提案されており、例えば楕円ミラーやコンデンサレンズを備えた照明光学系が特許文献1で提案されている。
【0004】
【特許文献1】
特許第3121843号公報
【0005】
【発明が解決しようとする課題】
照明光学系にレンズを用いると色収差が発生するので、それを補正するために部品点数が増大してしまう。反射面はレンズ面に比べて1面あたりに負担可能なパワーが大きいため、照明光学系に反射面を用いると部品点数を削減することができ、色収差も発生しない。しかし、特許文献1に記載されている照明光学系のようにレンズ面との組み合わせで反射面を用いると、照明光学系として十分な光学性能を得ることが難しくなり、結果として表示装置のコストアップや大型化を招くことになる。
【0006】
本発明はこのような状況に鑑みてなされたものであって、その目的は、照明光学系に高い光学性能を有する、低コストでコンパクトな投影型表示装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、第1の発明の投影型表示装置は、光源からの光を照明光学系で表示パネルに導き、それにより照明された表示パネルの表示画像を投影光学系でスクリーンに投影する投影型表示装置であって、前記光源からの光を集光して2次光源を形成する集光光学系と、前記2次光源近傍に入射端面を有し前記集光光学系で集光された光の空間的なエネルギー分布を均一化する光強度均一化手段と、その光強度均一化手段の入射端面近傍又は射出端面近傍でカラー表示のために射出光色を時分割で変化させるカラーフィルタと、前記光強度均一化手段の射出端面の像を前記表示パネルのパネル面上に形成する反射光学系と、を前記照明光学系に有し、前記表示パネルが反射型であり、前記照明光学系が前記表示パネルのパネル面に対して斜め方向から照明を行い、前記投影光学系が前記表示パネル側に斜めテレセントリックであり、前記反射光学系がパワーを有する光学面として第1,第2の凹面反射面のみを有し、前記第1の凹面反射面で前記2次光源から3次光源を形成し、前記第2の凹面反射面で前記3次光源からの光を前記投影光学系の入射瞳に導き、前記表示パネルのパネル面の縦方向を y 軸方向とし横方向を z 軸方向とすると、前記第1,第2の凹面反射面のうちの少なくとも1面が y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有し、前記光強度均一化手段の射出端面の中心から前記表示パネルを通過し、前記投影光学系の入射瞳中心に至る光線が、前記自由曲面形状の凹面反射面に当たる点での曲率半径について、前記自由曲面形状を有する凹面反射面が以下の条件式 (i) の関係を満足し、その自由曲面形状が面対称性を有しないことを特徴とする。
|CRy| |CRz| (i)
ただし、
CRz :自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半径、
CRy :自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径、
である
【0008】
第2の発明の投影型表示装置は、上記第1の発明の構成において、さらに、前記光強度均一化手段の光軸と前記投影光学系の光軸とが略平行になるように、又は前記光強度均一化手段の光軸方向と前記表示パネルのパネル面の法線方向とが略一致するように、前記第1の凹面反射面と前記第2の凹面反射面との間に平面反射面を有することを特徴とする。
【0009】
第3の発明の投影型表示装置は、光源からの光を照明光学系で表示パネルに導き、それにより照明された表示パネルの表示画像を投影光学系でスクリーンに投影する投影型表示装置であって、前記光源からの光を集光して2次光源を形成する集光光学系と、前記2次光源近傍に入射端面を有し前記集光光学系で集光された光の空間的なエネルギー分布を均一化する光強度均一化手段と、その光強度均一化手段の入射端面近傍又は射出端面近傍でカラー表示のために射出光色を時分割で変化させるカラーフィルタと、前記光強度均一化手段の射出端面の像を前記表示パネルのパネル面上に形成する反射光学系と、を前記照明光学系に有し、前記表示パネルが反射型であり、前記照明光学系が前記表示パネルのパネル面に対して斜め方向から照明を行い、前記反射光学系がパワーを有する光学面として第1,第2の凹面反射面のみを有し、さらに、前記光強度均一化手段の光軸と前記投影光学系の光軸とが略平行になるように、又は前記光強度均一化手段の光軸方向と前記表示パネルのパネル面の法線方向とが略一致するように、前記第1の凹面反射面と前記第2の凹面反射面との間に平面反射面を有し、前記第1の凹面反射面で前記2次光源から3次光源を形成し、前記第2の凹面反射面で前記3次光源からの光を前記投影光学系の入射瞳に導き、前記表示パネルのパネル面の縦方向を y 軸方向とし横方向を z 軸方向とすると、前記第1,第2の凹面反射面のうちの少なくとも1面が y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有し、前記光強度均一化手段の射出端面の中心から前記表示パネルを通過し、前記投影光学系の入射瞳中心に至る光線が、前記自由曲面形状の凹面反射面に当たる点での曲率半径について、前記自由曲面形状を有する凹面反射面が以下の条件式(i)の関係を満足し、その自由曲面形状が面対称性を有しないことを特徴とする。
|CRy|<|CRz| …(i)
ただし、
CRz:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半径、
CRy:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径、
である。
【0010】
第4の発明の投影型表示装置は、上記第2又は第3の発明の構成において、前記第1,第2の凹面反射面が、いずれも y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明を実施した投影型表示装置を、図面を参照しつつ説明する。図1〜図4に、投影型表示装置の一実施の形態を示す。図1は表示装置全系の概略光学構成を示す斜視図であり、図2〜図4はその主要部を示す斜視図,下面図,側面図である。図1〜図4において、LAは光源ランプ、L1は光源、L2は楕円リフレクタ、RIはロッドインテグレータ、CWはカラーホイール、M1〜M8は第1〜第8ミラー、SLは照明系瞳、SPは投影系瞳、PAは表示パネル、OPは光学エンジン部、SCはスクリーンである。なお、ここでは表示パネル(PA)としてデジタル・マイクロミラー・デバイスを想定しているが、これに限らない。後述する投影光学系(PL)に適した他の非発光・反射型(又は透過型)の表示素子やライトバルブ(液晶表示素子等)を用いても構わない。
【0012】
図1に示すように、光源ランプ(LA)から第7ミラー(M7)までが投影型表示装置の主要部を成す光学エンジン部(OP)である。その光学エンジン部(OP)において、図2〜図4に示すように、楕円リフレクタ(L2)と、ロッドインテグレータ(RI)と、カラーホイール(CW)と、第1〜第3ミラー(M1〜M3)とから成る照明光学系により、光源(L1)からの光が表示パネル(PA)に導かれる。その主要部を図5に光路展開して示す。図5は、反射型の光学要素を透過型に置き換えて、そのレイアウトと光線の通過を概略的に表現したものである。照明光学系により照明された表示パネル(PA)の表示画像は、第4〜第8ミラー(M4〜M8)から成る投影光学系(PL,図5)によってスクリーン(SC)に投影される。
【0013】
各部の構成を更に詳しく説明する。図2〜図4に示すように、光源ランプ(LA)は、光源(L1)と楕円リフレクタ(L2)とから成っている。楕円リフレクタ(L2)は、光源(L1)からの光を集光して2次光源を形成する集光光学系であり、光源ランプ(LA)から射出した光がロッドインテグレータ(RI)の入射端面(t1)近傍で結像するように構成されている。なお、楕円リフレクタ(L2)の代わりに回転放物面鏡や球面鏡等を用いてもよいが、その場合、光源(L1)からの光を集光するために、集光レンズ等と組み合わせて集光光学系を構成する必要がある。
【0014】
光源ランプ(LA)から射出した光は、ロッドインテグレータ(RI)に入射する。ロッドインテグレータ(RI)は、4枚の平面ミラーを貼り合わせて成る中空ロッド方式の光強度均一化手段であり、上述したように2次光源近傍に入射端面(t1)を有している。入射端面(t1)から入射してきた光は、ロッドインテグレータ(RI)の側面(すなわち内壁面)で何度も繰り返し反射されることによりミキシングされ、光の空間的なエネルギー分布が均一化されて射出端面(t2)から射出する。ロッドインテグレータ(RI)の入射端面(t1)と射出端面(t2)の形状は、表示パネル(PA)と相似の四角形になっている。また図5から分かるように、ロッドインテグレータ(RI)の入射端面(t1)は照明系瞳(SL)に対して共役になっており、ロッドインテグレータ(RI)の射出端面(T2)は表示パネル(PA)のパネル面に対して共役になっている。上記ミキシング効果により射出端面(t2)での輝度分布は均一化されるため、表示パネル(PA)は効率良く均一に照明されることになる。なお、ロッドインテグレータ(RI)は中空ロッドに限らず、四角柱形状のガラス体から成るガラスロッドでもよい。また、表示パネル(PA)のパネル面形状と適合するならば、その側面についても4面に限らない。したがって、用いるロッドインテグレータ(RI)としては、複数枚の反射ミラーを組み合わせて成る中空筒体、多角柱形状のガラス体等が挙げられる。
【0015】
ロッドインテグレータ(RI)の射出端面(t2)の近傍には、カラー表示のために射出光色を時分割で変化させるカラーホイール(CW)が配置されている。カラーホイール(CW)は、表示パネル(PA)をカラーシーケンシャル方式で照明するためのカラーフィルタから成っており、照明光透過位置のフィルタ部分が回転移動することにより射出光の色を変化させる。なお、カラーホイール(CW)の位置は、ロッドインテグレータ(RI)の射出端面(t2)の近傍に限らない。その位置は他の光学要素の配置等に応じて設定すればよく、例えばロッドインテグレータ(RI)の入射端面(t1)の近傍にカラーホイール(CW)を配置してもよい。またさらに、UV(ultraviolet ray)−IR(infrared ray)カットフィルターを配置することにより、照明光から紫外線と赤外線をカットするように構成してもよい。
【0016】
カラーホイール(CW)を射出した光は、第1〜第3ミラー(M1〜M3)から成る反射光学系に入射する。そして、反射光学系がロッドインテグレータ(RI)の射出端面(t2)の像を表示パネル(PA)のパネル面上に形成する。その結像を行うためのパワーは、第1,第3ミラー(M1,M3)が負担している。つまり、第1,第3ミラー(M1,M3)の各反射面が凹面反射面になっており、第2ミラー(M2)の反射面が平面反射面になっている。第1ミラー(M1)の凹面反射面によって、ロッドインテグレータ(RI)の入射端面(t1)近傍の2次光源が再結像して、照明系瞳(SL)位置近傍に3次光源が形成される。3次光源からの光は、第3ミラー(M3)の凹面反射面によって表示パネル(PA)に導かれる。表示パネル(PA)に入射した光は、ON/OFF状態(例えば±12°の傾き状態)の各マイクロミラーで反射されることにより空間的に強度変調される。その際、ON状態のマイクロミラーで反射した光のみが、第4〜第8ミラー(M4〜M8)から成る投影光学系(PL)に入射し、第3ミラー(M3)の凹面反射面のパワーによって投影光学系(PL)の入射瞳(SP)に効率良く導かれる。そして、投影光学系(PL)によりスクリーン(SC)に投射される。
【0017】
この実施の形態においては、上記のようにパワーを有する光学面として2つの凹面反射面のみを反射光学系に有する構成になっている。このため、照明光学系の部品点数の削減とコンパクト化を達成することが可能であり、色収差が発生しないため色ムラの発生もなく、照度低下を抑えることができる。したがって、良好な光学性能を保持しつつ、コンパクトで量産性やコスト面で有利な光学部品を用いることが可能となり、表示装置の低コスト化・コンパクト化・高性能化を達成することが可能となる。
【0018】
また、図5に示す光路から分かるように、投影光学系(PL)は表示パネル(PA)側に斜めテレセントリックな構成になっている。テレセントリックな光学系の場合、表示パネルから投影光学系への入射光線のうち、各像高からの光束の主光線同士が略平行になるように設計され、これにより照明光学系・投影光学系共に大きさを略等しくすることが可能となる。しかし、投影光学系にかかる光学的な負担は大きくなるため、光学性能を満足させようとするとレンズ枚数が増加する等のデメリットがある。この実施の形態のように、照明光学系においてパワーを有する光学素子として、凹面反射面を有する2枚のミラー(M1,M3)を用いれば、原理的に最少枚数の照明光学系を構成することができるため、表示パネル(PA)側にテレセントリックな投影光学系(PL)向きの照明光学系を構成することができる。そして、反射面数が少ないために反射ロスが低減され、明るい表示を得ることが可能となる。
【0019】
この実施の形態の場合、ロッドインテグレータ(RI)の射出端面(t2)と照明系瞳(SL)との間にリレーレンズ機能を有する第1ミラー(M1)を配置して、ロッドインテグレータ(RI)の入射端面(t1)と照明系瞳(SL)とが共役になるように第1ミラー(M1)のパワーが設定されている。また、照明系瞳(SL)と表示パネル(PA)との間にコンデンサレンズ機能を有する第3ミラー(M3)を配置して、投影系瞳(SP)よりも表示パネル(PA)側に位置する第4ミラー(M4)と合わせて、照明系瞳(SL)と投影系瞳(SP)とが共役になるように第3ミラー(M3)のパワーが設定されている。それとともに、リレーレンズ機能を有する第1ミラー(M1)とコンデンサレンズ機能を有する第3ミラー(M3)とで、ロッドインテグレータ(RI)の射出端面(t2)と表示パネル(PA)のパネル面とが共役になるように設定されている。この構成によると、ロッドインテグレータ(RI)の射出端面(t2)から出た光を、小型の表示パネル(PA)に効率的に導いて、そのパネル面からの反射光を投影光学系(PL)に効率的に導くことができる。したがって、照明光学系において高い光学性能を保持しながら照度低下を少なくすることが可能となり、しかも表示装置の低コスト化・コンパクト化を達成することができる。
【0020】
また、凹面反射面を有する第1,第3ミラー(M1,M3)間において、平面反射面を有する第2ミラー(M2)が、ロッドインテグレータ(RI)の光軸方向と表示パネル(PA)のパネル面の法線方向とが略一致するように、光路を折り曲げる構成になっている。このように、ロッドインテグレータ(RI)の光軸方向と表示パネル(PA)のパネル面の法線方向とが略一致するように、又はロッドインテグレータ(RI)の光軸と投影光学系(PL)の光軸とが略平行になるように、2つの凹面反射面の間に平面反射面を有することが望ましい。第1,第3ミラー(M1,M3)間で光路を折り曲げることにより、表示装置全体の光学構成をコンパクト化することが可能となり、さらに設計基準軸の共通化による誤差の低減、位置調整の簡素化、レイアウトの自由度の確保等が可能となる。また、第1,第3ミラー(M1,M3)を一部品化することにより、2つの凹面反射面を1つの部品に一体化することが好ましく、これにより部品点数の削減、誤差の低減及び精度の向上を達成することが可能となる。
【0021】
第1,第3ミラー(M1,M3)に設けられている凹面反射面はいずれも自由曲面形状を成している。この実施の形態のように反射面のパワーのみで照明光学系を構成する場合には、そのうちの少なくとも1面を自由曲面にすれば、それに応じた照明効率の向上が可能となる。例えば、表示パネル(PA)としてデジタル・マイクロミラー・デバイスを用いた場合、パネル面に対する斜め照明が必須となるが、自由曲面を用いれば斜め照明に際しても歪曲等の収差を良好に補正することができる。それにより、投影光学系(PL)の入射瞳(SP)に向けて効率的に光を導いて、表示を明るくすることができる。つまり、ロッドインテグレータ(RI)の射出端面(t2)に対して共役な表示パネル(PA)への結像性能(例えばボケや歪曲)を高めることができるので、表示パネル(PA)での反射光を投影光学系(PL)の入射瞳(SP)に効率的に集めて、照明効率を上げることが可能となるのである。また、画面中の位置による照度変化も少なくできるので、明るさムラの低減も可能となる。
【0022】
この実施の形態において第1,第3ミラー(M1,M3)の凹面反射面を自由曲面形状にしているのは、表示パネル(PA)に最も近い凹面反射面やロッドインテグレータ(RI)の射出端面(t2)に最も近い凹面反射面を自由曲面形状にすることが、上記照明効率の向上や明るさムラの低減を達成する上で有効だからである。表示パネル(PA)としてデジタル・マイクロミラー・デバイスを用いた場合、表示パネル(PA)に最も近い凹面反射面を自由曲面にすると、ON状態のマイクロミラーで反射した照明光を効率良く投影系瞳(SP)に導くことができる。したがって、照明効率の向上や明るさムラの低減を効果的に達成することが可能である。また、ロッドインテグレータ(RI)の射出端面(t2)に最も近い凹面反射面を自由曲面形状にすると、射出端面(t2)を表示パネル(PA)上で結像させる際の収差補正を良好に行うことが可能となる。それによって、歪曲やボケの低減による照明効率の向上を更に効果的に達成することができる。
【0023】
また、表示パネル(PA)のパネル面の縦方向をy軸方向とし横方向をz軸方向とすると、第1,第3ミラー(M1,M3)の凹面反射面は、いずれもy軸方向とz軸方向とにそれぞれ非対称な自由曲面形状を有している。このように、反射光学系を構成する凹面反射面のうちの少なくとも1面は、y軸方向とz軸方向とにそれぞれ非対称な自由曲面形状を有することが望ましい。こうすることで、その凹面反射面に当たる位置によって光線の反射方向を制御しやすくなるため、結像や歪曲の光学性能を向上させることができる。また本実施の形態の場合、図3や図4から分かるように、物体面{ロッドインテグレータ(RI)の射出端面(t2)}と像面{表示パネル(PA)のパネル面}とが主にz軸方向に大きくなっており、各凹面反射面の自由曲面もそのレイアウトを反映した形状で最適化されている。
【0024】
さらに、ロッドインテグレータ(RI)の射出端面(t2)の中心から表示パネル(PA)を通過し、投影光学系(PL)の入射瞳(SP)中心に至る光線が、自由曲面形状の凹面反射面に当たる点での曲率半径について、自由曲面形状を有する凹面反射面が以下の条件式(i)の関係を満足し、その自由曲面形状が面対称性を有しないことが望ましい。この構成によると、光学性能の向上を図り、歪曲を減少させたり、結像性能を向上させたりすることが可能になる。ひいては、照明効率を高めることが可能になる。
|CRy|<|CRz| …(i)
ただし、
CRz:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半径、
CRy:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径、
である。
【0025】
各ミラー(M1〜M8)の反射面を構成する基板材料としては、ガラス,プラスチック,金属,セラミック等、いずれの材料を用いてもよく、必要に応じたものを用いればよい。例えば、温度変化による結像性能の劣化を防ぐには、ガラス等の形状変化の少ない材料が好ましく、コストを低減するには、PMMA(polymethyl methacrylate),PC(polycarbonate)等のプラスチック材料が好ましい。照明効率を高くするには基板上に反射率の高いコートを施す必要があり、具体的にはAl(アルミニウム)やAg(銀)等の金属反射薄膜を形成したり、誘電体をコートした増反射膜を形成したりすればよい。また、数十層の誘電体から成る多層膜をコートしてもよい。その場合、金属膜とは異なり、金属による光吸収がないため、使用時にも吸収光が熱に変わるといった不具合がないので好ましい。また、反射面の可視光での反射率は、概ね90%以上の反射率があることが好ましい。
【0026】
【実施例】
次に、前述した照明光学系の光学構成をコンストラクションデータ等を挙げて更に具体的に説明する。以下のコンストラクションデータでは、ロッドインテグレータ(RI)の射出端面(t2)から表示パネル(PA)のパネル面までを含めた系において、光源(L1)側から順に各光学要素の配置,面形状等の光学データを示している。各光学要素の配置は、その光学面の面頂点をローカルな直交座標系(x,y,z)の原点(o)として、グローバルな直交座標系(X,Y,Z)におけるローカルな直交座標系(x,y,z)の原点(o)とx軸,y軸の座標軸ベクトル(vx,vy)の座標データ(X,Y,Z)で表される(単位:mm)。また、2面以上の光学面から成る共軸系の光学要素については、その入射側の光学面に対する軸上面間隔(T',mm)で表される。したがって、共軸系ブロックにおける回転対称軸の方向は、原点(o)での面法線ベクトル(vx)の座標データ(X,Y,Z)で表される。
【0027】
各光学要素の面形状は、光学面の曲率(C0,mm-1)で表され、自由曲面の場合、その面頂点を原点(o)とするローカルな直交座標系(x,y,z)を用いた、以下の拡張非球面の式(FS)で定義される。また、各光学面の入射側に位置する媒質のd線に対する屈折率(N)、射出側に位置する媒質のd線に対する屈折率(N')、及び光学材料のアッベ数(νd)をあわせて示し、必要に応じて光学面の有効半径(R)も示す。
【0028】
x=(C0・h2)/{1+√(1-ε・C02・h2)}+Σ{G(j,k)・yj・zk} …(FS)
ただし、式(FS)中、
x:高さhの位置でのx軸方向の基準面からの変位量(面頂点基準)、
h:x軸に対して垂直な方向の高さ(h2=y2+z2)、
C0:面頂点での曲率(正負はx軸に対するものであり、正の場合その曲率中心がベクトルvx上の正方向に存在する。)、
ε:2次曲面パラメータ、
G(j,k):yのj次、zのk次の拡張非球面係数(表記されていない項の係数は0である。)、
である。
【0029】
〈ロッドインテグレータ(RI)の射出端面(t2)〉
ロッドサイズ(中空):3.9mm(縦)×6.7mm(横)×35mm(長さ)
o :( -14.02584 , 12.00438 , -76.96887)
vx:(-1.00000000 , 0.00000000 , 0.00000000)
vy:( 0.00000000 ,-0.99838995 ,-0.05672304)
N=1.00000
C0=0.00000000
N'=1.00000
【0030】
〈第1ミラー(M1)の凹面反射面〉
o :( -46.47675 , 12.00438 , -76.96887)
vx:(-1.00000000 , 0.00000000 , 0.00000000)
vy:( 0.00000000 ,-0.99838995 ,-0.05672304)
N=1.00000
C0=0.00000000
ε=1.00000000
G(1,0)= 0.000306699905
G(2,0)=-0.00908106398
G(3,0)=-8.07892955×10-7
G(4,0)=-1.98717695×10-6
G(5,0)= 1.08512241×10-8
G(6,0)= 5.58684963×10-9
G(7,0)=-3.34949549×10-11
G(8,0)=-4.91483340×10-12
G(0,1)= 0.329970530
G(1,1)= 0.000231084778
G(2,1)= 0.000105566790
G(3,1)=-6.04445485×10-8
G(4,1)= 1.65959977×10-7
G(5,1)= 1.77506594×10-9
G(6,1)=-5.46257539×10-10
G(7,1)= 1.22613569×10-12
G(0,2)=-0.00914828809
G(1,2)=-3.36307029×10-6
G(2,2)=-3.79663012×10-6
G(3,2)= 5.24678841×10-8
G(4,2)= 2.92382569×10-9
G(5,2)=-2.62911765×10-10
G(6,2)= 4.72402181×10-12
G(0,3)= 8.05884647×10-5
G(1,3)= 8.31497717×10-8
G(2,3)=-8.33084401×10-8
G(3,3)=-2.32070916×10-9
G(4,3)= 3.34976119×10-10
G(5,3)= 9.96252911×10-12
G(0,4)=-2.36232594×10-6
G(1,4)= 3.33590529×10-8
G(2,4)= 4.93651852×10-9
G(3,4)=-2.69043165×10-11
G(4,4)=-2.72594071×10-11
G(0,5)= 9.08689438×10-8
G(1,5)=-8.86313676×10-10
G(2,5)= 1.71838290×10-10
G(3,5)= 2.57328687×10-12
G(0,6)=-2.79012040×10-10
G(1,6)=-7.54028329×10-11
G(2,6)=-6.20207234×10-12
G(0,7)=-1.08926425×10-10
G(1,7)= 2.60400479×10-12
G(0,8)= 2.15734871×10-12
N'=-1.00000
【0031】
〈第2ミラー(M2)の平面反射面〉
o :( -10.00000 , 10.44701 , -50.00000)
vx:( 0.94507308 , 0.30159769 ,-0.12599885)
vy:( 0.29066098 ,-0.95178425 ,-0.09809659)
N=1.00000
C0=0.00000000
N'=-1.00000
【0032】
〈照明系瞳(SL)〉
o :( -21.12051 , 0.11765 , -32.15182)
vx:(-0.48205523 ,-0.44754084 , 0.75321309)
vy:( 0.21295825 ,-0.89376373 ,-0.39475965)
N=1.00000
C0=0.00000000(R=15)
N'=1.00000
【0033】
〈第3ミラー(M3)の凹面反射面〉
o :( -50.00020 , -27.01956 , 14.90964)
vx:(-0.70351808 ,-0.46400538 , 0.53829483)
vy:( 0.33768245 ,-0.88472575 ,-0.32129566)
N=1.00000
C0=0.00000000
ε=1.00000000
G(1,0)=-0.0165717437
G(2,0)=-0.00358908679
G(3,0)=-2.96168772×10-6
G(4,0)=-8.41908290×10-7
G(5,0)= 1.09778063×10-7
G(6,0)= 5.62907582×10-9
G(7,0)=-3.56648227×10-10
G(8,0)=-1.75864361×10-11
G(0,1)=-0.00730596825
G(1,1)=-0.000573447332
G(2,1)=-2.26990751×10-5
G(3,1)=-5.87353269×10-7
G(4,1)=-4.21148102×10-9
G(5,1)= 3.90388810×10-9
G(6,1)=-8.27699273×10-11
G(7,1)=-1.20079976×10-11
G(0,2)=-0.00318395834
G(1,2)= 9.26292117×10-7
G(2,2)=-8.57133481×10-7
G(3,2)=-1.15650143×10-7
G(4,2)=-3.34437629×10-9
G(5,2)= 4.84297082×10-10
G(6,2)= 2.47858612×10-11
G(0,3)=-1.26500601×10-5
G(1,3)= 4.53962253×10-7
G(2,3)=-5.34439218×10-9
G(3,3)= 2.07178981×10-9
G(4,3)= 5.26613238×10-10
G(5,3)= 2.04221150×10-11
G(0,4)=-6.68600297×10-7
G(1,4)=-7.24724659×10-9
G(2,4)= 5.29717438×10-9
G(3,4)=-1.84848215×10-11
G(4,4)= 7.58382766×10-12
G(0,5)= 9.43218162×10-9
G(1,5)=-1.74670419×10-9
G(2,5)=-6.08190477×10-11
G(3,5)=-1.88709489×10-11
G(0,6)= 1.34128868×10-9
G(1,6)= 1.25465294×10-11
G(2,6)=-1.36776768×10-11
G(0,7)=-1.22396504×10-12
G(1,7)= 1.49699829×10-12
G(0,8)=-5.01105893×10-13
N'=-1.00000
【0034】
〈表示パネル(PA)の保護ガラス〉
o :( -3.47000 , 0.00000 , 0.00000)
vx:( 1.00000000 , 0.00000000 , 0.00000000)
vy:( 0.00000000 ,-0.99838995 ,-0.05672304)
(入射側面)
N=1.00000
C0=0.00000000
N'=1.51872(νd=64.20)
T'=3
(射出側面)
N=1.51872(νd=64.20)
C0=0.00000000
N'=1.00000
【0035】
〈表示パネル(PA)のパネル面〉
パネル面サイズ:10.3mm(縦)×17.6mm(横)
o :( 0.00000 , 0.00000 , 0.00000)
vx:( 1.00000000 , 0.00000000 , 0.00000000)
vy:( 0.00000000 , 1.00000000 , 0.00000000)
N=1.00000
C0=0.00000000
N'=1.00000
【0036】
図6に第1ミラー(M1)の凹面反射面の自由曲面形状を示し、図7に第3ミラー(M3)の凹面反射面の自由曲面形状を示す。図6と図7のグラフは、各凹面反射面の自由曲面形状を、基準とする球面からの変位量が最小となるような曲率半径の球面を選んでプロットしたものであり、図6では曲率半径-187.03mmの球面からの変位量を0.75mmピッチで示しており、図7では曲率半径-68.96mmの球面からの変位量を0.25mmピッチで示している。各グラフ中、−の符号の部分が凹面を表しており、+の符号の部分が凸面を表している。また、図8に表示パネル(PA)のパネル面上での照明光の反射状態を示し{ゼブラ模様部分がデジタル・マイクロミラー・デバイスのパネル面のエリアである。}、図9に表示パネル(PA)のパネル面上での照度分布を示し、図10にスクリーン(SC)上での照度分布を示す。
【0037】
ここで、自由曲面形状の非対称性について具体的に説明する。物体面であるロッドインテグレータ(RI)の射出端面(t2)の中心から射出され、照明系瞳(SL)の略中心を通過し、像面である表示パネル(PA)のパネル面の中心に達する光線を主光線とすると、本実施例ではその主光線が通過する各面での位置が、各面のローカル座標(x,y,z)の原点(o)近傍を通過するように設計されている。そこで、y軸,z軸の各方向について各自由曲面の原点(o)近傍の曲率半径CRy,CRzを求めると、以下のようになる。
第1ミラー(M1) … CRy= -55.06,CRz= -63.82
第3ミラー(M3) … CRy=-139.37,CRz=-157.05
【0038】
いずれも自由曲面であるためy軸方向とz軸方向とで曲率半径は異なっているが、偏心方向(z軸方向)に比べてy軸方向の曲率半径(絶対値)は明らかに小さくなっていることが分かる。したがって、物体面(t2)の中心から照明系瞳(SL)の中心を通る主光線が各面を通過する位置では、以下の式(I)が成り立つといえる。
|偏心している方向の曲率半径|>|偏心している方向に垂直な方向の曲率半径| …(I)。
【0039】
更に厳密に言えば、物体面(t2)の中心から縦方向(すなわちy軸方向)に微少にずらした点から照明系瞳(SL)の中心を通過し、像面{すなわち表示パネル(PA)のパネル面}に至る光線が各面を通過する位置をPyとし、前記主光線が各面を通過する位置をP0とすると、各面のローカル座標系のy軸方向を、その面の法線ベクトルに垂直な面に射影した点P0から点Pyへのベクトルの方向にとり(z軸方向は法線ベクトルとy軸ベクトルから求まる。)、かつ、像面の横方向(像面座標=グローバル座標系でZ軸方向)に主に偏心した光学系とすると、以下の式(II)が成り立つといえる。
|各ローカル座標系のy軸方向の曲率半径|<|各ローカル座標系のz軸方向の曲率半径| …(II)
【0040】
本実施例では、像面座標(=グローバル座標系)のy軸方向ベクトルと各面のローカル座標の法線ベクトルとを含む面内で、その法線ベクトルに垂直なベクトルを各面のローカル座標系のy軸方向としているが、前記のようなローカル座標系のy軸方向の取り方をする場合には、条件式(II)を使用すれば差し支えない。また、別法として、主光線が各面を通過した際の、入射光線と射出光線との2本の光線の角の2等分線上に入射光線の進む向きに面の法線ベクトルをとり、その法線ベクトルに垂直で、かつ、入射光線と射出光線とを含む面に垂直な方向にローカル座標系のy軸方向を、更にその法線ベクトルとy軸ベクトルに垂直な方向にz軸方向をとり、そのy軸方向とz軸方向のそれぞれの曲率半径の間に条件式(II)の関係が満たされるように光学系を構成するのがよい。
【0041】
【発明の効果】
以上説明したように本発明によれば、反射光学系がパワーを有する光学面として第1,第2の凹面反射面のみを有し、第1の凹面反射面で2次光源から3次光源を形成し、第2の凹面反射面で3次光源からの光を投影光学系の入射瞳に効率良く導く構成になっているため、照明光学系に高い光学性能を保持しながら、投影型表示装置の低コスト化及びコンパクト化を達成することができる。さらに、非対称性を有する自由曲面形状の凹面反射面を用いれば、照明効率の向上や明るさムラの低減を効果的に達成することが可能であり、第1,第2の凹面反射面間に平面反射面を設ければ、表示装置全体の光学構成をコンパクト化することが可能である。
【図面の簡単な説明】
【図1】本発明に係る投影型表示装置の全系を示す斜視図。
【図2】本発明に係る投影型表示装置の要部概略構成を示す斜視図。
【図3】本発明に係る投影型表示装置の要部概略構成を示す下面図。
【図4】本発明に係る投影型表示装置の要部概略構成を示す側面図。
【図5】図1〜図4の表示装置における光学エンジン部の主要部を光路展開状態で示す光学構成図。
【図6】図1〜図4の表示装置において照明光学系に用いられている第1ミラーの自由曲面反射面形状を示すグラフ。
【図7】図1〜図4の表示装置において照明光学系に用いられている第3ミラーの自由曲面反射面形状を示すグラフ。
【図8】図1〜図4の表示装置における表示パネル面上での照明光の反射状態を示す図。
【図9】図1〜図4の表示装置における表示パネル面上での照度分布を示す図。
【図10】図1〜図4の表示装置におけるスクリーン面上での照度分布を示す図。
【符号の説明】
OP …光学エンジン部
LA …光源ランプ
L1 …光源
L2 …楕円リフレクタ(集光光学系)
RI …ロッドインテグレータ
t1 …入射端面
t2 …射出端面
CW …カラーホイール(カラーフィルタ)
M1 …第1ミラー(第1の凹面反射面,反射光学系)
M2 …第2ミラー(平面反射面,反射光学系)
M3 …第3ミラー(第2の凹面反射面,反射光学系)
M4〜M8 …第4〜第8ミラー(投影光学系)
PL …投影光学系
SL …照明系瞳
SP …投影系瞳
PA …表示パネル
SC …スクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a projection display device, and more particularly to a projection display device including a reflection type illumination optical system for illumination for image projection.
[0002]
[Prior art]
A digital micromirror device is known as a reflective display panel used in a projection display device. The digital micromirror device has a plurality of micromirrors, and each micromirror can be rotated around an axis having a predetermined inclination (for example, 45 °) with respect to its long side or short side. Has been. The ON / OFF state for each pixel is obtained when each micromirror has two tilt states (for example, ± 12 °). When the micromirror is in the ON state, the reflected illumination light reaches the screen after being guided to the entrance pupil of the projection optical system. On the other hand, when the micromirror is in the OFF state, nothing is displayed on the screen because the reflected illumination light is reflected in a direction different from the entrance pupil position of the projection optical system.
[0003]
In a projection display device equipped with a digital micromirror device that operates as described above, the illumination light reflected from the micromirror in the ON state is illuminated from the oblique direction to the entire screen of the digital micromirror device. Must be efficiently guided to the entrance pupil of the projection optical system. At the same time, it is necessary to prevent the illumination light reflected by the micromirror in the OFF state from entering the entrance pupil of the projection optical system. Therefore, various types of illumination optical systems have been conventionally proposed. For example, Patent Document 1 proposes an illumination optical system including an elliptical mirror and a condenser lens.
[0004]
[Patent Document 1]
Japanese Patent No. 3121843
[0005]
[Problems to be solved by the invention]
When a lens is used in the illumination optical system, chromatic aberration occurs, and the number of parts increases to correct it. Since the reflecting surface has a larger power that can be borne per surface than the lens surface, the use of the reflecting surface in the illumination optical system can reduce the number of components and no chromatic aberration. However, when a reflecting surface is used in combination with a lens surface as in the illumination optical system described in Patent Document 1, it becomes difficult to obtain sufficient optical performance as the illumination optical system, resulting in an increase in the cost of the display device. And will lead to an increase in size.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a low-cost and compact projection display device having high optical performance in an illumination optical system.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, a projection display device according to a first aspect of the present invention guides light from a light source to a display panel with an illumination optical system, and displays a display image of the display panel illuminated thereby on a screen with a projection optical system. A projection display device for projecting, comprising: a condensing optical system that condenses light from the light source to form a secondary light source; and an incident end face near the secondary light source and is collected by the condensing optical system. Light intensity uniformizing means for equalizing the spatial energy distribution of the emitted light, and the emitted light color is changed in a time-division manner for color display near the incident end face or the exit end face of the light intensity uniformizing means. The illumination optical system includes a color filter and a reflection optical system that forms an image of an emission end face of the light intensity uniformizing unit on a panel surface of the display panel.The display panel is a reflective type, the illumination optical system illuminates the panel surface of the display panel from an oblique direction, and the projection optical system is oblique telecentric on the display panel side,The reflective optical system has only first and second concave reflective surfaces as optical surfaces having power, and a tertiary light source is formed from the secondary light source by the first concave reflective surface, and the second concave surface The light from the tertiary light source is guided to the entrance pupil of the projection optical system by a reflecting surface.The vertical direction of the panel surface of the display panel y Axial direction and lateral direction z In the axial direction, at least one of the first and second concave reflecting surfaces is y Axial and z A light beam having an asymmetric free curved surface shape in the axial direction and passing through the display panel from the center of the exit end surface of the light intensity uniformizing means and reaching the center of the entrance pupil of the projection optical system Concerning the radius of curvature at the point where it hits the concave reflecting surface, the concave reflecting surface having the above-mentioned free-form surface is the following conditional expression (i) The free-form surface shape does not have plane symmetryIt is characterized by that.
| CRy | < | CRz | ... (i)
However,
CRz : Radius of curvature cut by a plane including the incident light beam and the outgoing light beam on the concave reflecting surface having a free-form surface shape,
CRy : A radius of curvature that is perpendicular to the plane that includes the incident light beam and the outgoing light beam on the concave reflecting surface having a free-form surface shape, and is cut by the plane that includes the normal vector of the concave reflecting surface;
Is.
[0008]
  According to a second aspect of the present invention, there is provided a projection display apparatus according to the first aspect,Further, the optical axis of the light intensity uniformizing means and the optical axis of the projection optical system are substantially parallel, or the optical axis direction of the light intensity uniformizing means and the normal direction of the panel surface of the display panel Is a plane reflecting surface between the first concave reflecting surface and the second concave reflecting surface so that they substantially coincide with each other.It is characterized by having.
[0009]
  A projection display device according to a third invention provides:A projection display device that guides light from a light source to a display panel by an illumination optical system and projects a display image of the illuminated display panel onto a screen by a projection optical system, and condenses the light from the light source A condensing optical system that forms a secondary light source, and a light intensity equalizing means that has an incident end face near the secondary light source and uniformizes the spatial energy distribution of the light collected by the condensing optical system A color filter that changes the emitted light color in a time-division manner for color display near the entrance end face or the exit end face of the light intensity uniformizing means, and an image of the exit end face of the light intensity uniformizing means on the display panel A reflective optical system formed on the panel surface of the display panel, the illumination optical system having the reflective optical system, the display panel is of a reflective type, and the illumination optical system illuminates the panel surface of the display panel from an oblique direction. The reflection optical system is power The optical surface has only the first and second concave reflecting surfaces, and the optical axis of the light intensity uniformizing means and the optical axis of the projection optical system are substantially parallel or the light intensity. A plane reflecting surface is provided between the first concave reflecting surface and the second concave reflecting surface so that the optical axis direction of the uniformizing means and the normal direction of the panel surface of the display panel substantially coincide. Then, a tertiary light source is formed from the secondary light source by the first concave reflecting surface, and light from the tertiary light source is guided to the entrance pupil of the projection optical system by the second concave reflecting surface, and the display The vertical direction of the panel surface of the panel y Axial direction and lateral direction z In the axial direction, at least one of the first and second concave reflecting surfaces is y Axial and z Each has an asymmetric free-form surface shape in the axial direction,With respect to the radius of curvature at the point where a light beam that passes through the display panel from the center of the exit end face of the light intensity uniformizing means and reaches the center of the entrance pupil of the projection optical system hits the concave reflecting surface of the free-form curved surface, The concave reflecting surface having a curved surface shape satisfies the following conditional expression (i), and the free curved surface shape has no surface symmetry.
    | CRy | <| CRz |… (i)
  However,
    CRz: radius of curvature cut by a plane including the incident light beam and the outgoing light beam on the concave reflecting surface having a free-form surface shape,
    CRy: a radius of curvature that is perpendicular to the plane that includes the incident and exit rays on the concave reflecting surface having a free-form surface, and that is cut by the plane that includes the normal vector of the concave reflecting surface;
It is.
[0010]
  A projection display device according to a fourth invention isNo.In the configuration of the second or third invention,The first and second concave reflecting surfaces are both y Axial and z Free-form surface shape that is asymmetric with respect to the axial directionIt is characterized by having.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a projection display apparatus embodying the present invention will be described with reference to the drawings. 1 to 4 show an embodiment of a projection display device. FIG. 1 is a perspective view showing a schematic optical configuration of the entire display device, and FIGS. 2 to 4 are a perspective view, a bottom view, and a side view showing main parts thereof. 1-4, LA is a light source lamp, L1 is a light source, L2 is an elliptical reflector, RI is a rod integrator, CW is a color wheel, M1 to M8 are first to eighth mirrors, SL is an illumination system pupil, and SP is The projection system pupil, PA is a display panel, OP is an optical engine unit, and SC is a screen. Although a digital micromirror device is assumed here as the display panel (PA), the present invention is not limited to this. Other non-light emitting / reflective (or transmissive) display elements and light valves (liquid crystal display elements, etc.) suitable for a projection optical system (PL) described later may be used.
[0012]
As shown in FIG. 1, the light engine lamp (LA) to the seventh mirror (M7) are the optical engine section (OP) that constitutes the main part of the projection display device. In the optical engine section (OP), as shown in FIGS. 2 to 4, an elliptical reflector (L2), a rod integrator (RI), a color wheel (CW), and first to third mirrors (M1 to M3). ), The light from the light source (L1) is guided to the display panel (PA). The main part is shown in FIG. FIG. 5 is a schematic representation of the layout and the passage of rays by replacing a reflective optical element with a transmissive type. The display image of the display panel (PA) illuminated by the illumination optical system is projected onto the screen (SC) by the projection optical system (PL, FIG. 5) including the fourth to eighth mirrors (M4 to M8).
[0013]
The configuration of each part will be described in more detail. As shown in FIGS. 2 to 4, the light source lamp (LA) includes a light source (L1) and an elliptic reflector (L2). The elliptical reflector (L2) is a condensing optical system that collects the light from the light source (L1) to form a secondary light source, and the light emitted from the light source lamp (LA) is incident on the end surface of the rod integrator (RI). (t1) An image is formed in the vicinity. A rotating paraboloidal mirror or a spherical mirror may be used instead of the elliptical reflector (L2), but in that case, in order to collect the light from the light source (L1), it is combined with a condensing lens or the like. It is necessary to configure an optical optical system.
[0014]
The light emitted from the light source lamp (LA) enters the rod integrator (RI). The rod integrator (RI) is a hollow rod type light intensity equalizing means formed by bonding four plane mirrors, and has an incident end face (t1) in the vicinity of the secondary light source as described above. The light incident from the incident end face (t1) is mixed by being repeatedly reflected by the side surface (that is, the inner wall surface) of the rod integrator (RI), and the spatial energy distribution of the light is made uniform and emitted. Injected from the end face (t2). The shape of the incident end face (t1) and the exit end face (t2) of the rod integrator (RI) is a quadrangle similar to the display panel (PA). Further, as can be seen from FIG. 5, the entrance end face (t1) of the rod integrator (RI) is conjugate to the illumination system pupil (SL), and the exit end face (T2) of the rod integrator (RI) is the display panel ( It is conjugate to the panel surface of (PA). Due to the mixing effect, the luminance distribution on the exit end face (t2) is made uniform, so that the display panel (PA) is illuminated efficiently and uniformly. The rod integrator (RI) is not limited to a hollow rod but may be a glass rod made of a quadrangular prism-shaped glass body. Further, as long as it matches the panel surface shape of the display panel (PA), the side surfaces are not limited to four. Accordingly, examples of the rod integrator (RI) to be used include a hollow cylinder formed by combining a plurality of reflecting mirrors, a glass body having a polygonal column shape, and the like.
[0015]
In the vicinity of the exit end face (t2) of the rod integrator (RI), a color wheel (CW) for changing the emitted light color in a time division manner for color display is arranged. The color wheel (CW) is composed of a color filter for illuminating the display panel (PA) in a color sequential manner, and changes the color of the emitted light by rotating the filter portion at the illumination light transmission position. The position of the color wheel (CW) is not limited to the vicinity of the injection end surface (t2) of the rod integrator (RI). The position may be set according to the arrangement of other optical elements, for example, the color wheel (CW) may be arranged in the vicinity of the incident end face (t1) of the rod integrator (RI). Still further, a UV (ultraviolet ray) -IR (infrared ray) cut filter may be arranged to cut ultraviolet rays and infrared rays from the illumination light.
[0016]
The light emitted from the color wheel (CW) is incident on a reflection optical system including the first to third mirrors (M1 to M3). Then, the reflection optical system forms an image of the exit end face (t2) of the rod integrator (RI) on the panel surface of the display panel (PA). The power for performing the image formation is borne by the first and third mirrors (M1, M3). That is, the reflecting surfaces of the first and third mirrors (M1, M3) are concave reflecting surfaces, and the reflecting surface of the second mirror (M2) is a planar reflecting surface. The secondary light source near the entrance end face (t1) of the rod integrator (RI) is re-imaged by the concave reflecting surface of the first mirror (M1), and a tertiary light source is formed near the illumination system pupil (SL) position. The Light from the tertiary light source is guided to the display panel (PA) by the concave reflecting surface of the third mirror (M3). Light incident on the display panel (PA) is spatially intensity-modulated by being reflected by each micromirror in an ON / OFF state (for example, an inclination state of ± 12 °). At that time, only the light reflected by the micro mirror in the ON state is incident on the projection optical system (PL) composed of the fourth to eighth mirrors (M4 to M8), and the power of the concave reflecting surface of the third mirror (M3). Is efficiently guided to the entrance pupil (SP) of the projection optical system (PL). Then, the light is projected onto the screen (SC) by the projection optical system (PL).
[0017]
In this embodiment, the reflecting optical system has only two concave reflecting surfaces as optical surfaces having power as described above. For this reason, it is possible to achieve a reduction in the number of parts of the illumination optical system and a reduction in size, and since chromatic aberration does not occur, color unevenness does not occur and a decrease in illuminance can be suppressed. Therefore, it is possible to use optical components that are compact and advantageous in terms of mass productivity and cost while maintaining good optical performance, and it is possible to achieve cost reduction, compactness, and high performance of display devices. Become.
[0018]
Further, as can be seen from the optical path shown in FIG. 5, the projection optical system (PL) has an oblique telecentric configuration on the display panel (PA) side. In the case of a telecentric optical system, it is designed so that the principal rays of the light flux from each image height out of the incident light from the display panel to the projection optical system are substantially parallel to each other, so that both the illumination optical system and the projection optical system It is possible to make the sizes substantially equal. However, since the optical burden on the projection optical system becomes large, there is a demerit such as an increase in the number of lenses when trying to satisfy the optical performance. If two mirrors (M1, M3) having concave reflecting surfaces are used as optical elements having power in the illumination optical system as in this embodiment, the minimum number of illumination optical systems can be configured in principle. Therefore, a telecentric projection optical system (PL) -oriented illumination optical system can be formed on the display panel (PA) side. Since the number of reflection surfaces is small, reflection loss is reduced, and a bright display can be obtained.
[0019]
In the case of this embodiment, a rod mirror (RI) is arranged by arranging a first mirror (M1) having a relay lens function between the exit end face (t2) of the rod integrator (RI) and the illumination system pupil (SL). The power of the first mirror (M1) is set so that the incident end face (t1) and the illumination system pupil (SL) are conjugate. In addition, a third mirror (M3) having a condenser lens function is arranged between the illumination system pupil (SL) and the display panel (PA), and is positioned closer to the display panel (PA) side than the projection system pupil (SP). In addition to the fourth mirror (M4), the power of the third mirror (M3) is set so that the illumination system pupil (SL) and the projection system pupil (SP) are conjugate. At the same time, the first mirror (M1) having a relay lens function and the third mirror (M3) having a condenser lens function are used for the exit end surface (t2) of the rod integrator (RI) and the panel surface of the display panel (PA). Is set to be conjugate. According to this configuration, light emitted from the exit end face (t2) of the rod integrator (RI) is efficiently guided to a small display panel (PA), and the reflected light from the panel surface is projected into the projection optical system (PL). Can be efficiently led to. Therefore, it is possible to reduce the decrease in illuminance while maintaining high optical performance in the illumination optical system, and it is possible to achieve cost reduction and compactness of the display device.
[0020]
Further, between the first and third mirrors (M1, M3) having the concave reflecting surface, the second mirror (M2) having the planar reflecting surface is connected to the optical axis direction of the rod integrator (RI) and the display panel (PA). The optical path is bent so that the normal direction of the panel surface substantially coincides. In this way, the optical axis direction of the rod integrator (RI) and the normal direction of the panel surface of the display panel (PA) substantially coincide, or the optical axis of the rod integrator (RI) and the projection optical system (PL) It is desirable to have a plane reflecting surface between the two concave reflecting surfaces so that the optical axis of the first reflecting surface and the second reflecting surface are substantially parallel to each other. By bending the optical path between the first and third mirrors (M1, M3), the optical configuration of the entire display device can be made compact, and errors can be reduced by using a common design reference axis, and position adjustment can be simplified. And securing the degree of freedom of layout. Moreover, it is preferable to integrate the two concave reflecting surfaces into one component by integrating the first and third mirrors (M1, M3) into one component, thereby reducing the number of components, reducing errors and accuracy. It becomes possible to achieve the improvement.
[0021]
The concave reflecting surfaces provided on the first and third mirrors (M1, M3) are all free-form surfaces. When the illumination optical system is configured only by the power of the reflecting surface as in this embodiment, if at least one of them is a free-form surface, the illumination efficiency can be improved accordingly. For example, when a digital micromirror device is used as a display panel (PA), it is essential to obliquely illuminate the panel surface, but if a free-form surface is used, aberrations such as distortion can be corrected well even when obliquely illuminating. it can. Thereby, light can be efficiently guided toward the entrance pupil (SP) of the projection optical system (PL) to brighten the display. In other words, the imaging performance (e.g. blur and distortion) on the display panel (PA) conjugate to the exit end face (t2) of the rod integrator (RI) can be improved, so the reflected light on the display panel (PA) Can be efficiently collected on the entrance pupil (SP) of the projection optical system (PL) to increase the illumination efficiency. Further, since the change in illuminance due to the position in the screen can be reduced, it is possible to reduce unevenness in brightness.
[0022]
In this embodiment, the concave reflecting surfaces of the first and third mirrors (M1, M3) have a free-form surface. The concave reflecting surface closest to the display panel (PA) and the exit end surface of the rod integrator (RI) This is because making the concave reflection surface closest to (t2) into a free-form surface is effective in achieving the improvement in illumination efficiency and the reduction in brightness unevenness. When a digital micromirror device is used as the display panel (PA), if the concave reflective surface closest to the display panel (PA) is a free-form surface, the illumination light reflected by the micromirror in the ON state can be projected efficiently. (SP). Therefore, it is possible to effectively achieve improvement in illumination efficiency and reduction in brightness unevenness. In addition, if the concave reflecting surface closest to the exit end surface (t2) of the rod integrator (RI) is made into a free-form surface, the aberration correction when the exit end surface (t2) is imaged on the display panel (PA) will be improved. It becomes possible. Thereby, it is possible to more effectively achieve an improvement in illumination efficiency by reducing distortion and blurring.
[0023]
Further, if the vertical direction of the panel surface of the display panel (PA) is the y-axis direction and the horizontal direction is the z-axis direction, the concave reflecting surfaces of the first and third mirrors (M1, M3) are both in the y-axis direction. Each has a free-form surface that is asymmetric with respect to the z-axis direction. Thus, it is desirable that at least one of the concave reflecting surfaces constituting the reflecting optical system has a free curved surface shape that is asymmetric in the y-axis direction and the z-axis direction. By doing so, it becomes easier to control the reflection direction of the light beam depending on the position where it hits the concave reflecting surface, so that the optical performance of image formation and distortion can be improved. In the case of the present embodiment, as can be seen from FIGS. 3 and 4, the object plane {the exit end surface (t2) of the rod integrator (RI)} and the image plane {the panel surface of the display panel (PA)} are mainly used. It increases in the z-axis direction, and the free-form surface of each concave reflecting surface is also optimized with a shape that reflects its layout.
[0024]
Furthermore, a ray that passes through the display panel (PA) from the center of the exit end surface (t2) of the rod integrator (RI) and reaches the center of the entrance pupil (SP) of the projection optical system (PL) is a concave reflecting surface having a free-form surface. It is desirable that the concave reflecting surface having a free curved surface shape satisfies the following conditional expression (i), and the free curved surface shape does not have surface symmetry with respect to the radius of curvature at the point of contact. According to this configuration, it is possible to improve optical performance, reduce distortion, and improve imaging performance. As a result, it becomes possible to improve illumination efficiency.
| CRy | <| CRz |… (i)
However,
CRz: radius of curvature cut by a plane including the incident light beam and the outgoing light beam on the concave reflecting surface having a free-form surface shape,
CRy: a radius of curvature that is perpendicular to the plane that includes the incident and exit rays on the concave reflecting surface having a free-form surface, and that is cut by the plane that includes the normal vector of the concave reflecting surface;
It is.
[0025]
As a substrate material constituting the reflecting surface of each mirror (M1 to M8), any material such as glass, plastic, metal, ceramic, etc. may be used, and what is necessary may be used. For example, in order to prevent deterioration in imaging performance due to temperature change, a material such as glass having a small shape change is preferable, and in order to reduce cost, a plastic material such as PMMA (polymethyl methacrylate) or PC (polycarbonate) is preferable. In order to increase the illumination efficiency, it is necessary to apply a highly reflective coating on the substrate. Specifically, a metal reflective thin film such as Al (aluminum) or Ag (silver) is formed, or a dielectric coating is applied. A reflective film may be formed. A multilayer film made of several tens of dielectric layers may be coated. In that case, unlike the metal film, there is no light absorption by the metal, which is preferable because there is no problem that the absorbed light is changed to heat even during use. Moreover, it is preferable that the reflectance of the reflective surface with visible light is approximately 90% or more.
[0026]
【Example】
Next, the optical configuration of the illumination optical system described above will be described more specifically with reference to construction data and the like. In the following construction data, in the system including from the end surface (t2) of the rod integrator (RI) to the panel surface of the display panel (PA), the arrangement, surface shape, etc. of each optical element in order from the light source (L1) side. Optical data is shown. The arrangement of each optical element is the local Cartesian coordinates in the global Cartesian coordinate system (X, Y, Z), with the surface vertex of the optical surface as the origin (o) of the local Cartesian coordinate system (x, y, z). It is expressed by the coordinate data (X, Y, Z) of the origin (o) of the system (x, y, z) and the coordinate axis vector (vx, vy) of the x and y axes (unit: mm). Further, a coaxial optical element composed of two or more optical surfaces is represented by an axial upper surface distance (T ′, mm) with respect to the incident-side optical surface. Therefore, the direction of the rotationally symmetric axis in the coaxial block is expressed by the coordinate data (X, Y, Z) of the surface normal vector (vx) at the origin (o).
[0027]
The surface shape of each optical element is the curvature of the optical surface (C0, mm-1In the case of a free-form surface, it is defined by the following extended aspherical expression (FS) using a local Cartesian coordinate system (x, y, z) whose origin is the surface vertex (o) . Also, the refractive index (N) for the d-line of the medium located on the incident side of each optical surface, the refractive index (N ') for the d-line of the medium located on the exit side, and the Abbe number (νd) of the optical material are combined. The effective radius (R) of the optical surface is also indicated if necessary.
[0028]
x = (C0 ・ h2) / {1 + √ (1-ε ・ C02・ H2)} + Σ {G (j, k) ・ yj・ Zk}… (FS)
However, in the formula (FS)
x: Amount of displacement from the reference plane in the x-axis direction at the position of height h (plane vertex reference),
h: Height in the direction perpendicular to the x-axis (h2= y2+ z2),
C0: curvature at the surface vertex (positive or negative is with respect to the x-axis, and if positive, the center of curvature exists in the positive direction on the vector vx),
ε: quadric surface parameter,
G (j, k): j-th order of y, k-th order extended aspheric coefficient of z (the coefficient of the term not described is 0),
It is.
[0029]
<Injection end face (t2) of rod integrator (RI)>
Rod size (hollow): 3.9mm (length) x 6.7mm (width) x 35mm (length)
o :( -14.02584, 12.00438, -76.96887)
vx: (-1.00000000, 0.00000000, 0.00000000)
vy :( 0.00000000, -0.99838995, -0.05672304)
N = 1.00000
C0 = 0.00000000
N '= 1.00000
[0030]
<Concave reflecting surface of the first mirror (M1)>
o :( -46.47675, 12.00438, -76.96887)
vx: (-1.00000000, 0.00000000, 0.00000000)
vy :( 0.00000000, -0.99838995, -0.05672304)
N = 1.00000
C0 = 0.00000000
ε = 1.00000000
G (1,0) = 0.000306699905
G (2,0) =-0.00908106398
G (3,0) =-8.07892955 × 10-7
G (4,0) =-1.98717695 × 10-6
G (5,0) = 1.08512241 × 10-8
G (6,0) = 5.58684963 × 10-9
G (7,0) =-3.34949549 × 10-11
G (8,0) =-4.91483340 × 10-12
G (0,1) = 0.329970530
G (1,1) = 0.000231084778
G (2,1) = 0.000105566790
G (3,1) =-6.04445485 × 10-8
G (4,1) = 1.65959977 × 10-7
G (5,1) = 1.77506594 × 10-9
G (6,1) =-5.46257539 × 10-Ten
G (7,1) = 1.22613569 × 10-12
G (0,2) =-0.00914828809
G (1,2) =-3.36307029 × 10-6
G (2,2) =-3.79663012 × 10-6
G (3,2) = 5.24678841 × 10-8
G (4,2) = 2.92382569 × 10-9
G (5,2) =-2.62911765 × 10-Ten
G (6,2) = 4.72402181 × 10-12
G (0,3) = 8.05884647 × 10-Five
G (1,3) = 8.31497717 × 10-8
G (2,3) =-8.33084401 × 10-8
G (3,3) =-2.32070916 × 10-9
G (4,3) = 3.34976119 × 10-Ten
G (5,3) = 9.96252911 × 10-12
G (0,4) =-2.36232594 × 10-6
G (1,4) = 3.33590529 × 10-8
G (2,4) = 4.93651852 × 10-9
G (3,4) =-2.69043165 × 10-11
G (4,4) =-2.72594071 × 10-11
G (0,5) = 9.08689438 × 10-8
G (1,5) =-8.86313676 × 10-Ten
G (2,5) = 1.71838290 × 10-Ten
G (3,5) = 2.57328687 × 10-12
G (0,6) =-2.79012040 × 10-Ten
G (1,6) =-7.54028329 × 10-11
G (2,6) =-6.20207234 × 10-12
G (0,7) =-1.08926425 × 10-Ten
G (1,7) = 2.60400479 × 10-12
G (0,8) = 2.15734871 × 10-12
N '=-1.00000
[0031]
<Planar reflecting surface of the second mirror (M2)>
o :( -10.00000, 10.44701, -50.00000)
vx :( 0.94507308, 0.30159769, -0.12599885)
vy :( 0.29066098, -0.95178425, -0.09809659)
N = 1.00000
C0 = 0.00000000
N '=-1.00000
[0032]
<Lighting system pupil (SL)>
o :( -21.12051, 0.11765, -32.15182)
vx: (-0.48205523, -0.44754084, 0.75321309)
vy :( 0.21295825, -0.89376373, -0.39475965)
N = 1.00000
C0 = 0.00000000 (R = 15)
N '= 1.00000
[0033]
<Concave reflective surface of the third mirror (M3)>
o :( -50.00020, -27.01956, 14.90964)
vx: (-0.70351808, -0.46400538, 0.53829483)
vy :( 0.33768245, -0.88472575, -0.32129566)
N = 1.00000
C0 = 0.00000000
ε = 1.00000000
G (1,0) =-0.0165717437
G (2,0) =-0.00358908679
G (3,0) =-2.96168772 × 10-6
G (4,0) =-8.41908290 × 10-7
G (5,0) = 1.09778063 × 10-7
G (6,0) = 5.62907582 × 10-9
G (7,0) =-3.56648227 × 10-Ten
G (8,0) =-1.75864361 × 10-11
G (0,1) =-0.00730596825
G (1,1) =-0.000573447332
G (2,1) =-2.26990751 × 10-Five
G (3,1) =-5.87353269 × 10-7
G (4,1) =-4.21148102 × 10-9
G (5,1) = 3.90388810 × 10-9
G (6,1) =-8.27699273 × 10-11
G (7,1) =-1.20079976 × 10-11
G (0,2) =-0.00318395834
G (1,2) = 9.26292117 × 10-7
G (2,2) =-8.57133481 × 10-7
G (3,2) =-1.15650143 × 10-7
G (4,2) =-3.34437629 × 10-9
G (5,2) = 4.84297082 × 10-Ten
G (6,2) = 2.47858612 × 10-11
G (0,3) =-1.26500601 × 10-Five
G (1,3) = 4.53962253 × 10-7
G (2,3) =-5.34439218 × 10-9
G (3,3) = 2.07178981 × 10-9
G (4,3) = 5.26613238 × 10-Ten
G (5,3) = 2.04221150 × 10-11
G (0,4) =-6.68600297 × 10-7
G (1,4) =-7.24724659 × 10-9
G (2,4) = 5.29717438 × 10-9
G (3,4) =-1.84848215 × 10-11
G (4,4) = 7.58382766 × 10-12
G (0,5) = 9.43218162 × 10-9
G (1,5) =-1.74670419 × 10-9
G (2,5) =-6.08190477 × 10-11
G (3,5) =-1.88709489 × 10-11
G (0,6) = 1.34128868 × 10-9
G (1,6) = 1.25465294 × 10-11
G (2,6) =-1.36776768 × 10-11
G (0,7) =-1.22396504 × 10-12
G (1,7) = 1.49699829 × 10-12
G (0,8) =-5.01105893 × 10-13
N '=-1.00000
[0034]
<Protective glass for display panel (PA)>
o :( -3.47000, 0.00000, 0.00000)
vx :( 1.00000000, 0.00000000, 0.00000000)
vy :( 0.00000000, -0.99838995, -0.05672304)
(Incident side)
N = 1.00000
C0 = 0.00000000
N '= 1.51872 (νd = 64.20)
T '= 3
(Ejection side)
N = 1.51872 (νd = 64.20)
C0 = 0.00000000
N '= 1.00000
[0035]
<Display panel (PA) panel surface>
Panel size: 10.3mm (vertical) x 17.6mm (horizontal)
o :( 0.00000, 0.00000, 0.00000)
vx :( 1.00000000, 0.00000000, 0.00000000)
vy :( 0.00000000, 1.00000000, 0.00000000)
N = 1.00000
C0 = 0.00000000
N '= 1.00000
[0036]
FIG. 6 shows the free curved surface shape of the concave reflecting surface of the first mirror (M1), and FIG. 7 shows the free curved surface shape of the concave reflecting surface of the third mirror (M3). The graphs of FIGS. 6 and 7 are obtained by plotting the free-form surface shape of each concave reflecting surface by selecting a spherical surface having a radius of curvature that minimizes the amount of displacement from the reference spherical surface. In FIG. The amount of displacement from a spherical surface with a radius of -187.03 mm is shown with a 0.75 mm pitch, and in FIG. 7, the amount of displacement from a spherical surface with a radius of curvature of -68.96 mm is shown with a pitch of 0.25 mm. In each graph, a portion with a sign of-represents a concave surface, and a portion with a sign of + represents a convex surface. FIG. 8 shows a reflection state of illumination light on the panel surface of the display panel (PA). A zebra pattern portion is an area on the panel surface of the digital micromirror device. }, FIG. 9 shows the illuminance distribution on the panel surface of the display panel (PA), and FIG. 10 shows the illuminance distribution on the screen (SC).
[0037]
Here, the asymmetry of the free-form surface will be specifically described. Ejected from the center of the exit surface (t2) of the rod integrator (RI), which is the object plane, passes through the approximate center of the illumination system pupil (SL), and reaches the center of the panel surface of the display panel (PA), which is the image plane. If the ray is the principal ray, in this embodiment, the position on each surface through which the principal ray passes is designed to pass near the origin (o) of the local coordinates (x, y, z) of each surface. Yes. Accordingly, the radii of curvature CRy and CRz near the origin (o) of each free-form surface in each of the y-axis and z-axis directions are as follows.
First mirror (M1)… CRy = -55.06, CRz = -63.82
3rd mirror (M3)… CRy = -139.37, CRz = -157.05
[0038]
Since both are free-form surfaces, the radius of curvature differs between the y-axis direction and the z-axis direction, but the curvature radius (absolute value) in the y-axis direction is clearly smaller than the eccentric direction (z-axis direction). I understand that. Therefore, it can be said that the following formula (I) is established at the position where the principal ray passing through the center of the illumination system pupil (SL) from the center of the object plane (t2) passes through each surface.
| The radius of curvature in the direction of eccentricity |> | the radius of curvature in the direction perpendicular to the direction of eccentricity | ... (I).
[0039]
Strictly speaking, it passes through the center of the illumination system pupil (SL) from a point slightly shifted in the vertical direction (i.e., the y-axis direction) from the center of the object plane (t2), and passes through the center of the illumination system pupil (SL). If the position where the ray reaching the panel surface} passes through each surface is Py, and the position where the principal ray passes through each surface is P0, the y-axis direction of the local coordinate system of each surface is defined as the normal of that surface. The direction of the vector projected from the point P0 to the point Py projected onto the plane perpendicular to the vector (the z-axis direction is obtained from the normal vector and the y-axis vector), and the lateral direction of the image plane (image plane coordinates = global coordinates) If the optical system is mainly decentered in the Z-axis direction in the system, it can be said that the following equation (II) holds.
| Curvature radius of each local coordinate system in the y-axis direction | <| Curvature radius of each local coordinate system in the z-axis direction |… (II)
[0040]
In the present embodiment, in a plane including the y-axis direction vector of image plane coordinates (= global coordinate system) and the normal vector of local coordinates of each plane, a vector perpendicular to the normal vector is defined as the local coordinates of each plane. Although the y-axis direction of the system is used, conditional expression (II) may be used when taking the y-axis direction of the local coordinate system as described above. Alternatively, the normal vector of the surface is taken in the direction in which the incident ray travels on the bisector of the angle of the two rays of the incident ray and the outgoing ray when the principal ray passes through each surface, The y-axis direction of the local coordinate system is perpendicular to the normal vector and perpendicular to the plane containing the incident and outgoing rays, and the z-axis direction is perpendicular to the normal vector and the y-axis vector. It is preferable to configure the optical system so that the relationship of the conditional expression (II) is satisfied between the respective curvature radii in the y-axis direction and the z-axis direction.
[0041]
【The invention's effect】
As described above, according to the present invention, the reflecting optical system has only the first and second concave reflecting surfaces as the optical surfaces having power, and the secondary light source is changed from the secondary light source to the first concave reflecting surface. The projection-type display device is configured to efficiently guide the light from the tertiary light source to the entrance pupil of the projection optical system by the second concave reflecting surface, while maintaining high optical performance in the illumination optical system. The cost can be reduced and the size can be reduced. Furthermore, if a free-form concave reflecting surface having asymmetry is used, it is possible to effectively improve illumination efficiency and reduce brightness unevenness, and between the first and second concave reflecting surfaces. If a plane reflecting surface is provided, the optical configuration of the entire display device can be made compact.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the entire system of a projection display apparatus according to the present invention.
FIG. 2 is a perspective view showing a schematic configuration of a main part of a projection display device according to the present invention.
FIG. 3 is a bottom view showing a schematic configuration of a main part of a projection display device according to the present invention.
FIG. 4 is a side view showing a schematic configuration of a main part of a projection display device according to the present invention.
FIG. 5 is an optical configuration diagram showing a main part of an optical engine unit in the display device of FIGS.
6 is a graph showing the shape of a free-form curved reflecting surface of a first mirror used in the illumination optical system in the display device of FIGS.
7 is a graph showing the shape of a free-form curved reflecting surface of a third mirror used in the illumination optical system in the display device of FIGS.
FIG. 8 is a diagram showing a reflected state of illumination light on the display panel surface in the display device of FIGS.
9 is a diagram showing an illuminance distribution on the display panel surface in the display device of FIGS. 1 to 4; FIG.
10 is a diagram showing an illuminance distribution on a screen surface in the display device of FIGS. 1 to 4; FIG.
[Explanation of symbols]
OP: Optical engine
LA ... Light source lamp
L1 ... Light source
L2 ... Elliptic reflector (condensing optical system)
RI… Rod integrator
t1 ... Incident end face
t2 ... Injection end face
CW ... Color wheel (color filter)
M1 ... first mirror (first concave reflecting surface, reflecting optical system)
M2 ... Second mirror (planar reflecting surface, reflecting optical system)
M3 ... Third mirror (second concave reflecting surface, reflecting optical system)
M4 to M8 ... 4th to 8th mirrors (projection optical system)
PL ... Projection optical system
SL… Lighting system pupil
SP ... projection system pupil
PA: Display panel
SC ... screen

Claims (4)

光源からの光を照明光学系で表示パネルに導き、それにより照明された表示パネルの表示画像を投影光学系でスクリーンに投影する投影型表示装置であって、
前記光源からの光を集光して2次光源を形成する集光光学系と、前記2次光源近傍に入射端面を有し前記集光光学系で集光された光の空間的なエネルギー分布を均一化する光強度均一化手段と、その光強度均一化手段の入射端面近傍又は射出端面近傍でカラー表示のために射出光色を時分割で変化させるカラーフィルタと、前記光強度均一化手段の射出端面の像を前記表示パネルのパネル面上に形成する反射光学系と、を前記照明光学系に有し、
前記表示パネルが反射型であり、前記照明光学系が前記表示パネルのパネル面に対して斜め方向から照明を行い、前記投影光学系が前記表示パネル側に斜めテレセントリックであり、
前記反射光学系がパワーを有する光学面として第1,第2の凹面反射面のみを有し、前記第1の凹面反射面で前記2次光源から3次光源を形成し、前記第2の凹面反射面で前記3次光源からの光を前記投影光学系の入射瞳に導き、
前記表示パネルのパネル面の縦方向を y 軸方向とし横方向を z 軸方向とすると、前記第1,第2の凹面反射面のうちの少なくとも1面が y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有し、
前記光強度均一化手段の射出端面の中心から前記表示パネルを通過し、前記投影光学系の入射瞳中心に至る光線が、前記自由曲面形状の凹面反射面に当たる点での曲率半径について、前記自由曲面形状を有する凹面反射面が以下の条件式 (i) の関係を満足し、その自由曲面形状が面対称性を有しないことを特徴とする投影型表示装置
|CRy| |CRz| (i)
ただし、
CRz :自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半径、
CRy :自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径、
である
A projection display device that guides light from a light source to a display panel with an illumination optical system, and projects a display image of the display panel illuminated thereby on a screen with a projection optical system,
A condensing optical system for condensing light from the light source to form a secondary light source, and a spatial energy distribution of the light collected by the condensing optical system having an incident end face near the secondary light source Light intensity uniformizing means for uniforming the light intensity, a color filter for changing the emitted light color in a time-division manner for color display in the vicinity of the incident end face or the exit end face of the light intensity uniformizing means, and the light intensity uniformizing means A reflection optical system that forms an image of the emission end face of the display panel on the panel surface of the display panel, and the illumination optical system,
The display panel is a reflective type, the illumination optical system illuminates the panel surface of the display panel from an oblique direction, and the projection optical system is oblique telecentric on the display panel side,
The reflective optical system has only first and second concave reflective surfaces as optical surfaces having power, and a tertiary light source is formed from the secondary light source by the first concave reflective surface, and the second concave surface -out guide the light from the tertiary light sources in the entrance pupil of the projection optical system by the reflection surface,
When the vertical direction of the panel surface of the display panel is the y- axis direction and the horizontal direction is the z- axis direction, at least one of the first and second concave reflecting surfaces is in the y- axis direction and the z- axis direction, respectively. It has an asymmetric free-form surface shape,
With respect to the radius of curvature at the point where a light beam that passes through the display panel from the center of the exit end face of the light intensity uniformizing means and reaches the center of the entrance pupil of the projection optical system hits the concave reflecting surface of the free-form curved surface, A projection display device characterized in that a concave reflecting surface having a curved surface satisfies the relationship of the following conditional expression (i) , and the free curved surface has no surface symmetry ;
| CRy | < | CRz | (i)
However,
CRz : radius of curvature cut by a plane including incident light and outgoing light to a concave reflecting surface having a free-form surface,
CRy : a radius of curvature that is perpendicular to the plane that includes the incident and exit rays on the concave reflecting surface having a free-form surface, and that is cut by the plane that includes the normal vector of the concave reflecting surface;
It is .
さらに、前記光強度均一化手段の光軸と前記投影光学系の光軸とが略平行になるように、又は前記光強度均一化手段の光軸方向と前記表示パネルのパネル面の法線方向とが略一致するように、前記第1の凹面反射面と前記第2の凹面反射面との間に平面反射面を有することを特徴とする請求項1記載の投影型表示装置。 Further, the optical axis of the light intensity uniformizing means and the optical axis of the projection optical system are substantially parallel, or the optical axis direction of the light intensity uniformizing means and the normal direction of the panel surface of the display panel 2. The projection display device according to claim 1, further comprising a plane reflecting surface between the first concave reflecting surface and the second concave reflecting surface so that the two substantially coincide with each other . 光源からの光を照明光学系で表示パネルに導き、それにより照明された表示パネルの表示画像を投影光学系でスクリーンに投影する投影型表示装置であって、
前記光源からの光を集光して2次光源を形成する集光光学系と、前記2次光源近傍に入射端面を有し前記集光光学系で集光された光の空間的なエネルギー分布を均一化する光強度均一化手段と、その光強度均一化手段の入射端面近傍又は射出端面近傍でカラー表示のために射出光色を時分割で変化させるカラーフィルタと、前記光強度均一化手段の射出端面の像を前記表示パネルのパネル面上に形成する反射光学系と、を前記照明光学系に有し、
前記表示パネルが反射型であり、前記照明光学系が前記表示パネルのパネル面に対して斜め方向から照明を行い、
前記反射光学系がパワーを有する光学面として第1,第2の凹面反射面のみを有し、さらに、前記光強度均一化手段の光軸と前記投影光学系の光軸とが略平行になるように、又は前記光強度均一化手段の光軸方向と前記表示パネルのパネル面の法線方向とが略一致するように、前記第1の凹面反射面と前記第2の凹面反射面との間に平面反射面を有し、前記第1の凹面反射面で前記2次光源から3次光源を形成し、前記第2の凹面反射面で前記3次光源からの光を前記投影光学系の入射瞳に導き、
前記表示パネルのパネル面の縦方向を y 軸方向とし横方向を z 軸方向とすると、前記第1 ,第2の凹面反射面のうちの少なくとも1面が y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有し、
前記光強度均一化手段の射出端面の中心から前記表示パネルを通過し、前記投影光学系の入射瞳中心に至る光線が、前記自由曲面形状の凹面反射面に当たる点での曲率半径について、前記自由曲面形状を有する凹面反射面が以下の条件式(i)の関係を満足し、その自由曲面形状が面対称性を有しないことを特徴とする投影型表示装置;
|CRy|<|CRz| …(i)
ただし、
CRz:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半径、
CRy:自由曲面形状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径、
である。
A projection display device that guides light from a light source to a display panel with an illumination optical system, and projects a display image of the display panel illuminated thereby on a screen with a projection optical system,
A condensing optical system for condensing light from the light source to form a secondary light source, and a spatial energy distribution of the light collected by the condensing optical system having an incident end face near the secondary light source Light intensity uniformizing means for uniforming the light intensity, a color filter for changing the emitted light color in a time-division manner for color display in the vicinity of the incident end face or the exit end face of the light intensity uniformizing means, and the light intensity uniformizing means A reflection optical system that forms an image of the emission end face of the display panel on the panel surface of the display panel, and the illumination optical system,
The display panel is a reflective type, and the illumination optical system performs illumination from an oblique direction with respect to the panel surface of the display panel,
The reflecting optical system has only the first and second concave reflecting surfaces as the optical surfaces having power, and the optical axis of the light intensity uniformizing means and the optical axis of the projection optical system are substantially parallel. Or the optical axis direction of the light intensity equalizing means and the normal direction of the panel surface of the display panel substantially coincide with each other between the first concave reflective surface and the second concave reflective surface. The projection light system has a plane reflection surface in between, the tertiary light source is formed from the secondary light source by the first concave reflection surface, and the light from the tertiary light source is transmitted by the second concave reflection surface of the projection optical system. Led to the entrance pupil,
When the vertical direction of the panel surface of the display panel is the y- axis direction and the horizontal direction is the z- axis direction , at least one of the first and second concave reflecting surfaces is in the y- axis direction and the z- axis direction, respectively. It has an asymmetric free-form surface shape,
With respect to the radius of curvature at the point where a light beam that passes through the display panel from the center of the exit end face of the light intensity uniformizing means and reaches the center of the entrance pupil of the projection optical system hits the concave reflecting surface of the free-form curved surface, concave reflecting surface satisfies the relation of the following conditional expressions (i), the free-form surface is projected shadow type display device you characterized by not having a plane symmetry with a curved surface shape;
| CRy | <| CRz |… (i)
However,
CRz: radius of curvature cut by a plane including incident and exiting rays on a concave reflecting surface having a free-form surface,
CRy: a radius of curvature that is perpendicular to the plane that includes the incident and exit rays on the concave reflecting surface having a free-form surface, and that is cut by the plane that includes the normal vector of the concave reflecting surface;
It is.
前記第1,第2の凹面反射面が、いずれも y 軸方向と z 軸方向とにそれぞれ非対称な自由曲面形状を有することを特徴とする請求項又は3記載の投影型表示装置。 4. The projection display device according to claim 2 , wherein each of the first and second concave reflecting surfaces has an asymmetric free-form surface shape in the y- axis direction and the z- axis direction .
JP2002300791A 2002-10-15 2002-10-15 Projection display device Expired - Fee Related JP4066773B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002300791A JP4066773B2 (en) 2002-10-15 2002-10-15 Projection display device
US10/689,391 US7066609B2 (en) 2002-10-15 2003-10-20 Projection-type display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300791A JP4066773B2 (en) 2002-10-15 2002-10-15 Projection display device

Publications (3)

Publication Number Publication Date
JP2004138667A JP2004138667A (en) 2004-05-13
JP2004138667A5 JP2004138667A5 (en) 2005-09-15
JP4066773B2 true JP4066773B2 (en) 2008-03-26

Family

ID=32449380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300791A Expired - Fee Related JP4066773B2 (en) 2002-10-15 2002-10-15 Projection display device

Country Status (1)

Country Link
JP (1) JP4066773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149744A (en) 2001-11-09 2003-05-21 Mitsubishi Electric Corp Image display system
JP2006189538A (en) * 2005-01-04 2006-07-20 Sharp Corp Illuminating optical system and projection type display device
JP2020052342A (en) 2018-09-28 2020-04-02 キヤノン株式会社 Optical instrument

Also Published As

Publication number Publication date
JP2004138667A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
CN111699429B (en) Projection optical system and image display device
JP7148334B2 (en) Projection optical system and image projection device
CN107148588B (en) Projection optical system and projector apparatus
EP2960709B1 (en) Projection device and projection system
JP3840031B2 (en) Projection optical system and projection display device using the same
JP4355381B2 (en) Illumination device and projection display device using the same
JP7234498B2 (en) Projection optical system unit and projection optical device
US7066609B2 (en) Projection-type display apparatus
JP2004045718A (en) Illumination optical system and magnified projection display device
US20030231496A1 (en) Light source unit and projector type display device using the light source unit
JP7133398B2 (en) Projection optical system and image projection device
US10578845B2 (en) Illumination optical system and projector
JP4066773B2 (en) Projection display device
JP4123025B2 (en) Oblique projection optical system and image projection apparatus
JP2006338038A (en) Projection optical system and projection display device using the same
JP6167492B2 (en) Image display device
JP2004138668A (en) Projection type display apparatus
JPH10333042A (en) Illumination optical system
JP4061060B2 (en) Projection optical device
JP2004184626A (en) Projection image display apparatus
JP2000193911A (en) Illuminator and projector using the same
JP2016186659A (en) Projection optical system and image display device
JP2022136517A (en) Projection optical system and image projection device
JP2006189538A (en) Illuminating optical system and projection type display device
JP4807362B2 (en) Optical system design method and manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees