JP2006338038A - Projection optical system and projection display device using the same - Google Patents

Projection optical system and projection display device using the same Download PDF

Info

Publication number
JP2006338038A
JP2006338038A JP2006179447A JP2006179447A JP2006338038A JP 2006338038 A JP2006338038 A JP 2006338038A JP 2006179447 A JP2006179447 A JP 2006179447A JP 2006179447 A JP2006179447 A JP 2006179447A JP 2006338038 A JP2006338038 A JP 2006338038A
Authority
JP
Japan
Prior art keywords
optical system
projection
display panel
reflection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006179447A
Other languages
Japanese (ja)
Inventor
Toshihiro Sunaga
須永  敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006179447A priority Critical patent/JP2006338038A/en
Publication of JP2006338038A publication Critical patent/JP2006338038A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a projection optical system using an slanting projection system having a high enlargement ratio, which secures the ratio of peripheral light quantity while contriving the miniaturization of a device, and a projection type display device using the same. <P>SOLUTION: The projection optical system guides luminous flux from a picture display panel to a surface to be projected inclined to a reference axis, and forms image information on the surface to be projected. The projection optical system has a reflection optical system including a plurality of rotationally asymmetric reflection surfaces having curvature and reflecting the luminous flux from the picture display panel by the plurality of rotationally asymmetric reflection surfaces so as to guide it onto the surface to be projected, and has a diaphragm between the rotationally asymmetric reflection surfaces of the reflection optical system or between the reflection optical system and the picture display panel. The diaphragm forms an image at negative magnification by an optical member arranged nearer to the side of the surface to be projected than the position of the diaphragm, and the image forming position of the diaphragm is between the reflection surface nearest to the surface to be projected out of the plurality of rotationally asymmetric reflection surfaces and the surface to be projected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、投射光学系及びそれを用いた投射型表示装置に関する。例えば液晶表示素子(液晶パネル)やデジタルマイクロミラーデバイス等の画像表示パネルによって光変調された光束をスクリーン又は壁に導光し、画像情報を形成する液晶プロジェクター(プロジェクション)等の光学機器に好適なものである。   The present invention relates to a projection optical system and a projection display device using the same. For example, it is suitable for an optical apparatus such as a liquid crystal projector (projection) that guides a light beam modulated by an image display panel such as a liquid crystal display element (liquid crystal panel) or a digital micromirror device to a screen or a wall to form image information. Is.

従来より、液晶パネル等の画像表示パネルを光源からの光束により照明し、画像表示パネルで光変調された透過光又は反射光を用いて投影レンズにより、スクリーン又は壁に拡大投射して画像形成する受動型のプロジェクターが種々と提案されている。   Conventionally, an image display panel such as a liquid crystal panel is illuminated with a light beam from a light source, and an image is formed by enlarging and projecting on a screen or a wall by a projection lens using transmitted light or reflected light modulated by the image display panel. Various passive projectors have been proposed.

プロジェクションに用いられる投射光学系において、スクリーンと装置との距離を短くするためにスクリーンに対し斜め投射が可能な投射光学系が種々と提案されている(特許文献1〜3)。   In the projection optical system used for projection, various projection optical systems capable of oblique projection with respect to the screen have been proposed in order to shorten the distance between the screen and the apparatus (Patent Documents 1 to 3).

図15は特許文献1に開示されている投射光学系の実施例の概略図である。   FIG. 15 is a schematic diagram of an embodiment of the projection optical system disclosed in Patent Document 1. In FIG.

図中、Lは照明系、LVは透過又は反射型ドットマトリックス液晶等を用いたライトバルブである。ライトバルブLVに基づく画像を投射光学系PLによってスクリーンS上に拡大投影し、スクリーンSに映し出す。   In the figure, L is an illumination system, and LV is a light valve using a transmissive or reflective dot matrix liquid crystal. An image based on the light valve LV is enlarged and projected on the screen S by the projection optical system PL, and displayed on the screen S.

この発明では投射光学系PLとして大画角の広角レンズを用いて、ライトバルブLV、及びスクリーンSを投射光学系PLの光軸Laに対してシフトして配置し、画角の端の部分を使用して投射することにより斜め投射の光学系を構成している。   In the present invention, a wide-angle lens having a large angle of view is used as the projection optical system PL, the light valve LV and the screen S are shifted with respect to the optical axis La of the projection optical system PL, and the end portion of the angle of view is arranged. By using and projecting, an oblique projection optical system is configured.

また、図16は特許文献2に開示されている投射光学系の実施例の概略図である。図中、Lは照明系、LVは透過又は反射型ドットマトリックス液晶等を用いたライトバルブである。ライトバルブLVに基づく画像を第1の投射光学系PL1によって中間像を形成し、第2の投射光学系PL2によりスクリーンSに拡大投影している。この発明では、第1、2の投射光学系の光軸を適切に傾けることにより、スクリーンSに対し斜めに投射している。   FIG. 16 is a schematic view of an embodiment of the projection optical system disclosed in Patent Document 2. In the figure, L is an illumination system, and LV is a light valve using a transmissive or reflective dot matrix liquid crystal. An image based on the light valve LV is formed as an intermediate image by the first projection optical system PL1, and enlarged and projected onto the screen S by the second projection optical system PL2. In the present invention, the screens S are projected obliquely by appropriately tilting the optical axes of the first and second projection optical systems.

また、特許文献3には、複数の反射面を用いて斜め方向から画像を投射する投射光学系が開示されている。   Patent Document 3 discloses a projection optical system that projects an image from an oblique direction using a plurality of reflecting surfaces.

一方、最近、非共軸光学系を利用し、光学系全体の小型化を図った結像系が種々と提案されている。非共軸光学系では、基準軸という概念を導入し構成面を非対称非球面にすることで、十分収差が補正された光学系が構築可能であることが知られている(特許文献4〜6)。   On the other hand, various imaging systems have recently been proposed that use non-coaxial optical systems to reduce the size of the entire optical system. In a non-coaxial optical system, it is known that an optical system in which aberrations are sufficiently corrected can be constructed by introducing the concept of a reference axis and making an asymmetric aspherical surface (Patent Documents 4 to 6). ).

こうした非共軸光学系はオフアキシャル光学系(像中心と瞳中心を通る光線に沿った基準軸を考えたとき、構成面の基準軸との交点における面法線が基準軸上にない曲面(オフアキシャル曲面)を含む光学系として定義される光学系で、このとき、基準軸は折れ曲がった形状となる)と呼ばれる。このオフアキシャル光学系は、構成面が一般には非共軸となり、反射面でもケラレが生じることがないため、反射面を使った光学系の構築がしやすい。また、光路の引き回しが比較的自由に行なえる、構成面を一体成形する手法で一体型の光学系を作りやすいという特徴をも持っている。
特開平05−100312号公報 特開平05−080418号公報 再公表特許WO97/01787号 特開平09−5650号公報 特開平08−292371号公報 特開平08−292372号公報
Such a non-coaxial optical system is an off-axial optical system (a curved surface whose surface normal at the intersection with the reference axis of the component surface is not on the reference axis when considering the reference axis along the ray passing through the image center and the pupil center ( An optical system defined as an optical system including an off-axial curved surface), and at this time, the reference axis is called a bent shape. In this off-axial optical system, the constituent surfaces are generally non-coaxial, and no vignetting occurs even on the reflecting surface, so that it is easy to construct an optical system using the reflecting surface. In addition, the optical path can be routed relatively freely, and it has a feature that it is easy to make an integrated optical system by a method of integrally forming the constituent surfaces.
Japanese Patent Laid-Open No. 05-10032 JP 05-080418 A Republished patent WO97 / 01787 Japanese Patent Application Laid-Open No. 09-5650 Japanese Patent Laid-Open No. 08-292371 JP 08-292372 A

特許文献1では、光軸に対してライトバルブとスクリーンをシフトさせた投射光学系を用いており、この場合は、図11に示すように、使用する投射光学系の画角の大きさはθ2である。しかしながら、使用される投射光学系としてはかなり大きい画角(θ1)を有した高画角のレンズ系を必要とする。また、通常のレンズ系では光軸Laから画角が大きくなるにしたがって光量が落ちてくる。そのため、高画角のレンズ系を使用すればするほどスクリーンSの特に上下方向で明るさに差が出てしまう。また、光軸LaがスクリーンSの中心に向かうように構成した場合(図12)、通常のレンズ系ではスクリーンS上に像が結像されず光軸Laに垂直な平面S’上に結像される。この様に構成した場合、良く知られているように投影像が台形に歪み、スクリーンSの上下方向でピントがずれてしまう。この像面の傾きを補正する場合、スクリーンSの上部を通る光線の光路L1とスクリーンSの下部を通る光線の光路L2の差を打ち消さなければならない。この差を補正する場合、結像面付近で補正できれば光路L1と光路L2の光路差は縮小されるので補正量は少なくて済む。一方、投影像が拡大されたスクリーン側の光学面で補正をする場合、光路L1と光路L2の光路差がそのまま影響する。   In Patent Document 1, a projection optical system in which the light valve and the screen are shifted with respect to the optical axis is used. In this case, as shown in FIG. 11, the size of the field angle of the projection optical system to be used is θ 2. It is. However, the projection optical system to be used requires a high angle of view lens system having a considerably large angle of view (θ1). In a normal lens system, the amount of light decreases as the angle of view increases from the optical axis La. For this reason, the more the lens system with a high angle of view is used, the greater the difference in brightness in the vertical direction of the screen S. Further, when the optical axis La is configured to be directed toward the center of the screen S (FIG. 12), an image is not formed on the screen S in a normal lens system, but is formed on a plane S ′ perpendicular to the optical axis La. Is done. In such a configuration, as is well known, the projected image is distorted in a trapezoidal shape, and the screen S is out of focus in the vertical direction. When correcting the inclination of the image plane, the difference between the light path L1 of the light beam passing through the upper part of the screen S and the light path L2 of the light beam passing through the lower part of the screen S must be canceled out. When this difference is corrected, if the correction can be made near the imaging plane, the optical path difference between the optical path L1 and the optical path L2 is reduced, so that the correction amount is small. On the other hand, when correction is performed on the optical surface on the screen side where the projected image is enlarged, the optical path difference between the optical path L1 and the optical path L2 is directly affected.

また、特許文献2に開示されている装置では、レンズ系をチルトしているだけなので像面を十分に傾けることが難しい。また、チルト量が多すぎると光学性能を確保することが難しくなる。   In the apparatus disclosed in Patent Document 2, it is difficult to sufficiently tilt the image plane because the lens system is only tilted. If the tilt amount is too large, it is difficult to ensure optical performance.

特許文献3に開示されている反射型ディスプレー装置における投射光学系は、1枚の凹面鏡と1枚又は2枚の凸面鏡を用いて共軸系を構成し、該凹面鏡と凸面鏡の一部の反射面を用いて画像を斜め方向から投射している。共軸系である為、収差補正が難しく、反射光学系を明るくすること(Fナンバーを小さくすること)が難しい。   The projection optical system in the reflective display device disclosed in Patent Document 3 forms a coaxial system using one concave mirror and one or two convex mirrors, and a part of the reflecting surfaces of the concave mirror and convex mirror. Is used to project an image from an oblique direction. Since it is a coaxial system, it is difficult to correct aberrations, and it is difficult to brighten the reflective optical system (decrease the F number).

又、投射光学系は反射部材間に絞りを配置した構成を用いている。そして絞りを通過した光束が凸面鏡に入射し、該凸面鏡からの発散光束が次の凸面鏡に入射している。この為、2番目の凸面鏡の有効径が増大する傾向があった。又、このとき2つの凸面鏡は絞りの虚像を形成している。   The projection optical system uses a configuration in which a diaphragm is disposed between the reflecting members. The light beam that has passed through the stop is incident on the convex mirror, and the divergent light beam from the convex mirror is incident on the next convex mirror. For this reason, there was a tendency for the effective diameter of the second convex mirror to increase. At this time, the two convex mirrors form a virtual image of the stop.

本発明は、投射光学系及びそれを用いた投射型表示装置の提供を目的とする。   An object of the present invention is to provide a projection optical system and a projection display device using the same.

又、更に、明るい投射光学系及びそれを用いた投射型表示装置の提供を目的とする。   It is another object of the present invention to provide a bright projection optical system and a projection display device using the same.

請求項1の発明の投射光学系は、
画像表示パネルからの光束を基準軸に対して傾斜した被投射面上に導光して、前記被投射面に画像情報を形成する為の投射光学系において、
前記投射光学系は、曲率を有する複数の回転非対称反射面を含み、且つ前記画像表示パネルからの光束を前記複数の回転非対称反射面で反射して前記被投射面上に導光する反射光学系を有しており、
前記反射光学系の前記回転非対称反射面間、又は、前記反射光学系と前記画像表示パネルの間に絞りを有しており、
前記絞りが、前記絞り位置より前記被投射面側に配置した光学部材により負の倍率で結像しており、
前記絞りの結像位置は、前記複数の回転非対称反射面のうち最も前記被投射面に近い反射面と前記被投射面との間であることを特徴としている。
The projection optical system of the invention of claim 1
In a projection optical system for guiding light flux from an image display panel onto a projection surface inclined with respect to a reference axis and forming image information on the projection surface,
The projection optical system includes a plurality of rotationally asymmetric reflective surfaces having a curvature, and reflects the light beam from the image display panel by the plurality of rotationally asymmetric reflective surfaces and guides the light onto the projection surface. Have
A diaphragm is provided between the rotationally asymmetric reflective surfaces of the reflective optical system or between the reflective optical system and the image display panel;
The diaphragm is imaged at a negative magnification by an optical member arranged on the projection surface side from the diaphragm position,
An imaging position of the diaphragm is between the reflection surface closest to the projection surface and the projection surface among the plurality of rotationally asymmetric reflection surfaces.

請求項2の発明は請求項1の発明において、前記複数の反射面のうち前記絞りを通過した光が最初に入射する屈折力を有する反射面の屈折力が正であることを特徴としている。   According to a second aspect of the present invention, in the first aspect of the invention, the refractive power of the reflective surface having a refractive power on which light that has passed through the diaphragm first enters among the plurality of reflective surfaces is positive.

請求項3の発明は請求項1又は2の発明において、前記複数の反射面は全て、屈折力を有する非球面反射面であることを特徴としている。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the plurality of reflecting surfaces are all aspherical reflecting surfaces having refractive power.

請求項4の発明は請求項1乃至3のいずれか1項の発明において、前記投射光学系は、前記画像表示パネルと前記被投射面とが非平行の状態で配置されているときに使用されるものであることを特徴としている。   The invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the projection optical system is used when the image display panel and the projection surface are arranged in a non-parallel state. It is characterized by being.

請求項5の発明は請求項1乃至4のいずれか1項の発明において、前記反射光学系は、前記複数の回転非対称反射面のうち最も前記被投射面に近い反射面と2番目に前記被投射面に近い反射面との間に、前記画像表示パネルに基づく画像を結像することを特徴としている。   A fifth aspect of the present invention is the optical system according to any one of the first to fourth aspects, wherein the reflective optical system includes a reflective surface closest to the projection surface among the plurality of rotationally asymmetric reflective surfaces, and the second target. An image based on the image display panel is formed between a reflection surface close to the projection surface.

請求項6の発明は請求項1乃至5のいずれか1項の発明において、前記反射光学系は、透明体の表面に2つの屈折面と曲率を有する前記回転非対称反射面を複数形成し、前記画像表示パネルからの光束が1つの屈折面から該透明体の内部へ入射し、該複数の回転非対称反射面で反射して別の屈折面から射出するように構成された光学ブロックを少なくとも一つ含むことを特徴としている。   According to a sixth aspect of the present invention, in the first aspect of the present invention, the reflective optical system includes a plurality of the rotationally asymmetric reflective surfaces having two refractive surfaces and a curvature on the surface of the transparent body, At least one optical block configured such that a light beam from the image display panel enters the inside of the transparent body from one refracting surface, is reflected by the plurality of rotationally asymmetric reflecting surfaces, and is emitted from another refracting surface. It is characterized by including.

請求項7の発明は請求項1乃至6のいずれか1項の発明において、前記画像表示パネルの中心と被投射面上の画像情報の中心とを結ぶ中心線のまわりに前記反射光学系を展開したときの前記画像表示パネル側のアジムスξ度における主点位置をH(ξ)とし、該中心線と該被投射面の法線を含む面を表すアジムスをαとしたとき
|(H(α+90°)−H(α))/H(α)|<0.2
となる条件を満足することを特徴としている。
The invention of claim 7 is the invention according to any one of claims 1 to 6, wherein the reflection optical system is developed around a center line connecting the center of the image display panel and the center of image information on the projection surface. When the principal point position in the azimuth ξ degree on the image display panel side is H (ξ) and azimuth representing the surface including the center line and the normal line of the projection surface is α, | (H (α + 90 °) -H (α)) / H (α) | <0.2
It is characterized by satisfying the following conditions.

請求項8の発明は請求項1乃至7のいずれか1項の発明において、前記画像表示パネルの中心と被投射面上の画像情報の中心を結ぶ中心線と前記被投射面の法線とのなす角をθとし、該中心線のまわりに前記反射光学系を展開したときのアジムスξ度における焦点距離をf(ξ)とし、該中心線と前記被投射面の法線を含む面を表すアジムスをαとしたとき
|1−cosθf(α)/f(α+90°)|<0.2
となる条件を満足することを特徴としている。
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein a center line connecting the center of the image display panel and the center of the image information on the projection surface and a normal line of the projection surface. The angle formed is θ, the focal length at azimuth ξ degrees when the reflective optical system is developed around the center line is f (ξ), and the surface includes the center line and the normal of the projection surface. When azimuth is α, | 1-cos θf (α) / f (α + 90 °) | <0.2
It is characterized by satisfying the following conditions.

請求項9の発明の投射型表示装置は、請求項1〜8のいずれか1項に記載の投射光学系を用いて前記画像表示パネルに基づく光束を前記被投射面上に導光し、該被投射面に前記画像情報を形成することを特徴としている。   A projection display device according to a ninth aspect of the present invention guides a light beam based on the image display panel onto the projection surface using the projection optical system according to any one of the first to eighth aspects, The image information is formed on a projection surface.

請求項10の発明は請求項9の発明において、前記投射光学系からの前記画像表示パネルに基づく光束を1つ又は複数の平面ミラーを介して透過型の被投射面に導光し、該透過型被投射面の前記被投射面に前記画像情報を形成することを特徴としている。   According to a tenth aspect of the present invention, in the ninth aspect, the light beam based on the image display panel from the projection optical system is guided to a transmission type projection surface through one or a plurality of plane mirrors, and the transmission is performed. The image information is formed on the projection surface of the mold projection surface.

本発明によれば以上のように各要素を設定することにより、装置の小型化を図りつつ、周辺光量比を多く確保し、かつ拡大率の高い斜め投射の方式を用いた投射光学系及びそれを用いた投射型表示装置を達成することができる。   According to the present invention, by setting each element as described above, a projection optical system using an oblique projection method that secures a large peripheral light amount ratio and has a high magnification ratio while reducing the size of the apparatus, and the same A projection type display device using can be achieved.

本実施形態の説明に入る前に、実施形態の構成諸元の表し方及び実施形態全体の共通事項について説明する。   Prior to the description of the present embodiment, description will be given of how to represent the configuration specifications of the embodiment and common matters of the entire embodiment.

図17は本発明の光学系の構成データを定義する座標系の説明図である。本発明の実施形態では物体側から像面に進む1つの光線(図17中の一点鎖線で示すもので基準軸光線と呼ぶ)に沿ってi番目の面を第i面とする。   FIG. 17 is an explanatory diagram of a coordinate system defining configuration data of the optical system of the present invention. In the embodiment of the present invention, the i-th surface is defined as the i-th surface along one light ray (shown by a one-dot chain line in FIG. 17 and referred to as a reference axis light ray) traveling from the object side to the image plane.

図17において第1面R1は屈折面、第2 面R2は第1 面R1に対してチルトされた反射面、第3 面R3、第4 面R4は各々の前面に対してシフト、チルトされた反射面、第5 面R5は第4 面R4に対してシフト、チルトされた屈折面である。第1 面R1から第5 面R5までの各々の面はガラス、プラスチック等の媒質で構成される一つの光学素子上に構成されており、図17中では第1の光学素子B1としている。   In FIG. 17, the first surface R1 is a refractive surface, the second surface R2 is a reflecting surface tilted with respect to the first surface R1, and the third surface R3 and the fourth surface R4 are shifted and tilted with respect to the respective front surfaces. The reflective surface, the fifth surface R5, is a refractive surface shifted and tilted with respect to the fourth surface R4. Each surface from the first surface R1 to the fifth surface R5 is formed on one optical element made of a medium such as glass or plastic, and is shown as a first optical element B1 in FIG.

従って、図17の構成では不図示の物体面から第1 面R1までの媒質は空気、第1 面R1から第5 面R5まではある共通の媒質、第5 面R5から不図示の第6 面R6までの媒質は空気で構成している。   17, the medium from the object surface (not shown) to the first surface R1 is air, the common medium from the first surface R1 to the fifth surface R5, and the sixth surface (not shown) from the fifth surface R5. The medium up to R6 consists of air.

本発明の光学系はOff-Axial 光学系であるため光学系を構成する各面は共通の光軸を持っていない。そこで、本発明の実施形態においては先ず第1面の中心を原点とする絶対座標系を設定する。   Since the optical system of the present invention is an off-axial optical system, the surfaces constituting the optical system do not have a common optical axis. Therefore, in the embodiment of the present invention, first, an absolute coordinate system having the origin of the center of the first surface is set.

そして、本発明の実施形態においては、第1面の中心点を原点とすると共に、原点と最終結像面の中心とを通る光線(基準軸光線)の経路を光学系の基準軸と定義している。さらに、本実施形態中の基準軸は方向(向き)を持っている。その方向は基準軸光線が結像に際して進行する方向である。   In the embodiment of the present invention, the center point of the first surface is the origin, and the path of the light beam (reference axis light beam) passing through the origin and the center of the final imaging surface is defined as the reference axis of the optical system. ing. Furthermore, the reference axis in the present embodiment has a direction (orientation). The direction is the direction in which the reference axis ray travels during imaging.

本発明の実施形態においては、光学系の基準となる基準軸を上記の様に設定したが、光学系の基準となる軸の決め方は光学設計上、収差の取り纏め上、若しくは光学系を構成する各面形状を表現する上で都合の良い軸を採用すれば良い。しかし、一般的には像面の中心と、絞り又は入射瞳又は射出瞳又は光学系の第1面の中心若しくは最終面の中心のいずれかを通る光線の経路を光学系の基準となる基準軸に設定する。   In the embodiment of the present invention, the reference axis serving as the reference of the optical system is set as described above. However, the method of determining the axis serving as the reference of the optical system is based on optical design, aberrations, or the optical system. An axis convenient for expressing each surface shape may be employed. However, in general, the reference axis that serves as a reference for the optical system is the center of the image plane and the path of the light beam that passes through the stop, entrance pupil, exit pupil, or the center of the first surface or the center of the final surface of the optical system Set to.

つまり、本発明の実施形態においては、基準軸は第1面の中心点を通り、最終結像面の中心へ至る光線(基準軸光線)が各屈折面及び反射面によって屈折・反射する経路を基準軸に設定している。各面の順番は基準軸光線が屈折・反射を受ける順番に設定している。   That is, in the embodiment of the present invention, the reference axis passes through the center point of the first surface, and the light beam (reference axis light beam) reaching the center of the final imaging surface is refracted and reflected by each refracting surface and reflecting surface. The reference axis is set. The order of each surface is set in the order in which the reference axis rays are refracted and reflected.

従って基準軸は設定された各面の順番に沿って屈折若しくは反射の法則に従ってその方向を変化させつつ、最終的に像面の中心に到達する。   Therefore, the reference axis finally reaches the center of the image plane while changing its direction in accordance with the law of refraction or reflection along the set order of each surface.

本発明の各実施形態の光学系を構成するチルト面は基本的にすべてが同一面内でチルトしている。そこで、絶対座標系の各軸を以下のように定める。   All of the tilt surfaces constituting the optical system of each embodiment of the present invention are basically tilted within the same plane. Therefore, each axis of the absolute coordinate system is determined as follows.

Z 軸:原点と物体面中心を通る直線。物体面から第1面R1に向かう方向を正とする
Y 軸:原点を通りチルト面内(図17の紙面内)でZ 軸に対して反時計回りに90゜をなす直線
X 軸:原点を通りZ、Y 各軸に垂直な直線(図17の紙面に垂直な直線)
又、光学系を構成する第i面の面形状を表すには、絶対座標系にてその面の形状を表記するより、基準軸と第i面が交差する点を原点とするローカル座標系を設定して、ローカル座標系でその面の面形状を表した方が形状を認識する上で理解し易い為、第i面の面形状をローカル座標系で表わす。
Z axis: A straight line passing through the origin and the center of the object plane. The direction from the object surface to the first surface R1 is positive
Y axis: A straight line that passes through the origin and forms 90 ° counterclockwise with respect to the Z axis in the tilt plane (in the paper of Fig. 17)
X axis: Straight line passing through the origin and perpendicular to each of the Z and Y axes (straight line perpendicular to the paper surface of FIG. 17)
In addition, in order to represent the surface shape of the i-th surface constituting the optical system, a local coordinate system having the origin at the point where the reference axis and the i-th surface intersect is used rather than describing the shape of the surface in the absolute coordinate system. Since setting and expressing the surface shape of the surface in the local coordinate system is easier to understand for recognizing the shape, the surface shape of the i-th surface is expressed in the local coordinate system.

また、第i面のYZ面内でのチルト角は絶対座標系のZ 軸に対して反時計回り方向を正とした角度θi (単位°)で表す。よって、本発明の実施形態では各面のローカル座標の原点は図17中のYZ平面上にある。またXZおよびXY面内での面の偏心はない。さらに、第i面のローカル座標(x,y,z) のy,z 軸は絶対座標系(X,Y,Z) に対してYZ面内で角度θi 傾いており、具体的には以下のように設定する。   Further, the tilt angle of the i-th surface in the YZ plane is represented by an angle θi (unit: °) with the counterclockwise direction being positive with respect to the Z axis of the absolute coordinate system. Therefore, in the embodiment of the present invention, the origin of the local coordinates of each surface is on the YZ plane in FIG. There is no surface eccentricity in the XZ and XY planes. Furthermore, the y and z axes of the local coordinates (x, y, z) of the i-th surface are inclined by the angle θi in the YZ plane with respect to the absolute coordinate system (X, Y, Z). Set as follows.

z 軸:ローカル座標の原点を通り、絶対座標系のZ 方向に対しYZ面内において反時計方向に角度θi をなす直線
y 軸:ローカル座標の原点を通り、z 方向に対しYZ面内において反時計方向に90゜をなす直線
x 軸:ローカル座標の原点を通り、YZ面に対し垂直な直線
また、Diは第i面と第(i+1) 面のローカル座標の原点間の間隔を表すスカラー量、Ndi 、νdiは第i面と第(i+1)面間の媒質の屈折率とアッベ数である。
z axis: A straight line that passes through the origin of local coordinates and forms an angle θi counterclockwise in the YZ plane with respect to the Z direction of the absolute coordinate system
y axis: A straight line that passes through the origin of local coordinates and forms 90 ° counterclockwise in the YZ plane with respect to the z direction.
x axis: A straight line that passes through the origin of the local coordinates and is perpendicular to the YZ plane. Di is a scalar quantity that represents the distance between the origins of the local coordinates of the i-th and (i + 1) -th planes, and Ndi and νdi are the first The refractive index and Abbe number of the medium between the i-plane and the (i + 1) -th plane.

ここで、球面は以下の式で表される形状である:   Here, the spherical surface is a shape represented by the following formula:

また、本発明の光学系は少なくとも回転非対称な非球面を一面以上有し、その形状は以下の式により表す:
z =C02y2+C20x2+C03y3+C21x2y+C04y4+C22x2y2+C40x4
+C05y5+C23x2y3+C41x4y+C06y6+C24x2y4+C42x4y2+C60x6
上記曲面式はx に関して偶数次の項のみであるため、上記曲面式により規定される曲面はyz面を対称面とする面対称な形状である。さらに以下の条件が満たされる場合はxz面に対して対称な形状を表す。
C03 =C21 =t =0
さらに
C02 =C20 C04=C40 = C22/2 C06 =C60 =C24/3 =C42/3
が満たされる場合は回転対称な形状を表す。以上の条件を満たさない場合は非回転対称な形状である。
The optical system of the present invention has at least one rotationally asymmetric aspheric surface, and the shape thereof is represented by the following formula:
z = C02y 2 + C20x 2 + C03y 3 + C21x 2 y + C04y 4 + C22x 2 y 2 + C40x 4
+ C05y 5 + C23x 2 y 3 + C41x 4 y + C06y 6 + C24x 2 y 4 + C42x 4 y 2 + C60x 6
Since the curved surface formula is only an even-order term with respect to x, the curved surface defined by the curved surface formula is a plane-symmetric shape with the yz plane as a symmetric plane. Furthermore, when the following conditions are satisfied, the shape is symmetric with respect to the xz plane.
C03 = C21 = t = 0
further
C02 = C20 C04 = C40 = C22 / 2 C06 = C60 = C24 / 3 = C42 / 3
Represents a rotationally symmetric shape. When the above conditions are not satisfied, the shape is non-rotationally symmetric.

次に本発明の各実施形態について説明する。   Next, each embodiment of the present invention will be described.

図1は本発明の投射光学系を用いた投射型表示装置の実施形態1の要部概略図である。   FIG. 1 is a schematic view of the essential portions of Embodiment 1 of a projection display apparatus using the projection optical system of the present invention.

図1においてLVは反射型ドットマトリックス液晶やデジタルマイクロミラーデバイス等を用いたライトバルブ(画像表示パネル)である。LはライトバルブLVに光を照明する照明系である。照明系Lはランプ、コンデンサーレンズ、波長を選択するフィルター等から成り立っている。1はライトバルブLVで光変調された光をスクリーンSに導光し、スクリーンS面上に画像を形成するためのオフアキシャル系を利用した投射光学系である。図2は図1の投射光学系1とライトバルブLV、そして照明系Lの拡大図である。   In FIG. 1, LV is a light valve (image display panel) using a reflective dot matrix liquid crystal or a digital micromirror device. L is an illumination system that illuminates the light valve LV with light. The illumination system L includes a lamp, a condenser lens, a filter for selecting a wavelength, and the like. Reference numeral 1 denotes a projection optical system that uses an off-axial system for guiding light modulated by the light valve LV to the screen S and forming an image on the screen S surface. FIG. 2 is an enlarged view of the projection optical system 1, the light valve LV, and the illumination system L of FIG.

図2の投射光学系は曲率を有する回転非対称反射面を複数有し、画像表示パネルからの光束が複数の回転非対称反射面で反射を繰り返してスクリーンに投射され、その面上に実像を結ぶ反射光学系より成っている場合を示しているが、投射光学系は図2に示す反射光学系の他にレンズ系や他の反射光学系を有するように構成しても良い。   The projection optical system of FIG. 2 has a plurality of rotationally asymmetric reflective surfaces having a curvature, and the light beam from the image display panel is repeatedly reflected on the rotationally asymmetric reflective surfaces and projected onto the screen, and a reflection that forms a real image on the surface. Although the case where it consists of an optical system is shown, you may comprise a projection optical system so that it may have a lens system and another reflective optical system in addition to the reflective optical system shown in FIG.

図1,図2において、反射光学系1はライトバルブLVからの光線の通過順に、絞りSS、凹面鏡R1・凸面鏡R2・凹面鏡R3・凸反射面R4・凸面鏡R5・凹面鏡R6の6つの反射面で構成されている。すべての反射面はYZ平面のみに対して対称な面である。ここで、凸面鏡R5と凹面鏡R6の間でライトバルブLVに基づく画像は中間結像しており、絞りSSは凹面鏡R6付近の位置SSaで結像している。即ち凹面鏡R6付近で瞳の結像をしている。この位置SSaはスクリーンS側の瞳となる。ここで絞りSSはスクリーンS側の光学系により一度実像として結像し、このときの結像倍率は負の倍率となっている。この様に、本実施形態では絞りSSの像が絞り位置よりスクリーンS側の光学系(反射面R1〜R6)により負の倍率の結像をする構成を取ることにより、各面の光線有効径を小さく抑え、反射面等の各光学素子及び光学系全体のコンパクト化を達成している。   1 and 2, the reflecting optical system 1 is composed of six reflecting surfaces of an aperture SS, a concave mirror R1, a convex mirror R2, a concave mirror R3, a convex reflective surface R4, a convex mirror R5, and a concave mirror R6 in the order of passage of light from the light valve LV. It is configured. All reflecting surfaces are symmetrical with respect to the YZ plane only. Here, an image based on the light valve LV is intermediately formed between the convex mirror R5 and the concave mirror R6, and the stop SS is imaged at a position SSa near the concave mirror R6. That is, the pupil is imaged near the concave mirror R6. This position SSa becomes the pupil on the screen S side. Here, the aperture SS is once formed as a real image by the optical system on the screen S side, and the imaging magnification at this time is a negative magnification. As described above, in this embodiment, the image of the stop SS is imaged at a negative magnification by the optical system (reflecting surfaces R1 to R6) on the screen S side from the stop position. Is made small, and each optical element such as a reflecting surface and the entire optical system are made compact.

本実施形態では、ライトバルブLVの大きさは10.8×19.2mm、スクリーンSの大きさは縦横比9:16の60インチ(747×1328mm)である。また、スクリーンSの法線Saは基準軸Aに対し42度傾いている。以下、本実施例に用いられる反射光学系の構成データを示す。構成データでは絞りS面から像面(スクリーン面)に至る各面に順に番号を付している。

絞り径 9.00

i Yi Zi θi Di Ndi νdi
1 0.00 0.00 0.00 32.26 1 絞り
2 0.00 32.26 17.67 45.33 1 反射面
3 -26.22 -4.71 8.29 46.47 1 反射面
4 -41.18 39.28 17.39 45.51 1 反射面
5 -77.79 12.25 14.50 59.90 1 反射面
6 -102.68 66.73 -2.06 102.23 1 反射面
7 -138.37 -29.06 -4.71 980.17 1 反射面
8 -635.29 836.51 12.14 1 像面

非球面形状

R1面 C02=-4.49687e-03 C20=-4.86771e-03
C03=5.69210e-06 C21=1.24178e-05
C04=-1.51960e-07 C22=-2.54883e-07 C40=-1.42672e-07
C05=-2.46793e-10 C23=-4.09563e-09 C41=-1.82622e-09
C06=-6.21629e-11 C24=-1.54069e-10 C42=-2.02039e-10
C60=-7.59135e-12

R2面 C02=-3.53809e-03 C20=-3.25444e-03
C03= 4.17013e-05 C21= 1.32567e-04
C04=-9.98623e-07 C22=-1.51987e-06 C40=-4.45744e-07
C05= 1.30709e-08 C23=-9.55779e-09 C41=-1.73083e-08
C06=-5.65529e-10 C24=-6.97342e-11 C42=-4.30573e-10
C60=-2.13646e-11

R3面 C02=-1.30032e-03 C20=-2.56607e-04
C03= 4.43561e-06 C21= 1.32174e-04
C04=-2.62553e-08 C22= 1.00960e-06 C40= 7.68176e-07
C05= 1.74031e-09 C23= 8.37695e-09 C41= 1.20650e-08
C06=-1.36927e-11 C24= 1.74384e-10 C42= 2.96519e-10
C60= 6.13742e-11

R4面 C02=-1.66701e-03 C20=-3.65447e-03
C03= 2.01207e-05 C21= 2.02910e-04
C04= 4.13482e-07 C22=-1.01346e-06 C40= 5.37830e-07
C05= 1.69426e-10 C23= 2.13758e-08 C41= 2.22534e-09
C06=-1.10132e-10 C24=-4.19386e-10 C42=-3.64616e-10
C60=-2.17667e-10

R5面 C02=-3.70314e-04 C20=-2.44681e-03
C03= 1.34521e-06 C21= 3.26044e-05
C04= 3.10235e-07 C22= 1.40380e-08 C40=-7.66155e-08
C05= 1.21219e-09 C23= 1.33276e-08 C41= 2.02925e-09
C06=-7.87877e-11 C24= 1.31044e-10 C42= 5.22698e-11
C60=-1.13702e-11

R6面 C02= 3.77979e-03 C20= 5.98505e-03
C03=-1.57953e-05 C21=-3.81115e-05
C04= 9.47079e-08 C22= 1.91802e-07 C40=-2.34207e-07
C05= 5.93045e-10 C23= 1.52327e-09 C41= 4.88138e-09
C06=-1.73838e-11 C24=-7.00697e-12 C42=-5.86393e-11
C60= 1.15306e-11

次に本実施形態の光学系における光学作用を説明する。照明系Lの光源LPから発生した光は、不図示のコンデンサーレンズ、カラーフィルター等を通りライトバルブLVを照明し、ライトバルブLVで光変調された光が反射光学系1で集光されスクリーンに導光され、ライトバルブLVに基づく画像が映し出される。
In this embodiment, the size of the light valve LV is 10.8 × 19.2 mm, and the size of the screen S is 60 inches (747 × 1328 mm) with an aspect ratio of 9:16. The normal line Sa of the screen S is inclined 42 degrees with respect to the reference axis A. Hereinafter, configuration data of the reflective optical system used in this embodiment will be shown. In the configuration data, each surface from the stop S surface to the image surface (screen surface) is numbered in order.

Diaphragm diameter 9.00

i Yi Zi θi Di Ndi νdi
1 0.00 0.00 0.00 32.26 1 Aperture
2 0.00 32.26 17.67 45.33 1 Reflecting surface
3 -26.22 -4.71 8.29 46.47 1 Reflecting surface
4 -41.18 39.28 17.39 45.51 1 Reflecting surface
5 -77.79 12.25 14.50 59.90 1 Reflecting surface
6 -102.68 66.73 -2.06 102.23 1 Reflecting surface
7 -138.37 -29.06 -4.71 980.17 1 Reflecting surface
8 -635.29 836.51 12.14 1 Image plane

Aspherical shape

R1 side C02 = -4.49687e-03 C20 = -4.86771e-03
C03 = 5.69210e-06 C21 = 1.24178e-05
C04 = -1.51960e-07 C22 = -2.54883e-07 C40 = -1.42672e-07
C05 = -2.46793e-10 C23 = -4.09563e-09 C41 = -1.82622e-09
C06 = -6.21629e-11 C24 = -1.54069e-10 C42 = -2.02039e-10
C60 = -7.59135e-12

R2 side C02 = -3.53809e-03 C20 = -3.25444e-03
C03 = 4.17013e-05 C21 = 1.32567e-04
C04 = -9.98623e-07 C22 = -1.51987e-06 C40 = -4.45744e-07
C05 = 1.30709e-08 C23 = -9.55779e-09 C41 = -1.73083e-08
C06 = -5.65529e-10 C24 = -6.97342e-11 C42 = -4.30573e-10
C60 = -2.13646e-11

R3 surface C02 = -1.30032e-03 C20 = -2.56607e-04
C03 = 4.43561e-06 C21 = 1.32174e-04
C04 = -2.62553e-08 C22 = 1.00960e-06 C40 = 7.68176e-07
C05 = 1.74031e-09 C23 = 8.37695e-09 C41 = 1.20650e-08
C06 = -1.36927e-11 C24 = 1.74384e-10 C42 = 2.96519e-10
C60 = 6.13742e-11

R4 surface C02 = -1.66701e-03 C20 = -3.65447e-03
C03 = 2.01207e-05 C21 = 2.02910e-04
C04 = 4.13482e-07 C22 = -1.01346e-06 C40 = 5.37830e-07
C05 = 1.69426e-10 C23 = 2.13758e-08 C41 = 2.22534e-09
C06 = -1.10132e-10 C24 = -4.19386e-10 C42 = -3.64616e-10
C60 = -2.17667e-10

R5 surface C02 = -3.70314e-04 C20 = -2.44681e-03
C03 = 1.34521e-06 C21 = 3.26044e-05
C04 = 3.10235e-07 C22 = 1.40380e-08 C40 = -7.66155e-08
C05 = 1.21219e-09 C23 = 1.33276e-08 C41 = 2.02925e-09
C06 = -7.87877e-11 C24 = 1.31044e-10 C42 = 5.22698e-11
C60 = -1.13702e-11

R6 surface C02 = 3.77979e-03 C20 = 5.98505e-03
C03 = -1.57953e-05 C21 = -3.81115e-05
C04 = 9.47079e-08 C22 = 1.91802e-07 C40 = -2.34207e-07
C05 = 5.93045e-10 C23 = 1.52327e-09 C41 = 4.88138e-09
C06 = -1.73838e-11 C24 = -7.00697e-12 C42 = -5.86393e-11
C60 = 1.15306e-11

Next, the optical action in the optical system of this embodiment will be described. The light generated from the light source LP of the illumination system L passes through a condenser lens, a color filter (not shown), and illuminates the light valve LV. The light is guided and an image based on the light valve LV is displayed.

図4はスクリーンS上でのデフォーカス特性、周辺光量を評価する評価位置を示してる。本実施形態の投射光学系1のディストーションの様子を図3に示す。スクリーンS上の像位置ア、イ、ウ、エ、オの位置でのデフォーカス特性を図5に示す。   FIG. 4 shows an evaluation position for evaluating the defocus characteristic on the screen S and the peripheral light amount. FIG. 3 shows a distortion state of the projection optical system 1 of the present embodiment. FIG. 5 shows the defocus characteristics at image positions a, i, c, d, and o on the screen S.

本実施形態の投射光学系1は図3を見れば分かるとおり、大きなディストーションはなく、非対称なディストーションも少ない。   As can be seen from FIG. 3, the projection optical system 1 of the present embodiment has no large distortion and few asymmetric distortions.

図5のデフォーカス特性を表す個々のグラフは基準軸上においてスクリーンから−25cm〜25cmの範囲における周波数1本/mmのMTFを示している。   Each graph showing the defocus characteristic in FIG. 5 shows an MTF with a frequency of 1 line / mm in the range of −25 cm to 25 cm from the screen on the reference axis.

実線がスクリーン上のローカル座標でのy方向のコントラスト値で、破線がスクリーン上のローカル座標でのx方向のコントラスト値を表している。この図から各像位置において、スクリーン上でMTFがピークをもつ、つまり、スクリーン上にピントが合っていることがわかる。また、各像位置でコントラスト値はほぼ50%を確保している。   A solid line represents a contrast value in the y direction at local coordinates on the screen, and a broken line represents a contrast value in the x direction at local coordinates on the screen. From this figure, it can be seen that at each image position, the MTF has a peak on the screen, that is, the screen is in focus. In addition, a contrast value of approximately 50% is secured at each image position.

また、図4に示してあるスクリーンにおける対角線上の位置オ、キ、エ、ク、ケの像位置における光量比は以下のようになる(位置エの光量を100とする)。   Further, the light quantity ratio at the image positions of the diagonal positions O, K, D, K, and K on the screen shown in FIG. 4 is as follows (the light quantity at position D is set to 100).

位置オ=94.8、位置キ=95.3、位置エ=100、位置ク=94.2、位置ケ=91.8
この様に光量分布にほとんど差は見られない。
Position O = 94.8, Position Key = 95.3, Position D = 100, Position Key = 94.2, Position Key = 91.8
Thus, there is almost no difference in the light amount distribution.

本実施形態で用いられている反射光学系において、基準軸の周りに展開したアジムス0度と90度における焦点距離f1(0)、f1(90)とライトバルブLV側の主点位置H1(0)、H1(90)を計算すと以下のような値になる。ただし、アジムス0度は図4において像位置イ、エ、カを含むアジムスであり、アジムス90度は図4において像位置ウ、エを含むアジムスである。また、主点位置は凹面鏡R1を基準とし、光の進む方向を正としている。   In the reflective optical system used in the present embodiment, focal lengths f1 (0) and f1 (90) at azimuth 0 ° and 90 ° developed around the reference axis and the principal point position H1 (0) on the light valve LV side. ), H1 (90) is calculated as follows. However, azimuth 0 degree is azimuth including image positions i, d and quasi in FIG. 4, and azimuth 90 degrees is azimuth including image positions c and d in FIG. The principal point position is based on the concave mirror R1, and the light traveling direction is positive.

f1(0)=−17.83、f1(90)=−13.7,H1(0)=−132.72、H1(90)=−128.764
故に、前述の(1),(2)式による値は、
|(H(90)−H(0))/H(0)|=0.03<0.2・・・(1)
|1−cos(42°)・f(0)/f(90)|=0.03<0.2 ・・・(2)
となる(ここで42度はスクリーンSの法線Saと基準軸Aのなす角である。)。
f1 (0) = − 17.83, f1 (90) = − 13.7, H1 (0) = − 132.72, H1 (90) = − 128.764
Therefore, the value according to the above formulas (1) and (2) is
| (H (90) −H (0)) / H (0) | = 0.03 <0.2 (1)
| 1−cos (42 °) ・ f (0) / f (90) | = 0.03 <0.2 (2)
(Here 42 degrees is the angle between the normal Sa of the screen S and the reference axis A).

本実施形態においては基準軸Aに対し、ライトバルブLVをシフト、若しくはチルトさせているわけではないので、反射光学系1をライトバルブLVから見たときにアジムス依存性が少ない、つまり主点位置にアジムス依存性が少ない方が望ましい。本実施形態では、(1)式の値から解るように主点位置のアジムス依存性が少ないといえる。もし、(1)式の値が大きい場合、非対称性の収差が多く発生することになり収差補正上好ましくなく、0.2以上になると収差補正が難しくなる。図13は図12の状態におけるスクリーン部を表している。図13において、Aは基準軸、Sは傾いたスクリーン、S’は基準軸Aに垂直な平面であり、スクリーンSと面S’は角度θだけ傾いている。本来は面S’上に反射光学系1で拡大投影されたライトバルブLVの像面が結像される。特開平09-5650号公報に開示されているように、基準軸Aの周りに展開し、評価面を基準軸に垂直な平面S’で評価した場合、近軸量はアジムスξとアジムスξ+180°で同じ値を示す。故に、特開平09-5650号公報で表される近軸量が像面の傾きを起こすわけではない。つまり、像面湾曲と同種の収差が、詳しく述べると、スクリーンSと面S’の交線から離れるにしたがってピント位置がずれる収差が発生しているために像面が傾くと解釈できる。こう解釈した場合、評価面である面S’におけるy方向の倍率βy’はスクリーンSにおける倍率βyが射影されたと考えることができるので、スクリーンS上で縦横比が保たれるためには、以下の関係を満たしている必要がある。
βy=βy’/cosθ=βx(図14参照)
ゆえに
In this embodiment, since the light valve LV is not shifted or tilted with respect to the reference axis A, the azimuth dependency is small when the reflective optical system 1 is viewed from the light valve LV. It is desirable to have less azimuth dependency. In this embodiment, it can be said that the azimuth dependency of the principal point position is small as understood from the value of the expression (1). If the value of the expression (1) is large, many asymmetrical aberrations are generated, which is not preferable in terms of aberration correction. FIG. 13 shows the screen portion in the state of FIG. In FIG. 13, A is a reference axis, S is an inclined screen, S ′ is a plane perpendicular to the reference axis A, and the screen S and the surface S ′ are inclined by an angle θ. Originally, an image plane of the light valve LV enlarged and projected by the reflection optical system 1 is formed on the surface S ′. As disclosed in Japanese Patent Laid-Open No. 09-5650, when the evaluation surface is developed around the reference axis A and the evaluation surface is evaluated by a plane S ′ perpendicular to the reference axis, the paraxial amounts are azimuth ξ and azimuth ξ + 180 °. Shows the same value. Therefore, the paraxial amount expressed in Japanese Patent Laid-Open No. 09-5650 does not cause the inclination of the image plane. In other words, the same kind of aberration as that of the field curvature can be interpreted in detail as the image surface is tilted because an aberration occurs in which the focus position shifts away from the intersection of the screen S and the surface S ′. When interpreted in this way, the magnification βy ′ in the y direction on the evaluation surface S ′ can be considered as a projection of the magnification βy on the screen S. In order to maintain the aspect ratio on the screen S, It is necessary to satisfy the relationship.
βy = βy ′ / cos θ = βx (see FIG. 14)
therefore

ここで、SS'(0)、SS'(90)はアジムス0°と90°における反射光学系のスクリーンS側の主点位置からスクリーンSまでの距離である。上式において、本実施形態ではSS'(0)=1034、SS'(90)=991であるので、SS'(0)≒SS'(90)、SS'(0)≫f(0)、SS'(90)≫f(90)として近似した。つまり、(2)式が小さいことが縦横比が保たれる条件である。(2)式の値が0.2より大きくなるとディストーションが大きくなり収差補正が難しくなる。また、スクリーン側の瞳SSaに絞りを置いた場合、スクリーンの上部を通る光路長とスクリーン下部を通る光路長が異なるためにこの位置に絞りを設けるとスクリーンの上下で明るさに差がでるので好ましくない。   Here, SS ′ (0) and SS ′ (90) are distances from the principal point position on the screen S side of the reflective optical system to the screen S at azimuth 0 ° and 90 °. In the above equation, since SS ′ (0) = 1034 and SS ′ (90) = 991 in the present embodiment, SS ′ (0) ≈SS ′ (90), SS ′ (0) >> f (0), Approximated as SS '(90) >> f (90). That is, the condition that the aspect ratio is maintained is that Expression (2) is small. When the value of the expression (2) is larger than 0.2, distortion increases and aberration correction becomes difficult. In addition, when the iris is placed on the pupil SSa on the screen side, the optical path length passing through the upper part of the screen is different from the optical path length passing through the lower part of the screen. It is not preferable.

本実施形態では前述の(1),(2)式のうち少なくとも一方を満足させるようにしている。   In the present embodiment, at least one of the above-described expressions (1) and (2) is satisfied.

本実施形態では絞りを表示パネル(ライトバルブ)LVと反射光学系1との間に設けたが本実施形態はこれに限らない。本実施形態では回転非対称反射面を表面反射面として用いているが、特開平8-292372号公報、特開平9-222561号公報、特開平9-258105号公報等で開示されているように透明体の表面に回転非対称反射面を形成した光学ブロックを使用しても良い。さらに、複数の回転非対称表面反射面を一体にモールド成形しても良い。本実施形態では、回転非対称反射面を6面用いているが、反射面は6面に限らずいくつあっても良い。ただし、収差補正上、少なくとも3枚以上あることが望ましい。また、回転非対称反射面はある平面に対して対称な形状であるが、これに限らない。   In the present embodiment, a diaphragm is provided between the display panel (light valve) LV and the reflection optical system 1, but the present embodiment is not limited to this. In this embodiment, a rotationally asymmetric reflecting surface is used as a surface reflecting surface, but transparent as disclosed in JP-A-8-292372, JP-A-9-222561, JP-A-9-258105, and the like. An optical block in which a rotationally asymmetric reflecting surface is formed on the surface of the body may be used. Further, a plurality of rotationally asymmetric surface reflecting surfaces may be molded integrally. In the present embodiment, six rotationally asymmetric reflecting surfaces are used, but the number of reflecting surfaces is not limited to six and may be any number. However, it is desirable that there are at least three or more in terms of aberration correction. In addition, the rotationally asymmetric reflection surface has a symmetrical shape with respect to a certain plane, but is not limited thereto.

図6は本発明の投射型表示装置の実施形態2の要部概略図である。図6においてLLはライトバルブLV1に光を照明する照明系である。2はライトバルブLV1で光変調された光をスクリーンSに投射するためのオフアキシャル系を利用した反射光学系である。図7は図6の反射光学系2と照明系LLの詳細図である。図6,図7において、LV1は透過型ドットマトリックス液晶等から成るライトバルブ、M(M1〜M5)は平面ミラー、または、ダイクロイックミラーであり、L2は光源、Pはダイクロイックプリズムである。SSは絞りである。   FIG. 6 is a schematic view of the essential portions of Embodiment 2 of the projection display apparatus of the present invention. In FIG. 6, LL is an illumination system for illuminating the light valve LV1. Reference numeral 2 denotes a reflection optical system using an off-axial system for projecting light modulated by the light valve LV1 onto the screen S. FIG. 7 is a detailed view of the reflective optical system 2 and the illumination system LL of FIG. 6 and 7, LV1 is a light valve made of transmissive dot matrix liquid crystal or the like, M (M1 to M5) is a plane mirror or dichroic mirror, L2 is a light source, and P is a dichroic prism. SS is the aperture.

図6,図7において、反射光学系2はダイクロイックプリズムPからの光線の通過順に、凹面鏡R1・凸面鏡R2、絞りSS、凹面鏡R3・凸反射面R4・凸面鏡R5・凹面鏡R6の6つの反射面で構成されている。すべての反射面はYZ平面のみに対して対称な面である。ここで、凸面鏡R5と凹面鏡R6の間でライトバルブLV1に基づく画像は中間結像しており、絞りSSは凹面鏡R6付近で結像している。即ち凹面鏡R6付近で瞳の結像をしている。この様に、絞りSSの像が絞り位置よりスクリーン側の光学系(R3〜R6)により負の倍率の結像をする構成を取ることにより、各面の光線有効径を小さく抑え、各光学素子及び光学系全体のコンパクト化を達成している。   6 and 7, the reflecting optical system 2 is composed of six reflecting surfaces of a concave mirror R1, a convex mirror R2, a stop SS, a concave mirror R3, a convex reflecting surface R4, a convex mirror R5, and a concave mirror R6 in the order of passage of light rays from the dichroic prism P. It is configured. All reflecting surfaces are symmetrical with respect to the YZ plane only. Here, an image based on the light valve LV1 forms an intermediate image between the convex mirror R5 and the concave mirror R6, and the stop SS forms an image near the concave mirror R6. That is, the pupil is imaged near the concave mirror R6. In this way, by adopting a configuration in which the image of the aperture SS is imaged at a negative magnification by the optical system (R3 to R6) on the screen side from the aperture position, the effective beam diameter on each surface is kept small, and each optical element In addition, the entire optical system is made compact.

また、凹面鏡R1・凹面鏡R3・凸面鏡R5、凸面鏡R2・凸反射面R4は、それぞれモールド成形等により一体的に構成されている。   Further, the concave mirror R1, the concave mirror R3, the convex mirror R5, the convex mirror R2, and the convex reflecting surface R4 are each integrally formed by molding or the like.

本実施形態においてライトバルブLV1の大きさは12.82×22.8mm、スクリーンSの大きさは縦横比9:16の60インチ(747×1328mm)である。また、スクリーンSの法線Saは基準軸Aに対し42度傾いている。以下、本実施形態に用いられる反射光学系の構成データを示す。

絞り 楕円形状長軸 10mm 短軸 8mm
物体側NA0.14

i Yi Zi θi Di Ndi νdi
1 0.00 0.00 0.00 40.00 1.51633 0.00 屈折面
2 0.00 40.00 0.00 94.44 1 屈折面
3 0.00 134.44 24.10 62.00 1 反射面
4 -46.22 93.12 3.20 20.00 1 反射面
5 -59.55 108.03 -41.80 66.05 1 絞り
6 -103.58 157.27 -5.43 65.00 1 反射面
7 -137.00 101.52 -1.54 60.95 1 反射面
8 -171.10 152.04 -4.02 112.93 1 反射面
9 -220.57 50.52 5.48 969.57 1 反射面
10 -466.94 969.57 26.99 1 像面

非球面形状

R1面 C02=-3.44101e-03 C20=-4.58807e-03
C03=3.00440e-07 C21=2.78030e-06
C04=-7.01756e-08 C22=-1.74221e-07 C40=-1.12497e-07
C05=-1.27294e-10 C23=8.12098e-11 C41=3.12082e-10
C06=-3.83615e-12 C24=-1.10477e-11 C42=-1.44544e-11
c60=-7.14330e-12

R2面 C02=-1.77378e-03 C20=-5.41577e-03
C03=5.41708e-06 C21=7.40562e-05
C04=-1.76494e-07 C22=-8.51854e-07 C40=-3.39088e-07
C05=1.36936e-09 C23=1.39948e-08 C41=1.57616e-08
C06=-1.31153e-11 C24=-1.03951e-10 C42=-3.22676e-10
c60= 5.17060e-11

R3面 C02=-4.06842e-04 C20=4.21014e-04
C03=-1.71357e-05 C21=5.33947e-05
C04=1.45062e-07 C22=-1.23899e-07 C40=5.80084e-07
C05=-5.71252e-10 C23=6.97038e-09 C41=1.25680e-08
C06=6.89521e-13 C24=3.16751e-12 C42=2.25270e-10
c60=8.97051e-11

R4面 C02=1.20784e-03 C20=2.06883e-03
C03=-1.40533e-05 C21=4.44511e-05
C04=1.42042e-07 C22=-1.75304e-09 C40=1.84753e-07
C05=9.01218e-10 C23=1.46871e-09 C41=2.53895e-10
C06=-4.31366e-12 C24=-8.79849e-12 C42=-1.82599e-12
c60=-4.30585e-12

R5面 C02=2.70769e-03 C20=1.00819e-03
C03=5.68901e-06 C21=3.16537e-05
C04=4.86535e-07 C22=-9.16386e-08 C40=4.00354e-08
C05=-1.21193e-09 C23=-6.83278e-10 C41=1.45772e-09
C06=5.47807e-12 C24=-1.36131e-10 C42=-9.34573e-11
c60=-7.03592e-13

R6面 C02=3.62336e-03 C20=5.17427e-03
C03=-1.38973e-05 C21=-2.14069e-05
C04=1.47678e-07 C22=1.65634e-07 C40=-4.61086e-08
C05=-1.05417e-09 C23=-7.54144e-10 C41=3.87584e-10
C06=5.56347e-12 C24=5.18352e-12 C42=-1.00483e-12
c60= 7.76995e-12

次に本実施形態における光学作用を説明する。照明系LLの光源L2から発生した光は複数枚の反射鏡Mを通り、R(赤色)G(緑色)B(青色)の三原色に分割される。そして、R,G,B各色光はそれぞれに対応するライトバルブLV1を通り、ダイクロイックプリズムPにより合成され、反射光学系2でスクリーンS上に導光される。ライトバルブLV1に基づく画像(カラー画像)が反射光学系でスクリーンに映し出される。本実施形態の投射光学系2のディストーションの様子を図8に、図4におけるスクリーンS上の像位置ア、イ、ウ、エ、オの位置でのデフォーカス特性を図9に示す。本実施形態の投射光学系2は図8を見れば分かるとおり、大きなディストーションはなく、非対称なディストーションも少ない。図9のデフォーカス特性を表す個々のグラフは基準軸上においてスクリーンから−25cm〜25cmの範囲における周波数1本/mmのMTFを示して、実線がスクリーン上のローカル座標でのy方向のコントラスト値で、破線がスクリーン上のローカル座標でのx方向のコントラスト値を表している。この図から各像位置において、スクリーン上でMTFがピークをもつ、つまり、スクリーン上にピントが合っていることがわかる。また、各像位置でコントラスト値はほぼ50%を確保している。
In this embodiment, the size of the light valve LV1 is 12.82 × 22.8 mm, and the size of the screen S is 60 inches (747 × 1328 mm) with an aspect ratio of 9:16. Further, the normal line Sa of the screen S is inclined by 42 degrees with respect to the reference axis A. Hereinafter, configuration data of the reflection optical system used in the present embodiment will be shown.

Aperture Oval shape Long axis 10mm Short axis 8mm
Object side NA0.14

i Yi Zi θi Di Ndi νdi
1 0.00 0.00 0.00 40.00 1.51633 0.00 Refractive surface
2 0.00 40.00 0.00 94.44 1 Refractive surface
3 0.00 134.44 24.10 62.00 1 Reflecting surface
4 -46.22 93.12 3.20 20.00 1 Reflecting surface
5 -59.55 108.03 -41.80 66.05 1 Aperture
6 -103.58 157.27 -5.43 65.00 1 Reflecting surface
7 -137.00 101.52 -1.54 60.95 1 Reflecting surface
8 -171.10 152.04 -4.02 112.93 1 Reflecting surface
9 -220.57 50.52 5.48 969.57 1 Reflecting surface
10 -466.94 969.57 26.99 1 Image plane

Aspherical shape

R1 surface C02 = -3.44101e-03 C20 = -4.58807e-03
C03 = 3.00440e-07 C21 = 2.78030e-06
C04 = -7.01756e-08 C22 = -1.74221e-07 C40 = -1.12497e-07
C05 = -1.27294e-10 C23 = 8.12098e-11 C41 = 3.12082e-10
C06 = -3.83615e-12 C24 = -1.10477e-11 C42 = -1.44544e-11
c60 = -7.14330e-12

R2 surface C02 = -1.77378e-03 C20 = -5.41577e-03
C03 = 5.41708e-06 C21 = 7.40562e-05
C04 = -1.76494e-07 C22 = -8.51854e-07 C40 = -3.39088e-07
C05 = 1.36936e-09 C23 = 1.39948e-08 C41 = 1.57616e-08
C06 = -1.31153e-11 C24 = -1.03951e-10 C42 = -3.22676e-10
c60 = 5.17060e-11

R3 surface C02 = -4.06842e-04 C20 = 4.21014e-04
C03 = -1.71357e-05 C21 = 5.33947e-05
C04 = 1.45062e-07 C22 = -1.23899e-07 C40 = 5.80084e-07
C05 = -5.71252e-10 C23 = 6.97038e-09 C41 = 1.25680e-08
C06 = 6.89521e-13 C24 = 3.16751e-12 C42 = 2.25270e-10
c60 = 8.97051e-11

R4 surface C02 = 1.20784e-03 C20 = 2.06883e-03
C03 = -1.40533e-05 C21 = 4.44511e-05
C04 = 1.42042e-07 C22 = -1.75304e-09 C40 = 1.84753e-07
C05 = 9.01218e-10 C23 = 1.46871e-09 C41 = 2.53895e-10
C06 = -4.31366e-12 C24 = -8.79849e-12 C42 = -1.82599e-12
c60 = -4.30585e-12

R5 surface C02 = 2.70769e-03 C20 = 1.00819e-03
C03 = 5.68901e-06 C21 = 3.16537e-05
C04 = 4.86535e-07 C22 = -9.16386e-08 C40 = 4.00354e-08
C05 = -1.21193e-09 C23 = -6.83278e-10 C41 = 1.45772e-09
C06 = 5.47807e-12 C24 = -1.36131e-10 C42 = -9.34573e-11
c60 = -7.03592e-13

R6 surface C02 = 3.62336e-03 C20 = 5.17427e-03
C03 = -1.38973e-05 C21 = -2.14069e-05
C04 = 1.47678e-07 C22 = 1.65634e-07 C40 = -4.61086e-08
C05 = -1.05417e-09 C23 = -7.54144e-10 C41 = 3.87584e-10
C06 = 5.56347e-12 C24 = 5.18352e-12 C42 = -1.00483e-12
c60 = 7.76995e-12

Next, the optical action in this embodiment will be described. Light generated from the light source L2 of the illumination system LL passes through a plurality of reflecting mirrors M and is divided into three primary colors of R (red), G (green), and B (blue). The R, G, and B color lights pass through the corresponding light valves LV1, are combined by the dichroic prism P, and are guided onto the screen S by the reflective optical system 2. An image (color image) based on the light valve LV1 is displayed on the screen by a reflection optical system. FIG. 8 shows the state of distortion of the projection optical system 2 of this embodiment, and FIG. 9 shows the defocus characteristics at the image positions a, i, c, d, and o on the screen S in FIG. As can be seen from FIG. 8, the projection optical system 2 of the present embodiment has no large distortion and few asymmetric distortions. The individual graphs showing the defocus characteristics in FIG. 9 show the MTF with a frequency of 1 line / mm in the range of −25 cm to 25 cm from the screen on the reference axis, and the solid line shows the contrast value in the y direction at local coordinates on the screen The broken line represents the contrast value in the x direction at local coordinates on the screen. From this figure, it can be seen that at each image position, the MTF has a peak on the screen, that is, the screen is in focus. In addition, a contrast value of approximately 50% is secured at each image position.

また、図4に示してあるスクリーンにおける対角線上のオ、キ、エ、ク、ケの像位置における光量比は以下のようになる(エの光量を100とする)。   Further, the light quantity ratio at the image positions of o, ki, d, k, and k on the diagonal line on the screen shown in FIG. 4 is as follows (the light quantity of d is 100).

位置オ=96.5、位置キ=101.2、位置エ=100、位置ク=102.9、位置ケ=105.5
この様に光量分布にほとんど差は見られない。
Position O = 96.5, Position Key = 101.2, Position D = 100, Position Key = 102.9, Position Key = 105.5
Thus, there is almost no difference in the light amount distribution.

本実施形態で用いられている反射光学系において、基準軸の周りに展開したアジムス0度と90度における焦点距離f1(0)、f1(90)とライトバルブLV1側の主点位置H1(0)、H1(90)を計算すと以下のような値になる。ただし、アジムス0度は図4において像位置イ、エ、カを含むアジムスであり、アジムス90度は図4において像位置ウ、エを含むアジムスである。また、主点位置は凹面鏡R1を基準とし、光の進む方向を正としている。   In the reflecting optical system used in the present embodiment, focal lengths f1 (0) and f1 (90) at azimuth 0 ° and 90 ° developed around the reference axis and the principal point position H1 (0) on the light valve LV1 side. ), H1 (90) is calculated as follows. However, azimuth 0 degree is azimuth including image positions i, d and quasi in FIG. 4, and azimuth 90 degrees is azimuth including image positions c and d in FIG. The principal point position is based on the concave mirror R1, and the light traveling direction is positive.

f1(0)=−19.81、f1(90)=−15.25,H1(0)=−140.15、H1(90)=−135.79
故に
|(H(90)−H(0))/H(0)|=0.03<0.2・・・(1)
|1−cos(42°)f(0)/f(90)|=0.03<0.2・・・(2)
となる(ここで42度はスクリーンSの法線Saと基準軸Aのなす角である。)。
f1 (0) =-19.81, f1 (90) =-15.25, H1 (0) =-140.15, H1 (90) =-135.79
Therefore, | (H (90) −H (0)) / H (0) | = 0.03 <0.2 (1)
| 1−cos (42 °) f (0) / f (90) | = 0.03 <0.2 (2)
(Here 42 degrees is the angle between the normal Sa of the screen S and the reference axis A).

本実施形態においては基準軸Aに対し、ライトバルブLV1をシフト、若しくはチルトさせているわけではないので、反射光学系2をライトバルブLV1から見たときにアジムス依存性が無い、つまり主点位置にアジムス依存性が無い方が望ましい。本実施形態では、(1)式の値から解るように主点位置のアジムス依存性が少ないといえる。もし、(1)式の値が大きい場合、非対称性の収差が多く発生することになり収差補正上好ましくなく、0.2以上になると収差補正が難しくなる。また、(2)式が小さいので、スクリーン上での縦横比が保たれている。(2)式の値が0.2より大きくなるとディストーションが大きくなり収差補正が難しくなる。また、スクリーンS側の瞳に絞りを置いた場合、スクリーンの上部を通る光路長とスクリーン下部を通る光路長が異なるためにこの位置に絞りを設けるとスクリーンの上下で明るさに差が出で来る。   In this embodiment, since the light valve LV1 is not shifted or tilted with respect to the reference axis A, there is no azimuth dependency when the reflective optical system 2 is viewed from the light valve LV1, that is, the principal point position. It is desirable that there is no azimuth dependency. In this embodiment, it can be said that the azimuth dependency of the principal point position is small as understood from the value of the expression (1). If the value of the expression (1) is large, many asymmetrical aberrations are generated, which is not preferable in terms of aberration correction. In addition, since the expression (2) is small, the aspect ratio on the screen is maintained. When the value of the expression (2) is larger than 0.2, distortion increases and aberration correction becomes difficult. When the iris is placed on the pupil on the screen S side, the optical path length passing through the upper part of the screen is different from the optical path length passing through the lower part of the screen. come.

本実施形態では絞りSSを回転非対称反射面R2と回転非対称反射面R3の間に設けたが本実施形態はこれに限らない。本実施形態では回転非対称反射面を表面反射面として用いているが、特開平8-292372号公報、特開平9-222561号公報、特開平9-258105号公報等で開示されているように透明体の表面に回転非対称反射面を形成した光学ブロックを使用しても良い。   In the present embodiment, the stop SS is provided between the rotationally asymmetric reflecting surface R2 and the rotationally asymmetric reflecting surface R3, but the present embodiment is not limited to this. In this embodiment, a rotationally asymmetric reflecting surface is used as a surface reflecting surface, but transparent as disclosed in JP-A-8-292372, JP-A-9-222561, JP-A-9-258105, and the like. An optical block in which a rotationally asymmetric reflecting surface is formed on the surface of the body may be used.

さらに、本実施形態では、凹面鏡R1・凹面鏡R3・凸面鏡R5、凸面鏡R2・凸反射面R4は、それぞれモールド成形等により一体的に構成されているがこれに限定はされない。本実施形態では、回転非対称反射面を6面用いているが、反射面は6面に限らず、いくつであっても良い。ただし、収差補正上、少なくとも3枚以上あることが望ましい。また、回転非対称反射面はある平面に対して対称な形状であるが、これに限らない。   Furthermore, in the present embodiment, the concave mirror R1, the concave mirror R3, the convex mirror R5, the convex mirror R2, and the convex reflecting surface R4 are each integrally formed by molding or the like, but are not limited thereto. In the present embodiment, six rotationally asymmetric reflecting surfaces are used, but the number of reflecting surfaces is not limited to six, and any number may be used. However, it is desirable that there are at least three or more in terms of aberration correction. In addition, the rotationally asymmetric reflection surface has a symmetrical shape with respect to a certain plane, but is not limited thereto.

図10は本発明の投射型表示装置の実施形態3の要部概略図である。本実施形態は図6の実施形態2に比べて、投射光学系を、前面に透過型スクリーンSを設けたケースK内に備え背面投射型表示装置に適用した点が異なっている。反射光学系2からの光束を平面ミラーMM1と平面ミラーMM2で折り返され透過型のスクリーンSに投射している。この様にスクリーンS上に斜めに投射する投射光学系を用いることにより装置の奥行きを小さくしている。この場合、基準軸とスクリーンの角度が大きければ大きいほど装置の奥行きを縮めることができる。   FIG. 10 is a schematic view of the essential portions of Embodiment 3 of the projection display apparatus of the present invention. This embodiment is different from the second embodiment in FIG. 6 in that the projection optical system is provided in a case K provided with a transmission screen S on the front surface and applied to a rear projection display device. The light beam from the reflection optical system 2 is folded by the plane mirror MM1 and the plane mirror MM2 and projected onto the transmission type screen S. By using a projection optical system that projects obliquely on the screen S in this way, the depth of the apparatus is reduced. In this case, the depth of the apparatus can be reduced as the angle between the reference axis and the screen increases.

本実施例では平面ミラーMM1とMM2の2つのミラーで光路を折り曲げているが本実施形態はこれに限定されず、2以上の複数のミラーを用いても良い。   In this embodiment, the optical path is bent by two mirrors, the plane mirrors MM1 and MM2, but this embodiment is not limited to this, and two or more mirrors may be used.

以上のように本発明の各実施形態によれば、斜め投射をする投射型表示装置において、曲率を有する回転非対称反射面を3面以上有し、画像表示パネルからの光束が前記複数の回転非対称反射面で反射を繰り返してスクリーンに投影され実像を結ぶ反射光学系を用い、かつ反射光学系として回転非対称反射面と反射面の間、又は、反射光学系と表示パネルの間に絞りを設け、絞りの像が絞り位置よりスクリーン側の光学系により負の倍率の結像をするように構成することにより、装置の小型化を図りつつ、周辺光量比を確保し、かつ拡大率の高い斜め投射の投射型表示装置を得ることができる。さらに、本実施形態によればスクリーン面上に拡大投影される像面が基準軸に対して斜めに結像されるように構成し、基準軸周りに展開される焦点距離、主点位置等を適切な値に設定することにより、斜め投射でありながらスクリーンでの光量をほぼ均一にし、ディストーション、主に台形歪みを抑え良好なる投射画像を得ることができる。   As described above, according to each embodiment of the present invention, in a projection type display device that performs oblique projection, it has three or more rotationally asymmetric reflective surfaces having a curvature, and a light flux from an image display panel is the plurality of rotationally asymmetrical surfaces. Using a reflective optical system that repeatedly reflects on the reflective surface and is projected onto the screen and connects the real image, and as a reflective optical system, a stop is provided between the rotationally asymmetric reflective surface and the reflective surface, or between the reflective optical system and the display panel, By constructing the image of the aperture to form an image with a negative magnification by the optical system on the screen side from the aperture position, it is possible to reduce the size of the device while ensuring the peripheral light quantity ratio and oblique projection with a high magnification ratio Can be obtained. Furthermore, according to the present embodiment, the image plane that is enlarged and projected on the screen surface is formed so as to be formed obliquely with respect to the reference axis, and the focal length, principal point position, etc. developed around the reference axis are set. By setting an appropriate value, the amount of light on the screen can be made almost uniform while performing oblique projection, and a good projection image can be obtained while suppressing distortion and mainly trapezoidal distortion.

本発明の実施形態1の投射光学系を用いた投射型表示装置の構成図1 is a configuration diagram of a projection display device using a projection optical system according to a first embodiment of the present invention. 図1の投射光学系の反射光学系1と照明系L、ライトバルブLVの構成図Configuration diagram of the reflection optical system 1, the illumination system L, and the light valve LV of the projection optical system of FIG. 本発明の実施形態1の投射光学系のディストーションを示す説明図Explanatory drawing which shows the distortion of the projection optical system of Embodiment 1 of this invention. 本発明に係るスクリーン上における評価位置を示す説明図Explanatory drawing which shows the evaluation position on the screen which concerns on this invention 本発明の実施形態1の投射光学系のデフォーカス特性を示す説明図Explanatory drawing which shows the defocus characteristic of the projection optical system of Embodiment 1 of this invention. 本発明の実施形態2の投射光学系を用いた投射型表示装置の構成図Configuration diagram of a projection display device using the projection optical system of Embodiment 2 of the present invention 本発明の実施形態2の投射光学系の反射光学系2と照明系の構成図Configuration diagram of the reflection optical system 2 and the illumination system of the projection optical system of Embodiment 2 of the present invention 本発明の実施形態2の投射光学系のディストーションを示す説明図Explanatory drawing which shows the distortion of the projection optical system of Embodiment 2 of this invention. 本発明の実施形態2の投射光学系のデフォーカス特性を示す説明図Explanatory drawing which shows the defocus characteristic of the projection optical system of Embodiment 2 of this invention. 本発明の実施形態3の投射型表示装置を示す説明図Explanatory drawing which shows the projection type display apparatus of Embodiment 3 of this invention. 従来のシフト光学系の概念図Conceptual diagram of conventional shift optical system 従来の斜め投射した光学系の概念図Conceptual diagram of a conventional obliquely projected optical system 斜め投射した場合の倍率の関係を示す説明図Explanatory diagram showing the relationship of magnification when obliquely projected 斜め投射した場合の倍率の関係を示す説明図Explanatory diagram showing the relationship of magnification when obliquely projected 従来の斜め投射光学系を示す説明図Explanatory drawing showing a conventional oblique projection optical system 従来の斜め投射光学系を示す説明図Explanatory drawing showing a conventional oblique projection optical system 本発明における反射光学系の座標系の説明図Explanatory drawing of the coordinate system of the reflective optical system in the present invention

符号の説明Explanation of symbols

1、2・・・反射光学系
L、L2・・・照明光学系
LV、LV1・・・ライトバルブ
LL・・・ライトバルブ、照明系
R1〜R6・・・回転非対称反射面
S・・・スクリーン
SS・・・絞り
S’・・・基準軸に垂直な平面
M・・・ミラー、及びダイクロイックミラー
M1、M2・・・折り返しミラー
P・・・ダイクロイックプリズム
A・・・基準軸
K・・・収納ケース
βx、βy、βy'・・・倍率
Ri,Rm,n面
Bi 第i の光学素子
Di 基準軸に沿った面間隔
Ndi 屈折率
νdi アッベ数
DESCRIPTION OF SYMBOLS 1, 2 ... Reflection optical system L, L2 ... Illumination optical system LV, LV1 ... Light valve LL ... Light valve, illumination system R1-R6 ... Rotation-asymmetric reflection surface S ... Screen
SS ... Aperture S '... Plane perpendicular to the reference axis M ... Mirror and dichroic mirror M1, M2 ... Folding mirror P ... Dichroic prism A ... Reference axis K ... Storing Case βx, βy, βy '・ ・ ・ Magnification
Ri, Rm, n surface
Bi-th optical element
Di Surface spacing along the reference axis
Ndi Refractive index νdi Abbe number

Claims (10)

画像表示パネルからの光束を基準軸に対して傾斜した被投射面上に導光して、前記被投射面に画像情報を形成する為の投射光学系において、
前記投射光学系は、曲率を有する複数の回転非対称反射面を含み、且つ前記画像表示パネルからの光束を前記複数の回転非対称反射面で反射して前記被投射面上に導光する反射光学系を有しており、
前記反射光学系の前記回転非対称反射面間、又は、前記反射光学系と前記画像表示パネルの間に絞りを有しており、
前記絞りが、前記絞り位置より前記被投射面側に配置した光学部材により負の倍率で結像しており、
前記絞りの結像位置は、前記複数の回転非対称反射面のうち最も前記被投射面に近い反射面と前記被投射面との間であることを特徴とする投射光学系。
In a projection optical system for guiding light flux from an image display panel onto a projection surface inclined with respect to a reference axis and forming image information on the projection surface,
The projection optical system includes a plurality of rotationally asymmetric reflective surfaces having a curvature, and reflects the light beam from the image display panel by the plurality of rotationally asymmetric reflective surfaces and guides the light onto the projection surface. Have
A diaphragm is provided between the rotationally asymmetric reflective surfaces of the reflective optical system or between the reflective optical system and the image display panel;
The diaphragm is imaged at a negative magnification by an optical member arranged on the projection surface side from the diaphragm position,
The projection optical system according to claim 1, wherein an imaging position of the diaphragm is between the reflection surface closest to the projection surface and the projection surface among the plurality of rotationally asymmetric reflection surfaces.
前記複数の反射面のうち前記絞りを通過した光が最初に入射する屈折力を有する反射面の屈折力が正であることを特徴とする請求項1の投射光学系。 2. The projection optical system according to claim 1, wherein among the plurality of reflection surfaces, the reflection surface having a refracting power on which light that has passed through the aperture first enters has a positive refractive power. 前記複数の反射面は全て、屈折力を有する非球面反射面であることを特徴とする請求項1又は2の投射光学系。 3. The projection optical system according to claim 1, wherein all of the plurality of reflecting surfaces are aspheric reflecting surfaces having a refractive power. 前記投射光学系は、前記画像表示パネルと前記被投射面とが非平行の状態で配置されているときに使用されるものであることを特徴とする請求項1乃至3のいずれか1項の投射光学系。 The said projection optical system is used when the said image display panel and the said to-be-projected surface are arrange | positioned in the non-parallel state, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Projection optical system. 前記反射光学系は、前記複数の回転非対称反射面のうち最も前記被投射面に近い反射面と2番目に前記被投射面に近い反射面との間に、前記画像表示パネルに基づく画像を結像することを特徴とする請求項1乃至4のいずれか1項の投射光学系。 The reflection optical system connects an image based on the image display panel between a reflection surface closest to the projection surface and a reflection surface second closest to the projection surface among the plurality of rotationally asymmetric reflection surfaces. The projection optical system according to claim 1, wherein the projection optical system is an image. 前記反射光学系は、透明体の表面に2つの屈折面と曲率を有する前記回転非対称反射面を複数形成し、前記画像表示パネルからの光束が1つの屈折面から該透明体の内部へ入射し、該複数の回転非対称反射面で反射して別の屈折面から射出するように構成された光学ブロックを少なくとも一つ含むことを特徴とする請求項1乃至5のいずれか1項の投射光学系。 The reflective optical system forms a plurality of rotationally asymmetric reflective surfaces having two refracting surfaces and a curvature on a surface of a transparent body, and a light beam from the image display panel enters the transparent body from one refracting surface. 6. The projection optical system according to claim 1, further comprising at least one optical block configured to be reflected by the plurality of rotationally asymmetric reflecting surfaces and exit from another refracting surface. . 前記画像表示パネルの中心と被投射面上の画像情報の中心とを結ぶ中心線のまわりに前記反射光学系を展開したときの前記画像表示パネル側のアジムスξ度における主点位置をH(ξ)とし、該中心線と該被投射面の法線を含む面を表すアジムスをαとしたとき
|(H(α+90°)−H(α))/H(α)|<0.2
となる条件を満足することを特徴とする請求項1乃至6のいずれか1項の投射光学系。
The principal point position in the azimuth ξ degree on the image display panel side when the reflection optical system is developed around a center line connecting the center of the image display panel and the center of image information on the projection surface is represented by H (ξ ), And azimuth representing a plane including the center line and the normal line of the projection surface is α, | (H (α + 90 °) −H (α)) / H (α) | <0.2
The projection optical system according to claim 1, wherein the following condition is satisfied.
前記画像表示パネルの中心と被投射面上の画像情報の中心を結ぶ中心線と前記被投射面の法線とのなす角をθとし、該中心線のまわりに前記反射光学系を展開したときのアジムスξ度における焦点距離をf(ξ)とし、該中心線と前記被投射面の法線を含む面を表すアジムスをαとしたとき
|1−cosθf(α)/f(α+90°)|<0.2
となる条件を満足することを特徴とする請求項1乃至7のいずれか1項の投射光学系。
When the angle formed by the center line connecting the center of the image display panel and the center of the image information on the projection surface and the normal line of the projection surface is θ, and the reflection optical system is deployed around the center line | 1-cos θf (α) / f (α + 90 °) |, where f (ξ) is the focal length at azimuth ξ, and α is the azimuth representing the plane including the center line and the normal of the projected surface. <0.2
The projection optical system according to claim 1, wherein the following condition is satisfied.
請求項1〜8のいずれか1項に記載の投射光学系を用いて前記画像表示パネルに基づく光束を前記被投射面上に導光し、該被投射面に前記画像情報を形成することを特徴とする投射型表示装置。 A light beam based on the image display panel is guided onto the projection surface using the projection optical system according to any one of claims 1 to 8, and the image information is formed on the projection surface. A projection type display device characterized. 前記投射光学系からの前記画像表示パネルに基づく光束を1つ又は複数の平面ミラーを介して透過型の被投射面に導光し、該透過型被投射面の前記被投射面に前記画像情報を形成することを特徴とする請求項9に記載の投射型表示装置。 A light beam based on the image display panel from the projection optical system is guided to a transmissive projection surface via one or a plurality of plane mirrors, and the image information is transmitted to the projection surface of the transmissive projection surface. The projection display device according to claim 9, wherein the projection type display device is formed.
JP2006179447A 2006-06-29 2006-06-29 Projection optical system and projection display device using the same Pending JP2006338038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179447A JP2006338038A (en) 2006-06-29 2006-06-29 Projection optical system and projection display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179447A JP2006338038A (en) 2006-06-29 2006-06-29 Projection optical system and projection display device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000065404A Division JP3840031B2 (en) 2000-03-09 2000-03-09 Projection optical system and projection display device using the same

Publications (1)

Publication Number Publication Date
JP2006338038A true JP2006338038A (en) 2006-12-14

Family

ID=37558575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179447A Pending JP2006338038A (en) 2006-06-29 2006-06-29 Projection optical system and projection display device using the same

Country Status (1)

Country Link
JP (1) JP2006338038A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237370A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection video display device
JP2009237371A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection type video display device
JP2009237369A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection video display device
CN101568866B (en) * 2006-12-21 2012-10-10 Tp视觉控股有限公司 Light projection system and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095650A (en) * 1995-06-21 1997-01-10 Canon Inc Processing method and processor using the same
WO1997001787A1 (en) * 1995-06-26 1997-01-16 Nissho Giken Kabushiki Kaisha Projection display
JPH10111458A (en) * 1996-10-03 1998-04-28 Nissho Giken Kk Reflection type image-formation optical system
JPH11337826A (en) * 1999-05-11 1999-12-10 Canon Inc Optical element and image pickup device provided with the same
JP2000066106A (en) * 1998-08-21 2000-03-03 Olympus Optical Co Ltd Image forming optical system and observation optical system
JP2001255462A (en) * 2000-03-09 2001-09-21 Canon Inc Projection optical system and projection type display device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095650A (en) * 1995-06-21 1997-01-10 Canon Inc Processing method and processor using the same
WO1997001787A1 (en) * 1995-06-26 1997-01-16 Nissho Giken Kabushiki Kaisha Projection display
JPH10111458A (en) * 1996-10-03 1998-04-28 Nissho Giken Kk Reflection type image-formation optical system
JP2000066106A (en) * 1998-08-21 2000-03-03 Olympus Optical Co Ltd Image forming optical system and observation optical system
JPH11337826A (en) * 1999-05-11 1999-12-10 Canon Inc Optical element and image pickup device provided with the same
JP2001255462A (en) * 2000-03-09 2001-09-21 Canon Inc Projection optical system and projection type display device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568866B (en) * 2006-12-21 2012-10-10 Tp视觉控股有限公司 Light projection system and display device
JP2009237370A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection video display device
JP2009237371A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection type video display device
JP2009237369A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Projection video display device

Similar Documents

Publication Publication Date Title
JP3840031B2 (en) Projection optical system and projection display device using the same
JP3631182B2 (en) Image projection device
EP1806612B1 (en) Projection optical system and projection type image display device
JP5484098B2 (en) Projection optical system and image display apparatus
EP1387201A1 (en) Projection optical system and projection type image display apparatus
JP2020042103A (en) Projection optical system and image projection device
JP7234498B2 (en) Projection optical system unit and projection optical device
JP2007079524A (en) Projection optical system and projection image display device
JP4086686B2 (en) Projection optical system, projection-type image display device and image display system
JP2003043360A (en) Imaging optical system, projection type image display device and imaging device
JP4551674B2 (en) Variable magnification optical system
EP1387208B1 (en) Projection optical system, projection type image display apparatus, and image display system
JP2006338038A (en) Projection optical system and projection display device using the same
JP4478408B2 (en) Imaging optical system, imaging device, image reading device, and projection-type image display device
JP2004258541A (en) Reflection type optical system
JP4016007B2 (en) Imaging optics
JP2000089227A (en) Projection type display device
JP4641374B2 (en) Projection optical system and projection display device using the same
JP4016008B2 (en) Imaging optics
JP2017044896A (en) Projection device and image display device
JP4767696B2 (en) Projection-type image display device
JP2003005074A (en) Reflection optical system, reflection type optical system and optical apparatus
JP2008145705A (en) Projection optical system and image projection device
JP2008145703A (en) Projection optical system and image projection device
JP2005189768A (en) Projection optical system, and image projector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100120

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319