JP4066763B2 - Bipolar battery, manufacturing method thereof, and vehicle - Google Patents

Bipolar battery, manufacturing method thereof, and vehicle Download PDF

Info

Publication number
JP4066763B2
JP4066763B2 JP2002286274A JP2002286274A JP4066763B2 JP 4066763 B2 JP4066763 B2 JP 4066763B2 JP 2002286274 A JP2002286274 A JP 2002286274A JP 2002286274 A JP2002286274 A JP 2002286274A JP 4066763 B2 JP4066763 B2 JP 4066763B2
Authority
JP
Japan
Prior art keywords
laminated
bipolar battery
active material
electrode active
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002286274A
Other languages
Japanese (ja)
Other versions
JP2004127559A (en
Inventor
康彦 大澤
達弘 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002286274A priority Critical patent/JP4066763B2/en
Publication of JP2004127559A publication Critical patent/JP2004127559A/en
Application granted granted Critical
Publication of JP4066763B2 publication Critical patent/JP4066763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正極活物質と負極活物質とが集電体の両側に配置されてなるバイポーラー電池に関し、より詳しくは、実質的に溶液を含まない高分子固体電解質を電解質として用いてなるバイポーラー電池とその製造方法並びに車両に関する。
【0002】
【従来の技術】
近年、電気自動車等の大容量電源として、高エネルギー密度、高出力密度が達成できるリチウムイオン二次電池が開発され使用されている。リチウムイオン二次電池の基本構成は、アルミニウム集電体にコバルト酸リチウム等の正極活物質とアセチレンブラック等の導電助剤をバインダーを用いて塗布した正極と、銅集電体にカーボン微粒子をバインダーを用いて塗布した負極を、ポリオレフィン系の多孔質膜セパレーターを介して配置し、これにLiPF6等を含む非水電解液を満たしている。
【0003】
リチウムイオン二次電池を電気自動車等の電源として使用する場合は、大出力を確保するために、複数の二次電池を直列に接続して用いる必要がある。前記基本構成の単電池(セル)を直列接続した電池モジュール単位、更にこの電池モジュール単位を直列接続して組電池として用いる。
【0004】
しかし、接続部を介して電池を接続した場合、接続部の電気抵抗によって出力が低下することになる。また、接続部を有する電池は空間的にも不利益を有する。即ち、接続部の占有体積によって、電池の出力密度やエネルギー密度が低下する。
【0005】
この問題を解決するものとして、セル間接続の抵抗を低減し、コンパクト化したバイポーラー電池が提案されている(例えば、特許文献1参照。)。
【0006】
このバイポーラー電池では、集電体として2種類の金属箔を圧延加工した、いわゆるクラッド材を使用し、電解質に液体を用いているので、各セルでの密閉シールが不可欠であり、セル間で液絡が起こる可能性がある。そこで、この電解液のかわりに、高分子固体電解質を用いると、密閉シールが不要となり現実的なバイポーラー電池とすることができる。
【0007】
このような構造を有する例として、導電性基板の一面に正極活物質層を、他面に負極活物質層を配置してバイポーラー電極を構成し、この電極を高分子固体電解質層を介して複数積層した構造のバイポーラー電池、つまり、正極活物質6、固体電解質4、負極活物質7、導電性基板本体5を複数個積層したバイポーラー電池も提案されている(例えば、特許文献2参照。)。
【0008】
このバイポーラー電池は、活物質の利用率を高めるために、導電性基板、正極活物質層、負極活物質層、電解質層をきわめて薄肉としている。例えば、導電性基板が0.5μm、正極活物質層が1μm、負極活物質層が1.5μm、電解質層が1μm程度としている。
【0009】
【特許文献1】
特開平8−7926号公報(段落「0007」〜「0009」、図1〜2)
【特許文献2】
実開平4−54148号公報(第2図)
【0010】
【発明が解決しようとする課題】
しかし、このような薄肉の部材を、相互の密着性を確保しながら積層することは、作業性がきわめて面倒である。特に、固体電解質はゲル電解質と比べると、イオン伝導度が低く、しかも、電極層と高分子固体電解質層との間が十分に密着性が保持されないと、さらにイオン伝導性が低下し、この層間部分で抵抗が増大する虞もある。
【0011】
この密着を確保するためには、例えば、積層部材をケース等に入れ、弾性体により当該積層部材に圧力を掛けることもできるが、薄肉のものが多数積層されたものに対し全面に渡り均一に圧力を掛けることは、面倒であり困難でもある。また、前記電解質層又は電極層のいずれかが粘着性を有していれば、前記密着性は向上するが、このようにしても長期にわたって密着性を保持するには、やはり何らかの方法で圧力を掛け続ける必要がある。
【0012】
本発明は、これらの問題点に鑑み、成形された積層部材に対し圧力を加える手段を別途設けなくても、電極層や電解質層間での密着性を保持することができるバイポーラー電池を提供することを第1の目的とする。
【0013】
本発明の第2の目的は、同バイポーラー電池の製造方法を提供することにある。
【0014】
本発明の第3の目的は、同バイポーラー電池を搭載した車両を提供することにある。
【0015】
【課題を解決するための手段】
本発明の目的は、下記する手段により達成される。
【0016】
(1) 集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池において、円弧状若しくは円環状であり、その表面に凹部が設けられた芯材と、所定の幅と長さを有する前記単位積層電極を少なくとも2層以上積層して、その一端部が前記凹部に挿入されて前記芯材に巻き回されて、曲率を持つ断面形状となる積層部材と、を有することを特徴とするバイポーラー電池。
(2)集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池において、
円弧状若しくは円環状の芯材と、
所定の幅と長さを有する前記単位積層電極を少なくとも2層以上積層して、前記芯材に巻き回されて、曲率を持つ断面形状となる積層部材と、
前記積層部材の巻回開始端部とその外周の巻回層との間に設けられた挿入物と、を有することを特徴とするバイポーラー電池。
【0017】
) 前記積層部材は、重ね合わした各積層部材相互間に、電気的導通を阻止する絶縁層を設けたことを特徴とする前記(1)又は(2)のバイポーラー電池。
【0018】
) 前記積層部材は、前記曲率を持つ断面形状を保持する保持手段を設けたことを特徴とする前記(1)〜(3)のバイポーラー電池。
【0020】
(5) 前記積層部材は、最外部に位置する層の外周面と、最内部に位置する層の内周面に、他の集電体よりも厚肉の端部集電体を設けたことを特徴とする前記(1)〜(4)のバイポーラー電池。
【0021】
(6) 前記曲率を持つ断面形状とされた積層部材の内部空間に発熱体を設けたことを特徴とする前記(1)〜(5)のバイポーラー電池。
【0022】
(7) 集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池の製造方法において、円弧状若しくは円環状をし、外周面に凹部が形成された芯材に、所定の幅と長さの前記単位積層電極が少なくとも2層以上積層された積層部材を、前記凹部にその一端部を入れて前記心材の外周面に密に巻回することを特徴とするバイポーラー電池の製造方法。
(8) 集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池の製造方法において、所定の幅と長さの前記単位積層電極が少なくとも2層以上積層された積層部材を、円弧状若しくは円環状をした芯材の外周面に、巻回開始端部とその外周の巻回層との間に挿入物を入れて、密に巻回することを特徴とするバイポーラー電池の製造方法。
【0023】
) 前記積層部材は、重なり合った各層間に、電気的導通を阻止する絶縁層を設けたことを特徴とする前記(7)又は(8)のバイポーラー電池の製造方法。
【0024】
10) 前記積層部材は、前記曲率を持つ形状を保持する保持手段を設けたことを特徴とする前記(7)〜(9)のバイポーラー電池の製造方法。
【0025】
11) 前記積層部材は、複数枚の単位積層電極を環状に成形するときの各単位積層電極の始端が同位置で重合状態となるようにしたことを特徴とする前記()〜(10)のバイポーラー電池の製造方法。
【0026】
12) 前記単位積層電極は、始端位置調節する絶縁性の始端位置調節部材を有することを特徴とする前記(11)のバイポーラー電池の製造方法。
【0027】
13) 前記積層部材は、前記単位積層電極を重ね合わした複数層の束全体を絶縁性フィルムにより覆いシールしたものを前記芯材の外周面に巻回したことを特徴とする前記(7)(12)のバイポーラー電池の製造方法。
【0029】
(14) 前記段差防止手段は、前記芯材の外周面に形成した凹部である前記(13)のバイポーラー電池の製造方法。
【0031】
14(1)〜(6)のバイポーラー電池を1つ又は複数接続して電源としたことを特徴とする車両。
【0032】
【発明の効果】
請求項1及び2の発明は、積層部材が曲率を持つ断面形状としたので、積層部材を構成する単位積層電極は、成形された積層部材に対し圧力を加える手段を別途設けなくても、その形状から各単位積層電極相互間での電極層や電解質層間での密着性を保持することができ、イオン伝導性の低下や内部抵抗の増大が防止された高性能のバイポーラー電池となる。また、曲率を持つ断面形状を巻回することにより形成すれば、その巻回量あるいは巻回長さにより電池の容量も調節することができ、さらに、巻回した積層部材の内部から芯材を除去すれば、形状的にも自由な形状設定が可能となる。そして、芯材に、積層部材の巻回開始端部とその外周の巻回層との間で段差が生じないようにする段差防止手段として、心材に小部を設けたり、または挿入物を入れたことで、この段差部分で生じやすい短絡を確実に防止できる。
【0033】
請求項の発明は、重ね合わした各積層部材相互間に、電気的導通を阻止する絶縁層を設けたので、各層の重なりによる短絡が防止され、より安全性の高いバイポーラー電池となる。
【0034】
請求項の発明は、曲率を持つ積層部材の断面形状を保持手段により保持すれば、イオン伝導性の低下や内部抵抗の増大が防止されたバイポーラー電池の性能を高い状態で維持できる。
【0036】
請求項5の発明は、最外部と最内部に、他の集電体よりも厚肉の端部集電体を設けたので、バイポーラー電池の電流の流れから集電体の面方向の抵抗を低減でき、電池各部でのインピーダンスを同程度にすることができる。
【0037】
請求項6の発明は、積層部材の内部空間に発熱体を設けたので、高分子固体電解質層を活性化でき、電流の流れを円滑にし、電池の性能を高めることができる。
【0038】
請求項7および8の発明は、単位積層電極が少なくとも2層以上積層された積層部材を、円弧状若しくは円環状をした芯材の外周面に密に巻回したので、薄肉の単位積層電極でも曲率のある積層部材を簡単に形成でき、バイポーラー電池の製造が極めて容易となる。しかも、芯材に、積層部材の巻回開始端部とその外周の巻回層との間で段差が生じないように段差防止手段として凹部または挿入物を設けて巻き回すこととしたので、この段差部分で生じやすい短絡を確実に防止できる。
【0039】
請求項の発明は、積層部材の重なり合った各層間に、電気的導通を阻止する絶縁層を設ければ、各層の重なりによる短絡が防止され、より安全性の高いバイポーラー電池を極めて容易に製造できる。
【0040】
請求項10の発明は、曲率を持つ積層部材の断面形状を保持手段により保持すれば、イオン伝導性の低下や内部抵抗の増大が防止された高性能のバイポーラー電池を極めて容易に製造できる。
【0041】
請求項11の発明は、複数枚の単位積層電極の始端が同位置で重合状態となるように、芯材の外周面に密に巻回すれば、薄肉の材料でも簡単に積層部材を形成でき、また、巻回された各層相互間での密着性も向上する。
【0042】
請求項12の発明は、各単位積層電極に絶縁性の始端位置調節部材を設ければ、巻回された各層相互間で段差がなく、スムーズに巻回でき、密着性も向上する。
【0043】
請求項13の発明は、単位積層電極を重ね合わした複数層の束全体を絶縁性フィルムにより覆いシールしたものを芯材の外周面に巻回すれば、積層部材の取り扱いや巻回作業が容易で、作業性が向上する。特にヒートシーラによりヒートシールすれば、巻き付けがさらに簡単にできる。
【0045】
請求項14の発明は、小型、軽量で、成形性が良く、形状的にも厳密に特定されないバイポーラー電池を、電気自動車、ハイブリッド電気自動車、燃料電池車、内燃機関自動車等の車両に搭載すれば、スペース的にも車両の性能面でも有効な電源として使用でき、省エネルギとなり、環境衛生面で寄与するところ大である。
【0046】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
【0047】
図1は本発明の実施形態の一部破断概略斜視図、図2は単位積層電極等の平面図、図3は図2の3−3線に沿う断面図である。
【0048】
図1において、本実施形態のバイポーラー電池について概説すれば、基本的には、単位積層電極1を2層以上積層した積層部材Sを円筒状の芯材2の周りに巻きつけ、断面形状が曲率を持つようにしている。
【0049】
なお、本明細書においては、単位積層電極1とは、図2,3に示すように、集電体3の一面に正極活物質層4を他面に負極活物質層5を保持したバイポーラー電極Pに高分子固体電解質層6を積層したものをいい、積層部材Sは、この単位積層電極を少なくとも2層以上積層したものをいう。
【0050】
このように積層部材Sを、曲面を有する芯材2の周りに巻回すると、芯材2の周囲に形成された積層部材Sの各層は、軸直角断面形状が曲率を持つ形状となる。この結果、積層部材Sは、圧力を加えなくても、各単位積層電極1相互間での密着性を保持でき、イオン伝導性の低下や内部抵抗の増大が防止される。
【0051】
図4は図1の4−4線に沿う断面相当図であるが、本図では複数枚の単位積層電極1が積層された積層部材Sを1本の線として示しており、図5は図4の5−5線に沿う概略断面図で、主として1つの積層部材Sのみを詳示している。
【0052】
このバイポーラー電池は、基本的には、図2に示すように、所定の幅Wと長さLを有する短冊状の単位積層電極1を多数作製し、所定の方法で少なくとも2層以上積層して積層部材Sを形成する。なお、積層方法は、単に積み重ねても良いが、後に詳述する手法を用いても良い。そして、図4に示すように、この積層部材Sを円筒状の芯材2の周りに巻回し、長さ方向断面形状が曲率を持つ形状とするが、この形状を保持するため、テープあるいは接着剤などの適当な保持手段7により保持している。
【0053】
積層部材Sが曲率を持つ断面形状となるように巻回すれば、その巻回量あるいは巻回長さにより電池の容量も調節することができ、場合によっては、巻回した積層部材Sの内部から芯材を除去すれば、全体形状が変形自在となり、形状的にも自由な形状設定が可能となる。
【0054】
ただし、積層部材Sを芯材2の周りに重積するように巻回すると、各層間で電気的に導通する虞があるので、各層間には絶縁層8(図4では破線で示す)を設けることが好ましい。この絶縁層8は、巻回された単位積層電極1の層が隣位の層に接触しないように絶縁するものである。なお、使用する絶縁層8としては、カプトン粘着フィルム、ポリエステル粘着フィルム、ポリオレフィン粘着フィルム等がある。
【0055】
バイポーラー電池では、電流は、図5の矢印で示すように、正極活物質層4から負極活物質層5に向かって、高分子固体電解質層6を通って流れる特性がある。つまり、積層部材Sを貫通するように流れるので、巻回した積層部材Sは、積層部材Sの最外部と最内部に位置する端部集電体9の肉厚Tを、他の集電体3の肉厚tよりも厚肉とすることが好ましい。このようにすれば、端部集電体9の面方向に流れる電流の抵抗を低減でき、電池各部でのインピーダンスを同程度にすることができる。
【0056】
前記積層部材Sは、全体をラミネートフィルムのような絶縁性フィルム10で覆っても良い。このようにすると、バイポーラー電池から不必要に漏電することはなく、効率よく電流を取り出すことができ、電池も長寿命となり、好ましい。
【0057】
また、芯材2の内部空間Mに発熱体(不図示)を設けると、発熱体の熱で高分子固体電解質層を活性化でき、電流の流れを円滑にし、電池の性能を高めることができる。なお、発熱体としては、電池を使用する対象物により異なるが、例えば、エンジンとモータを持ったハイブリッドカーでは、エンジンマフラーなどが考えられる。
【0058】
さらに、前記単位積層電極1の構成要素を個別に説明し、電池の製法について述べる。
【0059】
<集電体>
集電体3は、その表面材質がアルミニウムである。表面材質がアルミニウムであると、形成される活物質層が高分子固体電解質を含む場合であっても、高い機械的強度を有する活物質層となる。集電体3は、表面材質がアルミニウムであれば、その構成については特に限定されない。集電体3がアルミニウムそのものであってもよい。また、集電体3の表面がアルミニウムで被覆されている形態であってもよい。つまり、アルミニウム以外の物質(銅、チタン、ニッケル、SUS、これらの合金など)の表面に、アルミニウムを被覆させた集電体であってもよい。場合によっては、2以上の板を張り合わせた集電体を用いてもよい。耐蝕性、作り易さ、経済性などの観点からは、アルミニウム箔単体を集電体として用いることが好ましい。
【0060】
<正極活物質層>
正極活物質層は、正極活物質、高分子固体電解質を含む。この他にも、イオン伝導性を高めるためにリチウム塩、電子伝導性を高めるために導電助剤などが含まれ得る。
【0061】
正極活物質としては、溶液系のリチウムイオン電池でも使用される、遷移金属とリチウムとの複合酸化物を使用できる。具体的には、LiCoO2などのLi・Co系複合酸化物、LiNiO2などのLi・Ni系複合酸化物、スピネルLiMn24などのLi・Mn系複合酸化物、LiFeO2などのLi・Fe系複合酸化物などが挙げられる。この他、LiFePO4などの遷移金属とリチウムのリン酸化合物や硫酸化合物;V25、MnO2、TiS2、MoS2、MoO3などの遷移金属酸化物や硫化物;PbO2、AgO、NiOOHなどが挙げられる。
【0062】
正極活物質の粒径は、バイポーラー電池の電極抵抗を低減するために、電解質が固体でない溶液タイプのリチウムイオン電池で一般に用いられる粒径よりも小さいものを使用するとよい。
【0063】
<高分子固体電解質>
高分子固体電解質は、イオン伝導性を有する高分子であれば、特に限定されるものではない。イオン伝導性を有する高分子としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体などが挙げられる。かようなポリアルキレンオキシド系高分子は、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252などのリチウム塩をよく溶解しうる。また、架橋構造を形成することによって優れた機械的強度が発現する。
【0064】
本発明において高分子固体電解質は、正極活物質層または負極活物質層の少なくとも一方に含まれる。ただし、バイポーラー電池の電池特性をより向上させるためには、双方に含まれることが好適である。
【0065】
リチウム塩としては、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252、またはこれらの混合物などが使用できる。ただし、これらに限られるわけではない。
【0066】
導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト等が挙げられる。ただし、これらに限られるわけではない。
【0067】
<負極活物質層>
負極活物質層は、負極活物質、高分子固体電解質を含む。この他にも、イオン伝導性を高めるためにリチウム塩、電子伝導性を高めるために導電助剤などが含まれ得る。負極活物質の種類以外は、基本的に「正極活物質」の項で記載した内容と同様であるため、ここでは説明を省略する。
【0068】
負極活物質としては、溶液系のリチウムイオン電池でも使用される負極活物質を用いることができる。ただし、本発明のバイポーラー電池は高分子固体電解質が用いられるため、高分子固体電解質での反応性を考慮すると、金属酸化物または金属とリチウムとの複合酸化物が好ましい。より好ましくは、負極活物質は遷移金属酸化物または遷移金属とリチウムとの複合酸化物である。さらに好ましくは、前記遷移金属はチタンである。つまり、負極活物質は、チタン酸化物またはチタンとリチウムとの複合酸化物であることがさらに好ましい。
【0069】
<高分子固体電解質層>
高分子固体電解質層は、イオン伝導性を有する高分子から構成される層であり、イオン伝導性を示すのであれば材料は限定されない。高分子固体電解質としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体系高分子で、分子内に架橋性の炭素―炭素の二重結合を持った原料高分子を用いてラジカル重合法で合成した高分子固体電解質が挙げられる。
【0070】
高分子固体電解質層中には、イオン伝導性を確保するためにリチウム塩が含まれる。リチウム塩としては、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252、またはこれらの混合物などが使用できる。ただし、これらに限られるわけではない。PEO、PPOのようなポリアルキレンオキシド系高分子は、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252などのリチウム塩をよく溶解しうる。また、架橋構造を形成することによって、優れた機械的強度が発現する。
【0071】
高分子電解質膜は、前記と同様例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)及びそれらの共重合体系高分子で、分子内に架橋性の炭素―炭素の二重結合を持った原料高分子とリチウム塩をNMPのような溶媒に溶解させてスペサーで厚さを決めた光透過性のギャップに流し込み紫外線を照射して架橋させて薄膜を作製できるが、この方法に限られるわけではない。放射線重合、電子線重合、熱重合法によっても高分子電解質膜を作製できる。紫外線重合の場合には適当な光重合開始剤を用い、熱重合法の場合にも熱重合開始剤を用いてもよい。溶解させるリチウム塩としては、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252及びこれらの2種以上の混合物等を使用できるが、これらに限られるわけではない。
【0072】
<単位積層電極の作製>
本実施形態に係る単位積層電極1を構成するためには、まず、上記した負極活物質層5における原料高分子と、負極活物質、導電助材、リチウム塩、溶媒と少量のアゾビスイソブチロニトリル(AIBN)等の熱重合開始剤からスラリーを調製し、これを集電体3の一面に塗布して加熱して負極活物質層5を作製する。
【0073】
次に、正極活物質層4をこの集電体3の他面に同様にして形成することによりバイポーラー電極Pを作製する。なお、この正極活物質層4と負極活物質層5の形成の順序は逆でもよい。
【0074】
このバイポーラー電極Pの上に高分子固体電解質層6を形成する。この形成に当っては、リチウム塩と原料高分子と紫外線重合開始剤を含む溶液を単位積層電極1上に直接塗布して、PET等の透明フィルムをかぶせて、10分間から20分間紫外線照射することによって単位積層電極1が形成できる。
【0075】
この結果、図3に示すように、下から高分子固体電解質層6、負極活物質層5、集電体3、正極活物質層4の順で層状に形成された単位積層電極1が形成される。
【0076】
なお、集電体3の両側に絶縁層(一点鎖線で示す)を設け、各単位積層電極1相互間を絶縁しても良い。
【0077】
<バイポーラー電池の製造方法>
本製造方法の第1の実施形態は、複数枚の単位積層電極1を1枚ずつ芯材2の周囲に巻回することにより積層し、積層部材Sを形成するバイポーラー電池の製造方法である。
【0078】
ここで使用する芯材2としては、曲率をもったものであればどのようなものであっても良い。例えば、単に円弧状のものあるいは筒状楕円、円環状等でもよいが、特に、巻きつけ圧力がより均一にかかるものであって、かつ軽量なものとしては、軸方向に前記積層部材Sの幅、つまり各単位積層電極1の幅Wと同程度の長さを有し、アルミニウムからなる軸直角断面が円弧状若しくは円環状をしたものが好ましい。ただし、電池の効率を高めるために、芯材2の外周面は絶縁層(不図示)で覆うことが好ましい。
【0079】
図6は本発明に係る製造方法の第1の実施形態の要部を示す概略説明図である。この芯材2を使用してバイポーラー電池を製造する場合は、図6において、まず、芯材2の軸線が直立に立設するように、モータなどの回転軸に取り付ける。
【0080】
本実施形態では、芯材2の周囲に5枚の単位積層電極1a〜1eと、最外部及び最内部の端部集電体9、9と、絶縁層8とを配置する。
【0081】
なお、芯材2の周りには、単位積層電極1を供給するローラ(不図示)を複数配置し、単位積層電極1の両端に位置する単位積層電極1aと1eとの間には、端部集電体9や絶縁層8を供給するローラも配置し、これらローラにより単位積層電極1等を供給しつつ巻回作業を行なう。
【0082】
巻回作業は、まず第1番目の単位積層電極1aを芯材2の周囲に巻き付けた後に、第2番目の単位積層電極1bの始端が第1番目の単位積層電極1aの始端と一致するように重ね、各単位積層電極1に張力をかけつつ、芯材2に巻き取る。以下同様に各単位積層電極1c〜1eを、始端及び終端が一致するように巻回する。
【0083】
この場合、各単位積層電極1の始端部分に絶縁性の粘着フィルム等のような始端調節部材11(図2参照)を設けておき、長さを調節し、巻き付け用の芯材2の適当な位置から順次貼り付けると、始端を一致させて層状に巻回したときにも、この始端で段差が生じることがなく、スムーズな巻回が可能となる。しかも、このようにすれば、段差部分で生じやすい短絡も確実に防止でき、巻回された各層相互間での密着性が向上し、イオン伝導性の低下や内部抵抗の増大が防止される。
【0084】
このようにして積層部材Sが形成されると、保持手段7により当該曲率を有する形状を保持し、最外部を絶縁性フィルム10で覆うと共に端部集電体9に接続されたリード線12(図1,4参照)を突出させる。
【0085】
このバイポーラー電池では、電流は、各積層部材S内では、いわば各単位積層電極1を貫通して流れるが、ここでは、単位積層電極1相互間が密に当接された状態となるので、イオン伝導性の低下や内部抵抗の増大が防止され、高性能のバイポーラー電池となる。
【0086】
なお、前記電流は、端部集電体9に至ると当該端部集電体9の面、つまり周方向に沿って流れ、リード線12を通って外部に導かれる。
【0087】
次に、本製造方法の第2の実施形態について述べる。
【0088】
図7は第2の実施形態で使用する複数の単位積層電極を積み重ねた積層部材の断面図、図8,9は段差防止手段を示す断面図である。
【0089】
第2の実施形態は、所定の幅Wと長さを有する単位積層電極1を、予め複数枚積み重ね、この積み重ねた束を積層部材Sとして用い、前記芯材2の外周面に密に巻回するようにしている。前述の場合と同様の芯材2を使用するが、この芯材2の外周面に予め複数枚積層した単位積層電極1を巻回すれば、多数の単位積層電極1を芯材2の周囲に個々に巻回する場合に比し、一括して巻回でき、巻回作業性が向上する。
【0090】
この場合、積層部材Sとしては、長さ1m程度のものを使用しているが、芯材2の周囲に巻回した場合、1巻き目と2巻き目との間に段差が生じ、この段差部分で短絡が生じる虞があることから、本実施形態では、段差防止手段15を設けることが好ましい。
【0091】
この段差防止手段15は、段差を解消できるものであればどのようなものでも良いが、本実施形態では、図8に示すように、前記芯材2の外周面に凹部15aを形成することにより段差防止手段としている。このような凹部15aを形成すれば、1巻き目の始端部がここに入り込むことになり、2巻き目が巻かれても両者間に段差の発生が防止される。
【0092】
特に、このような凹部15aを設けると、積層部材Sの巻きつけがスムーズにかつ素早くでき、作業性が向上するのみでなく、巻回時の締め付けも防止される。段差部分を有するものの外周に次位の層を巻きつけると、この巻き締めにより1巻き目の始端部は強力に加圧され締め付けられることになり、内部の各単位積層電極1相互間等で短絡が発生しやすいが、前記凹部15aの形成により、このような短絡が確実に防止できる。
【0093】
また、図9に示すような他の段差防止手段でもよい。図示のものは、ゴムなどにより構成された、いわば枕状部材15bを前記段差部分に挿入したものであるが、このような絶縁性を備えた枕状部材15bの挿入によっても、前記短絡が防止できる。なお、この枕状部材15bは、流動性がある状態で隙間に注入した後に固化させても良い。
【0094】
前記第2の実施形態は、単に各単位積層電極1を複数枚積層したものであるが、取り扱いの容易性あるいは作業性を考慮すれば、この単位積層電極1の束を、予めアルミラミネートフィルム等の絶縁性フィルム10により覆い、密封シールした状態で芯材2の周囲に巻回しても良い。この場合も、絶縁性フィルム10からは集電体3あるいは端部集電体9に接続されたリード線を出しておくことが好ましい。
【0095】
このように絶縁性フィルム10により覆われた単位積層電極1の束を芯材2に巻きつける場合には、芯材2の曲率が大きい方が作業性は良いが、この曲率は単位積層電極1の束の厚さ、長さとの関係から適宜設定する。
【0096】
また、前記絶縁性フィルム10により単位積層電極1の束をシールするとき、巻き付けやすいように曲率をもったヒーターのシーラーでヒートシールすれば、後の巻き付け作業も行ないやすい。
【0097】
上述したように、単位積層電極1を積層した積層部材Sの長さ方向断面形状が曲率を持つものを、バイポーラー電池として用いれば、電気自動車、ハイブリッド電気自動車、燃料電池車、内燃機関車用の電源として極めてコンパクトなものとすることができる。
<実施例>
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例に限定されるものではない。
【0098】
<実施例1>
集電体として、厚さ20μmのアルミニウム箔を用いて、図2、3に示すバイポーラー電極Pを作製する。電極の幅としては、図2に示すように、正極活物質層4の幅Wを電極の幅とし、集電体3の正極活物質層4より突出部分の幅を3mmとする。
【0099】
1.負極活物質層5の作製
まず、集電体3上に負極活物質層5を形成する。負極活物質としてLi4Ti512を準備した。この二次粒子の平均粒径は10μmで、0.2〜0.5μmの一次粒子がある程度ネッキングした構造になっていた。
【0100】
前記負極活物質[28質量%]、導電助剤としてアセチレンブラック[3質量%]、前記高分子原料[17質量%]、リチウム塩としてBETI[8質量%]、熱重合開始剤としてアゾビスイソブチロニトリル[高分子原料に対して0.1質量%]、および、溶媒としてNMP[44質量%]を含む溶液を充分に撹拌して、スラリーを得た。
【0101】
該スラリーを、集電体3の一方の面上にコーターで塗布した。真空乾燥機中にて、90℃で2時間以上、スラリーが塗布されたアルミニウム箔を加熱乾燥し、一方の面上に負極活物質層5が形成された集電体3を得た。
【0102】
2.正極活物質層4の作製
次に、同集電体3の反対側の面上に正極活物質層4を形成した。
【0103】
平均粒子径2μmのスピネルLiMn24を正極活物質として準備した。
【0104】
前記正極活物質[29質量%]、導電助剤としてアセチレンブラック[8.7質量%]、前記高分子原料[17質量%]、リチウム塩としてBETI[7.3質量%]、熱重合開始剤としてアゾビスイソブチロニトリル[高分子原料に対して0.1質量%]、および、溶媒としてNMP[41質量%]を含む溶液を充分に撹拌して、スラリーを得た。該スラリーを、前記一方の面上に負極活物質層等が形成された集電体3の、他方の面上にダイコーターを用いて集電体3の周辺部がのこるような図2に示すパターン様式で塗布した。真空乾燥機中にて、90℃で2時間以上、加熱乾燥し、一方の面上に負極活物質層5が、他方の面上に正極活物質層4が形成されたバイポーラー電極Pを得た。
【0105】
3.高分子固体電解質層6の作製
前記負極活物質層5上に高分子電解質層6を形成した。
【0106】
高分子電解質としては、J.Electrochem.Soc.,145(1998)1521に記載の方法に従って合成されたポリエーテル形のネットワーク高分子を高分子原料として準備した。
【0107】
前記高分子原料[53質量%]、リチウム塩としてLiN(SO2252(以下、「BETI」と記載)[26質量%]、光重合開始剤としてベンジルジメチルケタール[高分子原料に対して0.1質量%]、および、溶媒としてドライアセトニトリルを含む溶液を調製したあとアセトニトリルを真空蒸留で除いた。ダイコーターを用いて、前記負極活物質層5上にこの粘性の高い溶液をパターン塗布し、その上を剥離剤をコートしたPETフィルムで覆い、紫外線を照射して光重合(架橋)した。作製された膜を真空容器に入れ、90℃の高真空下で12時間、膜を加熱乾燥し、溶媒を除去した。得られた高分子固体電解質層6は、弾性に富み、強い粘着性を有していた。
【0108】
4.成形
次に、先に製造した単位積層電極1を成形し、電池とする。各単位積層電極1a〜1eの正極活物質層4の長さLは100cmとした。表面を絶縁塗装したアルミニウム製の円筒状芯材2を回転軸に固定し、図4示すように、芯材2の周りに単位積層電極1a〜1eをセットした。この場合、PETフィルムを剥がして、各始端が一致して巻き込まれるようにセットした。
【0109】
同様にして集電体3,3(通常の薄肉のもの)間に絶縁層8が位置するようにセットした。この絶縁層8は巻回したとき各積層部材Sが重なるときの短絡を防止する。
【0110】
そして、円筒状芯材2を回転すると、セットされた単位積層電極1a〜1eの巻き始めから絶縁層8も貼り付けた。
【0111】
この単位積層電極1a〜1eの巻き付けが完了した時の終端上に保持手段7であるカプトン粘着テープを巻いて、単位積層電極1a〜1e等が動かないように固定した。
【0112】
端部の集電体3からリード線12が外部に突出するように、アルミニウム製の円筒状芯材2を含めて、アルミニウム製の絶縁性フィルム10により密封した。
【0113】
<実施例2>
実施例2は、実施例1において、端部の集電体3,3を厚さ30μmのアルミニウム製の端部集電体9,9とした以外は実施例1と同様のバイポーラー電池とした。
【0114】
<実施例3>
実施例3は、実施例1と同様なアルミニウム製の円筒状芯材2の外表面上に、図9に示す段差防止用のゴムを貼り付けた状態で、10セル分の単位積層電極1を重ねて巻いた。単位積層電極1の巻き始めの部分が膨らんで、この部分に過大な圧力がかかる虞がなくなり、スムーズに巻けた。この積層部材Sを実施例1と同様に成形してバイポーラー電池とした。
【0115】
<実施例4>
図7に示すような平坦形状のものであって、長さ100cmの単位積層電極1を6層重ねてアルミニウムの絶縁性フィルム10に封入し、最上段と最下段の端部集電体9からリード線12を取り出した。この絶縁性フィルム10に封入した積層部材Sを、実施例1と同様なアルミニウム製の円筒状芯材2に巻きつけて、最外周を保持手段7であるテフロン(登録商標)の粘着テープで固定して、バイポーラー電池とした。
【0116】
<比較例1>
比較例1は、図7に示すような積層部材Sを絶縁性フィルムで密封した平板状の電池とした。
【0117】
実施例と比較例の各電池を、単セル当り1Vと2.7Vの間で充放電して、充電状態で交流インピーダンス法により内部抵抗を測定した。
【0118】
電池の内部抵抗としては、周波数0.1Hzでのインピーダンスの実部の値を採用した。各電池で求めた内部抵抗を単セルの単位面積あたりに換算して、その値について、比較例の場合を1.00として比を表1に示した。
【0119】
【表1】

Figure 0004066763
【0120】
表1からわかるように、本発明によれば、単位積層電極1が曲率を有する構造とすることにより、電極と電解質間の密着性を良好にできるため、電池の内部抵抗を低くできることが分かった。
【0121】
本発明は、上述した実施形態のみに限定されるものではなく、図2に示す単位積層電極1において、高分子固体電解質層6を正極活物質層4あるいは負極活物質層5の上にそれぞれ形成した場合でも、密着性を向上させることができる。また、バイポーラー電池の電気容量を増加する場合には、巻回構造のバイポーラー電池は、巻く単位積層電極1の長さを長くするだけで、容量を容易に増大させることができるのは言うまでもない。
【図面の簡単な説明】
【図1】 本発明の実施形態の一部破断概略斜視図である。
【図2】 単位積層電極等の平面図である。
【図3】 図2の3−3線に沿う断面図である。
【図4】 図1の4−4線に沿う断面相当図である。
【図5】 図4の5−5線に沿う概略断面図である。
【図6】 本発明方法の第1の実施形態の要部を示す概略説明図である。
【図7】 本発明方法の第2の実施形態における積層部材を示す概略断面図である。
【図8】 段差防止手段の一例を示す概略断面図である。
【図9】 段差防止手段の他の例を示す概略断面図である。
【符号の説明】
1,1a〜1e…単位積層電極、
2…芯材、
3…集電体、
4…正極活物質層、
5…負極活物質層、
6…高分子固体電解質層、
7…保持手段、
8…絶縁層、
9…端部集電体、
10…絶縁性フィルム、
11…始端位置調節部材、
15,15a,15b…段差防止手段。
M…積層部材の内部空間、
P…バイポーラー電極、
S…積層部材、
W…幅。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bipolar battery in which a positive electrode active material and a negative electrode active material are disposed on both sides of a current collector. More specifically, the present invention relates to a bipolar battery using a polymer solid electrolyte substantially free of a solution as an electrolyte. The present invention relates to a polar battery, a manufacturing method thereof, and a vehicle.
[0002]
[Prior art]
In recent years, lithium ion secondary batteries capable of achieving high energy density and high output density have been developed and used as large-capacity power sources for electric vehicles and the like. The basic configuration of a lithium ion secondary battery is that a positive electrode in which a positive electrode active material such as lithium cobaltate and a conductive additive such as acetylene black are applied to an aluminum current collector using a binder, and carbon fine particles are bound to a copper current collector. A negative electrode coated with a resin is placed through a polyolefin-based porous membrane separator, and LiPF6The non-aqueous electrolyte containing etc. is satisfy | filled.
[0003]
When a lithium ion secondary battery is used as a power source for an electric vehicle or the like, it is necessary to use a plurality of secondary batteries connected in series in order to ensure a large output. A battery module unit in which the cells (cells) of the basic configuration are connected in series, and further this battery module unit is connected in series to be used as an assembled battery.
[0004]
However, when a battery is connected via the connection portion, the output is reduced due to the electrical resistance of the connection portion. Further, the battery having the connection portion has a disadvantage in terms of space. That is, the output density and energy density of the battery are reduced depending on the volume occupied by the connection portion.
[0005]
As a solution to this problem, a bipolar battery with reduced cell connection resistance and a compact size has been proposed (for example, see Patent Document 1).
[0006]
In this bipolar battery, a so-called clad material obtained by rolling two types of metal foil as a current collector is used, and liquid is used for the electrolyte. Therefore, a hermetic seal in each cell is indispensable. A liquid junction can occur. Therefore, when a polymer solid electrolyte is used instead of the electrolytic solution, a hermetic seal is not required and a realistic bipolar battery can be obtained.
[0007]
As an example having such a structure, a positive electrode active material layer is disposed on one surface of a conductive substrate and a negative electrode active material layer is disposed on the other surface to form a bipolar electrode, and this electrode is interposed via a polymer solid electrolyte layer. A bipolar battery having a structure in which a plurality of layers are stacked, that is, a bipolar battery in which a plurality of positive electrode active materials 6, solid electrolytes 4, negative electrode active materials 7, and conductive substrate bodies 5 are stacked has also been proposed (for example, see Patent Document 2). .)
[0008]
In this bipolar battery, the conductive substrate, the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer are extremely thin in order to increase the utilization factor of the active material. For example, the conductive substrate is 0.5 μm, the positive electrode active material layer is 1 μm, the negative electrode active material layer is 1.5 μm, and the electrolyte layer is about 1 μm.
[0009]
[Patent Document 1]
JP-A-8-7926 (paragraphs “0007” to “0009”, FIGS. 1 and 2)
[Patent Document 2]
Japanese Utility Model Publication No. 4-54148 (FIG. 2)
[0010]
[Problems to be solved by the invention]
However, it is very troublesome to stack such thin members while ensuring mutual adhesion. In particular, the solid electrolyte has a lower ionic conductivity than the gel electrolyte, and if the adhesion between the electrode layer and the polymer solid electrolyte layer is not sufficiently maintained, the ionic conductivity is further reduced. There is also a possibility that the resistance may increase at the portion.
[0011]
In order to secure this adhesion, for example, a laminated member can be put in a case or the like, and pressure can be applied to the laminated member by an elastic body. Applying pressure is cumbersome and difficult. In addition, if either the electrolyte layer or the electrode layer has adhesiveness, the adhesion is improved. However, in order to maintain the adhesion over a long period of time in this way, the pressure is again applied by some method. It is necessary to keep hanging.
[0012]
In view of these problems, the present invention provides a bipolar battery that can maintain adhesion between electrode layers and electrolyte layers without separately providing a means for applying pressure to a molded laminated member. This is the first purpose.
[0013]
A second object of the present invention is to provide a method for manufacturing the same bipolar battery.
[0014]
A third object of the present invention is to provide a vehicle equipped with the bipolar battery.
[0015]
[Means for Solving the Problems]
The object of the present invention is achieved by the following means.
[0016]
  (1) In a bipolar battery formed by laminating a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface,An arc shape or an annular shape, and a core material provided with a recess on the surface;Laminating at least two unit laminated electrodes having a predetermined width and lengthThen, one end thereof is inserted into the recess and wound around the core material,Cross-sectional shape with curvatureAnd a laminated memberA bipolar battery characterized by that.
(2) In a bipolar battery in which a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface,
An arc-shaped or annular core material;
A laminated member having a cross-sectional shape with a curvature, wherein at least two layers of the unit laminated electrodes having a predetermined width and length are laminated and wound around the core material;
A bipolar battery comprising: an insert provided between a winding start end of the laminated member and a winding layer on the outer periphery thereof.
[0017]
  (3The laminated member is provided with an insulating layer that prevents electrical continuity between the laminated members that are superposed on each other.Or (2)Bipolar battery.
[0018]
  (4The laminated member is provided with holding means for holding a cross-sectional shape having the curvature.~ (3)Bipolar battery.
[0020]
(5) The laminated member is provided with an end collector that is thicker than other collectors on the outer peripheral surface of the outermost layer and the inner peripheral surface of the innermost layer. The bipolar battery according to any one of (1) to (4) above.
[0021]
(6) The bipolar battery according to any one of (1) to (5) above, wherein a heating element is provided in an internal space of the laminated member having a cross-sectional shape having the curvature.
[0022]
  (7) In a method for manufacturing a bipolar battery comprising a bipolar electrode having a positive electrode active material layer on one side of a current collector and a negative electrode active material layer on the other side and a unit laminated electrode provided with a polymer solid electrolyte layer. ,In the core material that has an arc shape or an annular shape, and a concave portion is formed on the outer peripheral surface,A laminated member in which at least two layers of the unit laminated electrodes having a predetermined width and length are laminated,Put one end of the recess into the recessA method of manufacturing a bipolar battery, wherein the bipolar battery is closely wound around an outer peripheral surface of a core material.
(8) In a method for manufacturing a bipolar battery comprising a bipolar electrode having a positive electrode active material layer on one side of a current collector and a negative electrode active material layer on the other side and a unit laminated electrode provided with a polymer solid electrolyte layer. A winding member in which at least two or more of the unit laminated electrodes having a predetermined width and length are laminated on an outer peripheral surface of an arc-shaped or annular core member, and a winding start end portion and an outer winding layer thereof A method for manufacturing a bipolar battery, comprising inserting an insert between the two and winding it closely.
[0023]
  (9The laminated member is characterized in that an insulating layer for preventing electrical conduction is provided between the overlapping layers.(7) or (8)Manufacturing method of bipolar battery.
[0024]
  (10The laminated member is provided with holding means for holding the shape having the curvature.(7)-(9)Manufacturing method of bipolar battery.
[0025]
  (11The above-mentioned laminated member is characterized in that the starting end of each unit laminated electrode is formed into a polymerized state at the same position when a plurality of unit laminated electrodes are formed into an annular shape.7) ~ (10) Bipolar battery manufacturing method.
[0026]
  (12The unit laminated electrode includes an insulating start end position adjusting member that adjusts the start end position.11) Bipolar battery manufacturing method.
[0027]
  (13The laminated member is formed by winding a whole bundle of a plurality of layers in which the unit laminated electrodes are overlapped with an insulating film and winding the wound around the outer peripheral surface of the core material.(7)~(12)Manufacturing method of bipolar battery.
[0029]
(14) The bipolar battery manufacturing method according to (13), wherein the step prevention means is a recess formed in an outer peripheral surface of the core member.
[0031]
  (14)(1) to (6)Connect one or more bipolar batteries as power sourceIt is characterized byvehicle.
[0032]
【The invention's effect】
  Claim 1And 2Since the laminated member has a cross-sectional shape with a curvature, the unit laminated electrode constituting the laminated member has the unit laminated shape from the shape without providing a means for applying pressure to the molded laminated member. Adhesiveness between the electrode layers and the electrolyte layers between the electrodes can be maintained, and a high-performance bipolar battery in which a decrease in ion conductivity and an increase in internal resistance are prevented can be obtained. Moreover, if the cross-sectional shape having a curvature is formed by winding, the capacity of the battery can be adjusted by the winding amount or the winding length, and further, the core material is taken from the inside of the wound laminated member. If it is removed, a shape can be set freely in terms of shape.Then, the core material is provided with a small portion or an insert as a step preventing means for preventing a step from occurring between the winding start end of the laminated member and the wound layer on the outer periphery thereof. Thus, it is possible to reliably prevent a short circuit that is likely to occur at the stepped portion.
[0033]
  Claim3According to the invention, since the insulating layers for preventing electrical conduction are provided between the laminated members that are overlaid, a short circuit due to the overlapping of the layers is prevented, and a more safe bipolar battery is obtained.
[0034]
  Claim4In this invention, if the cross-sectional shape of the laminated member having a curvature is held by the holding means, the performance of the bipolar battery in which the decrease in ion conductivity and the increase in internal resistance are prevented can be maintained in a high state.
[0036]
In the invention of claim 5, since the end collectors thicker than the other collectors are provided at the outermost part and the innermost part, the resistance in the surface direction of the collectors is determined from the current flow of the bipolar battery. The impedance at each part of the battery can be made comparable.
[0037]
In the invention of claim 6, since the heating element is provided in the internal space of the laminated member, the polymer solid electrolyte layer can be activated, the flow of current can be made smooth, and the performance of the battery can be improved.
[0038]
  In the inventions of claims 7 and 8, since the laminated member in which at least two unit laminated electrodes are laminated is tightly wound around the outer peripheral surface of the arc-shaped or annular core material, A laminated member having a curvature can be easily formed, and the manufacture of a bipolar battery becomes extremely easy.In addition, since the core member is provided with a recess or an insert as a step preventing means so as not to cause a step between the winding start end portion of the laminated member and the outer peripheral winding layer, the core member is wound. It is possible to reliably prevent a short circuit that is likely to occur at the step portion.
[0039]
  Claim9In the present invention, if an insulating layer for preventing electrical conduction is provided between the overlapping layers of the laminated members, a short circuit due to the overlapping of the layers can be prevented, and a highly safe bipolar battery can be manufactured very easily.
[0040]
  Claim10According to the invention, if the cross-sectional shape of the laminated member having a curvature is held by the holding means, a high-performance bipolar battery in which a decrease in ion conductivity and an increase in internal resistance are prevented can be manufactured very easily.
[0041]
Claim11In the invention of the present invention, it is possible to easily form a laminated member even with a thin material if it is tightly wound around the outer peripheral surface of the core material so that the starting ends of the plurality of unit laminated electrodes are in a polymerized state at the same position, The adhesion between the wound layers is also improved.
[0042]
  Claim12According to the invention, if an insulating starting end position adjusting member is provided on each unit laminated electrode, there is no step between the wound layers, and winding can be performed smoothly, and adhesion is improved.
[0043]
  Claim13According to the invention, if a bundle of a plurality of layers in which unit laminated electrodes are overlapped and covered with an insulating film is wound around the outer peripheral surface of the core material, handling and winding work of the laminated member is easy and workability is improved. Will improve. In particular, if heat sealing is performed with a heat sealer, winding can be further simplified.
[0045]
  Claim14If a bipolar battery that is small, lightweight, has good moldability, and is not strictly specified in shape is mounted on a vehicle such as an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, or an internal combustion engine vehicle, the space In terms of vehicle performance, it can be used as an effective power source, saving energy and greatly contributing to environmental sanitation.
[0046]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0047]
1 is a partially broken schematic perspective view of an embodiment of the present invention, FIG. 2 is a plan view of a unit laminated electrode and the like, and FIG. 3 is a cross-sectional view taken along line 3-3 of FIG.
[0048]
In FIG. 1, the bipolar battery of this embodiment will be outlined. Basically, a laminated member S in which two or more unit laminated electrodes 1 are laminated is wound around a cylindrical core material 2 to have a cross-sectional shape. I try to have a curvature.
[0049]
In the present specification, the unit laminated electrode 1 is a bipolar having a positive electrode active material layer 4 on one surface and a negative electrode active material layer 5 on the other surface as shown in FIGS. The electrode P is obtained by laminating the polymer solid electrolyte layer 6, and the laminated member S is obtained by laminating at least two unit laminated electrodes.
[0050]
Thus, when the laminated member S is wound around the core material 2 having a curved surface, each layer of the laminated member S formed around the core material 2 has a shape in which the cross-sectional shape perpendicular to the axis has a curvature. As a result, the laminated member S can maintain the adhesion between the unit laminated electrodes 1 without applying pressure, and the decrease in ion conductivity and the increase in internal resistance are prevented.
[0051]
4 is a cross-sectional equivalent view taken along line 4-4 of FIG. 1. In FIG. 4, the laminated member S in which a plurality of unit laminated electrodes 1 are laminated is shown as one line, and FIG. 4 is a schematic cross-sectional view taken along line 5-5 of FIG. 4 and mainly shows only one laminated member S in detail.
[0052]
Basically, as shown in FIG. 2, this bipolar battery has a large number of strip-shaped unit laminated electrodes 1 each having a predetermined width W and length L, and at least two or more layers are laminated by a predetermined method. Thus, the laminated member S is formed. The stacking method may be simply stacked, or a method described in detail later may be used. Then, as shown in FIG. 4, the laminated member S is wound around the cylindrical core material 2 so that the cross-sectional shape in the length direction has a curvature. To maintain this shape, tape or adhesive is used. It is held by appropriate holding means 7 such as an agent.
[0053]
If the laminated member S is wound so as to have a cross-sectional shape having a curvature, the capacity of the battery can be adjusted by the amount of winding or the length of winding, and in some cases, the inside of the wound laminated member S If the core material is removed from, the entire shape can be freely deformed, and the shape can be freely set.
[0054]
However, if the laminated member S is wound so as to be stacked around the core material 2, there is a possibility of electrical conduction between the respective layers. It is preferable to provide it. The insulating layer 8 insulates the wound unit laminated electrode 1 so that the layer of the unit laminated electrode 1 does not contact the adjacent layer. Examples of the insulating layer 8 to be used include a Kapton adhesive film, a polyester adhesive film, and a polyolefin adhesive film.
[0055]
In the bipolar battery, the current flows through the solid polymer electrolyte layer 6 from the positive electrode active material layer 4 toward the negative electrode active material layer 5 as indicated by an arrow in FIG. That is, since it flows so as to penetrate through the laminated member S, the wound laminated member S has the thickness T of the end current collector 9 positioned at the outermost part and the innermost part of the laminated member S as another current collector. It is preferable to make it thicker than the wall thickness t of 3. In this way, the resistance of the current flowing in the surface direction of the end current collector 9 can be reduced, and the impedance in each part of the battery can be made comparable.
[0056]
The laminated member S may be entirely covered with an insulating film 10 such as a laminated film. In this way, the bipolar battery is not unnecessarily leaked, current can be taken out efficiently, and the battery also has a long life, which is preferable.
[0057]
In addition, when a heating element (not shown) is provided in the internal space M of the core member 2, the heat of the heating element can activate the solid polymer electrolyte layer, smooth the current flow, and improve the battery performance. . In addition, as a heat generating body, although it changes with the target objects which use a battery, in a hybrid car with an engine and a motor, an engine muffler etc. can be considered, for example.
[0058]
Further, the constituent elements of the unit laminated electrode 1 will be described individually, and the battery manufacturing method will be described.
[0059]
<Current collector>
The current collector 3 has a surface material of aluminum. When the surface material is aluminum, an active material layer having high mechanical strength is obtained even when the formed active material layer contains a polymer solid electrolyte. If the surface material is aluminum, the collector 3 will not be specifically limited about the structure. The current collector 3 may be aluminum itself. Moreover, the form by which the surface of the electrical power collector 3 was coat | covered with aluminum may be sufficient. That is, a current collector in which aluminum is coated on the surface of a substance other than aluminum (such as copper, titanium, nickel, SUS, or an alloy thereof) may be used. In some cases, a current collector in which two or more plates are bonded together may be used. From the viewpoint of corrosion resistance, ease of production, economy, and the like, it is preferable to use an aluminum foil alone as a current collector.
[0060]
<Positive electrode active material layer>
The positive electrode active material layer includes a positive electrode active material and a polymer solid electrolyte. In addition to this, a lithium salt may be included to increase ionic conductivity, and a conductive auxiliary agent may be included to increase electronic conductivity.
[0061]
As the positive electrode active material, a composite oxide of transition metal and lithium, which is also used in a solution-type lithium ion battery, can be used. Specifically, LiCoO2Li / Co complex oxides such as LiNiO2Li / Ni composite oxides such as spinel LiMn2OFourLi · Mn based complex oxide such as LiFeO2And Li / Fe-based composite oxides. In addition, LiFePOFourTransition metal and lithium phosphate compounds and sulfuric acid compounds; V2OFive, MnO2TiS2, MoS2, MoOThreeTransition metal oxides and sulfides such as PbO2, AgO, NiOOH and the like.
[0062]
The particle size of the positive electrode active material may be smaller than the particle size generally used in solution-type lithium ion batteries in which the electrolyte is not solid in order to reduce the electrode resistance of the bipolar battery.
[0063]
<Polymer solid electrolyte>
The polymer solid electrolyte is not particularly limited as long as it is a polymer having ion conductivity. Examples of the polymer having ion conductivity include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. Such polyalkylene oxide polymer is LiBF.Four, LiPF6, LiN (SO2CFThree)2, LiN (SO2C2FFive)2Lithium salt such as can be dissolved well. In addition, excellent mechanical strength is exhibited by forming a crosslinked structure.
[0064]
In the present invention, the polymer solid electrolyte is contained in at least one of the positive electrode active material layer and the negative electrode active material layer. However, in order to further improve the battery characteristics of the bipolar battery, it is preferable to be included in both.
[0065]
As the lithium salt, LiBFFour, LiPF6, LiN (SO2CFThree)2, LiN (SO2C2FFive)2Or a mixture thereof. However, it is not necessarily limited to these.
[0066]
Examples of the conductive assistant include acetylene black, carbon black, and graphite. However, it is not necessarily limited to these.
[0067]
<Negative electrode active material layer>
The negative electrode active material layer includes a negative electrode active material and a polymer solid electrolyte. In addition to this, a lithium salt may be included to increase ionic conductivity, and a conductive auxiliary agent may be included to increase electronic conductivity. Except for the type of the negative electrode active material, the contents are basically the same as those described in the section “Positive electrode active material”, and thus the description thereof is omitted here.
[0068]
As the negative electrode active material, a negative electrode active material that is also used in a solution-type lithium ion battery can be used. However, since a polymer solid electrolyte is used in the bipolar battery of the present invention, a metal oxide or a composite oxide of metal and lithium is preferable in consideration of reactivity with the polymer solid electrolyte. More preferably, the negative electrode active material is a transition metal oxide or a composite oxide of a transition metal and lithium. More preferably, the transition metal is titanium. That is, the negative electrode active material is more preferably titanium oxide or a composite oxide of titanium and lithium.
[0069]
<Polymer solid electrolyte layer>
The polymer solid electrolyte layer is a layer composed of a polymer having ion conductivity, and the material is not limited as long as it exhibits ion conductivity. As the polymer solid electrolyte, polyethylene oxide (PEO), polypropylene oxide (PPO), and their copolymer polymers are used, and the raw material polymer having a crosslinkable carbon-carbon double bond in the molecule is used. Examples thereof include polymer solid electrolytes synthesized by radical polymerization.
[0070]
The polymer solid electrolyte layer contains a lithium salt in order to ensure ionic conductivity. As the lithium salt, LiBFFour, LiPF6, LiN (SO2CFThree)2, LiN (SO2C2FFive)2Or a mixture thereof. However, it is not necessarily limited to these. Polyalkylene oxide polymers such as PEO and PPO are LiBFFour, LiPF6, LiN (SO2CFThree)2, LiN (SO2C2FFive)2Lithium salt such as can be dissolved well. Moreover, excellent mechanical strength is exhibited by forming a crosslinked structure.
[0071]
The polymer electrolyte membrane is, for example, polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof, and is a raw material polymer having a crosslinkable carbon-carbon double bond in the molecule. The lithium salt can be dissolved in a solvent such as NMP, poured into a light-transmitting gap whose thickness is determined by a spacer, and irradiated with ultraviolet rays to form a thin film. However, the method is not limited to this method. A polymer electrolyte membrane can also be produced by radiation polymerization, electron beam polymerization, or thermal polymerization. In the case of ultraviolet polymerization, an appropriate photopolymerization initiator may be used, and in the case of the thermal polymerization method, a thermal polymerization initiator may be used. As a lithium salt to be dissolved, LiBFFour, LiPF6, LiN (SO2CFThree)2, LiN (SO2C2FFive)2And a mixture of two or more of these can be used, but is not limited thereto.
[0072]
<Production of unit laminated electrode>
In order to configure the unit laminated electrode 1 according to this embodiment, first, the raw material polymer in the negative electrode active material layer 5 described above, the negative electrode active material, the conductive additive, the lithium salt, the solvent, and a small amount of azobisisobutyrate. A slurry is prepared from a thermal polymerization initiator such as nitrile (AIBN), and this is applied to one surface of the current collector 3 and heated to prepare the negative electrode active material layer 5.
[0073]
Next, the positive electrode active material layer 4 is formed on the other surface of the current collector 3 in the same manner, whereby the bipolar electrode P is manufactured. The order of forming the positive electrode active material layer 4 and the negative electrode active material layer 5 may be reversed.
[0074]
A polymer solid electrolyte layer 6 is formed on the bipolar electrode P. In this formation, a solution containing a lithium salt, a raw material polymer, and an ultraviolet polymerization initiator is directly applied on the unit laminated electrode 1 and covered with a transparent film such as PET and irradiated with ultraviolet rays for 10 to 20 minutes. Thus, the unit laminated electrode 1 can be formed.
[0075]
As a result, as shown in FIG. 3, the unit laminated electrode 1 formed in the order of the polymer solid electrolyte layer 6, the negative electrode active material layer 5, the current collector 3, and the positive electrode active material layer 4 is formed from the bottom. The
[0076]
Insulating layers (shown by alternate long and short dash lines) may be provided on both sides of the current collector 3 to insulate the unit laminated electrodes 1 from each other.
[0077]
<Production method of bipolar battery>
The first embodiment of the present manufacturing method is a method of manufacturing a bipolar battery in which a plurality of unit laminated electrodes 1 are laminated one by one around a core material 2 to form a laminated member S. .
[0078]
The core material 2 used here may be any material as long as it has a curvature. For example, it may be simply an arc shape, a cylindrical ellipse, an annular shape, or the like. In particular, as a material that is more uniformly applied with a wrapping pressure and is lightweight, the width of the laminated member S in the axial direction may be used. That is, it is preferable that each unit laminated electrode 1 has a length approximately the same as the width W, and an axially perpendicular section made of aluminum has an arc shape or an annular shape. However, in order to increase the efficiency of the battery, it is preferable to cover the outer peripheral surface of the core material 2 with an insulating layer (not shown).
[0079]
FIG. 6 is a schematic explanatory view showing the main part of the first embodiment of the manufacturing method according to the present invention. When manufacturing a bipolar battery using this core material 2, in FIG. 6, it attaches to rotating shafts, such as a motor, first so that the axis line of the core material 2 may stand upright.
[0080]
In the present embodiment, five unit laminated electrodes 1 a to 1 e, outermost and innermost end current collectors 9 and 9, and an insulating layer 8 are arranged around the core material 2.
[0081]
A plurality of rollers (not shown) for supplying the unit laminated electrode 1 are arranged around the core material 2, and an end portion is provided between the unit laminated electrodes 1 a and 1 e positioned at both ends of the unit laminated electrode 1. Rollers for supplying the current collector 9 and the insulating layer 8 are also arranged, and the winding operation is performed while supplying the unit laminated electrode 1 and the like by these rollers.
[0082]
In the winding operation, first the first unit laminated electrode 1a is wound around the core member 2, and then the starting end of the second unit laminated electrode 1b coincides with the starting end of the first unit laminated electrode 1a. And wound around the core material 2 while applying tension to each unit laminated electrode 1. Similarly, the unit laminated electrodes 1c to 1e are wound so that the start end and the end match.
[0083]
In this case, a starting end adjusting member 11 (see FIG. 2) such as an insulating adhesive film or the like is provided at the starting end portion of each unit laminated electrode 1, the length is adjusted, and an appropriate core material 2 for winding is provided. When pasting sequentially from the position, even when the starting ends are matched and wound in a layered manner, there is no step at the starting end, and smooth winding is possible. In addition, if this is done, it is possible to reliably prevent short-circuits that are likely to occur at the stepped portion, improve the adhesion between the wound layers, and prevent ion conductivity from decreasing and internal resistance from increasing.
[0084]
When the laminated member S is formed in this way, the holding means 7 holds the shape having the curvature, covers the outermost portion with the insulating film 10 and connects the lead wire 12 ( (See FIGS. 1 and 4).
[0085]
In this bipolar battery, the current flows through each unit laminated electrode 1 in each laminated member S, so that the unit laminated electrodes 1 are in close contact with each other. Decrease in ionic conductivity and increase in internal resistance are prevented, resulting in a high performance bipolar battery.
[0086]
When the current reaches the end current collector 9, the current flows along the surface of the end current collector 9, that is, along the circumferential direction, and is guided to the outside through the lead wire 12.
[0087]
Next, a second embodiment of the manufacturing method will be described.
[0088]
FIG. 7 is a cross-sectional view of a laminated member in which a plurality of unit laminated electrodes used in the second embodiment are stacked, and FIGS. 8 and 9 are cross-sectional views showing step prevention means.
[0089]
In the second embodiment, a plurality of unit laminated electrodes 1 having a predetermined width W and length are stacked in advance, and the stacked bundle is used as a laminated member S, and is densely wound around the outer peripheral surface of the core member 2. Like to do. The same core material 2 as in the above case is used, but if a plurality of unit laminated electrodes 1 previously laminated on the outer peripheral surface of the core material 2 are wound, a large number of unit laminated electrodes 1 are wound around the core material 2. Compared to the case of individual winding, it is possible to wind all at once, and the winding workability is improved.
[0090]
In this case, as the laminated member S, a member having a length of about 1 m is used, but when wound around the core material 2, a step is generated between the first and second rolls. In the present embodiment, it is preferable to provide the step prevention means 15 because there is a possibility that a short circuit may occur in the portion.
[0091]
The step prevention means 15 may be anything as long as it can eliminate the step, but in this embodiment, as shown in FIG. 8, by forming a recess 15 a on the outer peripheral surface of the core material 2. It is used as a means to prevent steps. If such a recess 15a is formed, the starting end of the first roll enters here, and even if the second roll is wound, the occurrence of a step between the two is prevented.
[0092]
In particular, when such a recess 15a is provided, winding of the laminated member S can be performed smoothly and quickly, and not only the workability is improved, but also tightening during winding is prevented. When the next layer is wound around the outer periphery of a step having a stepped portion, the first end of the first winding is strongly pressed and tightened by this tightening, and a short circuit occurs between the unit laminated electrodes 1 inside. However, such a short circuit can be surely prevented by forming the recess 15a.
[0093]
Further, other step prevention means as shown in FIG. 9 may be used. In the illustrated example, a pillow-shaped member 15b made of rubber or the like is inserted into the stepped portion, but the short circuit is prevented even by inserting the pillow-shaped member 15b having such an insulating property. it can. The pillow-shaped member 15b may be solidified after being poured into the gap in a fluid state.
[0094]
In the second embodiment, a plurality of unit laminated electrodes 1 are simply laminated. However, in consideration of ease of handling or workability, a bundle of unit laminated electrodes 1 is preliminarily formed of an aluminum laminated film or the like. It may be wound around the core material 2 in a state where it is covered with the insulating film 10 and hermetically sealed. Also in this case, it is preferable to lead out the lead wire connected to the current collector 3 or the end current collector 9 from the insulating film 10.
[0095]
When the bundle of unit laminated electrodes 1 covered with the insulating film 10 is wound around the core material 2, the larger the curvature of the core material 2, the better the workability, but this curvature is the unit laminated electrode 1. It is set as appropriate based on the relationship between the thickness and length of the bundle.
[0096]
Further, when the bundle of unit laminated electrodes 1 is sealed with the insulating film 10, if it is heat-sealed with a heater sealer having a curvature so that it can be easily wound, the subsequent winding work can be easily performed.
[0097]
As described above, if the laminated member S in which the unit laminated electrode 1 is laminated has a longitudinal sectional shape having a curvature, it can be used as a bipolar battery for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, and an internal combustion locomotive. The power source can be extremely compact.
<Example>
The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples.
[0098]
<Example 1>
A bipolar electrode P shown in FIGS. 2 and 3 is produced using an aluminum foil having a thickness of 20 μm as a current collector. As shown in FIG. 2, the width of the electrode is set such that the width W of the positive electrode active material layer 4 is the width of the electrode, and the width of the protruding portion of the current collector 3 from the positive electrode active material layer 4 is 3 mm.
[0099]
1. Production of negative electrode active material layer 5
First, the negative electrode active material layer 5 is formed on the current collector 3. Li as negative electrode active materialFourTiFiveO12Prepared. The average particle diameter of the secondary particles was 10 μm, and the primary particles of 0.2 to 0.5 μm were necked to some extent.
[0100]
The negative electrode active material [28% by mass], acetylene black [3% by mass] as a conductive auxiliary, the polymer raw material [17% by mass], BETI [8% by mass] as a lithium salt, and azobisiso as a thermal polymerization initiator. A solution containing butyronitrile [0.1% by mass with respect to the polymer raw material] and NMP [44% by mass] as a solvent was sufficiently stirred to obtain a slurry.
[0101]
The slurry was applied on one surface of the current collector 3 with a coater. In a vacuum dryer, the aluminum foil coated with the slurry was heated and dried at 90 ° C. for 2 hours or longer to obtain a current collector 3 having a negative electrode active material layer 5 formed on one surface.
[0102]
2. Preparation of positive electrode active material layer 4
Next, the positive electrode active material layer 4 was formed on the surface on the opposite side of the current collector 3.
[0103]
Spinel LiMn with an average particle size of 2 μm2OFourWas prepared as a positive electrode active material.
[0104]
The positive electrode active material [29% by mass], acetylene black [8.7% by mass] as a conductive auxiliary, the polymer raw material [17% by mass], the lithium salt as BETI [7.3% by mass], a thermal polymerization initiator A solution containing azobisisobutyronitrile [0.1% by mass with respect to the polymer raw material] as N and [41% by mass] NMP as the solvent was sufficiently stirred to obtain a slurry. The slurry is shown in FIG. 2 in which the peripheral portion of the current collector 3 is left on the other surface of the current collector 3 having a negative electrode active material layer or the like formed on the one surface by using a die coater. Applied in a pattern mode. In a vacuum dryer, heat-dried at 90 ° C. for 2 hours or more to obtain a bipolar electrode P in which the negative electrode active material layer 5 is formed on one surface and the positive electrode active material layer 4 is formed on the other surface. It was.
[0105]
3. Preparation of polymer solid electrolyte layer 6
A polymer electrolyte layer 6 was formed on the negative electrode active material layer 5.
[0106]
Examples of the polymer electrolyte include J.M. Electrochem. Soc. , 145 (1998) 1521, a polyether type network polymer was prepared as a polymer raw material.
[0107]
The polymer raw material [53 mass%], LiN (SO2C2FFive)2(Hereinafter referred to as “BETI”) [26 mass%], after preparing a solution containing benzyldimethyl ketal [0.1 mass% based on polymer raw material] as a photopolymerization initiator and dry acetonitrile as a solvent Acetonitrile was removed by vacuum distillation. Using a die coater, this highly viscous solution was applied onto the negative electrode active material layer 5 in a pattern, covered with a PET film coated with a release agent, and irradiated with ultraviolet rays for photopolymerization (crosslinking). The produced film was put in a vacuum vessel, and the film was heated and dried under a high vacuum at 90 ° C. for 12 hours to remove the solvent. The obtained polymer solid electrolyte layer 6 was rich in elasticity and had strong adhesiveness.
[0108]
4). Molding
Next, the unit laminated electrode 1 manufactured previously is shape | molded and it is set as a battery. The length L of the positive electrode active material layer 4 of each unit laminated electrode 1a to 1e was 100 cm. An aluminum cylindrical core material 2 having an insulating coating surface was fixed to a rotating shaft, and unit laminated electrodes 1a to 1e were set around the core material 2 as shown in FIG. In this case, the PET film was peeled off, and set so that the respective starting ends were rolled up in unison.
[0109]
Similarly, the insulating layer 8 was set between the current collectors 3 and 3 (ordinary thin-walled ones). This insulating layer 8 prevents a short circuit when the laminated members S overlap when wound.
[0110]
And when the cylindrical core material 2 was rotated, the insulating layer 8 was also affixed from the start of winding of the set unit laminated electrodes 1a to 1e.
[0111]
The unit laminated electrodes 1a to 1e and the like were fixed so that the unit laminated electrodes 1a to 1e did not move by winding a Kapton adhesive tape as the holding means 7 on the end when the winding of the unit laminated electrodes 1a to 1e was completed.
[0112]
The lead wire 12 was sealed with an aluminum insulating film 10 including the aluminum cylindrical core material 2 so that the lead wire 12 protruded from the current collector 3 at the end.
[0113]
<Example 2>
Example 2 is a bipolar battery similar to Example 1 except that the current collectors 3 and 3 at the end portions are aluminum end current collectors 9 and 9 having a thickness of 30 μm. .
[0114]
<Example 3>
In Example 3, the unit laminated electrode 1 for 10 cells was formed on the outer surface of the aluminum cylindrical core material 2 similar to that in Example 1 with the rubber for preventing a step shown in FIG. I rolled it up. The winding start portion of the unit laminated electrode 1 swelled, and there was no possibility that excessive pressure was applied to this portion. This laminated member S was molded in the same manner as in Example 1 to obtain a bipolar battery.
[0115]
<Example 4>
7, the unit laminated electrode 1 having a length of 100 cm is stacked in six layers and enclosed in an aluminum insulating film 10, and the end current collectors 9 at the uppermost and lowermost stages are used. The lead wire 12 was taken out. The laminated member S encapsulated in the insulating film 10 is wrapped around the aluminum cylindrical core material 2 similar to that in the first embodiment, and the outermost periphery is fixed with a Teflon (registered trademark) adhesive tape as the holding means 7. Thus, a bipolar battery was obtained.
[0116]
<Comparative Example 1>
Comparative Example 1 was a flat battery in which a laminated member S as shown in FIG. 7 was sealed with an insulating film.
[0117]
Each battery of the example and the comparative example was charged / discharged between 1 V and 2.7 V per unit cell, and the internal resistance was measured by an AC impedance method in a charged state.
[0118]
As the internal resistance of the battery, the value of the real part of the impedance at a frequency of 0.1 Hz was adopted. The internal resistance obtained for each battery was converted per unit area of a single cell, and the ratio is shown in Table 1 with the value of the comparative example as 1.00.
[0119]
[Table 1]
Figure 0004066763
[0120]
As can be seen from Table 1, according to the present invention, it was found that the unit laminated electrode 1 has a curvature so that the adhesiveness between the electrode and the electrolyte can be improved, so that the internal resistance of the battery can be lowered. .
[0121]
The present invention is not limited only to the above-described embodiment. In the unit laminated electrode 1 shown in FIG. 2, the polymer solid electrolyte layer 6 is formed on the positive electrode active material layer 4 or the negative electrode active material layer 5. Even if it does, adhesiveness can be improved. Further, when increasing the electric capacity of the bipolar battery, it goes without saying that the wound bipolar battery can easily increase the capacity only by increasing the length of the unit laminated electrode 1 to be wound. Yes.
[Brief description of the drawings]
FIG. 1 is a partially broken schematic perspective view of an embodiment of the present invention.
FIG. 2 is a plan view of unit laminated electrodes and the like.
3 is a cross-sectional view taken along line 3-3 in FIG.
4 is a cross-sectional equivalent view taken along line 4-4 of FIG.
5 is a schematic cross-sectional view taken along line 5-5 in FIG.
FIG. 6 is a schematic explanatory view showing the main part of the first embodiment of the method of the present invention.
FIG. 7 is a schematic cross-sectional view showing a laminated member in a second embodiment of the method of the present invention.
FIG. 8 is a schematic cross-sectional view showing an example of a step prevention means.
FIG. 9 is a schematic sectional view showing another example of the step preventing means.
[Explanation of symbols]
1, 1a to 1e ... unit laminated electrode,
2 ... Core material,
3 ... current collector,
4 ... positive electrode active material layer,
5 ... negative electrode active material layer,
6 ... polymer solid electrolyte layer,
7: Holding means,
8 ... Insulating layer,
9 ... End current collector,
10: Insulating film,
11 ... Start position adjusting member,
15, 15a, 15b ... Step prevention means.
M: Internal space of the laminated member,
P: Bipolar electrode,
S: Laminated member,
W ... Width.

Claims (14)

集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池において、
円弧状若しくは円環状であり、その表面に凹部が設けられた芯材と、
所定の幅と長さを有する前記単位積層電極を少なくとも2層以上積層して、その一端部が前記凹部に挿入されて前記芯材に巻き回されて、曲率を持つ断面形状となる積層部材と、を有することを特徴とするバイポーラー電池。
In a bipolar battery in which a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface is laminated,
An arc shape or an annular shape, and a core material provided with a recess on the surface;
A laminated member having a cross-sectional shape with a curvature , wherein at least two unit laminated electrodes having a predetermined width and length are laminated , one end of which is inserted into the recess and wound around the core material ; A bipolar battery characterized by comprising:
集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池において、In the bipolar battery formed by laminating a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface,
円弧状若しくは円環状の芯材と、  An arc-shaped or annular core, and
所定の幅と長さを有する前記単位積層電極を少なくとも2層以上積層して、前記芯材に巻き回されて、曲率を持つ断面形状となる積層部材と、  A laminated member having a cross-sectional shape having a curvature, wherein at least two or more of the unit laminated electrodes having a predetermined width and length are laminated and wound around the core material;
前記積層部材の巻回開始端部とその外周の巻回層との間に設けられた挿入物と、を有することを特徴とするバイポーラー電池。  A bipolar battery comprising: an insert provided between a winding start end of the laminated member and a winding layer on an outer periphery thereof.
前記積層部材は、重ね合わした各積層部材相互間に、電気的導通を阻止する絶縁層を設けたことを特徴とする請求項1又は2に記載のバイポーラー電池。The laminated member between respective lamination members each other that Kasaneawashi, bipolar battery according to claim 1 or 2, characterized in that an insulating layer for preventing electrical conduction. 前記積層部材は、前記曲率を持つ断面形状を保持する保持手段を設けたことを特徴とする請求項1〜3のいずれかに記載のバイポーラー電池。The bipolar battery according to any one of claims 1 to 3, wherein the laminated member is provided with holding means for holding a cross-sectional shape having the curvature. 前記積層部材は、最外部に位置する層の外周面と、最内部に位置する層の内周面に、他の集電体よりも厚肉の端部集電体を設けたことを特徴とする請求項1〜のいずれかに記載のバイポーラー電池。The laminated member is characterized in that end collectors thicker than other collectors are provided on the outer peripheral surface of the outermost layer and the inner peripheral surface of the innermost layer. The bipolar battery according to any one of claims 1 to 4 . 前記曲率を持つ断面形状とされた積層部材の内部空間に発熱体を設けたことを特徴とする請求項1〜のいずれかに記載のバイポーラー電池。Bipolar battery according to any one of claims 1 to 5, characterized in that a heating element in the interior space of the laminated member which is a cross-sectional shape with the curvature. 集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池の製造方法において、
円弧状若しくは円環状をし、外周面に凹部が形成された芯材に、所定の幅と長さの前記単位積層電極が少なくとも2層以上積層された積層部材を、前記凹部にその一端部を入れて前記心材の外周面に密に巻回することを特徴とするバイポーラー電池の製造方法。
In a method of manufacturing a bipolar battery, in which a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface is laminated,
A laminated member in which at least two or more layers of the unit laminated electrode having a predetermined width and length are laminated on a core member having an arc shape or an annular shape and having a concave portion formed on an outer peripheral surface, and one end portion of the concave portion is provided on the concave portion. method for manufacturing a bipolar battery, which comprises tightly wound around the outer peripheral surface of the core placed.
集電体の一面に正極活物質層を他面に負極活物質層を有するバイポーラー電極に高分子固体電解質層を設けた単位積層電極を積層してなるバイポーラー電池の製造方法において、In a method of manufacturing a bipolar battery, in which a unit laminated electrode in which a polymer solid electrolyte layer is provided on a bipolar electrode having a positive electrode active material layer on one surface and a negative electrode active material layer on the other surface is laminated,
所定の幅と長さの前記単位積層電極が少なくとも2層以上積層された積層部材を、円弧状若しくは円環状をした芯材の外周面に、巻回開始端部とその外周の巻回層との間に挿入物を入れて、密に巻回することを特徴とするバイポーラー電池の製造方法。  A laminated member in which at least two unit laminated electrodes having a predetermined width and length are laminated on an outer peripheral surface of a core material having an arc shape or an annular shape, a winding start end portion, a winding layer on the outer periphery thereof, A method of manufacturing a bipolar battery, comprising inserting an insert between the two and winding it closely.
前記積層部材は、重ね合わした各積層部材相互間に、電気的導通を阻止する絶縁層を設けたことを特徴とする請求項7又は8に記載のバイポーラー電池の製造方法。9. The method for manufacturing a bipolar battery according to claim 7 , wherein the laminated member is provided with an insulating layer for preventing electrical conduction between the laminated members. 前記積層部材は、前記曲率を持つ形状を保持する保持手段を設けたことを特徴とする請求項7〜9のいずれかに記載のバイポーラー電池の製造方法。The method for manufacturing a bipolar battery according to claim 7, wherein the laminated member is provided with a holding unit that holds the shape having the curvature. 前記積層部材は、複数枚の単位積層電極を環状に成形するときの各単位積層電極の始端が同位置で重合状態となるようにしたことを特徴とする請求項10のいずれかに記載のバイポーラー電池の製造方法。11. The laminated member according to any one of claims 7 to 10 , wherein a plurality of unit laminated electrodes are formed in a ring shape so that a starting end of each unit laminated electrode is in a superposed state at the same position. Manufacturing method of bipolar battery. 前記単位積層電極は、始端位置調節する絶縁性の始端位置調節部材を有することを特徴とする請求項11に記載のバイポーラー電池の製造方法。12. The method for manufacturing a bipolar battery according to claim 11 , wherein the unit laminated electrode includes an insulating start end position adjusting member for adjusting a start end position. 前記積層部材は、前記単位積層電極を重ね合わした複数層の束全体を絶縁性フィルムにより覆いシールしたものを前記芯材の外周面に巻回したことを特徴とする請求項7〜11のいずれかに記載のバイポーラー電池の製造方法。The lamination member may be any of claims 7-11, characterized in that the entire bundle of a plurality layers Kasaneawashi the unit laminate electrode obtained by covering the sealing of an insulating film is wound on the outer peripheral surface of the core material A method for producing a bipolar battery as described in 1. above. 請求項1〜6のいずれかに記載のバイポーラー電池を1つ又は複数接続して電源としたことを特徴とする車両。 Vehicle, characterized in that it has one or a plurality connected to power the bipolar battery according to any one of claims 1 to 6.
JP2002286274A 2002-09-30 2002-09-30 Bipolar battery, manufacturing method thereof, and vehicle Expired - Fee Related JP4066763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286274A JP4066763B2 (en) 2002-09-30 2002-09-30 Bipolar battery, manufacturing method thereof, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286274A JP4066763B2 (en) 2002-09-30 2002-09-30 Bipolar battery, manufacturing method thereof, and vehicle

Publications (2)

Publication Number Publication Date
JP2004127559A JP2004127559A (en) 2004-04-22
JP4066763B2 true JP4066763B2 (en) 2008-03-26

Family

ID=32279370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286274A Expired - Fee Related JP4066763B2 (en) 2002-09-30 2002-09-30 Bipolar battery, manufacturing method thereof, and vehicle

Country Status (1)

Country Link
JP (1) JP4066763B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857896B2 (en) 2006-05-11 2012-01-18 トヨタ自動車株式会社 Battery pack and vehicle
JP2008140638A (en) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd Bipolar battery
FR2996360B1 (en) * 2012-10-01 2014-10-17 Commissariat Energie Atomique CURRENT COLLECTOR WITH INTEGRATED SEALING MEANS, BIPOLAR BATTERY COMPRISING SUCH A MANIFOLD, METHOD OF MAKING SUCH A BATTERY.
KR101637760B1 (en) * 2014-12-03 2016-07-07 현대자동차주식회사 Cylindrical all-solid battery and a manufacturing method thereof bipolar
EP3678247A4 (en) 2017-12-21 2020-12-16 Lg Chem, Ltd. Flexible secondary battery comprising bipolar electrode
KR20220096863A (en) * 2020-12-31 2022-07-07 삼성전기주식회사 All solid state battery
WO2024053312A1 (en) * 2022-09-07 2024-03-14 株式会社豊田自動織機 Power storage device

Also Published As

Publication number Publication date
JP2004127559A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4144312B2 (en) Bipolar battery
JP4055642B2 (en) High speed charge / discharge electrodes and batteries
JP4370902B2 (en) Bipolar battery and manufacturing method thereof.
JP5382130B2 (en) Method for producing solid electrolyte battery
JP4135473B2 (en) Bipolar battery
KR100515572B1 (en) Stacked electrochemical cell and method for preparing the same
JP5266618B2 (en) Bipolar battery
JP4674434B2 (en) Bipolar battery
JP4661020B2 (en) Bipolar lithium ion secondary battery
JP2004253168A (en) Bipolar battery
WO2014188501A1 (en) Nonaqueous electrolyte secondary cell
JP2004164896A (en) Electrode for all-solid polymer battery and its manufacturing method
JP4042613B2 (en) Bipolar battery
JP2004362859A (en) Lithium-ion secondary battery
WO2012086690A1 (en) Lithium ion secondary battery
JP4670275B2 (en) Bipolar battery and battery pack
US10468638B2 (en) Method for forming a pouch for a secondary battery
JPH10289732A (en) Battery adhesive and battery using the same
JP2001273929A (en) Polymer battery and its manufacturing method
JP4178926B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP4066763B2 (en) Bipolar battery, manufacturing method thereof, and vehicle
JP5631537B2 (en) Bipolar secondary battery
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP4218400B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP4032931B2 (en) Bipolar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees