JP4066455B2 - Membrane separation activated sludge treatment equipment - Google Patents

Membrane separation activated sludge treatment equipment Download PDF

Info

Publication number
JP4066455B2
JP4066455B2 JP2003322862A JP2003322862A JP4066455B2 JP 4066455 B2 JP4066455 B2 JP 4066455B2 JP 2003322862 A JP2003322862 A JP 2003322862A JP 2003322862 A JP2003322862 A JP 2003322862A JP 4066455 B2 JP4066455 B2 JP 4066455B2
Authority
JP
Japan
Prior art keywords
treated
water
activated sludge
coarse
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003322862A
Other languages
Japanese (ja)
Other versions
JP2005087831A (en
Inventor
清和 武村
真人 大西
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003322862A priority Critical patent/JP4066455B2/en
Publication of JP2005087831A publication Critical patent/JP2005087831A/en
Application granted granted Critical
Publication of JP4066455B2 publication Critical patent/JP4066455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は膜分離式活性汚泥処理装置に係り、特に処理槽内に膜ユニットを浸漬した膜分離式活性汚泥処理装置に関する。   The present invention relates to a membrane separation type activated sludge treatment apparatus, and more particularly to a membrane separation type activated sludge treatment apparatus in which a membrane unit is immersed in a treatment tank.

この種の膜分離式活性汚泥処理装置として、粗大気泡散気手段と微細気泡散気手段とを備えたものが知られている(例えば、特許文献1参照)。
図5はその概略構成を示す装置系統図である。処理槽1内には活性汚泥が高濃度に保持されており、被処理水2を好気的に処理する。処理槽1内には膜ユニット3が浸漬されている。膜ユニット3の下方には粗大気泡散気手段4が配置されている。また、粗大気泡散気手段4のさらに下方には微細気泡散気手段5が配置されている。
As this type of membrane-separated activated sludge treatment apparatus, one having a coarse bubble diffusing unit and a fine bubble diffusing unit is known (for example, see Patent Document 1).
FIG. 5 is a system diagram showing the schematic configuration. The activated sludge is maintained at a high concentration in the treatment tank 1 and the treated water 2 is treated aerobically. A membrane unit 3 is immersed in the treatment tank 1. Below the membrane unit 3, a coarse bubble diffusing means 4 is arranged. Further, a fine bubble diffusing unit 5 is disposed further below the coarse bubble diffusing unit 4.

管路8から流入した被処理水2が処理槽1内に高濃度に保持した微生物、いわゆる活性汚泥によって好気的に生物処理される。この生物処理によって、被処理水2中の有機性物質が酸化分解し、被処理水2は浄化される。膜ユニット3は、複数枚の鉛直状の平膜が間隔を空けて平行に配列された構造とされる。この膜ユニット3によって被処理水2が膜分離される。膜ユニット3を透過した被処理水は膜ユニット3の二次側から排出管路9を介し処理水排出手段6により処理水7として装置外に排出される。   The to-be-treated water 2 flowing in from the pipe 8 is aerobically biologically treated by microorganisms kept at a high concentration in the treatment tank 1, so-called activated sludge. By this biological treatment, the organic substance in the treated water 2 is oxidized and decomposed, and the treated water 2 is purified. The membrane unit 3 has a structure in which a plurality of vertical flat membranes are arranged in parallel at intervals. The membrane 2 separates the water 2 to be treated. The treated water that has passed through the membrane unit 3 is discharged from the secondary side of the membrane unit 3 to the outside of the apparatus as treated water 7 by the treated water discharge means 6 through the discharge pipe 9.

粗大気泡散気手段4から散気された粗大気泡には主に3つの作用がある。第1の作用は膜ユニット3の平膜に対する膜面洗浄作用である。すなわち、粗大気泡はその浮力によって膜ユニット3の平膜相互の間隙を上昇し、その上昇過程で平膜の膜面を擦り、膜分離されて膜面に付着した活性汚泥などの懸濁分離物を膜面から剥離し洗浄する。第2の作用は被処理水に対する酸素供給作用である。粗大気泡が被処理水と接触する過程で、気泡中の酸素が被処理水に溶解する。被処理水に溶解した酸素は活性汚泥による生物処理に必要な酸素源として利用される。第3の作用は旋回流の形成作用である。散気された粗大気泡のエアリフト作用によって平膜相互の間隙には被処理水の上向流が生起され、処理槽1内には矢印Fで示したような上下方向の旋回流が形成される。この旋回流によって、被処理水と活性汚泥が十分に混合接触し、活性汚泥による生物処理が効率よく進行する。   The coarse bubbles diffused from the coarse bubble diffuser 4 mainly have three actions. The first effect is a membrane surface cleaning effect on the flat membrane of the membrane unit 3. That is, the coarse bubbles rise in the gap between the flat membranes of the membrane unit 3 due to the buoyancy, rub the membrane surface of the flat membrane in the ascending process, and the suspended separation such as activated sludge adhered to the membrane surface by membrane separation. Is removed from the film surface and washed. The second action is an oxygen supply action for the water to be treated. In the process in which coarse bubbles come into contact with the water to be treated, oxygen in the bubbles is dissolved in the water to be treated. Oxygen dissolved in the water to be treated is used as an oxygen source necessary for biological treatment with activated sludge. The third action is a swirling flow forming action. The upward flow of the water to be treated is generated in the gap between the flat membranes by the air lift action of the diffused coarse bubbles, and a swirling flow in the vertical direction as shown by the arrow F is formed in the treatment tank 1. . By this swirl flow, the water to be treated and the activated sludge are sufficiently mixed and contacted, and the biological treatment with the activated sludge proceeds efficiently.

活性汚泥は膜分離により処理槽1内に残存するため、処理槽1内には活性汚泥が高濃度に維持される。したがって、この種の膜分離式活性汚泥処理装置は高負荷の運転が可能であり、酸素の消費速度も速い。このため、粗大気泡散気手段4から散気された粗大気泡によって被処理水に溶解する酸素だけでは生物処理に必要な酸素を賄えず、被処理水中の溶存酸素が不足する場合がある。粗大気泡はエアリフト力が大きいので前記した膜面洗浄作用や旋回流の形成作用には有効である。反面、単位体積当たり気泡表面積が小さいので、被処理水に対する酸素溶解効率が低い欠点がある。一方、微細気泡散気手段5から散気される微細気泡は単位体積当たり気泡表面積が大きく、被処理水に対する酸素溶解効率が高い。このため、被処理水中の溶存酸素を補うために有効である。   Since activated sludge remains in the treatment tank 1 by membrane separation, the activated sludge is maintained at a high concentration in the treatment tank 1. Therefore, this type of membrane-separated activated sludge treatment apparatus can be operated at a high load and has a high oxygen consumption rate. For this reason, only oxygen dissolved in the water to be treated by the coarse bubbles diffused from the coarse bubble diffusing means 4 cannot provide oxygen necessary for biological treatment, and dissolved oxygen in the water to be treated may be insufficient. Coarse bubbles are effective in the above-described film surface cleaning action and swirl flow forming action since the air lift force is large. On the other hand, since the bubble surface area per unit volume is small, there is a drawback that the oxygen dissolution efficiency for the water to be treated is low. On the other hand, the fine bubbles diffused from the fine bubble diffusing means 5 have a large bubble surface area per unit volume, and have high oxygen dissolution efficiency with respect to the water to be treated. For this reason, it is effective to supplement dissolved oxygen in the water to be treated.

したがって、この種の膜分離式活性汚泥処理装置では、粗大気泡散気手段4と微細気泡散気手段5からの散気量を適正に配分することによって、効率の良い運転を行うようにしている。   Therefore, in this type of membrane separation type activated sludge treatment apparatus, efficient operation is performed by appropriately distributing the amount of air diffused from the coarse bubble diffuser 4 and the fine bubble diffuser 5. .

特開2001−212587号公報Japanese Patent Laid-Open No. 2001-212587

しかしながら、本発明者らの知見によれば上記の膜分離式活性汚泥処理装置においては微細気泡散気手段5の設置位置に問題点があることが判明した。すなわち、微細気泡散気手段5は粗大気泡散気手段4の下方に設置されている。このため、微細気泡散気手段5からの微細気泡と粗大気泡散気手段4からの粗大気泡とがその浮力によって同一の方向に混在しながら上昇する。その結果、第1に微細気泡の一部が粗大気泡に合体し、酸素溶解効率が高い微細気泡の利点が失われる。第2に微細気泡と粗大気泡のエアリフト作用が合算されるので、これらの気泡の上昇速度が大きくなる。このため、気泡と被処理水との接触時間が少なくなる。この二つの原因によって、上記構成の膜分離式活性汚泥処理装置は膜洗浄作用と被処理水の旋回流の形成作用には有利である反面、被処理水への酸素溶解作用については不利がある。つまり、微細気泡散気手段5の存在意義を弱める結果となり、微細気泡散気手段5の役割を中途半端なものにしていた。   However, according to the knowledge of the present inventors, it has been found that there is a problem in the installation position of the fine bubble aeration means 5 in the membrane separation activated sludge treatment apparatus. That is, the fine bubble diffusing means 5 is installed below the coarse bubble diffusing means 4. For this reason, the fine bubbles from the fine bubble diffusing means 5 and the coarse bubbles from the coarse bubble diffusing means 4 rise while being mixed in the same direction by the buoyancy. As a result, firstly, some of the fine bubbles are combined into coarse bubbles, and the advantage of the fine bubbles having high oxygen dissolution efficiency is lost. Secondly, since the air lift action of fine bubbles and coarse bubbles is added, the rising speed of these bubbles is increased. For this reason, the contact time between the bubbles and the water to be treated is reduced. Due to these two causes, the membrane separation activated sludge treatment apparatus having the above-described configuration is advantageous for the membrane cleaning action and the forming action of the swirling flow of the water to be treated, but is disadvantageous for the oxygen dissolving action in the water to be treated. . That is, the presence of the fine bubble diffusing means 5 is weakened, and the role of the fine bubble diffusing means 5 is halfway.

本発明の目的は上記従来技術の問題点を解消し、微細気泡散気手段と粗大気泡散気手段の役割分担が明確で、被処理水への酸素溶解作用が優れた膜分離式活性汚泥処理装置を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems of the prior art, and the role sharing between the fine bubble diffuser and the coarse bubble diffuser is clear, and the membrane separation type activated sludge treatment is excellent in the action of dissolving oxygen in the water to be treated. To provide an apparatus.

上記の目的を達成するために、本発明に係る膜分離式活性汚泥処理装置は、槽内に保持した活性汚泥によって被処理水を好気的に処理する処理槽と、複数枚の鉛直状の平膜を間隔を空けて平行に配列させた構造とされ、その側面が前記処理槽の側面と間隔を空けて処理槽内に浸漬された膜ユニットと、この膜ユニットの下方に配置された粗大気泡散気手段と、前記処理槽内に配置された微細気泡散気手段とを備え、前記粗大気泡散気手段から散気した粗大気泡のエアリフト作用によって前記処理槽内に上下方向の旋回流を形成するようにした膜分離式活性汚泥処理装置において、前記微細気泡散気手段を前記膜ユニットの側面と処理槽の側壁に挟まれ、かつ前記旋回流の下向流が存在する領域で、処理槽の水深の1/2よりも深く、前記粗大気泡散気手段よりも200mm以上浅い位置に配置したことを特徴とする。 In order to achieve the above object, a membrane separation type activated sludge treatment apparatus according to the present invention includes a treatment tank for aerobically treating water to be treated with activated sludge held in a tank, and a plurality of vertical-shaped treatment sludges. A flat membrane is arranged in parallel with an interval, a membrane unit whose side is immersed in the treatment vessel with a gap from the side of the treatment vessel, and a coarse unit disposed below the membrane unit A bubble diffusing means and a fine bubble diffusing means arranged in the processing tank, and a vertical swirling flow is generated in the processing tank by the air lift action of the coarse bubbles diffused from the coarse bubble diffusing means. in membrane separation type activated sludge treatment apparatus to form, pinched the fine bubble diffuser means on the side wall of the processing tank and the side surface of the membrane unit, and in the region where the downward flow of the swirling flow is present, the processing Deeper than 1/2 of the water depth of the tank, the coarse Characterized by being arranged in a shallow position than 200mm than Awachiki means.

微細気泡は下向流に散気されることになり、被処理水との接触時間が長くなる。したがって、被処理水への酸素溶解作用が優れた膜分離式活性汚泥処理装置を実現することができる。しかも粗大気泡散気手段と微細気泡散気手段の役割分担が明確になるから、粗大気泡散気手段と微細気泡散気手段からの散気量を適正に配分することができ、効率の良い運転を行うことができる。   The fine bubbles are diffused in the downward flow, and the contact time with the water to be treated becomes long. Therefore, it is possible to realize a membrane separation type activated sludge treatment apparatus having an excellent oxygen dissolving action in water to be treated. Moreover, since the division of roles between the coarse bubble diffuser and the fine bubble diffuser is clarified, the amount of diffused air from the coarse bubble diffuser and the fine bubble diffuser can be appropriately distributed, and the operation is efficient. It can be performed.

図1は本発明に係る膜分離式活性汚泥処理装置の実施形態を示す装置系統図である。処理槽10内には活性汚泥が高濃度に保持されており、被処理水12を好気的に処理する。処理槽10内にはその側面を処理槽10の側壁と間隔を空けるようにして膜ユニット14が浸漬されている。膜ユニット14の下方には粗大気泡散気手段16が配置されている。また、膜ユニット14の側面と処理槽10の側壁に挟まれた領域で、かつ旋回流の下向流が存在する領域に微細気泡散気手段18、18が配置されている。膜ユニット14の二次側には管路24を介して吸引ポンプ20が接続している。 FIG. 1 is an apparatus system diagram showing an embodiment of a membrane separation type activated sludge treatment apparatus according to the present invention. The activated sludge is maintained at a high concentration in the treatment tank 10 and the treated water 12 is treated aerobically. The membrane unit 14 is immersed in the processing tank 10 so that the side surface is spaced from the side wall of the processing tank 10 . A coarse bubble diffusing means 16 is disposed below the membrane unit 14. Further, the fine bubble diffusing means 18 and 18 are arranged in a region sandwiched between the side surface of the membrane unit 14 and the side wall of the processing tank 10 and in a region where the downward flow of the swirling flow exists . A suction pump 20 is connected to the secondary side of the membrane unit 14 via a conduit 24.

管路22から流入した被処理水12が処理槽10内に高濃度に保持した活性汚泥によって好気的に生物処理される。この生物処理によって、被処理水12中の有機性物質が酸化分解し、被処理水12は浄化される。膜ユニット14は、複数枚の鉛直状の平膜が間隔を空けて平行に配列された構造とされる。この膜ユニット14によって被処理水12が膜分離される。膜ユニット14を透過した被処理水は膜ユニット14の二次側から排出管路24を介し吸引ポンプ20により処理水として装置外に排出される。粗大気泡散気手段16から散気された粗大気泡には主に3つの作用がある。第1の作用は膜ユニット14の平膜に対する膜面洗浄作用である。粗大気泡はその浮力によって膜ユニット14の平膜相互の間隙を上昇し、その上昇過程で平膜の膜面を擦る。その結果、膜分離されて膜面に付着した活性汚泥などの懸濁分離物が膜面から剥離し洗われる。また、粗大気泡のエアリフト作用によって平膜相互の間隙には被処理水12の上向流が生起される。この被処理水の上向流によっても膜面の洗浄が行われる。第2の作用は被処理水12に対する酸素供給作用である。粗大気泡が被処理水12と接触する過程で、気泡中の酸素が被処理水12に溶解する。この被処理水12に溶解した酸素が活性汚泥による生物処理に必要な酸素源として利用される。第3の作用は旋回流の形成作用である。上記したように散気された粗大気泡のエアリフト作用によって平膜相互の間隙には被処理水12の上向流が生起され、この上向流の生起に伴い、処理槽10内には矢印Fで示したような上下方向の旋回流が形成される。この旋回流によって、被処理水12と活性汚泥が十分に混合接触し、活性汚泥による生物処理が効率よく進行する。また、旋回流によって被処理水12が万遍なく膜ユニット14を通過することになり、安定した膜分離が行われる。   The to-be-processed water 12 which flowed in from the pipe line 22 is aerobically biologically treated by the activated sludge maintained in the treatment tank 10 at a high concentration. By this biological treatment, the organic substance in the treated water 12 is oxidatively decomposed and the treated water 12 is purified. The membrane unit 14 has a structure in which a plurality of vertical flat membranes are arranged in parallel at intervals. The membrane 12 separates the water 12 to be treated. The treated water that has passed through the membrane unit 14 is discharged from the secondary side of the membrane unit 14 as treated water by the suction pump 20 through the discharge pipe 24 to the outside of the apparatus. The coarse bubbles diffused from the coarse bubble diffusing means 16 mainly have three actions. The first effect is a membrane surface cleaning effect on the flat membrane of the membrane unit 14. Coarse bubbles raise the gap between the flat membranes of the membrane unit 14 by the buoyancy, and rub the membrane surface of the flat membrane in the rising process. As a result, the suspended separation such as activated sludge that has been membrane-separated and adhered to the membrane surface is peeled off from the membrane surface and washed. Further, an upward flow of the water to be treated 12 is generated in the gap between the flat membranes by the air lift action of the coarse bubbles. The membrane surface is also cleaned by the upward flow of the water to be treated. The second action is an oxygen supply action for the treated water 12. In the process in which coarse bubbles come into contact with the water to be treated 12, oxygen in the bubbles is dissolved in the water to be treated 12. Oxygen dissolved in the water to be treated 12 is used as an oxygen source necessary for biological treatment with activated sludge. The third action is a swirling flow forming action. As described above, an upward flow of the water to be treated 12 is generated in the gap between the flat membranes by the air lift action of the coarse bubbles diffused, and the arrow F is generated in the processing tank 10 as the upward flow is generated. A swirling flow in the vertical direction as shown in FIG. By this swirl flow, the water 12 to be treated and the activated sludge are sufficiently mixed and contacted, and biological treatment with the activated sludge proceeds efficiently. Moreover, the to-be-processed water 12 will pass the membrane unit 14 uniformly by a swirl flow, and the stable membrane separation will be performed.

活性汚泥は膜分離により処理槽10内に残存するため、処理槽10内には活性汚泥が高濃度に維持される。したがって、高負荷の運転が可能であり、酸素の消費速度も速い。このため、粗大気泡散気手段16から散気された粗大気泡によって被処理水に溶解する酸素だけでは生物処理に必要な酸素を賄えず、被処理水中の溶存酸素が不足する場合がある。すなわち、粗大気泡は径が吹出し口で10mm前後であり、エアリフト力が大きいので前記した膜面洗浄作用や旋回流の形成作用には有効である。反面、単位体積当たり気泡表面積が小さいので、被処理水12に対する酸素溶解効率が低い欠点がある。一方、微細気泡散気手段18から散気される微細気泡は径が吹出し口で1mm前後であり、単位体積当たり気泡表面積が大きいので、被処理水に対する酸素溶解効率が高い。このため、被処理水中の溶存酸素を補うために有効である。   Since activated sludge remains in the treatment tank 10 by membrane separation, the activated sludge is maintained in the treatment tank 10 at a high concentration. Therefore, high-load operation is possible and the oxygen consumption rate is fast. For this reason, only oxygen dissolved in the water to be treated by the coarse bubbles diffused from the coarse bubble diffusing means 16 cannot provide oxygen necessary for biological treatment, and dissolved oxygen in the water to be treated may be insufficient. That is, the coarse bubble has a diameter of about 10 mm at the outlet and has a large air lift force, so that it is effective for the above-described film surface cleaning action and swirl flow forming action. On the other hand, since the bubble surface area per unit volume is small, there is a disadvantage that the oxygen dissolution efficiency for the water to be treated 12 is low. On the other hand, the fine bubbles diffused from the fine bubble diffusing means 18 have a diameter of about 1 mm at the outlet and a large bubble surface area per unit volume, so that the oxygen dissolution efficiency in the water to be treated is high. For this reason, it is effective to supplement dissolved oxygen in the water to be treated.

粗大気泡散気手段16及び微細気泡散気手段18には管路26,28を介して共通のブロア30に接続しており、このブロア30で昇圧した空気が各散気手段に供給され散気される。管路26,28には流量調節弁32,34が設けられている。これらの流量調節弁32,34の開度を調整し、粗大気泡散気手段16と微細気泡散気手段18からの散気量を配分する。   The coarse bubble diffusing unit 16 and the fine bubble diffusing unit 18 are connected to a common blower 30 through pipes 26 and 28, and air pressurized by the blower 30 is supplied to each of the diffusing units. Is done. The pipes 26 and 28 are provided with flow control valves 32 and 34, respectively. The opening degree of these flow control valves 32 and 34 is adjusted, and the amount of air diffused from the coarse bubble diffuser 16 and the fine bubble diffuser 18 is distributed.

ところで、微細気泡散気手段18は前記したように膜ユニット14の側方に設置され、この位置は粗大気泡散気手段18からの散気によって形成された旋回流の下向流の領域に位置している。このため、微細気泡散気手段18から散気された微細気泡は、被処理水に対する酸素溶解効率を高める上で好適な条件下に置かれる。図2は微細気泡と下向流との関係をモデル化して示した説明図である。図2(イ)は微細気泡の径が比較的大きく、その理論浮上速度V1が下向流の流速V2よりも大きい場合である。この場合には微細気泡は下向流に逆らって浮上するが、実質浮上速度V3はV3=V1−V2となり、理論浮上速度V1よりも十分に小さくなる。このため、微細気泡は被処理水中を緩慢に浮上し、被処理水との接触時間が長くなる。その結果、微細気泡による被処理水への酸素溶解効率が高まる。図2(ロ)は微細気泡の径が比較的小さく、その理論浮上速度V1が下向流の流速V2よりも小さい場合である。この場合には微細気泡は下向流に逆らいつつ、下降速度V4=V2−V1で被処理水に随伴して緩慢に下降し、被処理水との接触時間が長くなる。その結果、この場合にも微細気泡による被処理水への酸素溶解効率が高まる。 By the way, the fine bubble diffusing means 18 is installed on the side of the membrane unit 14 as described above, and this position is located in the downward flow region of the swirling flow formed by the diffusing from the coarse bubble diffusing means 18. is doing. For this reason, the fine bubbles diffused from the fine bubble diffusing means 18 are placed under conditions suitable for improving the oxygen dissolution efficiency with respect to the water to be treated. FIG. 2 is an explanatory diagram modeling the relationship between fine bubbles and downward flow. FIG. 2 (a) shows a case where the diameter of the fine bubbles is relatively large and the theoretical levitation velocity V 1 is larger than the downward flow velocity V 2 . In this case, the fine bubbles float up against the downward flow, but the actual ascent speed V 3 becomes V 3 = V 1 −V 2 , which is sufficiently smaller than the theoretical ascent speed V 1 . For this reason, the fine bubbles rise slowly in the water to be treated, and the contact time with the water to be treated becomes long. As a result, the efficiency of dissolving oxygen in the water to be treated by the fine bubbles is increased. FIG. 2B shows a case where the diameter of the fine bubbles is relatively small and the theoretical ascent velocity V 1 is smaller than the downward flow velocity V 2 . In this case, while the fine bubbles are opposed to the downward flow, at a descending speed V 4 = V 2 −V 1 , the fine bubbles slowly descend along with the water to be treated, and the contact time with the water to be treated becomes long. As a result, in this case as well, the efficiency of dissolving oxygen in the water to be treated by the fine bubbles is increased.

図3は微細気泡と上向流との関係をモデル化して示した説明図である。上向流では(イ)の微細気泡の径が比較的大きい場合も、(ロ)の微細気泡の径が比較的小さい場合も、理論浮上速度V1に上向流の流速V5が加わり、微細気泡は実質浮上速度V6=V1+V5で急速に浮上する。その結果、微細気泡と被処理水との接触時間が短くなり、微細気泡による被処理水への酸素溶解効率が低下する。 FIG. 3 is an explanatory diagram modeling the relationship between fine bubbles and upward flow. The upward flow velocity V 5 is added to the theoretical ascent velocity V 1 in both the upward flow (i) and the fine bubble diameter (b) and the small bubble size (b). The fine bubbles rise rapidly at a substantial ascent speed V 6 = V 1 + V 5 . As a result, the contact time between the fine bubbles and the water to be treated is shortened, and the efficiency of dissolving oxygen in the water to be treated by the fine bubbles is lowered.

このように微細気泡が下向流に散気された場合と上向流に散気された場合とでは微細気泡の挙動が正反対となり、被処理水への酸素溶解効率に大きな差が生じる。本実施形態では前記したように、微細気泡散気手段18が旋回流の下向流の領域に位置している。このため、微細気泡は下向流に散気されることになり、被処理水への酸素溶解効率がよい。したがって、本実施形態によれば被処理水への酸素溶解作用が優れた膜分離式活性汚泥処理装置を実現することができる。しかも粗大気泡散気手段16及び微細気泡散気手段18の役割分担が明確であるから、流量調節弁32,34の開度を合目的に調整することによって、粗大気泡散気手段16と微細気泡散気手段18からの散気量を適正に配分することができ、効率の良い運転を行うことができる。   Thus, when the fine bubbles are diffused in the downward flow and when the fine bubbles are diffused in the upward flow, the behavior of the fine bubbles is the opposite, and a large difference occurs in the efficiency of dissolving oxygen in the water to be treated. In the present embodiment, as described above, the fine bubble diffusing means 18 is located in the downward flow region of the swirling flow. For this reason, the fine bubbles are diffused in the downward flow, and the oxygen dissolution efficiency in the water to be treated is good. Therefore, according to the present embodiment, it is possible to realize a membrane separation type activated sludge treatment apparatus having an excellent oxygen dissolving action in the water to be treated. In addition, since the role sharing between the coarse bubble diffusing means 16 and the fine bubble diffusing means 18 is clear, the coarse bubble diffusing means 16 and the fine bubbles are adjusted by adjusting the opening degree of the flow rate control valves 32 and 34 appropriately. The amount of air diffused from the air diffuser 18 can be appropriately distributed, and efficient operation can be performed.

なお、微細気泡散気手段18は、処理槽の水深の1/2よりも深い位置に設置されたことが好ましい。図4は微細気泡散気手段18と粗大気泡散気手段16の好ましい位置関係を示す説明図である。図2で説明したように、微細気泡散気手段18から散気される微細気泡には大別して2種類の気泡がある。下向流Rに逆らって浮上する比較的径の大きい微細気泡B1と下向流Rに逆らいつつ下向流Rに押し流される比較的径の小さい微細気泡B2とがある。通常の散気管や散気板を用いた微細気泡散気手段18ではこのような微細気泡B1と微細気泡B2が同時に散気される。比較的径の大きい微細気泡B1を重視すると散気位置が深いほど浮上時間(被処理水との接触時間)が長くなり、酸素の溶解効率が向上するので有利である。このような観点から微細気泡散気手段18は処理槽の水深の1/2よりも深い位置に設置することが好ましい。一方、比較的径の小さい微細気泡B2を重視すると下向流Rが粗大気泡散気手段16から散気によって上向流に転じるまでに長い時間を稼ぎ、その間に微細気泡B2による酸素の溶解を促進させることが有利である。このような観点から微細気泡散気手段18はなるべく浅い位置に設置するほうが有利である。具体的には微細気泡散気手段18粗大気泡散気手段16との水深差Hを200mm以上にすることが実設計上、好ましい。 In addition, it is preferable that the fine bubble diffusing means 18 is installed at a position deeper than ½ of the water depth of the treatment tank. FIG. 4 is an explanatory diagram showing a preferred positional relationship between the fine bubble diffuser 18 and the coarse bubble diffuser 16. As described with reference to FIG. 2, the fine bubbles diffused from the fine bubble diffusing means 18 are roughly classified into two types. There are a fine bubble B1 having a relatively large diameter that floats against the downward flow R, and a fine bubble B2 having a relatively small diameter that is pushed away by the downward flow R while facing the downward flow R. In the fine bubble diffuser 18 using a normal diffuser tube or diffuser plate, such fine bubbles B1 and fine bubbles B2 are diffused simultaneously. When the fine bubbles B1 having a relatively large diameter are emphasized, the deeper the aeration position, the longer the ascent time (contact time with the water to be treated), and the oxygen dissolution efficiency is improved. From such a viewpoint, it is preferable to install the fine bubble diffusing means 18 at a position deeper than ½ of the water depth of the treatment tank. On the other hand, if importance is attached to the fine bubbles B2 having a relatively small diameter, it takes a long time for the downward flow R to turn upward from the coarse bubble diffusing means 16 by the diffusing air, and during that time, the oxygen dissolved by the fine bubbles B2 is dissolved. It is advantageous to promote. From this point of view, it is advantageous to install the fine bubble diffusing means 18 at a position as shallow as possible. Specifically, it is preferable in actual design that the water depth difference H between the fine bubble diffuser 18 and the coarse bubble diffuser 16 is 200 mm or more.

本発明に係る膜分離式活性汚泥処理装置の実施形態を示す装置系統図である。1 is a system diagram showing an embodiment of a membrane separation activated sludge treatment apparatus according to the present invention. 微細気泡と下向流との関係をモデル化して示した説明図である。It is explanatory drawing which modeled and showed the relationship between a microbubble and a downward flow. 微細気泡と上向流との関係をモデル化して示した説明図である。It is explanatory drawing which modeled and showed the relationship between a microbubble and an upward flow. 微細気泡散気手段と粗大気泡散気手段の好ましい位置関係を示す説明図である。It is explanatory drawing which shows the preferable positional relationship of a fine bubble aeration means and a coarse bubble aeration means. 従来技術に係る膜分離式活性汚泥処理装置の概略構成を示す装置系統図である。It is an apparatus system diagram which shows schematic structure of the membrane separation type | formula activated sludge processing apparatus concerning a prior art.

符号の説明Explanation of symbols

10………処理槽、12………被処理水、14………膜ユニット、16………粗大気泡散気手段、18………微細気泡散気手段、20………吸引ポンプ、30………ブロア、32,34………流量調節弁。

10 ......... Treatment tank, 12 ......... Water to be treated, 14 ......... Membrane unit, 16 ......... Coarse air bubble diffuser, 18 ...... Fine bubble diffuser, 20 ...... Suction pump, 30 ......... Blower, 32, 34 ......... Flow control valve.

Claims (1)

槽内に保持した活性汚泥によって被処理水を好気的に処理する処理槽と、複数枚の鉛直状の平膜を間隔を空けて平行に配列させた構造とされ、その側面が前記処理槽の側壁と間隔を空けて処理槽内に浸漬された膜ユニットと、この膜ユニットの下方に配置された粗大気泡散気手段と、前記処理槽内に配置された微細気泡散気手段とを備え、前記粗大気泡散気手段から散気した粗大気泡のエアリフト作用によって前記処理槽内に上下方向の旋回流を形成するようにした膜分離式活性汚泥処理装置において、前記微細気泡散気手段を前記膜ユニットの側面と処理槽の側壁に挟まれ、かつ前記旋回流の下向流が存在する領域で、処理槽の水深の1/2よりも深く、前記粗大気泡散気手段よりも200mm以上浅い位置に配置したことを特徴とする膜分離式活性汚泥処理装置。 A treatment tank that aerobically treats water to be treated with activated sludge held in the tank, and a structure in which a plurality of vertical flat membranes are arranged in parallel at intervals, the side surface of which is the treatment tank A membrane unit immersed in the treatment tank at a distance from the side wall, coarse bubble diffusing means disposed below the membrane unit, and fine bubble diffusing means disposed in the treatment tank. In the membrane-separated activated sludge treatment apparatus configured to form a swirling flow in the vertical direction in the treatment tank by an air lift action of the coarse bubbles diffused from the coarse bubble diffuser, the fine bubble diffuser is In a region sandwiched between the side surface of the membrane unit and the side wall of the treatment tank and where the downward flow of the swirling flow exists, it is deeper than 1/2 of the water depth of the treatment tank and is shallower than the coarse bubble diffusing means by 200 mm or more. film, which is arranged at a position Hanareshiki activated sludge treatment equipment.
JP2003322862A 2003-09-16 2003-09-16 Membrane separation activated sludge treatment equipment Expired - Lifetime JP4066455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322862A JP4066455B2 (en) 2003-09-16 2003-09-16 Membrane separation activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322862A JP4066455B2 (en) 2003-09-16 2003-09-16 Membrane separation activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2005087831A JP2005087831A (en) 2005-04-07
JP4066455B2 true JP4066455B2 (en) 2008-03-26

Family

ID=34454095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322862A Expired - Lifetime JP4066455B2 (en) 2003-09-16 2003-09-16 Membrane separation activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP4066455B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448287B2 (en) * 2006-01-19 2014-03-19 三菱レイヨン株式会社 Membrane separation activated sludge treatment equipment
JPWO2014192476A1 (en) * 2013-05-30 2017-02-23 住友電気工業株式会社 Filtration device and filtration method using the same
CN109689579A (en) * 2016-09-15 2019-04-26 住友电气工业株式会社 Film separated activated sludge processing system

Also Published As

Publication number Publication date
JP2005087831A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4910415B2 (en) Organic wastewater treatment method and apparatus
US20090032460A1 (en) Wastewater treatment method and wastewater treatment equipment
JP4588043B2 (en) Membrane separation method and apparatus
JP4066455B2 (en) Membrane separation activated sludge treatment equipment
KR20110058989A (en) Hybrid aerator system
KR101334446B1 (en) The dissolved oxygen supply of a lake and dam and algae growth control unit
KR101353401B1 (en) Membrane bioreactors which are in response to the high processing load fluctuations effectively
JP2008200604A (en) Bubble treatment device and water treatment apparatus
JP4524553B2 (en) Membrane separation activated sludge treatment equipment
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2006007033A (en) Biological treatment tank for waste water and biologically treating method
JP2008173556A (en) Sewage treatment apparatus
JP2008212930A (en) Membrane separator
JP3150530B2 (en) Biological nitrogen removal equipment
JP2005095799A (en) Membrane activated sludge treatment apparatus
JP2004305916A (en) Membrane separator
JP2000263082A (en) Underwater stirring device
KR20010074161A (en) Exhaust device of foul drain processing unit for exhausting processed foul drain
JP6448177B2 (en) Aerobic / anaerobic combined reaction tank and operation method thereof
JPH07136679A (en) Wastewater treatment tank
JP2005169241A (en) Aeration equipment
CN213446429U (en) Three-phase separation device in sewage treatment system and water quality purification equipment
JPS6216239Y2 (en)
KR20090123112A (en) Fine bubble generating submersible aerator and wastewater processing facilities having the same
JP4819840B2 (en) Membrane separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071230

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term