JP4066019B2 - Seismic viaduct - Google Patents

Seismic viaduct Download PDF

Info

Publication number
JP4066019B2
JP4066019B2 JP2003003469A JP2003003469A JP4066019B2 JP 4066019 B2 JP4066019 B2 JP 4066019B2 JP 2003003469 A JP2003003469 A JP 2003003469A JP 2003003469 A JP2003003469 A JP 2003003469A JP 4066019 B2 JP4066019 B2 JP 4066019B2
Authority
JP
Japan
Prior art keywords
steel plate
column
viaduct
seismic
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003469A
Other languages
Japanese (ja)
Other versions
JP2004218197A (en
Inventor
徹也 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2003003469A priority Critical patent/JP4066019B2/en
Publication of JP2004218197A publication Critical patent/JP2004218197A/en
Application granted granted Critical
Publication of JP4066019B2 publication Critical patent/JP4066019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高架橋の柱に制震装置を設けた制震高架橋に関するものである。
【0002】
【従来の技術】
鉄道・道路などの高架橋においては、RC構造(鉄筋コンクリート構造)あるいはS造(鉄骨造)が主流であって、近年の高耐震化の要求から高い耐震性が求められている。このため、既往の制震化技術として柱と梁とでラーメン構造とした下部空間を鋼材ブレースでサポートした提案がある(例えば、特許文献1参照。)。
【0003】
また、高架橋の柱に沿った形態でダンパーを設置する提案がある。これは柱の上下部の周囲にブラケットを取り付け、上下のブラケットを、棒部材の上下端部にダンパー材を設けた制振部材により連結したものである。また、ダンパー材としては、柱の小さな変形からエネルギー吸収効果のある粘弾性ダンパーを採用している(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開2000−120022号公報
【特許文献2】
特開平10−131120号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1の提案では、構面内をブレースで塞いでしまうので、高架橋の下部空間を駐車場、道路あるいは店舗などに利用する場合には適用できない。
【0006】
また、特許文献2の提案では、柱の小さな変形からエネルギー吸収効果のある粘弾性ダンパーが用いられている。しかしながら、粘弾性ダンパーは、エネルギー吸収性能と温度依存性が互いに相反する。このため、温度変化の厳しい屋外で使用する場合に採用する粘弾性体はエネルギー吸収性が一般に低いものに限られてしまう。また、粘弾性ダンパーのエネルギー吸収性を助勢するために棒部材の剛性を確保する必要があり、断面は大きなものになる。なお、粘弾性ダンパーのエネルギー吸収性が大きくても、ダンパーの効果を得るために棒部材の剛性は高いほうがよい。特に、当該棒部材が曲げが加わる部材だとその断面が大きくなる。
【0007】
本発明は、上記実情に鑑みて、高架橋の下部空間を利用するように制震装置を設けることができ、かつ、耐震装置においてエネルギー吸収性に対する温度依存性の影響を低減することができる制震高架橋を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明の請求項1に係る制震高架橋は、一対の柱と、各柱の下端部に連結した基礎と、各柱の上端部に連結する態様で一対の柱の間に架設した梁と、鉛の塑性変形を利用する鉛ダンパー、あるいは2面間の固体摩擦を利用する摩擦ダンパーからなる制震装置とを備え、各柱において前記基礎との接合部分及び前記梁との接合部分となる仕口部であって、それぞれ内側及び外側の両側となる部位に前記制震装置を付設したことを特徴とする。
【0009】
この発明によれば、制震装置が柱の仕口部に設けてあるので、高架橋がなす下部空間を塞ぐことがない。また、小さな変形曲率でも柱の仕口部では相対変位が比較的大きく制震装置の吸収エネルギーが大きくなるので、微小変形から制震装置の効果が得られる。
【0010】
また、鉛ダンパーや摩擦ダンパーは、微小変形から制震効果を発揮する。また、鉛ダンパーや摩擦ダンパーは、温度依存性が低く、経年変化や劣化が少ないため、制震装置の屋外での使用に適応する。
【0011】
【発明の実施の形態】
以下に添付図面を参照して、本発明に係る制震高架橋の実施の形態を説明する。図1は本発明の制震高架橋を示す図、図2(a)は制震装置の一例を示す正面図、図2(b)は制震装置の一例を示す側面図である。
【0012】
図1に示すように、高架橋は、RC構造(鉄筋コンクリート構造)またはS造(鉄骨造)であり、少なくとも1対の柱1と、当該各柱1の上部1aに架け渡した梁2とからなるラーメン構造によって、梁2の上部に桁(図示せず)が支持してある。柱1の下部1bは、地盤4に埋設した基礎5に連結してある。
【0013】
柱1には、制震装置6が設けてある。図1において制震装置6は、柱1の上部1a・下部1bの両方であって、柱1の内側・外側の両方に設けてある。すなわち、制震装置6は、柱1における梁2および基礎5との接合部分である仕口部に設けてある。なお、柱1の内側は各柱1同士が向き合う側であり、柱1の外側は各柱1同士が相反して向く側である。
【0014】
図2(a)および図2(b)は柱1の下部1bに設けた制震装置6を示している。制震装置6は、柱1に固定した複数(本実施の形態では二つ)の鋼板6a,6bと、基礎5に固定した少なくとも一つの長状鋼板6cと、エネルギー吸収手段としての鉛板6dとで主に構成してある。なお、図2(a)および図2(b)で示す制震装置6は、エネルギー吸収手段に鉛を採用した鉛ダンパーである。
【0015】
鋼板6a,6bのうち一つ(鋼板6a)は、柱1の表面に対して、その上縁部および左右側縁部がアンカーボルト7aで固定してある。残りの他の鋼板6bは、鋼板6aと対面し、かつ、鋼板6aとの間にスペーサ8を介在し、鋼板6a(柱1)に対して当該スペーサ8とともに、その左右側縁部がアンカーボルト7bで柱1に、またはボルトで鋼板6aに固定してある。
【0016】
長状鋼板6cは、長状の一端がスペーサ8を介した鋼板6aと鋼板6bとの間に挿通してあり、長状の他端が基礎5に対してアンカーボルト(図示せず)で固定してある。長状鋼板6cの他端側には、基礎5に対面する固定鋼板9が設けてある。長状鋼板6cの他端側は、固定鋼板9を柱1の下端部が繋がる基礎5に対してアンカーボルト(図示せず)で固定することによって基礎5に固定される。また、長状鋼板6cと固定鋼板9とは、リブ10によって連結補強してある。なお、長状鋼板6c、固定鋼板9、リブ10は、溶接などの固着手段によって一体に形成してある。
【0017】
鉛板6dは、スペーサ8を介した鋼板6aと鋼板6bとの間であって、鋼板6aと長状鋼板6cとの間、および鋼板6bと長状鋼板6cとの間に介在してある。すなわち、鉛板6dおよび長状鋼板6cの一端は、鋼板6bを鋼板6aに対して固定したアンカーボルト7bによって鋼板6aと鋼板6bとの間に挟持してあることになる。
【0018】
なお、鋼板を二つ以上用いる場合には、柱1にアンカーボルト7aで固定した一つの鋼板(6a)に対し、他の鋼板(6b…)をアンカーボルト7bで固体する。そして、各鋼板(6a,6b…)の間にそれぞれ長状鋼板6cを挿通するとともに、各鋼板(6a,6b…)と各長状鋼板6cとの間に鉛板6dを介在するように構成する。
【0019】
また、上記構成の制震装置6を柱1の上部の仕口部に設ける場合には、上述した構成を天地逆にし、固定鋼板9(あるいは固定鋼板9を用いず長状鋼板6cの他端)を梁2に対してアンカーボルト(図示せず)で固定する。
【0020】
また、図には明示しないが、制震装置6として上述した鉛ダンパーの他に摩擦ダンパーが採用できる。この摩擦ダンパーは、エネルギー吸収手段として上記鉛に替えて鋼板6aと長状鋼板6cとの間、および鋼板6bと長状鋼板6cとの間の各2面間に固体摩擦を生じさせるようにする。
【0021】
なお、鉛ダンパーや摩擦ダンパーは、温度依存性が低く、経年変化や劣化が少ない。このため、制震装置6の屋外での使用に適応する。
【0022】
以下、上述した制震高架橋の作用を説明する。図3は本発明の制震高架橋の作用を示す図である。図3に矢印αで示す水平力による変形では、特にモーメントの大きな柱1の上部1aや柱1の下部1bである仕口部の曲げ変形が大きく、柱1の主筋が梁2や基礎5から抜け出す力が顕著にあらわれる。このため、柱1の仕口部において、制震装置6を固定してある柱1の表面と、同制震装置6を固定してあり梁2や基礎5に繋がる柱1の上下端部との間に相対変位が生じる。制震装置6は、鉛の塑性変形、あるいは2面間の固体摩擦によって図3に示す相対変位βが働き、上記エネルギー(柱1の表面と上下端部とに生じた相対変位)を消費(吸収)する。
【0023】
一般的な高架橋においては、柱1の径が60cm〜100cm程度であるから、小さな変形曲率でも、柱1の表面に設けた制震装置6の相対変位は比較的大きく、当該制震装置6の吸収エネルギーも大きなものになる。特に、制震装置6としての鉛ダンパーは、鉛の塑性変形を利用しており、また摩擦ダンパーは2面間の固体摩擦を利用しているため、微小変形から制震効果を期待することができる。
【0024】
図4は本発明の制震高架橋の地震応答解析モデルを示す図、図5(a)〜(c)および図6は解析結果を示す図である。図4で示す解析モデルでは、□850サイズのRC構造の柱1を有する高架橋で、ほぼ現行設計(「鉄道構造物等設計標準」)による。また、制震装置6は、1対の柱1の上部1aおよび下部1bであって、その内側および外側に設けてある。また、制震装置6は、鉛ダンパーを採用し、鉛(500cm2/枚)を0.5〜5枚用いている。入力は、レベル2の地震動である。また、図4において、符号Aは高架橋における梁要素、符号Bは柱1の上下端部(上部1a、下部1b)におけるバネ部、符号Cは地盤4・基礎5におけるバネ部、符号Dは制震装置6におけるエネルギー吸収抵抗を示している。
【0025】
上記図4の解析モデルにおいて、図5(a)〜(c)および図6の解析結果に示すように、梁2で発生している加速度は増加するが、柱1の下端と上端との層間変形(相対変位)は低減している。また、鉛5枚(片側2.5枚)の時では、梁2が降伏しない範囲で、制震装置6を用いない場合の塑性率と比較して柱1の塑性率μが約1/3まで低減している。これにより、大地震後の修復コストを低減することができる。なお、図5(c)において、上端梁μの白抜き□は、柱部μの塗潰し□とほぼ重なっている。
【0026】
したがって、上述した制震高架橋によれば、水平変形によって柱1の主筋の引き抜きの影響が大きい柱1の上下端部(上部1a、下部1b)である仕口部に、柱1に生じる水平変形のエネルギーを吸収する制震装置6を設けたので、高架橋がなす下部空間を塞ぐことなく駐車場、道路あるいは店舗などに有効利用することができる。
【0027】
また、柱1の仕口部では、小さな変形曲率でも制震装置6を設けた柱1の表面と上下端部との間に生じる相対変位が比較的大きく、制震装置6の吸収エネルギーが大きくなるので、微小変形から制震装置6の効果を得ることができる。
【0028】
また、上述した制震高架橋によれば、制震装置6が、鉛の塑性変形を利用する鉛ダンパー、あるいは2面間の固体摩擦を利用する摩擦ダンパーからなる。鉛ダンパーや摩擦ダンパーは、微小変形から制震効果を発揮することが可能である。また、鉛ダンパーや摩擦ダンパーは、温度依存性が低く、経年変化や劣化が少ないため、制震装置6の屋外での使用に適応することが可能となる。
【0029】
【発明の効果】
以上説明したように、本発明に係る制震高架橋によれば、少なくとも1対の柱と当該各柱の上端に架設した梁とを有し、この柱の仕口部に制震装置を設けてあるので、高架橋がなす下部空間を塞ぐことがない。このため、下部空間を駐車場、道路あるいは店舗などに有効利用することができる。
【0030】
また、柱の仕口部では、小さな変形曲率でも制震装置6を設けた柱1の表面と上下端部との間に生じる相対変位が比較的大きく、制震装置の吸収エネルギーが大きくなるので、微小変形から制震装置の効果を得ることができる。
【0031】
また、制震装置として採用した鉛ダンパーや摩擦ダンパーは、微小変形から制震効果を発揮することができる。この鉛ダンパーや摩擦ダンパーは、温度依存性が低く、経年変化や劣化が少ないため、制震装置の屋外での使用に適応することができる。また、鉛ダンパーや摩擦ダンパーは、柱の塑性率を低減するので、大地震後の修復コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の制震高架橋を示す図である。
【図2】(a)は制震装置の一例を示す正面図、(b)は制震装置の一例を示す側面図である。
【図3】本発明の制震高架橋の作用を示す図である。
【図4】本発明の制震高架橋の地震応答解析モデルを示す図である。
【図5】(a)〜(c)は解析結果を示す図である。
【図6】解析結果を示す図である。
【符号の説明】
1 各柱
1a 上部
1b 下部
2 梁
4 地盤
5 基礎
6 制震装置
6a 鋼板
6b 鋼板
6c 長状鋼板
6d 鉛板
7a アンカーボルト
7b アンカーボルト
8 スペーサ
9 固定鋼板
10 リブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic viaduct provided with a seismic control device on a viaduct column.
[0002]
[Prior art]
For viaducts such as railways and roads, RC structures (reinforced concrete structures) or S structures (steel structures) are the mainstream, and high earthquake resistance is required due to the recent demand for high earthquake resistance. For this reason, there is a proposal for supporting a lower space having a ramen structure with columns and beams as steel bracing as a conventional seismic control technology (see, for example, Patent Document 1).
[0003]
There is also a proposal to install the damper in a form along the viaduct pillar. In this structure, brackets are attached around the upper and lower parts of the column, and the upper and lower brackets are connected by a damping member provided with a damper material at the upper and lower ends of the bar member. Moreover, as a damper material, the viscoelastic damper which has an energy absorption effect from the small deformation | transformation of a pillar is employ | adopted (for example, refer patent document 2).
[0004]
[Patent Document 1]
JP 2000-120022 [Patent Document 2]
Japanese Patent Laid-Open No. 10-131120
[Problems to be solved by the invention]
However, the proposal of Patent Document 1 cannot be applied to the case where the lower space of the viaduct is used for a parking lot, a road, a store, or the like because the inside of the composition is closed with braces.
[0006]
Moreover, in the proposal of patent document 2, the viscoelastic damper which has an energy absorption effect from the small deformation | transformation of a pillar is used. However, the viscoelastic damper has a contradictory relationship between energy absorption performance and temperature dependency. For this reason, viscoelastic bodies employed when used outdoors with severe temperature changes are generally limited to those having low energy absorption. Further, it is necessary to ensure the rigidity of the rod member in order to assist the energy absorption of the viscoelastic damper, and the cross section becomes large. Even if the energy absorption of the viscoelastic damper is large, the rigidity of the rod member should be high in order to obtain the effect of the damper. In particular, if the bar member is a member to which bending is applied, the cross section becomes large.
[0007]
In view of the above circumstances, the present invention can provide a vibration control device so as to use a lower space of a viaduct, and can reduce the influence of temperature dependency on energy absorption in the vibration control device. The object is to provide a high bridge.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the seismic viaduct according to claim 1 of the present invention includes a pair of columns, a foundation connected to the lower end of each column, and a pair of modes connected to the upper end of each column. A beam erected between columns, and a damping device comprising a lead damper that utilizes plastic deformation of lead, or a friction damper that utilizes solid friction between two surfaces. It is a joint part which becomes a joint part with the beam, and the vibration control device is attached to the parts which are on both the inner side and the outer side, respectively .
[0009]
According to this invention, since the vibration control device is provided in the joint part of the column, the lower space formed by the viaduct is not blocked. Further, even with a small deformation curvature, the relative displacement is relatively large at the joint of the column and the absorbed energy of the vibration control device is large, so that the effect of the vibration control device can be obtained from a small deformation.
[0010]
Lead dampers and friction dampers exhibit seismic control effects from minute deformation. Lead dampers and friction dampers have low temperature dependency and are less susceptible to secular change and deterioration, so they are suitable for outdoor use of vibration control devices.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a vibration control viaduct according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a seismic viaduct according to the present invention, FIG. 2 (a) is a front view showing an example of a seismic control device, and FIG. 2 (b) is a side view showing an example of the seismic control device.
[0012]
As shown in FIG. 1, the viaduct is an RC structure (reinforced concrete structure) or S structure (steel structure), and includes at least one pair of columns 1 and a beam 2 spanning the upper portion 1 a of each column 1. A girder (not shown) is supported on the upper part of the beam 2 by a ramen structure. The lower part 1 b of the pillar 1 is connected to a foundation 5 embedded in the ground 4.
[0013]
The pillar 1 is provided with a vibration control device 6. In FIG. 1, the vibration control device 6 is provided on both the upper side 1 a and the lower side 1 b of the column 1, both on the inner side and the outer side of the column 1. That is, the vibration control device 6 is provided in the joint portion that is a joint portion between the beam 2 and the foundation 5 in the column 1 . In addition, the inner side of the pillar 1 is the side where the pillars 1 face each other, and the outer side of the pillar 1 is the side where the pillars 1 face each other.
[0014]
FIG. 2A and FIG. 2B show the vibration control device 6 provided in the lower part 1 b of the column 1. The damping device 6 includes a plurality (two in this embodiment) of steel plates 6a and 6b fixed to the pillar 1, at least one long steel plate 6c fixed to the foundation 5, and a lead plate 6d as energy absorbing means. And is mainly composed. 2A and 2B is a lead damper that employs lead as an energy absorbing means.
[0015]
One of the steel plates 6a and 6b (steel plate 6a) has its upper edge and left and right edges fixed to the surface of the column 1 with anchor bolts 7a. The remaining other steel plate 6b faces the steel plate 6a, and a spacer 8 is interposed between the steel plate 6a. The left and right side edges of the steel plate 6a (column 1) are anchor bolts along with the spacer 8. 7b is fixed to the column 1 or bolts to the steel plate 6a.
[0016]
The long steel plate 6c has one long end inserted between the steel plate 6a and the steel plate 6b via the spacer 8, and the other long end is fixed to the foundation 5 with an anchor bolt (not shown). It is. A fixed steel plate 9 facing the base 5 is provided on the other end side of the long steel plate 6c. The other end of the long steel plate 6c is fixed to the foundation 5 by fixing the fixed steel plate 9 to the foundation 5 to which the lower end of the column 1 is connected with an anchor bolt (not shown). The long steel plate 6 c and the fixed steel plate 9 are connected and reinforced by ribs 10. The long steel plate 6c, the fixed steel plate 9, and the rib 10 are integrally formed by a fixing means such as welding.
[0017]
The lead plate 6d is interposed between the steel plate 6a and the steel plate 6b via the spacer 8, between the steel plate 6a and the long steel plate 6c, and between the steel plate 6b and the long steel plate 6c. That is, one end of the lead plate 6d and the long steel plate 6c is sandwiched between the steel plate 6a and the steel plate 6b by the anchor bolt 7b that fixes the steel plate 6b to the steel plate 6a.
[0018]
In addition, when using two or more steel plates, with respect to one steel plate (6a) fixed to the pillar 1 with the anchor bolt 7a, another steel plate (6b ...) is solidified with the anchor bolt 7b. Further, the long steel plate 6c is inserted between each steel plate (6a, 6b ...), and the lead plate 6d is interposed between each steel plate (6a, 6b ...) and each long steel plate 6c. To do.
[0019]
Moreover, when providing the damping device 6 of the said structure in the joint part of the upper part of the pillar 1, the structure mentioned above is turned upside down, and the other end of the long steel plate 6c is used without using the fixed steel plate 9 (or the fixed steel plate 9). ) Is fixed to the beam 2 with anchor bolts (not shown).
[0020]
Further, although not shown in the figure, a friction damper can be adopted as the vibration control device 6 in addition to the lead damper described above. This friction damper generates solid friction between the two surfaces between the steel plate 6a and the long steel plate 6c and between the steel plate 6b and the long steel plate 6c in place of the lead as energy absorbing means. .
[0021]
In addition, lead dampers and friction dampers have low temperature dependence and little aging and deterioration. For this reason, it adapts to the use of the damping device 6 outdoors.
[0022]
Hereinafter, the operation of the above-described seismic viaduct will be described. FIG. 3 is a diagram showing the operation of the seismic viaduct of the present invention. In the deformation due to the horizontal force indicated by the arrow α in FIG. 3, the bending deformation of the joint, which is the upper part 1 a of the column 1 having a large moment and the lower part 1 b of the column 1, is particularly large. The ability to escape is noticeable. For this reason, in the joint part of the column 1, the surface of the column 1 to which the damping device 6 is fixed, and the upper and lower ends of the column 1 to which the damping device 6 is fixed and connected to the beam 2 and the foundation 5 A relative displacement occurs between the two. The vibration control device 6 consumes the energy (relative displacement generated between the surface of the column 1 and the upper and lower ends) due to plastic deformation of lead or solid friction between the two surfaces as shown in FIG. Absorb.
[0023]
In a general viaduct, the diameter of the pillar 1 is about 60 cm to 100 cm. Therefore, even with a small deformation curvature, the relative displacement of the damping device 6 provided on the surface of the pillar 1 is relatively large. Absorbed energy also becomes large. In particular, since the lead damper as the vibration control device 6 uses plastic deformation of lead, and the friction damper uses solid friction between two surfaces, it is possible to expect a vibration control effect from minute deformation. it can.
[0024]
FIG. 4 is a diagram showing an earthquake response analysis model of a seismic viaduct according to the present invention, and FIGS. 5A to 5C and 6 are diagrams showing analysis results. In the analysis model shown in FIG. 4, it is a viaduct having a □ 850 size RC structure column 1 and is almost based on the current design (“Railway structure design standard”). Moreover, the damping device 6 is provided on the inside and outside of the upper part 1a and the lower part 1b of the pair of pillars 1. Moreover, the damping device 6 employs a lead damper and uses 0.5 to 5 pieces of lead (500 cm 2 / piece). Input is level 2 earthquake motion. In FIG. 4, symbol A is a beam element in the viaduct, symbol B is a spring portion in the upper and lower ends (upper portion 1a, lower portion 1b) of the pillar 1, symbol C is a spring portion in the ground 4 and the foundation 5, and symbol D is a restriction. The energy absorption resistance in the seismic device 6 is shown.
[0025]
In the analysis model of FIG. 4, as shown in the analysis results of FIGS. 5A to 5C and FIG. 6, the acceleration generated in the beam 2 increases, but the interlayer between the lower end and the upper end of the column 1 is increased. Deformation (relative displacement) is reduced. In addition, when the number of lead is 5 (2.5 on one side), the plasticity factor μ of the column 1 is about 1/3 compared with the plasticity without using the vibration control device 6 within the range where the beam 2 does not yield. It has been reduced to. Thereby, the repair cost after a big earthquake can be reduced. In FIG. 5C, the white square □ of the upper end beam μ substantially overlaps the solid square □ of the column part μ.
[0026]
Therefore, according to the above-mentioned seismic viaduct, the horizontal deformation that occurs in the column 1 at the joint portion that is the upper and lower ends (upper portion 1a, lower portion 1b) of the column 1 is greatly affected by the pulling of the main reinforcement of the column 1 due to the horizontal deformation. Since the seismic control device 6 that absorbs the energy is provided, it can be effectively used in parking lots, roads, stores, and the like without blocking the lower space formed by the viaduct.
[0027]
Moreover, in the joint part of the pillar 1, the relative displacement generated between the surface of the pillar 1 provided with the vibration control device 6 and the upper and lower ends is relatively large even with a small deformation curvature, and the absorbed energy of the vibration control device 6 is large. Therefore, the effect of the vibration control device 6 can be obtained from minute deformation.
[0028]
Moreover, according to the above-mentioned seismic control viaduct, the seismic control device 6 is composed of a lead damper using plastic deformation of lead or a friction damper using solid friction between two surfaces. Lead dampers and friction dampers can exhibit seismic control effects from minute deformations. In addition, the lead damper and the friction damper are low in temperature dependence and have little secular change and deterioration, so that the vibration control device 6 can be adapted for outdoor use.
[0029]
【The invention's effect】
As described above, according to the seismic viaduct according to the present invention, it has at least one pair of columns and a beam erected on the upper end of each column, and a seismic control device is provided at the joint of the column. Because there is, it does not block the lower space formed by the viaduct. For this reason, the lower space can be effectively used for a parking lot, a road or a store.
[0030]
Further, in the column joint, the relative displacement generated between the surface of the column 1 provided with the vibration control device 6 and the upper and lower ends is relatively large even with a small deformation curvature, and the absorbed energy of the vibration control device is increased. The effect of the vibration control device can be obtained from minute deformation.
[0031]
Moreover, the lead damper and the friction damper adopted as the vibration control device can exert the vibration control effect from a minute deformation. These lead dampers and friction dampers have low temperature dependence and are less susceptible to secular change and deterioration, so that they can be adapted for outdoor use of vibration control devices. In addition, the lead damper and the friction damper reduce the plasticity rate of the column, so that the repair cost after a large earthquake can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a seismic viaduct of the present invention.
FIG. 2A is a front view showing an example of a vibration control device, and FIG. 2B is a side view showing an example of the vibration control device.
FIG. 3 is a diagram showing the action of the seismic viaduct of the present invention.
FIG. 4 is a diagram showing an earthquake response analysis model of a seismic viaduct according to the present invention.
FIGS. 5A to 5C are diagrams showing analysis results. FIGS.
FIG. 6 is a diagram showing an analysis result.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Each pillar 1a Upper part 1b Lower part 2 Beam 4 Ground 5 Foundation 6 Damping device 6a Steel plate 6b Steel plate 6c Long steel plate 6d Lead plate 7a Anchor bolt 7b Anchor bolt 8 Spacer 9 Fixed steel plate 10 Rib

Claims (1)

一対の柱と、
各柱の下端部に連結した基礎と、
各柱の上端部に連結する態様で一対の柱の間に架設した梁と、
鉛の塑性変形を利用する鉛ダンパー、あるいは2面間の固体摩擦を利用する摩擦ダンパーからなる制震装置と
を備え、各柱において前記基礎との接合部分及び前記梁との接合部分となる仕口部であって、それぞれ内側及び外側の両側となる部位に前記制震装置を付設したことを特徴とする制震高架橋。
A pair of pillars;
A foundation connected to the lower end of each pillar;
A beam erected between a pair of columns in a manner connected to the upper end of each column;
A damper that uses a lead damper that uses plastic deformation of lead, or a friction damper that uses a solid friction between two surfaces, and a structure that serves as a joint between the foundation and the beam at each column. A seismic viaduct characterized in that the seismic control device is attached to each of the inner and outer sides of the mouth .
JP2003003469A 2003-01-09 2003-01-09 Seismic viaduct Expired - Fee Related JP4066019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003469A JP4066019B2 (en) 2003-01-09 2003-01-09 Seismic viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003469A JP4066019B2 (en) 2003-01-09 2003-01-09 Seismic viaduct

Publications (2)

Publication Number Publication Date
JP2004218197A JP2004218197A (en) 2004-08-05
JP4066019B2 true JP4066019B2 (en) 2008-03-26

Family

ID=32894724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003469A Expired - Fee Related JP4066019B2 (en) 2003-01-09 2003-01-09 Seismic viaduct

Country Status (1)

Country Link
JP (1) JP4066019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007380B2 (en) * 2007-05-29 2012-08-22 国立大学法人 名古屋工業大学 Seismic isolation / damping mechanism

Also Published As

Publication number Publication date
JP2004218197A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4631280B2 (en) Seismic control pier
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
JP4066019B2 (en) Seismic viaduct
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP3712178B2 (en) Seismic frame structure and its design method
JP4698054B2 (en) Damping stud and its construction method
JP2008208612A (en) External aseismatic reinforcing structure
JP3744267B2 (en) Building vibration control device
JP2004270816A (en) Vibration control device and vibration control structure
JP3835676B2 (en) Seismic frame structure and its design method
JPH1171934A (en) Vibration control structure
JP4445587B2 (en) Seismic frame structure and its design method
JP3631965B2 (en) Bridge and seismic strength reinforcement method for bridge
JP2008285902A (en) Damping device
JP4059634B2 (en) Vibration control structure of space frame structure
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP2002004632A (en) Base isolation column base structure
JPH1113302A (en) Elastoplastic damper
JP3707003B2 (en) Seismic control building
JP3972892B2 (en) Seismic retrofit method for existing buildings
JP3835677B2 (en) Seismic frame structure and its design method
JP2004169309A (en) Bridge and its main tower
JPH10266620A (en) Vibration damping frame structure and construction method therefor
KR102094814B1 (en) Bridge seismic reinforcement structure
JP3811854B2 (en) Vibration control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150118

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees