JP4064037B2 - City gas production method - Google Patents

City gas production method Download PDF

Info

Publication number
JP4064037B2
JP4064037B2 JP2000095658A JP2000095658A JP4064037B2 JP 4064037 B2 JP4064037 B2 JP 4064037B2 JP 2000095658 A JP2000095658 A JP 2000095658A JP 2000095658 A JP2000095658 A JP 2000095658A JP 4064037 B2 JP4064037 B2 JP 4064037B2
Authority
JP
Japan
Prior art keywords
gas
city
liquefied natural
boil
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000095658A
Other languages
Japanese (ja)
Other versions
JP2001279280A (en
Inventor
浩 江見
善弘 山崎
稔 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000095658A priority Critical patent/JP4064037B2/en
Publication of JP2001279280A publication Critical patent/JP2001279280A/en
Application granted granted Critical
Publication of JP4064037B2 publication Critical patent/JP4064037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage

Description

【0001】
【発明の属する技術分野】
本発明は、液化天然ガス(以下、「LNG」と略称する)を主原料する都市ガス製造方法に関する。
【0002】
【従来の技術】
従来から、都市ガスを製造するLNG基地において、原料のLNGは−155[℃]以下の極低温の状態でLNGタンクに貯蔵される。LNG基地から市中に供給する都市ガスは、たとえば3.9[MPaG](40[kgf/cm2 G])に昇圧する必要がある。LNGタンクに貯蔵されるLNGは、都市ガスとしての需要に応じて昇圧され、気化され、液化石油ガス(以下、「LPG」と略称する)などを添加して発熱量を調整し、都市ガスとして市中に送出される。
【0003】
LNGタンクでは、貯蔵中のLNGの一部が外部からの入熱で気化して、ボイルオフガス(以下、「BOG」と略称する)が発生する。LNGタンクから自然発生するボイルオフガスも都市ガスの原料として有効に使用するためには、昇圧して市中に送出する必要があるけれども、気体の状態で圧縮するため、液化してから昇圧する場合に比べ、多大な電力が必要とされる。また、BOGは、LNG中でもメタン(CH4 )等を主とする軽質成分であり、発熱量は比較的小さいので、都市ガスとして使用するためには、熱量調整が必要である。
【0004】
図2は、BOG高圧送出技術の概要を示す。LNGタンクから発生したBOGは、圧縮機1によって温度75[℃]、圧力3.9[MPaG]まで昇圧され、その後冷却器2で温度20[℃]、圧力3.9[MPaG]まで冷却される。この間に消費される電力量は4,617[kW・h]となり、一旦気体を液化してから昇圧するときと比べ約1,000〜2,000[kW・h]の電力量を余分に必要とする。昇圧されたBOGは、その後LPG等で熱量調整され、市中に都市ガスとして送出されるか、または工業用等の低カロリー顧客等に供給される。
【0005】
また都市ガスは規定の発熱量である標準状態で1m3 の単位体積当り46,000[kJ](11,000[kcal/Nm3 ])に調整して市中に送出されることが義務づけられている。この発熱量は天然ガスの発熱量より大きいので、通常は天然ガスと、天然ガスより高価なLPG等とを混合して発熱量を調整し、市中に送出される。そこで、これまでにこのLPG量をできるだけ削減する技術として分留技術が開発されてきた。
【0006】
分留技術では、気液平衡関係を利用して、LNGを標準状態で1m3 の単位体積当り40,600[kJ](9,700[kcal/Nm3 ])の低カロリーガスと46,000[kJ]の高カロリーガスとに分離する。LNG中から重質成分を分留して増熱用に用いるか、規定の発熱量を得て、LPGの使用量を削減すれば、LNGとLPGとの価格差によって、原料費のコストダウンを図ることができる。このためには、分留の際に発生する低カロリーガスを、工業用等、低カロリー顧客等に、熱量調整なしで供給することができる必要がある。これが可能であれば、通常ならLNGより高価なLPGを使用して増熱しなければならないところを、LNGのみで所定の熱量に調整することができる。また、分留することによって、LNG使用量が増え、都市ガスの需要が少ないときのLNG在庫調整に寄与し、原料購入の弾力化も図ることができる。
【0007】
図3は、LNG分留技術の概要を示す。たとえば流量70[t/h]、温度−157[℃]、圧力39.2[kPaG](0.4[kgf/cm2 G])のLNGは、まずポンプ4で 3.9[MPaG]まで昇圧される。熱交換器5には、ポンプ6で熱交換用の海水が供給される。昇圧されたLNGの一部である流量30[t/h]の部分が熱交換器5で海水と熱交換することによって、温度17[℃]、圧力3.9[MPaG]の天然ガスとなり、その後、残りのLNGと混合することによって、流量70[t/h]、温度−80[℃]、圧力3.9[MPaG]の気液混合状態をつくる。次にこの気液混合状態が分留器7に供給されると、気液平衡関係から、塔頂7aからは総発熱量が標準状態の単位体積1m3 当り約40,600[kJ]の気体が流量22[t/h]で、塔底7bからは総発熱量が約46,000[kJ]の液体が流量48[t/h]で生成される。これまでに消費される電力量は354[kW・h]となる。その後、気体は工業用等低カロリー顧客等に引き取られ、また液体は海水を熱源として気化され、都市ガスとして市中へ送出される。
【0008】
これまで、BOG高圧送出技術とLNG分留技術とは、それぞれ独立した技術として取扱われてきた。本件出願人は、都市ガス製造に関するBOG高圧送出技術やLNG分留技術について、たとえば、特開昭60−262890号公報や、特開平8−269468号公報、特開平10−195464号公報などで開示している。
【0009】
【発明が解決しようとする課題】
前述のBOG高圧送出技術とLNG分留技術とを併用して、都市ガスを製造する際に消費される電力量を合計すると、前述の条件で総消費電力量は4,971[kW・h](=4,617+354)となる。前述のように、BOGを高圧送出する場合は、気体状態で圧縮するため、非常に大きな電力を投入して市中に送出しなければならないという問題が生じてくる。そこで、これまではこの問題を解決する技術として、BOGを一旦、約785[kPaG](8[kgf/cm2 G])程度の低圧まで昇圧した後、LNGの冷熱と熱交換することによって液化させ、その後昇圧することによって消費電力量を大幅に削減する液化技術が開発されてきた。この技術は消費電力量を削減するという意味では確実に効果を得ることができるけれども、BOGを液化するのにBOG量の約6倍という多量のLNGから冷熱を得る必要があるために、LNGを大量に市中へ送出できるという条件が成り立つときのみ可能となる技術である。
【0010】
都市ガスは、夏場や夜間等には需要が減り、また冬場や夕方等には需要が増える。つまり、需要が少ない時期に、消費電力量を抑えるために、LNGタンクから発生したBOGを従来のBOG液化技術で液化させると、その際に多量のLNGを使用することとなり、そのLNGは市中に送出できないという問題が生じてくることになる。また、海水等を温熱源などに用いると、海水の使用量が多くなってしまう。
【0011】
本発明の目的は、こういった都市ガスの需要量の変化に対応して、LNG分留設備を稼働し、かつできるだけBOGを高圧で送出する際に消費される電力量を抑えることができる都市ガス製造方法を提供することである。
【0012】
【課題を解決するための手段】
本発明は、主原料となる液化天然ガスをLNGタンクに貯蔵しておき、市中での都市ガスの需要量に応じて予め定める送出圧力に昇圧し、都市ガスとして市中に送出する際に、熱量調整のための液化天然ガス分留と、LNGタンクから発生するボイルオフガスの再液化とを行う都市ガス製造方法において、
液化天然ガス分留に必要な温熱源を、ボイルオフガス再液化用の原料ボイルオフガスから確保し、
ボイルオフガスを液化するために必要な冷熱源を、液化天然ガス分留用の原料液化天然ガスから確保し、
前記ボイルオフガス再液化では、都市ガスの需要量に応じて切換えることができるラインを設けて、都市ガスの需要量が少ないときには吐出圧力の高い圧縮機を備えるラインを用い、需要量が多いときは吐出圧力が低い圧縮機を備えるラインを用いることを特徴とする都市ガス製造方法である。
【0013】
本発明に従えば、液化天然ガス分留とボイルオフガス再液化とを併用し、液化天然ガス分留に必要な温熱源としてボイルオフガスを利用し、ボイルオフガスを液化するための冷熱源として液化天然ガスを利用することができる。天然ガスを分留するので、分留器の塔底からの分留成分を都市ガスの原料として利用して、熱量調整のために使用し、液化天然ガスに比較して高価な液化石油ガスなどの使用量を減少させることができる。ボイルオフガスを再液化する際には、冷却によって消費電力量を削減することができる。
また、前述の目的を達成するために、ボイルオフガスを再液化するラインは都市ガスの需要量に応じて切換えることができ、各ラインには吐出圧力の異なる圧縮機を設置する。都市ガスの需要が多いときには吐出圧力の低い圧縮機で圧縮して、ボイルオフガスに液化天然ガスから多量の冷熱を移行させ、再液化の際の消費電力を大幅に削減することができる。都市ガスの需要が少ないときには吐出圧力の高い圧縮機で圧縮して、気体状態での圧縮に伴う電力消費を削減することができる。
また前記吐出圧力が、前記高い圧縮機が2.4[MPaG]であり、前記低い圧縮機が780[kPaG]であれば、ボイルオフガスを圧縮して分留に使用する液化天然ガスと熱交換する圧力を、都市ガス需要量に合わせて切換えることができる。すなわち、都市ガスの需要量が多いときは、780[kPaG]程度の低圧用圧縮機ラインにボイルオフガスを流し、3.9[MPaG]程度となる液化天然ガスよりも低い圧力で液化を行う。このようにボイルオフガスを、液化天然ガスよりも大幅に低い圧力で液化することができるのは、このとき、ボイルオフガス再液化用に液化天然ガスをボイルオフガスの約6倍の流量で使用し、液化天然ガスの顕熱を利用することによるためである。
また前記圧縮機後流のボイルオフガスを、都市ガスの需要量に関係なく、前記液化天然ガス分留用液化天然ガスと熱交換器で熱交換して完全に液化し、その後ポンプによって3.9[MPaG]の高圧まで昇圧し、さらにその後、海水からの熱源によって気化すれば、圧縮機の後流にはボイルオフガス再液化用の熱交換器を設置し、さらにその後流には液化されたボイルオフガスを昇圧するためのポンプが設置され、その後、海水を熱源として液化されているボイルオフガスを気化する。ボイルオフガスは液化してから高圧まで昇圧するので、気体の状態での昇圧を低い範囲に留め、消費電力の削減を図ることができる。
【0014】
また本発明は、前記液化天然ガス分留に必要な温熱源を、前記ボイルオフガス再液化用の原料ボイルオフガスと熱交換器で熱の授受を行い、間接的に得ることを特徴とする。
【0015】
本発明に従えば、再液化用の原料ボイルオフガスと液化天然ガス分留に使用する液化天然ガスとは、熱交換器で間接的に熱の授受を行うので、ボイルオフガスの圧力を液化天然ガスと同程度まで気体の状態で昇圧しておく必要はなく、電力消費を削減することができる。
【0020】
また本発明は、前記液化天然ガス分留に使用する液化天然ガスを、都市ガスの需要量に応じて流量の設定を変えるようにして、ポンプへ送出することを特徴とする。
【0021】
本発明に従えば、都市ガスの需要量に応じて液化天然ガス分留に使用する液化天然ガスの流量設定を変えるので、都市ガスの需要量に合わせて液化天然ガスを使用することができる。
【0022】
また本発明は、主原料となる液化天然ガスをLNGタンクに貯蔵しておき、市中での都市ガスの需要量に応じて予め定める送出圧力に昇圧し、都市ガスとして市中に送出する際に、熱量調整のための液化天然ガス分留と、LNGタンクから発生するボイルオフガスの再液化とを行う都市ガス製造方法において、
液化天然ガス分留に必要な温熱源を、ボイルオフガス再液化用の原料ボイルオフガスから確保し、
ボイルオフガスを液化するために必要な冷熱源を、液化天然ガス分留用の原料液化天然ガスから確保し、
前記ポンプ後流の液化天然ガスを、都市ガスの需要量に応じて切換えることができるラインに導き、都市ガスの需要量が多い時には、液化天然ガス熱交換器を熱交換するラインに流れ、需要量が少ない時には、熱交換器をバイパスすることを特徴とする都市ガス製造方法である
【0023】
本発明に従えば、都市ガスの需要量が多いときはボイルオフガスの液化量に比べ、分留用の液化天然ガス量が多いため、分留するために必要な温度まで加温されていない。そこでこの場合は、その後流に設置されている切換用バルブを通して、分留に必要な温度まで海水などから熱源を得て加温される。都市ガスの需要が少ないときには、分留用の液化天然ガスは分留に必要な温度まで昇温されているので、熱交換器をバイパスし、熱交換器での海水等の使用量を削減することができる。
【0024】
【発明の実施の形態】
図1は、本発明の実施の一形態としての都市ガス製造方法に従う都市ガス製造設備の概略的な構成を示す。本実施形態では、LNG分留とBOG再液化とを併用する。この併用方法を用いると都市ガスの需要量の変化に対応して従来よりも大幅に、BOG高圧送出のために必要となる電力量を削減することができる。以下、都市ガスの需要量が多いときと少ないときとに分けて、本実施形態の概要を説明する。
【0025】
本実施形態の都市ガス製造設備で、都市ガスの需要量が多いときは、BOGを再液化する際に必要な冷熱源としてLNGを多量に使用しても市中で消費されるため、後述する都市ガスの需要量が少ないときに比べて多くのLNGを冷熱源として使用することができる。このLNGを多量に使用することのメリットは、以下に説明するように、BOGの圧縮圧力を低く抑えることができるという点である。
【0026】
都市ガスの原料となるLNGは、LNGタンク10に貯蔵され、LNG分留に必要な温度−156[℃]、圧力39.2[kPaG]、流量203[t/h]である状態N1で製造設備側に供給され、LNGポンプ11によって3.9[MPaG]まで昇圧される。昇圧されたN2の状態のLNGは、LNG/BOG熱交換器12で温熱源からの熱を受取り、−121[℃]まで昇温されてN3の状態になる。LNGの流路に関し、LNG/BOG熱交換器12の後流側には、2系統のラインがバルブ23,24の開閉で切換可能に設けられている。バルブ13を開けてバルブ14を閉じると、状態N3のLNGは、熱交換器15に導かれる。熱交換器15には、ポンプ16によって、熱交換の際に温熱源となる海水が送込まれる。熱交換器15で、LNGは分留するのに必要な温度まで海水と熱交換することによって昇温される。分流器17では、気液平衡関係に基づき、塔頂17aから標準状態の単位体積1m3 当りで総発熱量が約40,600[kJ]となる状態N4の気体が流量22[t/h]で、塔底17bからは総発熱量が約46,000[kJ ]となる状態N5の液体が流量48[t/h]となるように生成される。
【0027】
次に、温度−155[℃]、圧力0[kPaG]、流量34[t/h]の状態N10のBOGは、バルブ21,22の開閉によって切換可能で、吐出圧力が異なる2系統のラインに導入される。すなわち、バルブ21の後流には低圧用の圧縮機23が設けられ、バルブ22の後流には高圧用の圧縮機24が設けられる。バルブ21を開けてバルブ22を閉じることによって、BOGは圧縮機23に導かれ、784[kPaG](8[kgf/cm2 G])まで昇圧される。昇圧されたN11の状態のBOGは、LNG/BOG熱交換器12でN2の状態のLNGを冷熱源として冷熱を受取り、液化されてN12の状態となる。N12の状態の液体は、ポンプ25によって、3.9[MPaG]まで昇圧され、その後熱交換器26で、ポンプ16から熱交換器15に供給される途中の海水と熱交換することによって、N13の状態の気体になる。これまでに消費された電力量は約3019[kW・h]となる。その後N13の状態の気体は、LPG等で熱量調整された後、都市ガスとして市中へ送出される。
【0028】
本実施形態の都市ガス製造設備で、都市ガスの需要量が少ないときは、BOGを再液化する際に冷熱源としてのLNGを多量に必要としても、LNGが都市ガスの原料としては市中で消費されないため、前述のような都市ガスの需要量の多いときのように、多くのLNGを冷熱源として使用することができない。このようにLNGを多量に使用することができないことによって、BOGの圧縮圧力を低く抑えることができないという欠点がある。しかし、従来技術であるBOGを直接圧縮する場合に比べると、都市ガスとしての市中への送出圧力よりも低い圧力でBOGを送出することができ、以下に説明するように、大幅に電力を削減することができる。
【0029】
LNG分留に必要な温度−156[℃]、圧力39.2[kPaG]、流量70[t/h]の状態N1で原料LNGは、LNGポンプ11によって3.9[MPaG]まで昇圧される。注目すべきは、LNGの流量の設定が変えられ、都市ガスの需要量が多いときよりも流量が減少してることである。昇圧されたLNGは、N2の状態となり、LNG/BOG熱交換器12で温熱源となるBOGから温熱を受取り、分留に必要な温度−80[℃]まで昇温されてN24の状態となり、バルブ13を閉めてバルブ14を開けることによって、熱交換器15をバイパスし、分留器17に導かれる。LNG/BOG熱交換器12で分留に必要な温度−80[℃]まで昇温されているからである。分流器17では、気液平衡関係に基づき、標準状態で単位体積1m3 当り、塔頂17aからは総発熱量が約40,600[kJ]の状態N4の気体が流量22[t/h]で、塔底17bからは約46,000[kJ]の状態N5の液体が流量48[t/h]で、それぞれ生成される。
【0030】
次に、温度−155[℃]、圧力0[kPaG]、流量34[t/h]の状態N10のBOGは、バルブ21は閉じてバルブ22を開けることによって、圧縮機24に導かれ、2.45[MPaG](25[kgf/cm2 G])まで昇圧される。昇圧されたBOGは、N21の状態となり、LNG/BOG熱交換器12で冷熱源となるLNGから冷熱を受取り、液化され、状態N22となる。状態N22の液体は、ポンプ25によって、3.9[MPaG]まで昇圧され、その後熱交換器26によって海水と熱交換して、N13の状態の気体となる。これまでに消費された電力量は約4062[kW・h]となる。その後N13の状態の気体は、LPG等で熱量調整された後、都市ガスとして市中へ送出される。 本実施形態の都市ガス製造設備と、従来の都市ガス製造設備とを比較すると、次の表1が得られる。
【0031】
【表1】

Figure 0004064037
【0032】
本実施形態では、都市ガスの需要量が多いときはラインを切換え、LNGの流量を増量することによって、従来の直接BOGを圧縮する方法に比べて大幅に電力量を削減することができる。また、都市ガスの需要量が少ないときはラインを切換え、LNGの流量を減量することによって、従来の直接BOGを圧縮する方法に比べて大幅に電力量を削減することができる。さらに、都市ガスの需要量が多いときはラインを切換え、LNGの流量を増量することによって、従来の直接BOGを圧縮する方法に比べて大幅に海水使用量を削減することができる。さらにまた、都市ガスの需要量が少ないときはラインを切換え、LNGの流量を減量することによって、従来の直接BOGを圧縮する方法に比べて大幅に海水使用量を削減することができる。
【0033】
【発明の効果】
以上のように本発明によれば、液化天然ガス分留とボイルオフガス再液化とを併用し、液化天然ガス分留に必要な温熱源としてボイルオフガスを利用し、ボイルオフガスを液化するための冷熱源として液化天然ガスを利用して、熱量調整のために使用する液化石油ガスなどの使用量を減少させ、消費電力量を削減することもできる。
また、都市ガスの需要量に応じてボイルオフガスを圧縮して分留に使用する液化天然ガスと熱交換する圧力を切換え、需要が多いときには吐出圧力の低い圧縮機で圧縮して、ボイルオフガスに液化天然ガスから多量の冷熱を移行させ、再液化の際の消費電力を大幅に削減することができる。都市ガスの需要が少ないときには吐出圧力の高い圧縮機で圧縮して、気体状態での圧縮に伴う電力消費を削減することができる。
また、分留に使用する液化天然ガスと熱交換するボイルオフガスの圧力を、都市ガスの需要量が多いときは、780[kPaG]程度の低圧用圧縮機ラインに流すようにすれば、電力消費を削減することができる。
また、圧縮機の後流にはボイルオフガス再液化用の熱交換器を設置し、さらにその後流には液化されたボイルオフガスを昇圧するためのポンプを設置するようにすれば、ボイルオフガスは液化してから高圧まで昇圧することができ、気体の状態での昇圧を低い範囲に留め、消費電力の削減を図ることができる。
【0034】
また本発明によれば、液化天然ガス分留に必要な温熱源を、前記ボイルオフガス再液化用の原料ボイルオフガスから間接的に得るので、ボイルオフガスの圧力を液化天然ガスと同程度まで気体の状態で昇圧しておく必要はなく、電力消費を削減することができる。
【0038】
また本発明によれば、前記液化天然ガス分留に使用する液化天然ガスの流量設定を変え、都市ガスの需要量に合わせて液化天然ガスを使用することができる。
【0039】
また本発明によれば、都市ガスの需要量が多いときはボイルオフガスの液化量に比べ、分留用の液化天然ガス量が多いため、分留に必要な温度まで海水などから熱源を得て加温することができる。都市ガスの需要が少ないときには、分留用の液化天然ガスは分留に必要な温度まで昇温されているので、熱交換器をバイパスし、熱交換器での海水等の使用量を削減することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の概略的な構成を示す配管系統図である。
【図2】従来からのBOG直接圧縮技術の概略的な構成を示す配管系統図である。
【図3】従来からのLNG分留技術の概略的な構成を示す配管系統図である。
【符号の説明】
10 LNGタンク
11 LNGポンプ
12 LNG/BOG熱交換器
13,14,21,22 バルブ
15,26 熱交換器
16,25 ポンプ
17 分留器
23,24 圧縮機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing city gas mainly using liquefied natural gas (hereinafter abbreviated as “LNG”).
[0002]
[Prior art]
Conventionally, in an LNG base for producing city gas, LNG as a raw material is stored in an LNG tank in an extremely low temperature state of −155 [° C.] or less. The city gas supplied to the city from the LNG base needs to be boosted to 3.9 [MPaG] (40 [kgf / cm 2 G]), for example. The LNG stored in the LNG tank is pressurized according to the demand as city gas, vaporized, and liquefied petroleum gas (hereinafter abbreviated as “LPG”) is added to adjust the calorific value as city gas. It is sent to the city.
[0003]
In the LNG tank, a part of the stored LNG is vaporized by heat input from the outside, and boil-off gas (hereinafter abbreviated as “BOG”) is generated. In order to use boil-off gas naturally generated from an LNG tank effectively as a raw material for city gas, it is necessary to increase the pressure and send it to the city. Compared with this, a lot of electric power is required. Further, BOG is a light component mainly composed of methane (CH 4 ) and the like among LNG, and its calorific value is relatively small. Therefore, in order to use it as city gas, it is necessary to adjust the calorific value.
[0004]
FIG. 2 shows an overview of the BOG high pressure delivery technology. The BOG generated from the LNG tank is pressurized to a temperature of 75 [° C.] and a pressure of 3.9 [MPaG] by the compressor 1 and then cooled to a temperature of 20 [° C.] and a pressure of 3.9 [MPaG] by the cooler 2. The The amount of electric power consumed during this period is 4,617 [kW · h], and an extra electric energy of about 1,000 to 2,000 [kW · h] is required compared to the case where the pressure is increased after liquefying the gas once. And The boosted BOG is then heat-adjusted with LPG or the like and delivered to the city as city gas or supplied to industrial and other low calorie customers.
[0005]
In addition, city gas is required to be adjusted to 46,000 [kJ] (11,000 [kcal / Nm 3 ]) per unit volume of 1 m 3 in the standard state with a specified calorific value and sent to the city. ing. Since this calorific value is larger than the calorific value of natural gas, usually natural gas and LPG more expensive than natural gas are mixed to adjust the calorific value and sent to the city. So far, fractionation techniques have been developed as techniques for reducing the amount of LPG as much as possible.
[0006]
In the fractional distillation technique, by utilizing the vapor-liquid equilibrium relationship, LNG is 40,600 [kJ] (9,700 [kcal / Nm 3 ]) per unit volume of 1 m 3 and 46,000 in a standard state with 46,000. Separated into [kJ] high calorie gas. If the heavy components are fractionated from LNG and used for heat increase, or if the specified calorific value is obtained and the amount of LPG used is reduced, the price difference between LNG and LPG will reduce the cost of raw materials. You can plan. For this purpose, the low calorie gas generated during fractional distillation needs to be able to be supplied to industrial and other low calorie customers without adjusting the calorific value. If this is possible, the amount of heat that would normally have to be increased using LPG more expensive than LNG can be adjusted to a predetermined amount of heat with LNG alone. Further, fractional distillation contributes to LNG inventory adjustment when the amount of LNG used is increased and the demand for city gas is small, and the raw material purchase can be made more flexible.
[0007]
FIG. 3 shows an overview of the LNG fractionation technique. For example, LNG having a flow rate of 70 [t / h], a temperature of −157 [° C.] and a pressure of 39.2 [kPaG] (0.4 [kgf / cm 2 G]) is first reduced to 3.9 [MPaG] by the pump 4. Boosted. Seawater for heat exchange is supplied to the heat exchanger 5 by a pump 6. By exchanging heat with seawater in the heat exchanger 5, a part of the pressurized LNG having a flow rate of 30 [t / h] becomes natural gas at a temperature of 17 [° C] and a pressure of 3.9 [MPaG]. Thereafter, by mixing with the remaining LNG, a gas-liquid mixed state with a flow rate of 70 [t / h], a temperature of −80 [° C.], and a pressure of 3.9 [MPaG] is created. Next, when this gas-liquid mixed state is supplied to the fractionator 7, a gas with a total calorific value of about 40,600 [kJ] per unit volume 1 m 3 in the standard state from the tower top 7a due to the gas-liquid equilibrium relationship. Is a flow rate of 22 [t / h], and a liquid having a total calorific value of about 46,000 [kJ] is generated from the tower bottom 7b at a flow rate of 48 [t / h]. The amount of power consumed so far is 354 [kW · h]. Thereafter, the gas is taken over by low-calorie customers such as industrial use, and the liquid is vaporized using seawater as a heat source and sent to the city as city gas.
[0008]
So far, the BOG high-pressure delivery technology and the LNG fractionation technology have been handled as independent technologies. The present applicant discloses BOG high-pressure delivery technology and LNG fractionation technology for city gas production, for example, in JP-A-60-262890, JP-A-8-269468, and JP-A-10-195464. is doing.
[0009]
[Problems to be solved by the invention]
By combining the aforementioned BOG high-pressure delivery technology and LNG fractionation technology, the total amount of power consumed when producing city gas is 4,971 [kW · h] under the aforementioned conditions. (= 4,617 + 354). As described above, when BOG is sent out at a high pressure, since it is compressed in a gaseous state, there arises a problem that a very large amount of power must be input and sent out into the city. So far, as a technique for solving this problem, BOG is first liquefied by increasing the pressure to a low pressure of about 785 [kPaG] (8 [kgf / cm 2 G]) and then exchanging heat with the cold heat of LNG. Then, liquefaction technology has been developed that significantly reduces power consumption by boosting the voltage thereafter. Although this technology can be surely effective in terms of reducing power consumption, it is necessary to obtain cold energy from a large amount of LNG, about 6 times the amount of BOG, in order to liquefy BOG. This technology is possible only when the condition that a large amount can be sent to the city is satisfied.
[0010]
The demand for city gas decreases during summer and night, and increases during winter and evening. In other words, when BOG generated from the LNG tank is liquefied by the conventional BOG liquefaction technology in order to reduce power consumption when demand is low, a large amount of LNG is used at that time. This causes a problem that it cannot be sent to the network. Moreover, when seawater etc. are used for a heat source etc., the usage-amount of seawater will increase.
[0011]
The object of the present invention is to cope with such a change in the amount of demand for city gas, to operate the LNG fractional distillation equipment and to suppress the amount of power consumed when sending BOG as high pressure as possible. It is to provide a gas production method.
[0012]
[Means for Solving the Problems]
In the present invention, when liquefied natural gas as a main raw material is stored in an LNG tank, the pressure is increased to a predetermined delivery pressure according to the amount of city gas demand in the city, and the city gas is sent to the city as a city gas. In the city gas production method for performing liquefied natural gas fractionation for heat quantity adjustment and reliquefaction of boil-off gas generated from the LNG tank,
Securing the heat source necessary for liquefied natural gas fractionation from the raw material boil-off gas for boil-off gas reliquefaction,
Securing the necessary heat source for liquefying boil-off gas from the raw material liquefied natural gas for liquefied natural gas fractionation ,
In the boil-off gas reliquefaction, a line that can be switched according to the demand amount of city gas is provided, and when the demand amount of city gas is small, a line having a compressor with a high discharge pressure is used. A city gas manufacturing method using a line including a compressor having a low discharge pressure .
[0013]
According to the present invention, liquefied natural gas fractionation and boil-off gas reliquefaction are used together, boil-off gas is used as a heat source necessary for liquefied natural gas fractionation, and liquefied natural gas is used as a cold heat source for liquefying boil-off gas. Gas can be used. Since natural gas is fractionated, the fractionated components from the bottom of the fractionator are used as raw material for city gas, and are used for calorie adjustment, which is more expensive than liquefied natural gas. The amount of use can be reduced. When the boil-off gas is reliquefied, the power consumption can be reduced by cooling.
Moreover, in order to achieve the above-mentioned object, the lines for reliquefying the boil-off gas can be switched according to the demand amount of city gas, and compressors with different discharge pressures are installed in each line. When there is a great demand for city gas, it can be compressed by a compressor with a low discharge pressure, and a large amount of cold energy can be transferred from the liquefied natural gas to the boil-off gas, thereby greatly reducing power consumption during reliquefaction. When the demand for city gas is low, it can be compressed with a compressor having a high discharge pressure, and the power consumption associated with compression in a gaseous state can be reduced.
When the discharge pressure is 2.4 [MPaG] for the high compressor and 780 [kPaG] for the low compressor, the boil-off gas is compressed and heat exchanged with the liquefied natural gas used for fractional distillation. The pressure to be switched can be switched according to the city gas demand. That is, when there is a large demand for city gas, boil-off gas is passed through a low-pressure compressor line of about 780 [kPaG], and liquefaction is performed at a pressure lower than that of liquefied natural gas of about 3.9 [MPaG]. In this way, the boil-off gas can be liquefied at a pressure significantly lower than that of the liquefied natural gas. At this time, the liquefied natural gas is used for re-liquefaction of the boil-off gas at a flow rate about 6 times that of the boil-off gas. This is because the sensible heat of liquefied natural gas is used.
Also, the boil-off gas downstream of the compressor is completely liquefied by exchanging heat with the liquefied natural gas for liquefied natural gas fractionation in a heat exchanger regardless of the demand for city gas, and then 3.9 [ If the pressure is increased to a high pressure of [MPaG] and then vaporized by a heat source from seawater, a heat exchanger for boil-off gas reliquefaction is installed in the downstream of the compressor, and further the liquefied boil-off gas in the downstream A pump for boosting the pressure is installed, and then boil-off gas that is liquefied using seawater as a heat source is vaporized. Since the boil-off gas is pressurized to a high pressure after being liquefied, the pressure increase in the gas state can be kept within a low range, and power consumption can be reduced.
[0014]
Further, the present invention is characterized in that the heat source necessary for the liquefied natural gas fractionation is indirectly obtained by transferring heat with the raw material boil-off gas for boil-off gas reliquefaction and a heat exchanger.
[0015]
According to the present invention, the raw material boil-off gas for reliquefaction and the liquefied natural gas used for liquefied natural gas fractionation are indirectly transferred with heat in a heat exchanger, so the pressure of the boil-off gas is liquefied natural gas. Therefore, it is not necessary to increase the pressure in the gaseous state to the same extent as in the above, and power consumption can be reduced.
[0020]
Further, the present invention is characterized in that the liquefied natural gas used for the liquefied natural gas fractionation is sent to the pump so that the setting of the flow rate is changed according to the demand amount of the city gas.
[0021]
According to the present invention, since the flow rate setting of liquefied natural gas used for liquefied natural gas fractionation is changed according to the demand amount of city gas, liquefied natural gas can be used according to the demand amount of city gas.
[0022]
In the present invention, liquefied natural gas as a main raw material is stored in an LNG tank, boosted to a predetermined delivery pressure according to the amount of city gas demand in the city, and sent to the city as city gas. In addition, in the city gas production method of performing liquefied natural gas fractionation for heat quantity adjustment and reliquefaction of boil-off gas generated from the LNG tank,
Securing the heat source necessary for liquefied natural gas fractionation from the raw material boil-off gas for boil-off gas reliquefaction,
Securing the necessary heat source for liquefying boil-off gas from the raw material liquefied natural gas for liquefied natural gas fractionation,
The liquefied natural gas downstream of the pump is led to a line that can be switched according to the demand amount of city gas, and when the demand amount of city gas is large, the liquefied natural gas heat exchanger flows to the heat exchange line and demand The city gas production method is characterized in that when the amount is small, the heat exchanger is bypassed .
[0023]
According to the present invention, when the amount of city gas demand is large, the amount of liquefied natural gas for fractional distillation is larger than the amount of liquefied boil-off gas, so that the temperature required for fractional distillation is not heated. Therefore, in this case, a heat source is obtained from seawater or the like and heated up to a temperature required for fractional distillation through a switching valve installed downstream. When demand for city gas is low, liquefied natural gas for fractionation is heated to the temperature required for fractionation. Bypass the heat exchanger and reduce the amount of seawater used in the heat exchanger. Can do.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of a city gas production facility according to a city gas production method as an embodiment of the present invention. In the present embodiment, LNG fractional distillation and BOG reliquefaction are used in combination. When this combined method is used, the amount of power required for BOG high-pressure delivery can be greatly reduced in response to changes in the amount of demand for city gas. Hereinafter, the outline of this embodiment will be described separately when the demand amount of city gas is large and small.
[0025]
In the city gas production facility of this embodiment, when there is a large amount of city gas demand, it will be consumed in the city even if a large amount of LNG is used as a cold heat source necessary for reliquefying BOG. More LNG can be used as a cold heat source than when the amount of city gas demand is small. The advantage of using a large amount of LNG is that the compression pressure of BOG can be kept low, as will be described below.
[0026]
LNG, which is a raw material for city gas, is stored in the LNG tank 10 and manufactured in a state N1 in which the temperature required for LNG fractional distillation is −156 [° C.], the pressure is 39.2 [kPaG], and the flow rate is 203 [t / h]. Supplied to the facility side and boosted to 3.9 [MPaG] by the LNG pump 11. The boosted LNG in the N2 state receives heat from the heat source in the LNG / BOG heat exchanger 12 and is heated to −121 [° C.] to be in the N3 state. Regarding the LNG flow path, two lines are provided on the downstream side of the LNG / BOG heat exchanger 12 so as to be switched by opening and closing valves 23 and 24. When the valve 13 is opened and the valve 14 is closed, the LNG in the state N3 is guided to the heat exchanger 15. The heat exchanger 15 is fed with seawater, which is a heat source during heat exchange, by the pump 16. In the heat exchanger 15, the LNG is heated by exchanging heat with seawater to a temperature required for fractional distillation. In the flow divider 17, based on the vapor-liquid equilibrium relationship, the gas in the state N4 in which the total calorific value is about 40,600 [kJ] per unit volume 1 m 3 in the standard state from the tower top 17a is 22 [t / h]. Thus, the liquid in the state N5 in which the total calorific value is about 46,000 [kJ] is generated from the tower bottom 17b so that the flow rate is 48 [t / h].
[0027]
Next, the BOG in the state N10 having a temperature of −155 [° C.], a pressure of 0 [kPaG], and a flow rate of 34 [t / h] can be switched by opening and closing the valves 21 and 22, and the two discharge lines having different discharge pressures can be switched. be introduced. That is, a low-pressure compressor 23 is provided downstream of the valve 21, and a high-pressure compressor 24 is provided downstream of the valve 22. By opening the valve 21 and closing the valve 22, the BOG is guided to the compressor 23, and the pressure is increased to 784 [kPaG] (8 [kgf / cm 2 G]). The boosted BOG in the N11 state receives cold heat from the LNG / BOG heat exchanger 12 using the LNG in the N2 state as a cold heat source, and is liquefied to be in the N12 state. The liquid in the state of N12 is pressurized to 3.9 [MPaG] by the pump 25, and then heat-exchanged with the seawater in the middle of being supplied from the pump 16 to the heat exchanger 15 by the heat exchanger 26. It becomes the gas of the state. The amount of power consumed so far is about 3019 [kW · h]. After that, the gas in the state of N13 is adjusted in calorie with LPG or the like, and then sent to the city as city gas.
[0028]
In the city gas production facility of the present embodiment, when the demand for city gas is small, even if a large amount of LNG is required as a cold heat source when re-liquefying BOG, LNG is used as a city gas raw material in the city. Since it is not consumed, many LNG cannot be used as a cold heat source like the above-mentioned when there is much demand amount of city gas. Thus, since LNG cannot be used in a large amount, there is a disadvantage that the compression pressure of BOG cannot be kept low. However, compared to the case of directly compressing BOG, which is a conventional technology, BOG can be sent out at a pressure lower than the city gas delivery pressure as city gas. Can be reduced.
[0029]
The raw material LNG is pressurized to 3.9 [MPaG] by the LNG pump 11 in the state N1 at a temperature of −156 [° C.], a pressure of 39.2 [kPaG], and a flow rate of 70 [t / h] necessary for the LNG fractional distillation. . It should be noted that the setting of the LNG flow rate has been changed and the flow rate has decreased compared to when the demand for city gas is high. The boosted LNG is in the N2 state, receives heat from the BOG as a heat source in the LNG / BOG heat exchanger 12, and is raised to a temperature required for fractional distillation of −80 [° C.] to be in the N24 state. By closing the valve 13 and opening the valve 14, the heat exchanger 15 is bypassed and guided to the fractionator 17. This is because the temperature has been raised to -80 [° C.] necessary for fractional distillation in the LNG / BOG heat exchanger 12. In the shunt 17, based on the vapor-liquid equilibrium relationship, the gas in the state N4 with a total calorific value of about 40,600 [kJ] from the top 17a per unit volume of 1 m 3 in the standard state is a flow rate of 22 [t / h]. Thus, about 46,000 [kJ] of the state N5 liquid is generated from the tower bottom 17b at a flow rate of 48 [t / h].
[0030]
Next, the BOG in the state N10 having a temperature of −155 [° C.], a pressure of 0 [kPaG], and a flow rate of 34 [t / h] is guided to the compressor 24 by closing the valve 21 and opening the valve 22. The pressure is increased to 45 [MPaG] (25 [kgf / cm 2 G]). The boosted BOG is in the state of N21, receives cold heat from the LNG serving as the cold heat source in the LNG / BOG heat exchanger 12, and is liquefied to become the state N22. The liquid in the state N22 is pressurized to 3.9 [MPaG] by the pump 25, and then heat-exchanged with seawater by the heat exchanger 26 to become a gas in the state of N13. The amount of power consumed so far is approximately 4062 [kW · h]. After that, the gas in the state of N13 is adjusted in calorie with LPG or the like, and then sent to the city as city gas. When the city gas production facility of the present embodiment is compared with the conventional city gas production facility, the following Table 1 is obtained.
[0031]
[Table 1]
Figure 0004064037
[0032]
In the present embodiment, when the demand amount of city gas is large, the amount of electric power can be greatly reduced by switching the line and increasing the flow rate of LNG as compared with the conventional method of directly compressing BOG. Further, when the amount of city gas demand is small, the amount of electric power can be greatly reduced by switching the line and reducing the flow rate of LNG as compared with the conventional method of directly compressing BOG. Further, when the demand for city gas is large, the amount of seawater used can be greatly reduced by switching the line and increasing the flow rate of LNG as compared with the conventional method of directly compressing BOG. Furthermore, when the demand for city gas is small, the amount of seawater used can be greatly reduced by switching the line and reducing the flow rate of LNG as compared with the conventional method of directly compressing BOG.
[0033]
【The invention's effect】
As described above, according to the present invention, liquefied natural gas fractionation and boil-off gas reliquefaction are used in combination, and boil-off gas is used as a heat source necessary for liquefied natural gas fractionation, and cold heat for liquefying boil-off gas is obtained. By using liquefied natural gas as a source, the amount of liquefied petroleum gas used for heat quantity adjustment can be reduced, and the amount of power consumption can be reduced.
In addition, the boil-off gas is compressed according to the demand of city gas and the pressure for heat exchange with the liquefied natural gas used for fractional distillation is switched. A large amount of cold energy can be transferred from the liquefied natural gas, and the power consumption during reliquefaction can be greatly reduced. When the demand for city gas is low, it can be compressed with a compressor having a high discharge pressure, and the power consumption associated with compression in a gaseous state can be reduced.
In addition, if the pressure of boil-off gas that exchanges heat with liquefied natural gas used for fractional distillation is flowed through a low-pressure compressor line of about 780 [kPaG] when the demand for city gas is large, power consumption Can be reduced.
In addition, a boil-off gas reliquefaction heat exchanger is installed in the downstream of the compressor, and a pump for boosting the liquefied boil-off gas is installed in the downstream of the boil-off gas. Then, the pressure can be increased to a high pressure, and the pressure increase in the gas state can be kept in a low range, and the power consumption can be reduced.
[0034]
Further, according to the present invention, since the heat source necessary for liquefied natural gas fractionation is indirectly obtained from the raw material boil-off gas for re-liquefaction of the boil-off gas, the pressure of the boil-off gas is reduced to the same level as that of the liquefied natural gas. There is no need to boost the voltage in the state, and power consumption can be reduced.
[0038]
Moreover, according to this invention, the flow setting of the liquefied natural gas used for the said liquefied natural gas fractionation can be changed, and liquefied natural gas can be used according to the demand amount of city gas.
[0039]
Further, according to the present invention, when the demand for city gas is large, the amount of liquefied natural gas for fractional distillation is larger than the amount for liquefaction of boil-off gas. Can be warmed. When demand for city gas is low, liquefied natural gas for fractionation is heated to the temperature required for fractionation. Bypass the heat exchanger and reduce the amount of seawater used in the heat exchanger. Can do.
[Brief description of the drawings]
FIG. 1 is a piping system diagram showing a schematic configuration of an embodiment of the present invention.
FIG. 2 is a piping system diagram showing a schematic configuration of a conventional BOG direct compression technique.
FIG. 3 is a piping system diagram showing a schematic configuration of a conventional LNG fractionation technique.
[Explanation of symbols]
10 LNG tank 11 LNG pump 12 LNG / BOG heat exchanger 13, 14, 21, 22 Valve 15, 26 Heat exchanger 16, 25 Pump 17 Fractionator 23, 24 Compressor

Claims (4)

主原料となる液化天然ガスをLNGタンクに貯蔵しておき、市中での都市ガスの需要量に応じて予め定める送出圧力に昇圧し、都市ガスとして市中に送出する際に、熱量調整のための液化天然ガス分留と、LNGタンクから発生するボイルオフガスの再液化とを行う都市ガス製造方法において、
液化天然ガス分留に必要な温熱源を、ボイルオフガス再液化用の原料ボイルオフガスから確保し、
ボイルオフガスを液化するために必要な冷熱源を、液化天然ガス分留用の原料液化天然ガスから確保し、
前記ボイルオフガス再液化では、都市ガスの需要量に応じて切換えることができるラインを設けて、都市ガスの需要量が少ないときには吐出圧力の高い圧縮機を備えるラインを用い、需要量が多いときは吐出圧力が低い圧縮機を備えるラインを用いることを特徴とする都市ガス製造方法。
The liquefied natural gas, which is the main raw material, is stored in the LNG tank, the pressure is increased to a predetermined delivery pressure according to the demand for city gas in the city, and the amount of heat is adjusted when it is sent to the city as city gas. In the city gas manufacturing method for performing liquefied natural gas fractionation for the purpose and reliquefaction of boil-off gas generated from the LNG tank,
Securing the source of heat necessary for liquefied natural gas fractionation from the raw material boil-off gas for boil-off gas reliquefaction,
Securing the necessary heat source for liquefying boil-off gas from the raw material liquefied natural gas for liquefied natural gas fractionation ,
In the boil-off gas reliquefaction, a line that can be switched according to the demand amount of city gas is provided, and when the demand amount of city gas is small, a line equipped with a compressor having a high discharge pressure is used. A city gas manufacturing method using a line including a compressor having a low discharge pressure .
前記液化天然ガス分留に必要な温熱源を、前記ボイルオフガス再液化用の原料ボイルオフガスと熱交換器で熱の授受を行い、間接的に得ることを特徴とする請求項1記載の都市ガス製造方法。  2. The city gas according to claim 1, wherein the heat source necessary for the liquefied natural gas fractionation is obtained indirectly by transferring heat to the boil-off gas reliquefaction raw material boil-off gas with a heat exchanger. Production method. 前記液化天然ガス分留に使用する液化天然ガスを、都市ガスの需要量に応じて流量の設定を変えるようにして、ポンプへ送出することを特徴とする請求項1または2記載の都市ガス製造方法。3. The city gas production according to claim 1 or 2, wherein the liquefied natural gas used for the liquefied natural gas fractionation is sent to a pump in such a manner that the setting of the flow rate is changed according to the demand amount of the city gas. Method. 主原料となる液化天然ガスをLNGタンクに貯蔵しておき、市中での都市ガスの需要量に応じて予め定める送出圧力に昇圧し、都市ガスとして市中に送出する際に、熱量調整のための液化天然ガス分留と、LNGタンクから発生するボイルオフガスの再液化とを行う都市ガス製造方法において、
液化天然ガス分留に必要な温熱源を、ボイルオフガス再液化用の原料ボイルオフガスから確保し、
ボイルオフガスを液化するために必要な冷熱源を、液化天然ガス分留用の原料液化天然ガスから確保し、
前記ポンプ後流の液化天然ガスを、都市ガスの需要量に応じて切換えることができるラインに導き、都市ガスの需要量が多い時には、液化天然ガス熱交換器を熱交換するラインに流れ、需要量が少ない時には、熱交換器をバイパスすることを特徴とする都市ガス製造方法。
The liquefied natural gas, which is the main raw material, is stored in the LNG tank, and the pressure is increased to a predetermined delivery pressure according to the demand for city gas in the city. In the city gas manufacturing method for performing liquefied natural gas fractionation for the purpose and reliquefaction of boil-off gas generated from the LNG tank,
Securing the heat source necessary for liquefied natural gas fractionation from the raw material boil-off gas for boil-off gas reliquefaction,
Securing the necessary heat source for liquefying boil-off gas from the raw material liquefied natural gas for liquefied natural gas fractionation,
The liquefied natural gas downstream of the pump is led to a line that can be switched according to the demand amount of city gas. When the demand amount of city gas is large, the liquefied natural gas heat exchanger flows to the heat exchange line and demand when the amount is small, city gas production how to characterized by bypassing the heat exchanger.
JP2000095658A 2000-03-30 2000-03-30 City gas production method Expired - Fee Related JP4064037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095658A JP4064037B2 (en) 2000-03-30 2000-03-30 City gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095658A JP4064037B2 (en) 2000-03-30 2000-03-30 City gas production method

Publications (2)

Publication Number Publication Date
JP2001279280A JP2001279280A (en) 2001-10-10
JP4064037B2 true JP4064037B2 (en) 2008-03-19

Family

ID=18610534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095658A Expired - Fee Related JP4064037B2 (en) 2000-03-30 2000-03-30 City gas production method

Country Status (1)

Country Link
JP (1) JP4064037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791602A (en) * 2015-04-27 2015-07-22 武汉交圣新能源工程有限公司 LNG (liquefied natural gas) fuel supply method and device utilizing BOG (boil-off gas) preferentially

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331474B1 (en) * 2009-11-13 2012-01-09 Hamworthy Gas Systems As Installation for gasification of LNG
KR20120091270A (en) * 2009-11-18 2012-08-17 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method of handling a boil off gas stream and an apparatus therefor
US10145514B2 (en) * 2013-11-18 2018-12-04 Man Energy Solutions Se Cold-box system and method for power management aboard ships
EP3305645B1 (en) 2015-06-02 2024-01-03 Hanwha Ocean Co., Ltd. Boil-off gas treatment system for a ship
KR101623171B1 (en) * 2015-09-04 2016-05-31 대우조선해양 주식회사 BOG Reliquefaction System
KR102013883B1 (en) * 2017-11-29 2019-08-23 한국가스공사 Gas vaporization apparatus and control method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791602A (en) * 2015-04-27 2015-07-22 武汉交圣新能源工程有限公司 LNG (liquefied natural gas) fuel supply method and device utilizing BOG (boil-off gas) preferentially
CN104791602B (en) * 2015-04-27 2018-06-05 武汉交圣新能源工程有限公司 The LNG gaseous fuels air supply method and device that BOG is preferentially utilized

Also Published As

Publication number Publication date
JP2001279280A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US8893515B2 (en) Methods and configurations of boil-off gas handling in LNG regasification terminals
US10578354B2 (en) Systems and methods for the production of liquefied nitrogen using liquefied natural gas
KR101489738B1 (en) System for supplying fuel gas in ships
KR102164165B1 (en) liquefaction system of boil-off gas and ship having the same
AU2012273829C1 (en) Method for liquefying natural gas with a triple closed circuit of coolant gas
JP6087196B2 (en) Low temperature compressed gas or liquefied gas manufacturing apparatus and manufacturing method
KR102213569B1 (en) liquefaction system of boil-off gas and ship having the same
KR101814439B1 (en) System for supplying fuel gas
KR102162166B1 (en) Gas treatment system and ship having the same
KR20200012670A (en) Boil-off gas cooling system and ship having the same
US20100107686A1 (en) Method and apparatus for separating one or more c2+ hydrocarbons from a mixed phase hydrocarbon stream
US11408678B2 (en) Method and apparatus for separating hydrocarbons
JP4064037B2 (en) City gas production method
KR102190942B1 (en) liquefaction system of boil-off gas and ship having the same
JP3610246B2 (en) LNG boil-off gas reliquefaction and air separation integrated device
AU2006261281A1 (en) Method for liquefying a hydrocarbon-rich flow
KR20180036250A (en) liquefaction system of boil-off gas and ship having the same
JP2021533329A (en) Management of supply gas composition variation for high pressure expander process
JP7393607B2 (en) Gas liquefaction method and gas liquefaction device
CN107560321B (en) BOG recovery and nitrogen liquefaction system and technological method
KR101965020B1 (en) Method and apparatus for removing nitrogen from a cryogenic hydrocarbon composition
JP3610251B2 (en) BOG reliquefaction method using LNG
JP2001208297A (en) Method of storing liquefied petroleum gas at low temperature
US11692771B2 (en) Process and apparatus for treating lean LNG
US20210348837A1 (en) System and method for natural gas and nitrogen liquefaction with dual operating modes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees