JP3610246B2 - LNG boil-off gas reliquefaction and air separation integrated device - Google Patents

LNG boil-off gas reliquefaction and air separation integrated device Download PDF

Info

Publication number
JP3610246B2
JP3610246B2 JP30899898A JP30899898A JP3610246B2 JP 3610246 B2 JP3610246 B2 JP 3610246B2 JP 30899898 A JP30899898 A JP 30899898A JP 30899898 A JP30899898 A JP 30899898A JP 3610246 B2 JP3610246 B2 JP 3610246B2
Authority
JP
Japan
Prior art keywords
lng
nitrogen
gas
bog
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30899898A
Other languages
Japanese (ja)
Other versions
JP2000130926A (en
Inventor
稔 田窪
宗治 氏田
隆晃 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP30899898A priority Critical patent/JP3610246B2/en
Publication of JP2000130926A publication Critical patent/JP2000130926A/en
Application granted granted Critical
Publication of JP3610246B2 publication Critical patent/JP3610246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化天然ガス(以下「LNG」と略称する)の有する冷熱を利用して、LNGを貯蔵するタンクで発生するボイルオフガス(以下「BOG」と略称することがある)を再液化してLNGタンクに戻し、また空気を液化して蒸留することによって成分に分離するLNGのボイルオフガスの再液化および空気分離一体化装置に関する。
【0002】
【従来の技術】
LNGは、たとえばLNGタンカなどによって原産地から海上を輸送され、LNGタンクに貯蔵されて、需要先に供給される。貯蔵されるLNGの温度は、−160℃程度で、常温に比べて極めて低いので、LNGタンク内では自然入熱等によってBOGが発生する。このためLNGタンク内圧力を一定範囲内に保持しておくためには、発生するBOGを処理する必要がある。
【0003】
BOGの処理としては、コンプレッサで昇圧して燃料として直接消費するために送出したり、コンプレッサによる昇圧後、再液化して、LNGタンク内に返送し、またはLNGタンクから供給されるLNGと混合させた後、消費のために送出したりしている。このようなBOGの再液化についての先行技術は、本件出願人からも、たとえば特開平3−236588などとして開示している。この先行技術では、BOGの再液化のための冷熱源としても、LNGを利用している。
【0004】
LNGの有する冷熱は、空気分離設備でも利用されている。空気分離設備では、沸点(−183〜−196℃)の差を利用して、空気から酸素(O)、窒素(N)、アルゴン(Ar)などを分離・液化している。液化に必要な寒冷用のエネルギとして、圧縮機駆動用の電力とともに、LNGの冷熱が利用されている。本件出願人も、たとえば特願平7−295186などとして、LNGの冷熱を利用する空気分離についての先行技術を開示している。
【0005】
【発明が解決しようとする課題】
従来のBOGの再液化と空気分離とは、別々の設備として設置され、設備の管理も別々に行われている。この場合、BOGの再液化と空気分離とで、それぞれの需要に見合った量のLNGが使用される。LNGの供給量に制約がある場合には、どちらかの能力を低下させる必要がある。LNGは、たとえば都市ガスの原料あるいは火力発電の燃料などとして大量に使用される。都市ガスや電力の需要は、昼間には多く夜間には少なくなる。したがって、LNGの使用量が多くなる昼間には、LNGの有する冷熱を利用してのBOGの再液化や空気分離を充分に行うことができるが、夜間には利用可能な冷熱源が少なくなってしまう。BOGの発生は、断熱材を通過してくる外部からの入熱によって行われるので、昼間と夜間との温度差はBOGの発生量にあまり影響がなく、夜間でもBOGの再液化などの処理の必要性はほとんど変わらない。このため、LNGの使用量や消費量が減少して、BOGの再液化に使用することができる冷熱が不足する事態も生じ得る。BOG自体を燃料として消費したり使用する場合であっても、その需要は夜間には少なくなり、再液化などによって処理する必要性は大きい。
【0006】
BOGは、LNG中のメタンが大部分を占め、他の成分も含むLNGとは燃料としての特性が異なる。このため、BOGを単独あるいは主成分として、LNGの需要が減少している状態で、LNGの代わりに供給することは好ましくはない。
【0007】
本発明の目的は、LNGの利用量が変動しても、BOGの再液化と空気分離とを効率的に行うことができるLNGのボイルオフガス再液化および空気分離一体化装置を提供することである。
【0008】
【課題を解決するための手段】
本発明は、LNGタンクから発生するボイルオフガスの再液化、および空気を液化して蒸留することによる成分への分離を、一体的に行う装置であって、 ボイルオフガスを圧縮するBOGコンプレッサと、
空気から分離される窒素ガスを圧縮する窒素コンプレッサと、
圧縮された窒素ガスを膨張させる膨張タービン等と、
膨張タービン等によって膨張させた窒素ガス、窒素コンプレッサによって圧縮された窒素ガス、およびBOGコンプレッサによって圧縮したボイルオフガス、およびLNGをそれぞれ通過させて相互に熱交換させる熱交換器とを含むことを特徴とするLNGのボイルオフガス再液化および空気分離一体化装置である。
【0009】
本発明に従えば、ボイルオフガスはBOGコンプレッサで圧縮される。空気から分離される窒素ガスは、窒素コンプレッサで圧縮される。圧縮された窒素ガスは膨張タービン等で膨張され、熱交換器を通過する。熱交換器には、BOGコンプレッサで圧縮されたボイルオフガスと、窒素コンプレッサで圧縮された窒素ガスと、LNGも通過させられ、相互に熱交換が行われる。この熱交換によって、LNGの冷熱を、ボイルオフガスの再液化のためにも、空気分離装置の窒素ガスの冷却のためにも利用することができる。LNGの使用量が少なくなる夜間などでは、窒素ガスの液化の割合を少なくし、優先的にBOGを再液化するために使用する。LNG利用量に充分余裕がある場合には、空気分離に使用する割合を増大させ、空気分離の需要と供給とのバランスを図る。また、空気分離用の窒素コンプレッサなどの能力に余裕を持たせておけば、電力の安価な夜間に空気分離設備の窒素ガスの液化量を減ずることなくBOGの再液化を行うことが可能になる。
【0010】
また本発明で前記窒素コンプレッサによって圧縮されて前記熱交換器を通過する窒素ガスの一部を、該熱交換器内で分岐させて前記膨張タービン等に供給し、該膨張タービン等によって膨張させて該熱交換器を通過させた窒素ガスを、該窒素コンプレッサの入側に戻す窒素循環用管路を備えることを特徴とする。
【0011】
本発明に従えば、窒素コンプレッサによって圧縮される窒素ガスが、熱交換器を通過する途中で分岐して膨張タービン等に供給される。膨張タービン等によって膨張させた窒素ガスは、熱交換器を通過して窒素コンプレッサの入側に戻される。このような窒素循環用管路で窒素ガスを循環させて、圧縮と膨張とを繰返えすと、熱交換器が冷熱を供給し、LNGの冷熱だけでは不足する場合に、BOGの再液化用の冷熱源として利用することができる。
【0012】
【発明の実施の形態】
図1は、本発明の実施の一形態としてのLNGのBOG再液化・空気分離一体化装置の概略的な構成を示す。LNGは、LNGタンク1内に貯蔵される。LNGタンク1内に貯蔵されるLNGは、LNGポンプ2によってLNGタンク1内から取出され、熱交換器3のLNG通過層4を通って、都市ガスの原料や燃料などとしての利用のために送出される。都市ガスの原料や直接燃料として利用される際には、低温のLNGではなく、常温の気化した天然ガス(NG)として供給する必要がある。LNGが熱交換器3のLNG通過層4を通過する際に、冷熱を供給する一方で、昇温および気化に必要な熱の少なくとも一部が供給される。
【0013】
LNGの利用に伴って熱交換器3に供給される冷熱は、熱交換器3のBOG通過層5を通過するBOGの再液化に使用される。また、熱交換器3に設けられる窒素膨張層6および窒素圧縮層7への冷熱供給のためにも使用される。熱交換器3は、プレートフィン(PF)形として構成され、LNG通過層4、BOG通過層5、窒素膨張層6および窒素圧縮層7の4つの層がそれぞれ分離され、かつ熱交換は相互に可能である。BOG通過層5には、LNGタンク1から発生するBOGが、BOGコンプレッサ8によって圧縮された後、供給される。BOGは、LNG中に含まれるメタンがほとんど単一の成分として含まれ、圧縮と冷却とによって液化する。BOGが液化すると、LNGタンク1内に戻される。LNGタンク1、LNGポンプ2、BOG通過層5およびBOGコンプレッサ8は、BOG再液化設備9を構成する。
【0014】
熱交換器3の窒素膨張層6および窒素圧縮層7は、空気分離設備10の一部を構成する。空気分離設備10には、高圧蒸留塔11、低圧蒸留塔11’、窒素循環用管路12および空気液化設備13も含まれる。空気液化設備13によって液化された液体空気14は、高圧蒸留塔11の底部に貯留される。高圧蒸留塔11の上部では、液体空気14から分離された窒素ガスが窒素コンプレッサ20’で圧縮されて熱交換器3の窒素圧縮層7を通過する。
【0015】
低圧蒸留塔11’の上部で液体酸素16から分離された窒素ガス17は、窒素コンプレッサ20で圧縮されて熱交換器3の窒素圧縮層7をも通過する。通過する窒素ガスの一部は、窒素循環用管路12に設けられる膨張タービン21に導かれて膨張させられる。膨張タービン21へは、窒素圧縮層7の途中に接続される分岐管22を介して分岐する。膨張タービン21で膨張させられた窒素ガスは、熱交換器3の窒素膨張層6を通過し、合流管23を介して窒素コンプレッサ20の入側で、蒸留塔11から供給される窒素ガスと合流する。合流管23で合流した窒素ガスは、窒素コンプレッサ20で圧縮された後、高圧蒸留塔11の上部から導かれた窒素ガスと合流する合流管30で合流した窒素ガスは、窒素コンプレッサ20’から再び熱交換器3の窒素圧縮層7に入り、分岐管22から分岐して膨張タービン21で膨張され、熱交換器3の窒素膨張塔6を通って合流管23で合流する。このような窒素循環用管路12内を、窒素ガスを循環させることによって、熱交換器3に冷熱を供給することもできる。
【0016】
窒素循環用管路12で循環する窒素ガスを除いた他の窒素ガスは、低圧蒸留塔11’から空気液化設備13を経て窒素コンプレッサ20に入り、熱交換器3の窒素膨張層6を通って、膨張弁24から低圧蒸留塔11’に還流液として戻る。また、膨張弁24から、窒素タンク25に供給して貯蔵するときは製品液体窒素となる。低圧蒸留塔11’では、アルゴン15および液体酸素16もそれぞれ分離されるので、窒素タンク25と同様にそれぞれ貯蔵して、製品として取出すようにすることができる。
【0017】
高圧蒸留塔11に液体空気14を供給する空気液化設備13では、原料となる空気を原料空気コンプレッサ26で圧縮し、空気/窒素熱交換器27を介して冷却し、液化させて液体空気14として高圧蒸留塔11の下部に供給する。空気/窒素熱交換器27には、低圧蒸留塔11’から冷却された窒素が供給され、空気を冷却する。
【0018】
図1に示すような装置では、BOG再液化のプロセスと空気分離のプロセスとを一体の設備として管理し、LNGが都市ガスなどの原料として、または直接燃焼用に送出されても、その有する冷熱を有効に利用し、またLNGタンク1から発生するボイルオフガスを確実に再液化してLNGタンク1に戻すことができる。本実施形態のBOG再液化および空気分離一体化装置では、次の図2に示すような考え方で、LNGの有する冷熱を有効に利用することができる。図2(a)は、LNGの送出量が大きくなる昼間での冷熱利用での冷熱の配分を示し、図2(b)はLNG送出量が少なくなる夜間での冷熱の配分を示す。図2(a)に示すように、昼間ではLNGの送出量が大きく、冷熱の利用量に充分余裕があるので、空気分離とBOG再液化とに充分な冷熱を割当てることができる。LNG送出量が小さくなる夜間では、図2(b)に示すように、LNGを利用して発生する冷熱をBOGの再液化の方に優先的に割当てる。このため空気分離に割当てられる冷熱の相対的な割合は減少するけれども、LNGの冷熱は有効に利用することができる。特にLNGを運搬するLNGタンカなどが入船し、LNGがLNGタンク1に補給される際などには、ボイルオフガスの発生量が増大する。このようなLNGタンカの入船は、LNG送出量が少なくなる夜間に行われ、発生するボイルオフガスの処理が困難となる場合が多いけれども、図2(b)に示すよりもさらに冷熱のBOG再液化への割当て量を大きくし、一時的に空気分離による窒素ガスなどの生産量を減少させて、対応させることができる。
【0019】
図3は、図1に示すようなBOG再液化および空気分離の一体化装置を利用して、LNGの冷熱を利用する他の考え方を示す。この考え方では、空気分離設備10の窒素循環用管路12に設けられる窒素コンプレッサ20などの設備能力を、充分に余裕があるようにしておく。図3(a)に示すように、昼間では設備能力に余裕を持たせた状態で、空気分離を行う。すなわち、余裕分は休止させる。図3(b)に示すように、夜間ではBOG再液化のための冷熱源が不足するので、昼間では余裕があって休止していた空気分離設備の能力をBOG再液化のためにも利用して、ボイルオフガスが再液化される際に必要となる冷熱の補給を行うことができる。BOG再液化のための冷熱を窒素循環用管路12を循環する窒素の冷熱サイクルで発生させるために窒素コンプレッサ20を駆動する電力は、夜間電力を利用するので、昼間よりもコストが低く、経済的に空気分離とBOG再液化とを行うことができる。
【0020】
【発明の効果】
以上のように本発明によれば、LNGの冷熱を利用するBOGの再液化と空気分離の設備を一体的に管理することができるので、それぞれの設備の稼働率をLNG利用量に合わせてフレシキブルに調整することが可能になるとともに、設備コストの低減と効率的な一元管理とを図ることができる。たとえば、LNG貯蔵タンクに入船したLNGタンカから夜間にLNGが補給されるときには特にBOGの発生量が増大するけれども、空気分離の冷熱使用量を低減し、優先的にBOGの再液化にLNGの冷熱を振り向けることができる。また、空気分離の設備能力に余裕を持たせておいて、LNGの冷熱ではBOGの再液化に不足が生じるときに、空気分離の設備から冷熱源を供給するようにすることもできる。
【0021】
また本発明によれば、窒素循環用管路を用いて、窒素ガスを圧縮して膨張させることによる冷熱の発生量を増大させることができるので、BOGの再液化のための冷熱源として効率的に利用することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態のBOG再液化および空気分離一体化設備の概略的な構成を示す配管系統図である。
【図2】図1の実施形態で、昼間と夜間とでLNGの冷熱利用割合を空気分離とBOG再液化とで変更する基本的な考え方を示す図である。
【図3】図1の実施形態で、空気分離設備10の能力に余裕を持たせておき、LNGの送出量が減る夜間に空気分離設備からの冷熱量をBOG再液化にも利用する考え方を示す図である。
【符号の説明】
1 LNGタンク
3 熱交換器
4 LNG通過層
5 BOG通過層
6 窒素膨張層
7 窒素圧縮層
8 BOGコンプレッサ
9 BOG再液化設備
10 空気分離設備
11 高圧蒸留塔
11’ 低圧蒸留塔
12 窒素循環用管路
13 空気液化設備
17 窒素ガス
20,20’ 窒素コンプレッサ
21 膨張タービン
22 分岐管
23 合流管
25 窒素タンク
[0001]
BACKGROUND OF THE INVENTION
The present invention uses the cold heat of liquefied natural gas (hereinafter abbreviated as “LNG”) to reliquefy boil-off gas (hereinafter also abbreviated as “BOG”) generated in a tank that stores LNG. The present invention relates to an LNG boil-off gas re-liquefaction and air separation integrated device that returns to an LNG tank and liquefies and distills air into components.
[0002]
[Prior art]
LNG is transported from the place of origin by, for example, an LNG tanker, stored in an LNG tank, and supplied to a demand destination. The temperature of the stored LNG is about −160 ° C., which is extremely lower than the normal temperature. Therefore, BOG is generated in the LNG tank due to natural heat input or the like. For this reason, in order to keep the pressure in the LNG tank within a certain range, it is necessary to process the generated BOG.
[0003]
BOG processing is boosted by the compressor and sent out for direct consumption as fuel, or after being pressurized by the compressor, re-liquefied and returned to the LNG tank or mixed with LNG supplied from the LNG tank. After that, it is sent out for consumption. The prior art regarding such BOG reliquefaction is also disclosed by the present applicant as, for example, JP-A-3-236588. In this prior art, LNG is also used as a cold heat source for reliquefaction of BOG.
[0004]
The cold heat of LNG is also used in air separation equipment. In the air separation facility, oxygen (O 2 ), nitrogen (N 2 ), argon (Ar) and the like are separated and liquefied from the air by utilizing the difference in boiling points (−183 to −196 ° C.). As energy for cooling necessary for liquefaction, cold energy of LNG is used together with electric power for driving a compressor. The present applicant has also disclosed the prior art on air separation using the cold heat of LNG, for example, as Japanese Patent Application No. 7-295186.
[0005]
[Problems to be solved by the invention]
Conventional BOG reliquefaction and air separation are installed as separate facilities, and the management of the facilities is also performed separately. In this case, an amount of LNG commensurate with each demand is used for re-liquefaction of BOG and air separation. If there is a restriction on the amount of LNG supplied, it is necessary to reduce either capacity. LNG is used in large quantities, for example, as a raw material for city gas or fuel for thermal power generation. The demand for city gas and electricity is high during the day and low at night. Therefore, during the daytime when the amount of LNG used increases, BOG can be sufficiently liquefied and air separated using the cold heat of LNG, but the available cold heat source is reduced at night. End up. Since BOG is generated by external heat input that passes through the heat insulating material, the temperature difference between daytime and nighttime has little effect on the amount of BOG generated, and processing such as re-liquefaction of BOG is also possible at nighttime. The need is almost unchanged. For this reason, the usage-amount and consumption of LNG may reduce, and the situation which the cold which can be used for reliquefaction of BOG may run short may also arise. Even when the BOG itself is consumed or used as fuel, the demand is reduced at night, and there is a great need for treatment by reliquefaction or the like.
[0006]
BOG occupies most of methane in LNG, and is different in fuel characteristics from LNG including other components. For this reason, it is not preferable to supply BOG alone or as a main component in place of LNG while the demand for LNG is decreasing.
[0007]
An object of the present invention is to provide an LNG boil-off gas reliquefaction and air separation integrated device capable of efficiently performing BOG reliquefaction and air separation even when the amount of LNG used varies. .
[0008]
[Means for Solving the Problems]
The present invention is an apparatus that integrally performs re-liquefaction of boil-off gas generated from an LNG tank and separation into components by liquefying and distilling air, and a BOG compressor that compresses boil-off gas;
A nitrogen compressor that compresses nitrogen gas separated from the air;
An expansion turbine for expanding the compressed nitrogen gas,
And a heat exchanger that exchanges heat with each other by passing nitrogen gas expanded by an expansion turbine or the like, nitrogen gas compressed by a nitrogen compressor, boil-off gas compressed by a BOG compressor, and LNG, respectively. LNG boil-off gas reliquefaction and air separation integrated device.
[0009]
According to the invention, the boil-off gas is compressed with a BOG compressor. Nitrogen gas separated from air is compressed by a nitrogen compressor. The compressed nitrogen gas is expanded by an expansion turbine or the like and passes through a heat exchanger. The boil-off gas compressed by the BOG compressor, the nitrogen gas compressed by the nitrogen compressor, and LNG are also passed through the heat exchanger to exchange heat with each other. By this heat exchange, the cold heat of LNG can be used for reliquefaction of the boil-off gas as well as for cooling the nitrogen gas of the air separation device. At night, when the amount of LNG used is reduced, the rate of nitrogen gas liquefaction is reduced, and it is used to preferentially reliquefy BOG. When there is a sufficient margin in the amount of LNG used, the proportion used for air separation is increased to balance the demand and supply of air separation. In addition, if the capacity of a nitrogen compressor or the like for air separation is provided, it is possible to reliquefy BOG without reducing the amount of nitrogen gas liquefied in the air separation facility at night when power is inexpensive. .
[0010]
Further, in the present invention, a part of the nitrogen gas compressed by the nitrogen compressor and passing through the heat exchanger is branched in the heat exchanger, supplied to the expansion turbine or the like, and expanded by the expansion turbine or the like. A nitrogen circulation pipe is provided for returning the nitrogen gas passed through the heat exchanger to the inlet side of the nitrogen compressor.
[0011]
According to the present invention, the nitrogen gas compressed by the nitrogen compressor branches in the middle of passing through the heat exchanger and is supplied to the expansion turbine or the like. Nitrogen gas expanded by an expansion turbine or the like passes through the heat exchanger and is returned to the inlet side of the nitrogen compressor. When nitrogen gas is circulated in such a nitrogen circulation line and compression and expansion are repeated, the heat exchanger supplies cold heat, and when the cold heat of LNG alone is insufficient, the BOG is used for reliquefaction. It can be used as a cold heat source.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an integrated LNG BOG reliquefaction / air separation apparatus as one embodiment of the present invention. The LNG is stored in the LNG tank 1. The LNG stored in the LNG tank 1 is taken out from the LNG tank 1 by the LNG pump 2, sent through the LNG passage layer 4 of the heat exchanger 3 for use as a raw material or fuel of city gas. Is done. When used as a raw material for city gas or as a direct fuel, it is necessary to supply natural gas (NG) vaporized at room temperature, not LNG at low temperature. When LNG passes through the LNG passage layer 4 of the heat exchanger 3, while supplying cold, at least a part of heat necessary for temperature rise and vaporization is supplied.
[0013]
The cold supplied to the heat exchanger 3 along with the use of LNG is used for reliquefaction of BOG that passes through the BOG passage layer 5 of the heat exchanger 3. Further, it is also used for supplying cold heat to the nitrogen expansion layer 6 and the nitrogen compression layer 7 provided in the heat exchanger 3. The heat exchanger 3 is configured as a plate fin (PF) type, and the four layers of the LNG passage layer 4, the BOG passage layer 5, the nitrogen expansion layer 6 and the nitrogen compression layer 7 are separated from each other, and the heat exchange is mutually performed. Is possible. BOG generated from the LNG tank 1 is supplied to the BOG passage layer 5 after being compressed by the BOG compressor 8. BOG contains almost all of methane contained in LNG as a single component, and liquefies by compression and cooling. When the BOG is liquefied, it is returned to the LNG tank 1. The LNG tank 1, the LNG pump 2, the BOG passage layer 5, and the BOG compressor 8 constitute a BOG reliquefaction facility 9.
[0014]
The nitrogen expansion layer 6 and the nitrogen compression layer 7 of the heat exchanger 3 constitute a part of the air separation facility 10. The air separation facility 10 also includes a high pressure distillation column 11, a low pressure distillation column 11 ′, a nitrogen circulation pipe 12 and an air liquefaction facility 13. The liquid air 14 liquefied by the air liquefaction facility 13 is stored at the bottom of the high pressure distillation column 11. In the upper part of the high-pressure distillation column 11, the nitrogen gas separated from the liquid air 14 is compressed by the nitrogen compressor 20 ′ and passes through the nitrogen compression layer 7 of the heat exchanger 3.
[0015]
The nitrogen gas 17 separated from the liquid oxygen 16 at the top of the low-pressure distillation column 11 ′ is compressed by the nitrogen compressor 20 and also passes through the nitrogen compression layer 7 of the heat exchanger 3. Part of the passing nitrogen gas is led to an expansion turbine 21 provided in the nitrogen circulation pipe 12 to be expanded. The expansion turbine 21 branches through a branch pipe 22 connected in the middle of the nitrogen compression layer 7. The nitrogen gas expanded by the expansion turbine 21 passes through the nitrogen expansion layer 6 of the heat exchanger 3 and joins with the nitrogen gas supplied from the distillation tower 11 on the inlet side of the nitrogen compressor 20 via the merge pipe 23. To do. The nitrogen gas merged in the merge pipe 23 is compressed by the nitrogen compressor 20, and then the nitrogen gas merged in the merge pipe 30 that merges with the nitrogen gas introduced from the upper part of the high-pressure distillation column 11 is again supplied from the nitrogen compressor 20 ′. It enters into the nitrogen compression layer 7 of the heat exchanger 3, branches from the branch pipe 22, is expanded by the expansion turbine 21, passes through the nitrogen expansion tower 6 of the heat exchanger 3, and merges at the merge pipe 23. It is also possible to supply cold heat to the heat exchanger 3 by circulating nitrogen gas in the nitrogen circulation pipe 12.
[0016]
The other nitrogen gas excluding the nitrogen gas circulated in the nitrogen circulation pipe 12 enters the nitrogen compressor 20 from the low pressure distillation column 11 ′ through the air liquefaction equipment 13, passes through the nitrogen expansion layer 6 of the heat exchanger 3. Then, the refrigerant returns from the expansion valve 24 to the low-pressure distillation column 11 ′ as a reflux liquid. Further, when supplied from the expansion valve 24 to the nitrogen tank 25 and stored, it becomes product liquid nitrogen. In the low-pressure distillation column 11 ′, the argon 15 and the liquid oxygen 16 are also separated, so that they can be stored in the same manner as the nitrogen tank 25 and taken out as a product.
[0017]
In the air liquefaction facility 13 for supplying the liquid air 14 to the high-pressure distillation column 11, the raw material air is compressed by the raw material air compressor 26, cooled through the air / nitrogen heat exchanger 27, and liquefied to form the liquid air 14. A lower part of the high-pressure distillation column 11 is supplied. The air / nitrogen heat exchanger 27 is supplied with nitrogen cooled from the low-pressure distillation column 11 ′ to cool the air.
[0018]
In the apparatus as shown in FIG. 1, the BOG reliquefaction process and the air separation process are managed as an integrated facility, and even if LNG is sent as a raw material such as city gas or directly for combustion, the cold heat that it has The boil-off gas generated from the LNG tank 1 can be reliably liquefied and returned to the LNG tank 1. In the BOG reliquefaction and air separation integrated device of the present embodiment, the cold energy of LNG can be effectively utilized based on the concept as shown in FIG. FIG. 2 (a) shows the distribution of cold heat during daytime when the amount of LNG delivered increases, and FIG. 2 (b) shows the distribution of cold at night when the amount of LNG delivered decreases. As shown in FIG. 2 (a), since the amount of LNG delivered is large during the day and there is sufficient room for the amount of cold energy, sufficient cold energy can be allocated for air separation and BOG reliquefaction. At night when the amount of LNG delivered becomes small, as shown in FIG. 2B, the cold generated by using LNG is preferentially assigned to the re-liquefaction of BOG. This reduces the relative percentage of cold allocated to air separation, but allows the LNG cold to be used effectively. In particular, when an LNG tanker that transports LNG enters the ship and LNG is supplied to the LNG tank 1, the amount of boil-off gas generated increases. Such LNG tanker entry is performed at night when the amount of LNG delivered decreases, and it is often difficult to process the generated boil-off gas. However, the cold BOG reliquefaction is more than that shown in FIG. It is possible to cope with this by increasing the amount allocated to the gas and temporarily reducing the production amount of nitrogen gas or the like by air separation.
[0019]
FIG. 3 shows another concept of utilizing the cold heat of LNG using an integrated apparatus for BOG reliquefaction and air separation as shown in FIG. In this way of thinking, the facility capacity of the nitrogen compressor 20 provided in the nitrogen circulation pipe 12 of the air separation facility 10 is provided with a sufficient margin. As shown to Fig.3 (a), air separation is performed in the state which provided the allowance for equipment capacity at daytime. That is, the margin is paused. As shown in FIG. 3 (b), since there is a shortage of cold heat source for BOG reliquefaction at night, the capacity of the air separation facility that has been spared during the daytime can be used for BOG reliquefaction. Thus, it is possible to replenish the cold energy required when the boil-off gas is reliquefied. The electric power for driving the nitrogen compressor 20 to generate cold heat for BOG reliquefaction in the nitrogen cold cycle circulating through the nitrogen circulation line 12 uses nighttime power, so the cost is lower than the daytime and economical. Thus, air separation and BOG reliquefaction can be performed.
[0020]
【The invention's effect】
As described above, according to the present invention, the equipment for re-liquefaction of BOG and the air separation equipment using the cold heat of LNG can be managed in an integrated manner, so that the operation rate of each equipment is flexible according to the amount of LNG used. It is possible to make adjustments at the same time, and it is possible to reduce the equipment cost and perform efficient centralized management. For example, when LNG is replenished at night from an LNG tanker that has entered a LNG storage tank, the amount of BOG generated increases, but the amount of cold energy used for air separation is reduced, and LNG Can turn around. In addition, it is also possible to provide a cooling power source from the air separation facility when there is a shortage in the re-liquefaction of BOG due to the cold heat of LNG with a margin in the facility capacity of the air separation.
[0021]
Further, according to the present invention, the amount of cold generated by compressing and expanding nitrogen gas can be increased using the nitrogen circulation pipe, so that it is efficient as a cold source for re-liquefaction of BOG. Can be used.
[Brief description of the drawings]
FIG. 1 is a piping system diagram showing a schematic configuration of an integrated BOG reliquefaction and air separation facility according to an embodiment of the present invention.
FIG. 2 is a diagram showing a basic concept of changing the LNG cold heat utilization ratio between air separation and BOG reliquefaction between daytime and nighttime in the embodiment of FIG. 1;
FIG. 3 is an embodiment in which the capacity of the air separation facility 10 is given a margin in the embodiment of FIG. 1 and the cold energy from the air separation facility is also used for BOG reliquefaction at night when the amount of LNG delivered is reduced. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LNG tank 3 Heat exchanger 4 LNG passage layer 5 BOG passage layer 6 Nitrogen expansion layer 7 Nitrogen compression layer 8 BOG compressor 9 BOG reliquefaction equipment 10 Air separation equipment 11 High pressure distillation tower 11 'Low pressure distillation tower 12 Pipe for nitrogen circulation 13 Air liquefaction equipment 17 Nitrogen gas 20, 20 ′ Nitrogen compressor 21 Expansion turbine 22 Branch pipe 23 Merge pipe 25 Nitrogen tank

Claims (2)

LNGタンクから発生するボイルオフガスの再液化、および空気を液化して蒸留することによる成分への分離を、一体的に行う装置であって、
ボイルオフガスを圧縮するBOGコンプレッサと、
空気から分離される窒素ガスを圧縮する窒素コンプレッサと、
圧縮された窒素ガスを膨張させる膨張タービン等と、
膨張タービン等によって膨張させた窒素ガス、窒素コンプレッサによって圧縮された窒素ガス、およびBOGコンプレッサによって圧縮したボイルオフガス、およびLNGをそれぞれ通過させて相互に熱交換させる熱交換器とを含むことを特徴とするLNGのボイルオフガス再液化および空気分離一体化装置。
An apparatus for integrally performing re-liquefaction of boil-off gas generated from an LNG tank and separation into components by liquefying and distilling air,
A BOG compressor for compressing boil-off gas;
A nitrogen compressor that compresses nitrogen gas separated from the air;
An expansion turbine that expands the compressed nitrogen gas,
And a heat exchanger that exchanges heat with each other by passing nitrogen gas expanded by an expansion turbine or the like, nitrogen gas compressed by a nitrogen compressor, boil-off gas compressed by a BOG compressor, and LNG, respectively. LNG boil-off gas reliquefaction and air separation integrated device.
前記窒素コンプレッサによって圧縮されて前記熱交換器を通過する窒素ガスの一部を、該熱交換器内で分岐させて前記膨張タービン等に供給し、該膨張タービン等によって膨張させて該熱交換器を通過させた窒素ガスを、該窒素コンプレッサの入側に戻す窒素循環用管路を備えることを特徴とする請求項1記載のLNGのボイルオフガス再液化および空気分離一体化装置。A part of the nitrogen gas compressed by the nitrogen compressor and passing through the heat exchanger is branched into the heat exchanger, supplied to the expansion turbine, etc., and expanded by the expansion turbine, etc. The LNG boil-off gas reliquefaction and air separation integrated apparatus according to claim 1, further comprising a nitrogen circulation conduit for returning the nitrogen gas that has passed through to the inlet side of the nitrogen compressor.
JP30899898A 1998-10-29 1998-10-29 LNG boil-off gas reliquefaction and air separation integrated device Expired - Fee Related JP3610246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30899898A JP3610246B2 (en) 1998-10-29 1998-10-29 LNG boil-off gas reliquefaction and air separation integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30899898A JP3610246B2 (en) 1998-10-29 1998-10-29 LNG boil-off gas reliquefaction and air separation integrated device

Publications (2)

Publication Number Publication Date
JP2000130926A JP2000130926A (en) 2000-05-12
JP3610246B2 true JP3610246B2 (en) 2005-01-12

Family

ID=17987698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30899898A Expired - Fee Related JP3610246B2 (en) 1998-10-29 1998-10-29 LNG boil-off gas reliquefaction and air separation integrated device

Country Status (1)

Country Link
JP (1) JP3610246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792114A (en) * 2015-04-10 2015-07-22 四川金科深冷设备工程有限公司 BOG re-liquefaction process and re-liquefaction recovery system thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143606B2 (en) * 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
JP4408211B2 (en) * 2003-11-04 2010-02-03 株式会社神戸製鋼所 Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof
KR100740686B1 (en) * 2005-08-26 2007-07-18 신영중공업주식회사 Bog reliquefaction apparatus
KR100674163B1 (en) 2006-03-02 2007-01-29 신영중공업주식회사 Bog reliquefaction apparatus
US7712331B2 (en) 2006-06-30 2010-05-11 Air Products And Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process
CN105464708A (en) * 2014-08-08 2016-04-06 江洪泽 Cold-storage oxyhydrogen and natural gas long-term submarine navigation power system
KR101665479B1 (en) * 2015-01-21 2016-10-12 대우조선해양 주식회사 BOG Re-liquefaction Apparatus and Method for Vessel
TWI606221B (en) * 2015-07-15 2017-11-21 艾克頌美孚上游研究公司 Liquefied natural gas production system and method with greenhouse gas removal
TWI608206B (en) * 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream
CN105333693A (en) * 2015-11-17 2016-02-17 江苏航天惠利特环保科技有限公司 Efficient and energy-saving BOG (boil-off gas) recycling device
CN106883897A (en) * 2017-03-29 2017-06-23 四川华亿石油天然气工程有限公司 BOG separating-purifyings equipment and technique
CN108266965A (en) * 2018-01-24 2018-07-10 北京拓首能源科技股份有限公司 A kind of oxygen nitrogen piece-rate system using cold energy of liquefied natural gas
CN108240733A (en) * 2018-01-24 2018-07-03 北京拓首能源科技股份有限公司 A kind of air-seperation system using cold energy of liquefied natural gas
US10982898B2 (en) * 2018-05-11 2021-04-20 Air Products And Chemicals, Inc. Modularized LNG separation device and flash gas heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792114A (en) * 2015-04-10 2015-07-22 四川金科深冷设备工程有限公司 BOG re-liquefaction process and re-liquefaction recovery system thereof

Also Published As

Publication number Publication date
JP2000130926A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP3610246B2 (en) LNG boil-off gas reliquefaction and air separation integrated device
JP6802810B2 (en) Ship
US3919852A (en) Reliquefaction of boil off gas
KR101609572B1 (en) Vessel
KR101707500B1 (en) System And Method For BOG Management
JP3586501B2 (en) Cryogenic liquid and boil-off gas processing method and apparatus
KR20120064221A (en) Vessel
KR20130062006A (en) Bog reliquefaction apparatus and lng bogreliquefaction method
KR20170011239A (en) BOG Treatment System
CN112197505B (en) Method and apparatus for producing liquid hydrogen
KR20090025514A (en) A bog re-liquefaction system for lng carrier
KR20120045801A (en) Vessel
KR20190022200A (en) Fuel gas supply system
JP7393607B2 (en) Gas liquefaction method and gas liquefaction device
KR20150061276A (en) Cooling system for superconductor
KR101224931B1 (en) Liquefied natural gas carrier
KR101681727B1 (en) Boil Off Gas Treatment System
JP2001208297A (en) Method of storing liquefied petroleum gas at low temperature
US3273349A (en) Variable demand air rectification plant with recycle
JP4064037B2 (en) City gas production method
KR102584509B1 (en) Fuel gas re-liquefaction system
KR101681728B1 (en) Boil Off Gas Treatment System
CN117980225A (en) System and method for treating boil-off gas of a watercraft
KR101996285B1 (en) Boil-Off Gas Reliquefaction System and Method
JP2873469B2 (en) A device that liquefies and separates and supplies air in response to fluctuations in demand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees