JP4063740B2 - Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof - Google Patents

Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof Download PDF

Info

Publication number
JP4063740B2
JP4063740B2 JP2003307657A JP2003307657A JP4063740B2 JP 4063740 B2 JP4063740 B2 JP 4063740B2 JP 2003307657 A JP2003307657 A JP 2003307657A JP 2003307657 A JP2003307657 A JP 2003307657A JP 4063740 B2 JP4063740 B2 JP 4063740B2
Authority
JP
Japan
Prior art keywords
photonic crystal
waveguide
air bridge
dimensional photonic
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003307657A
Other languages
Japanese (ja)
Other versions
JP2005077711A (en
Inventor
進 野田
卓 浅野
良典 田中
蘭子 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
TDK Corp
Original Assignee
Kyoto University
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003307657A priority Critical patent/JP4063740B2/en
Application filed by Kyoto University, TDK Corp filed Critical Kyoto University
Priority to US10/569,879 priority patent/US7333703B2/en
Priority to CNA2008100935422A priority patent/CN101261341A/en
Priority to EP04772361A priority patent/EP1666940A4/en
Priority to CNB2004800249432A priority patent/CN100394229C/en
Priority to PCT/JP2004/012405 priority patent/WO2005022222A1/en
Publication of JP2005077711A publication Critical patent/JP2005077711A/en
Priority to US12/004,029 priority patent/US7509014B2/en
Application granted granted Critical
Publication of JP4063740B2 publication Critical patent/JP4063740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、波長分割多重通信等の分野において分合波器等に用いられる2次元フォトニック結晶及びその製造方法に関する。   The present invention relates to a two-dimensional photonic crystal used for a multiplexer / demultiplexer or the like in a field such as wavelength division multiplex communication and a method for manufacturing the same.

近年、周期屈折率分布をもった光学機能材料であるフォトニック結晶が注目されている。フォトニック結晶は、その周期屈折率分布により光や電磁波のエネルギーに対してバンド構造が形成され、光や電磁波の伝播が不可能となるエネルギー領域(フォトニックバンドギャップ)が形成されるという特徴を有する。なお、本明細書において用いる「光」には、電磁波を含むものとする。   In recent years, photonic crystals, which are optical functional materials having a periodic refractive index distribution, have attracted attention. The photonic crystal has a feature that a band structure is formed with respect to the energy of light and electromagnetic waves due to its periodic refractive index distribution, and an energy region (photonic band gap) where propagation of light and electromagnetic waves is impossible is formed. Have. Note that “light” used in this specification includes electromagnetic waves.

フォトニック結晶中に適切な欠陥を導入することにより、エネルギー準位(欠陥準位)がフォトニックバンドギャップ中に形成される。これにより、フォトニックバンドギャップ中のエネルギーに対応する波長(周波数)範囲のうち、欠陥準位のエネルギーに対応する波長の光のみがその欠陥の位置において存在可能になる。この欠陥を線状に設けることにより導波路が形成され、点状に設けることにより光共振器が形成される。この点状欠陥において共振する光の波長(共振波長)はその形状や屈折率に依存する。   By introducing an appropriate defect in the photonic crystal, an energy level (defect level) is formed in the photonic band gap. Accordingly, only light having a wavelength corresponding to the energy of the defect level in the wavelength (frequency) range corresponding to the energy in the photonic band gap can exist at the position of the defect. A waveguide is formed by providing this defect in a line shape, and an optical resonator is formed by providing the defect in a dot shape. The wavelength (resonance wavelength) of light that resonates in this point defect depends on its shape and refractive index.

この共振器及び導波路を用いて様々な光デバイスを作製することが検討されている。例えば、この共振器を導波路の近傍に配置することにより、導波路内を伝播する様々な波長の光のうち共振器の共振波長に一致する波長の光を導波路から共振器を介して外部へ取り出す分波器として機能すると共に、共振器の共振波長を有する光を外部から共振器を介して導波路に導入する合波器としても機能する分合波器となる。このような分合波器は、例えば光通信の分野において、一本のファイバに複数の波長の光を伝播させてそれぞれの波長の光に別個の信号を乗せる波長分割多重方式通信に用いることができる。   Various optical devices are being studied using this resonator and waveguide. For example, by arranging this resonator in the vicinity of the waveguide, among the light of various wavelengths propagating in the waveguide, light having a wavelength that matches the resonance wavelength of the resonator is externally transmitted from the waveguide through the resonator. In addition to functioning as a demultiplexer for taking out light, the demultiplexer also functions as a multiplexer that introduces light having the resonance wavelength of the resonator into the waveguide from the outside via the resonator. For example, in the field of optical communication, such a multiplexer / demultiplexer is used for wavelength division multiplexing communication in which light of a plurality of wavelengths is propagated through a single fiber and a separate signal is placed on the light of each wavelength. it can.

フォトニック結晶には1次元結晶、2次元結晶及び3次元結晶があるが、このうち2次元フォトニック結晶は製造が比較的容易であるという利点を有する。その一例として、特許文献1には、高屈折率の板材(スラブ)に、その材料よりも屈折率の低い物質を周期的に配列した2次元フォトニック結晶であって、その周期的配列を線状に欠陥させた導波路と、周期的配列を乱す点状欠陥を導波路に隣接して設けた2次元フォトニック結晶及び光分合波器が記載されている。ここで、低屈折率物質の周期的な配列は、スラブに周期的に空孔を開けて形成することができる。   Photonic crystals include one-dimensional crystals, two-dimensional crystals, and three-dimensional crystals. Among these, two-dimensional photonic crystals have an advantage that they are relatively easy to manufacture. As an example, Patent Document 1 discloses a two-dimensional photonic crystal in which substances having a lower refractive index than that material are periodically arranged on a plate material (slab) having a high refractive index. A two-dimensional photonic crystal and an optical multiplexer / demultiplexer in which a waveguide having a defect in a shape and a point-like defect disturbing a periodic arrangement are provided adjacent to the waveguide are described. Here, the periodic arrangement of the low refractive index materials can be formed by periodically forming holes in the slab.

特開2001-272555号公報([0019]〜[0032]、図1)Japanese Patent Laid-Open No. 2001-272555 ([0019] to [0032], FIG. 1)

特許文献1の2次元フォトニック結晶においては、スラブは空気中に配置されている。スラブと空気とでは屈折率の差が大きいことから両者の境界では光が全反射する。そのため、この2次元フォトニック結晶では、スラブの面に垂直な方向に光のエネルギーが損失し難い。スラブの面に平行な方向には、フォトニックバンドギャップにより光のエネルギーの損失が防がれる。   In the two-dimensional photonic crystal of Patent Document 1, the slab is disposed in the air. Since the difference in refractive index between the slab and air is large, light is totally reflected at the boundary between the two. Therefore, in this two-dimensional photonic crystal, it is difficult to lose the energy of light in the direction perpendicular to the slab surface. In the direction parallel to the surface of the slab, the loss of light energy is prevented by the photonic band gap.

特許文献1に開示されているように、一般にスラブはかなり薄くする必要がある(実施例では約0.25μm)ため、厚さ方向の強度が低い。特に、スラブに多数の空孔を設けることで形成された2次元フォトニック結晶では、更に厚さ方向の強度は低下する。厚さ方向の強度が低いと、例えば製造上での歩留まりが悪くなる等の問題が生じる。   As disclosed in Patent Document 1, generally, the slab needs to be considerably thin (in the embodiment, about 0.25 μm), and thus the strength in the thickness direction is low. In particular, in the two-dimensional photonic crystal formed by providing a large number of holes in the slab, the strength in the thickness direction further decreases. When the strength in the thickness direction is low, there arises a problem that, for example, the yield in manufacturing is deteriorated.

2次元フォトニック結晶の強度を高める構成として、結晶を基板上に載置した2次元フォトニック結晶(以下、「基板付フォトニック結晶」とする)が考えられる。この場合、結晶の上面は空気と接するのに対して、結晶の下面は基板と接する。   As a configuration for increasing the strength of the two-dimensional photonic crystal, a two-dimensional photonic crystal (hereinafter referred to as “photonic crystal with substrate”) in which the crystal is placed on a substrate can be considered. In this case, the upper surface of the crystal is in contact with air, while the lower surface of the crystal is in contact with the substrate.

しかし、このような基板付フォトニック結晶に点状欠陥を設けた場合、スラブの上下共に空気である2次元フォトニック結晶(以下、「無基板フォトニック結晶」)に点状欠陥を設けた場合よりも点状欠陥の共振器としての特性が低下する。図1に、基板の有無を除いて同じ形状を有する無基板フォトニック結晶((a))と基板付フォトニック結晶((b))にそれぞれ同じ点状欠陥を設けた場合について、共振器の共振波長スペクトルの実験値を示す。(a)よりも(b)の方がスペクトルの半値幅が広い。そのため、基板付フォトニック結晶は無基板フォトニック結晶の場合よりも共振器の波長分解能が低い。また、共振器の性能を示す値であるQ値は、(a)ではQ=2350であるのに対して(b)ではQ=280と小さく、基板付フォトニック結晶の方が共振器から損失する光のエネルギーが大きい。   However, when a point-like defect is provided in such a photonic crystal with a substrate, when a point-like defect is provided in a two-dimensional photonic crystal (hereinafter referred to as “substrate-free photonic crystal”) that is air both above and below the slab As a result, the characteristic of a point defect as a resonator is deteriorated. Fig. 1 shows the case of the resonator in the case where the same point-like defects are provided in the substrate-free photonic crystal ((a)) and the photonic crystal with substrate ((b)) having the same shape except for the presence or absence of the substrate. The experimental value of a resonance wavelength spectrum is shown. The half width of the spectrum is wider in (b) than in (a). Therefore, the wavelength resolution of the resonator is lower in the photonic crystal with substrate than in the case of the substrateless photonic crystal. The Q value, which is a value indicating the performance of the resonator, is as small as Q = 280 in (b) compared to Q = 2350 in (a), and the photonic crystal with a substrate loses more from the resonator. The energy of light is great.

本発明が解決しようとする課題は、従来の2次元フォトニック結晶よりも高い機械的強度を有し、且つ共振器の性能が高い2次元フォトニック結晶を提供すると共に、そのような2次元フォトニック結晶を好適に製造する方法を提供することである。   The problem to be solved by the present invention is to provide a two-dimensional photonic crystal having a mechanical strength higher than that of a conventional two-dimensional photonic crystal and having a high resonator performance, and to provide such a two-dimensional photonic crystal. It is to provide a method for suitably producing a nick crystal.

本願発明者は、無基板フォトニック結晶よりも基板付フォトニック結晶の方が点状欠陥の共振器としての特性が低下する原因が以下の2点にあると考えた。
1点目は、基板付フォトニック結晶では基板の屈折率が空気よりも高いため、スラブの上下共に空気である無基板フォトニック結晶よりも、結晶の下面の方向の光の閉じこめ効果が小さいことである。そのため、共振器の下部から光の漏れが生じ、共振器としての性能が低下する。
The inventor of the present application considered that there are the following two reasons that the characteristics of a point-like defect as a resonator in a photonic crystal with a substrate are lower than those of a substrateless photonic crystal.
First, since the refractive index of the substrate is higher than that of air in the photonic crystal with a substrate, the effect of confining light in the direction of the lower surface of the crystal is smaller than that of the substrate-free photonic crystal in which the upper and lower sides of the slab are air. It is. Therefore, light leaks from the lower part of the resonator, and the performance as the resonator is lowered.

2点目は、基板付フォトニック結晶では結晶の特性に関するパラメータが上下非対称となることにより、共振器内に存在する光の対称性に起因した影響が生じることである。
無基板フォトニック結晶の場合には、共振器内に存在する光は、結晶面内の方向に電界のみが振動するTE波である。また、フォトニック結晶はTE波に対してフォトニックバンドギャップを形成する。そのため、無基板フォトニック結晶では共振器内のTE波の結晶面内への漏れがフォトニックバンドギャップにより防がれる。それに対して基板付フォトニック結晶では、前記非対称性により、結晶面内の方向に磁界のみが振動するTM波とTE波が結合して共振器内に存在する。TM波に対してはフォトニックバンドギャップが存在しないため、基板付フォトニック結晶では、共振器内のTM波が面内方向に漏れやすく、それゆえ共振器としての性能が低い。
The second point is that in the photonic crystal with a substrate, the parameters related to the characteristics of the crystal are vertically asymmetrical, which causes an influence due to the symmetry of light existing in the resonator.
In the case of a substrate-free photonic crystal, the light existing in the resonator is a TE wave in which only the electric field vibrates in the direction in the crystal plane. The photonic crystal forms a photonic band gap with respect to the TE wave. Therefore, in a substrate-free photonic crystal, leakage of TE waves in the resonator into the crystal plane is prevented by the photonic band gap. On the other hand, in the photonic crystal with a substrate, due to the asymmetry, the TM wave and the TE wave in which only the magnetic field vibrates in the direction in the crystal plane are combined and exist in the resonator. Since there is no photonic band gap for TM waves, in a photonic crystal with a substrate, TM waves in the resonator easily leak in the in-plane direction, and therefore the performance as a resonator is low.

本願発明者は、これらを原因とする特性低下が生じることなく、且つ高い機械的強度を確保することができる構成を検討し、以下のようなエアブリッジ構造を有する2次元フォトニック結晶を発明するに至った。即ち、本発明に係るエアブリッジ構造を有する2次元フォトニック結晶は、
a)スラブ状の本体と、
b)前記本体の下面に設けた基板と、
c)前記本体に所定の周期で格子状に配置された複数の、本体とは屈折率の異なる領域と、
d)前記異屈折率領域の欠陥を点状に設けて成る点状欠陥と、
e)前記本体の前記異屈折率領域を設けた範囲の一部分の範囲のみに面して基板に設けたエアブリッジ空間と、
を備え、前記点状欠陥は前記一部分の範囲内に設けられていることを特徴とする。
The inventor of the present application examines a configuration capable of ensuring high mechanical strength without causing deterioration in characteristics caused by these, and invents a two-dimensional photonic crystal having an air bridge structure as described below. It came to. That is, the two-dimensional photonic crystal having an air bridge structure according to the present invention is
a) a slab body;
b) a substrate provided on the lower surface of the main body;
c) a plurality of regions arranged in a lattice pattern with a predetermined period on the main body, different in refractive index from the main body,
d) point-like defects formed by providing the defects of the different refractive index regions in the form of dots,
e) an air bridge space provided in the substrate facing only a part of the range in which the different refractive index region of the main body is provided;
The point-like defect is provided within the range of the part .

また、エアブリッジ構造を有する2次元フォトニック結晶を好適に製造することができる方法を発明した。即ち、本発明に係るエアブリッジ構造を有する2次元フォトニック結晶の製造方法は、本体層と基板層が積層して成る板材から2次元フォトニック結晶を製造する方法において、
a)前記本体層を貫通するエッチング剤導入用空孔を形成する空孔形成工程と、
b)エッチング剤導入用空孔を通してエッチング剤を導入することにより、前記エッチング剤導入用空孔の周囲の基板層をエッチングして該基板層空間を形成するエアブリッジ空間形成工程と、
c)前記本体層の所定の範囲内に所定の大きさだけ本体層を除去して成る空孔を周期的に形成すると共に、前記空孔の点状の欠陥を形成する2次元フォトニック結晶形成工程と、
を有し、
前記空間は前記本体層の前記空孔を形成した範囲内の一部分の範囲のみに面するように前記基板層に形成され、
前記点状欠陥は、前記一部分の範囲内に設けられること、
を特徴とする。
Moreover, the method which can manufacture suitably the two-dimensional photonic crystal which has an air bridge structure was invented. That is, the method for producing a two-dimensional photonic crystal having an air bridge structure according to the present invention is a method for producing a two-dimensional photonic crystal from a plate material in which a main body layer and a substrate layer are laminated.
a pore forming step of forming an etchant introduction holes penetrating the a) said body layer,
By introducing an etchant through b) etchant introduction holes, and the air-bridge space formation step of forming a space on the substrate layer by etching the substrate layer around the etchant introduction holes,
c) Formation of a two-dimensional photonic crystal that periodically forms vacancies formed by removing the main body layer by a predetermined size within a predetermined range of the main body layer and forms dot-like defects in the vacancies Process,
I have a,
The space is formed in the substrate layer so as to face only a part of the range in which the holes of the main body layer are formed,
The point defect is provided within the range of the portion;
It is characterized by.

発明の実施の形態及び効果Embodiments and effects of the invention

(1)エアブリッジ構造を有する2次元フォトニック結晶
本発明の2次元フォトニック結晶では、面内方向の大きさに比べて厚さが十分薄い板状体であるスラブが本体となる。本体の下面に基板を設ける。この基板は2次元フォトニック結晶の強度を高めるためのものである。なお、ここでは便宜上、基板を設ける面を本体の「下面」と記載したが、本発明の2次元フォトニック結晶は基板を下側にして使用されることに限定されず、任意の向きに配置して使用することができる。
(1) Two-dimensional photonic crystal having an air bridge structure In the two-dimensional photonic crystal of the present invention, the main body is a slab that is a plate-like body that is sufficiently thinner than the size in the in-plane direction. A substrate is provided on the lower surface of the main body. This substrate is for increasing the strength of the two-dimensional photonic crystal. Here, for convenience, the surface on which the substrate is provided is described as the “lower surface” of the main body. However, the two-dimensional photonic crystal of the present invention is not limited to being used with the substrate on the lower side, and is arranged in any orientation. Can be used.

この本体内に、該本体とは屈折率の異なる領域(異屈折率領域)を複数、所定の周期で格子状に配置する。これにより、その周期により定まる所定の波長帯域の光を本体の面内方向に通さないフォトニックバンドギャップが形成された2次元フォトニック結晶となる。この2次元フォトニック結晶では上記のような構造とすることにより、本体と本体外(空気)との間では両者の屈折率の差により全反射が生じるため、本体と本体外との間で光が漏れることがない。ここで、異屈折率領域を配置する格子には三角格子や正方格子等がある。また、異屈折率領域は、本体よりも屈折率の低いもの及び高いもののいずれであってもよいが、本体に周期的に空孔を空けることにより形成することが望ましい。異屈折率領域を空孔とすることにより、本体との屈折率の差を大きくできると共に、製造時に異屈折率領域の形成が容易であり、更に後述の製造方法を容易に適用することができる。   In this main body, a plurality of regions (different refractive index regions) having a refractive index different from that of the main body are arranged in a lattice pattern with a predetermined period. Thus, a two-dimensional photonic crystal is formed in which a photonic band gap that does not allow light in a predetermined wavelength band determined by the period to pass in the in-plane direction of the main body is formed. This two-dimensional photonic crystal has the above-described structure, so that total reflection occurs between the main body and the outside of the main body (air) due to the difference in refractive index between the two. Will not leak. Here, there are a triangular lattice, a square lattice, and the like as a lattice for disposing the different refractive index regions. Further, the different refractive index region may be either one having a lower refractive index than that of the main body or one having a higher refractive index than that of the main body, but is desirably formed by periodically making holes in the main body. By making the different refractive index region a hole, the difference in refractive index from the main body can be increased, the formation of the different refractive index region can be facilitated during manufacturing, and the manufacturing method described later can be easily applied. .

この異屈折率領域の欠陥を点状に設けることにより、点状欠陥を形成する。この点状欠陥には、異屈折率領域を他の異屈折率領域と異なる大きさとしたり欠損させたりしたもの等を用いることができる。また、欠陥を設ける異屈折率領域は1個又は隣接する複数個とすることができる。隣接する複数個の異屈折率領域の欠陥を設けた場合には、該複数個の欠陥が相まって1つの点状欠陥となる。点状欠陥はその形状により定まる波長の光が共振する光共振器として機能する。更に、点状欠陥を複数個設けてもよい。複数の点状欠陥の形状をそれぞれ異なるものとすることにより、各点状欠陥でそれぞれ異なる波長の光を共振させることができる。   By providing the defects in the different refractive index regions in a dot shape, a dot defect is formed. As this point-like defect, it is possible to use a different refractive index region having a different size or a defect from another different refractive index region. Further, the number of different refractive index regions where defects are provided may be one or a plurality of adjacent regions. When defects in a plurality of adjacent different refractive index regions are provided, the plurality of defects combine to form a single point defect. The point defect functions as an optical resonator in which light having a wavelength determined by its shape resonates. Further, a plurality of point defects may be provided. By making the shapes of the plurality of point defects different from each other, it is possible to resonate light having different wavelengths in each point defect.

前記点状欠陥に面して基板の所定の範囲に空間を設ける。この空間は、点状欠陥の直下にのみ形成してもよいが、それよりも広い範囲、即ち点状欠陥の外縁から外方に一定の距離だけ離れた範囲まで形成してもよい。空間を設けた範囲以外では、本体は基板によって支えられる。また、点状欠陥を複数個設けた場合には、各点状欠陥毎にこの空間を設けてもよいし、複数の点状欠陥に面する1個の空間を設けてもよい。本発明の2次元フォトニック結晶は空間(空気)の上に本体による橋を架けたような架橋状の構造となっているため、以下では、この2次元フォトニック結晶の構造を「エアブリッジ構造」と呼び、形成された空間を「エアブリッジ空間」と呼ぶ。   A space is provided in a predetermined range of the substrate facing the point defect. This space may be formed only directly under the point-like defect, but may be formed in a wider range, that is, a range away from the outer edge of the point-like defect by a certain distance. Outside the range where the space is provided, the main body is supported by the substrate. Further, when a plurality of point-like defects are provided, this space may be provided for each point-like defect, or one space facing a plurality of point-like defects may be provided. Since the two-dimensional photonic crystal of the present invention has a bridge-like structure in which a main body bridge is built on a space (air), the structure of the two-dimensional photonic crystal is referred to as an “air bridge structure” below. And the formed space is called “air bridge space”.

2次元フォトニック結晶が上記のようなエアブリッジ構造であることにより、点状欠陥による光共振器の性能は、前記基板付フォトニック結晶よりも高く、前記無基板フォトニック結晶と同等にすることができる。その理由は以下の通りである。まず、点状欠陥の位置では本体の上下共に空気が存在するため、本体の基板側の面でも外部との屈折率の差を大きくすることができ、光の閉じこめ効果が大きい。また、点状欠陥の上下が共に空気であることから、点状欠陥の特性に関するパラメータがその位置で上下対称となる。これにより、共振器内に存在する光はTE波のみとなり、フォトニックバンドギャップにより共振器内に存在する光が結晶の面内方向に漏れることを防ぐことができる。   Since the two-dimensional photonic crystal has the air bridge structure as described above, the performance of the optical resonator due to the point-like defect is higher than that of the photonic crystal with a substrate and equal to that of the substrate-free photonic crystal. Can do. The reason is as follows. First, since air exists above and below the main body at the point-like defect position, the difference in refractive index from the outside can be increased even on the substrate side surface of the main body, and the light confinement effect is great. In addition, since both the top and bottom of the point defect are air, the parameters related to the characteristics of the point defect are vertically symmetric at that position. Thereby, only the TE wave is present in the resonator, and the light existing in the resonator can be prevented from leaking in the in-plane direction of the crystal due to the photonic band gap.

また、本発明の2次元フォトニック結晶は、エアブリッジ空間を設けた範囲以外では基板により支えられるため、機械的強度を確保することができる。特に、異屈折率領域を空孔とした場合には、空孔を設けることにより結晶の機械的強度が低下するため、本発明の構成とすることが有益である。   Moreover, since the two-dimensional photonic crystal of the present invention is supported by the substrate outside the range where the air bridge space is provided, the mechanical strength can be ensured. In particular, when the different refractive index region is a vacancy, the mechanical strength of the crystal is lowered by providing the vacancies, so that the configuration of the present invention is beneficial.

次に、エアブリッジ空間の大きさについて検討する。点状欠陥の直下にのみエアブリッジ空間を形成しても前記基板付フォトニック結晶の場合よりも光共振器の性能は改善するが、より望ましくは、点状欠陥の直下のみならず、点状欠陥の外縁から異屈折率領域の1周期分以上離れた領域までエアブリッジ空間を形成する。このように、より広い範囲までエアブリッジ空間を形成することにより、前記無基板フォトニック結晶と同等の高い光共振器の性能を得ることができる。一方、結晶の強度を確保するために、エアブリッジ空間の形成範囲は一定の大きさ以下とすることが望ましい。この範囲は本体の厚さや異屈折率領域の大きさ・材料等により多少異なるが、通常、本体の面内の少なくとも1方向について、点状欠陥の外縁から外方に異屈折率領域の25周期分以下の範囲とすることが望ましい。この範囲を1方向でも25周期分以下とすればその方向で支えられるため、他の方向をそれ以上の長さにしても結晶の強度を確保することができる。また、エアブリッジ空間の深さは、わずかでもあれば前記基板付フォトニック結晶の場合よりも光共振器の性能が改善するが、より望ましくは、基板への光の漏れや上下非対称性の影響を十分に排除するために、異屈折率領域の周期の2倍以上とすることが望ましい。   Next, the size of the air bridge space will be examined. Even if the air bridge space is formed only directly under the point defect, the performance of the optical resonator is improved as compared with the case of the photonic crystal with a substrate. An air bridge space is formed from the outer edge of the defect to a region separated by one period or more of the different refractive index region. Thus, by forming the air bridge space over a wider range, it is possible to obtain a high optical resonator performance equivalent to that of the substrate-free photonic crystal. On the other hand, in order to secure the strength of the crystal, it is desirable that the formation range of the air bridge space be a certain size or less. This range varies somewhat depending on the thickness of the main body and the size and material of the different refractive index region, but usually, at least one direction in the surface of the main body has 25 cycles of the different refractive index region outward from the outer edge of the point defect. It is desirable to set the range within minutes. If this range is set to 25 cycles or less even in one direction, it is supported in that direction, so that the strength of the crystal can be secured even if the other direction is longer than that. Further, if the depth of the air bridge space is small, the performance of the optical resonator is improved as compared with the case of the photonic crystal with a substrate, but more desirably, the influence of light leakage to the substrate and vertical asymmetry is exerted. In order to sufficiently eliminate the above, it is desirable to set the period of the different refractive index region to twice or more.

本発明の2次元フォトニック結晶は、点状欠陥の近傍に更に導波路を設けることにより、分合波器として用いることができる。この導波路は、異屈折率領域の欠陥を線状に設けることにより形成される。特に、異屈折率領域を線状に欠損させる、即ち異屈折率領域を設けないことにより形成されることが望ましい。これにより、導波路を流れる複数の波長の重畳光から共振波長の光を分波して結晶外部へ取り出したり、或いは共振波長の光を結晶外部から導波路の重畳光に合波する分合波器となる。   The two-dimensional photonic crystal of the present invention can be used as a multiplexer / demultiplexer by further providing a waveguide near the point-like defect. This waveguide is formed by providing defects in the different refractive index region in a linear shape. In particular, it is desirable that the different refractive index region be formed in a linear manner, that is, by not providing the different refractive index region. As a result, demultiplexing of the light having the resonance wavelength from the superimposed light having a plurality of wavelengths flowing through the waveguide and extracting the light to the outside of the crystal, or multiplexing the light having the resonance wavelength from the outside of the crystal to the superimposed light of the waveguide. It becomes a vessel.

このような導波路の一部がエアブリッジ空間に面する場合には、導波路をエアブリッジ導波路部とそれ以外の部分を同じ幅で形成すると、エアブリッジ導波路部の透過波長帯域がそれ以外の部分(「基板導波路部」)の透過波長帯域よりも短波長側にシフトする。導波路全体の透過波長帯域は、前記2つの部分の透過波長帯域の共通部であるため、エアブリッジ導波路部がない場合よりも狭くなる。そこで、エアブリッジ導波路部における導波路の幅を基板導波路部の導波路幅よりも所定の大きさだけ広くすることが望ましい。これにより、エアブリッジ導波路部の透過波長帯域が長波長側にシフトするため、このような透過波長帯域の狭小化を防ぐことができる。   When a part of such a waveguide faces the air bridge space, if the waveguide is formed with the same width as the air bridge waveguide part and the other part, the transmission wavelength band of the air bridge waveguide part is reduced. It shifts to a shorter wavelength side than the transmission wavelength band of the other part (“substrate waveguide part”). Since the transmission wavelength band of the entire waveguide is a common part of the transmission wavelength band of the two parts, it is narrower than when there is no air bridge waveguide part. Therefore, it is desirable to make the width of the waveguide in the air bridge waveguide portion larger by a predetermined size than the waveguide width of the substrate waveguide portion. Thereby, since the transmission wavelength band of the air bridge waveguide part is shifted to the long wavelength side, such a narrowing of the transmission wavelength band can be prevented.

但し、2次元フォトニック結晶の製造上の限界等から、導波路がエアブリッジ空間に面する部分と導波路を広くする部分とが一致せず、エアブリッジ導波路部に導波路幅の狭い領域ができたり、基板導波路部に導波路幅の広い領域ができる可能性がある。エアブリッジ導波路部に導波路幅の狭い領域ができると、その領域の導波路透過帯域が上記短波長側のままとなるため、導波路全体の透過波長帯域を広くすることができない。一方、基板導波路部に導波路幅の広い領域ができた場合には、その領域の導波路透過帯域が長波長側にシフトし、短波長側の共通透過波長帯域が小さくなる。しかし、短波長側では、TE波とTM波が混在した光であれば、導波路内でTM波の漏れが生じるものの、共通透過波長帯域外であっても導波可能である。基板導波路部における導波路幅の広い領域がせいぜい異屈折率領域の数周期分であれば、TM波の漏れは実用上問題のない程度に抑えられ、広い共通透過波長帯域を有効に利用することができる。従って、設計上、エアブリッジ導波路部から所定の距離だけ離れた位置まで、導波路の幅が他の部分の導波路の幅よりも所定の大きさだけ広くしておくことにより、製造時に導波路幅を変更する位置がずれたとしても、導波路の共通透過波長帯域が狭くなることを防ぐことができる。   However, due to manufacturing limitations of the two-dimensional photonic crystal, the portion where the waveguide faces the air bridge space does not match the portion where the waveguide is widened, and the waveguide has a narrow waveguide width. There is a possibility that a region having a wide waveguide width can be formed in the substrate waveguide portion. If a region having a narrow waveguide width is formed in the air bridge waveguide portion, the waveguide transmission band in that region remains on the short wavelength side, so that the transmission wavelength band of the entire waveguide cannot be widened. On the other hand, when a region having a wide waveguide width is formed in the substrate waveguide portion, the waveguide transmission band in that region is shifted to the long wavelength side, and the common transmission wavelength band on the short wavelength side is reduced. However, on the short wavelength side, if the light is a mixture of TE waves and TM waves, TM waves leak in the waveguide, but can be guided even outside the common transmission wavelength band. If the wide waveguide area in the substrate waveguide section is at most several periods of the different refractive index area, TM wave leakage can be suppressed to a practically acceptable level and the wide common transmission wavelength band can be used effectively. be able to. Therefore, by design, when the width of the waveguide is set to be a predetermined size wider than the width of the waveguide of the other part up to a position away from the air bridge waveguide portion by a predetermined distance, Even if the position for changing the waveguide width is shifted, it is possible to prevent the common transmission wavelength band of the waveguide from becoming narrow.

(2)エアブリッジ構造を有する2次元フォトニック結晶の製造方法
次に、エアブリッジ構造を有する2次元フォトニック結晶を製造する方法について説明する。この方法は特に異屈折率領域を空孔とした2次元フォトニック結晶を製造する際に好適に用いることができる。
(2) Method for Producing Two-dimensional Photonic Crystal Having Air Bridge Structure Next, a method for producing a two-dimensional photonic crystal having an air bridge structure will be described. This method can be suitably used particularly when manufacturing a two-dimensional photonic crystal having a hole of a different refractive index region.

本方法では、本体層と基板層が積層して成る板材を材料とする。本体層に2次元フォトニック結晶が形成され、基板層にエアブリッジ空間が形成される。このような板材としては、例えば、本体層がSiから成り、基板層のうち少なくともエアブリッジ空間を設ける部分がSiO2から成る基板を用いることができる。具体的には、Siの厚膜にSiO2薄膜を形成し、更にSiO2薄膜の上にSi薄膜を形成した、市販のSOI(Silicon on insulator)基板を用いることができる。SOI基板の場合、Si薄膜が本体層となり、SiO2薄膜とSi厚膜が基板層となるが、基板層のうちエアブリッジ空間が形成されるのはSiO2薄膜である。 In this method, a plate material formed by laminating a main body layer and a substrate layer is used as a material. A two-dimensional photonic crystal is formed in the main body layer, and an air bridge space is formed in the substrate layer. As such a plate material, for example, a substrate in which the main body layer is made of Si and at least a portion of the substrate layer in which the air bridge space is provided can be made of SiO 2 can be used. Specifically, a commercially available SOI (Silicon on insulator) substrate in which a SiO 2 thin film is formed on a thick Si film and a Si thin film is further formed on the SiO 2 thin film can be used. In the case of an SOI substrate, the Si thin film serves as the main body layer, and the SiO 2 thin film and the Si thick film serve as the substrate layer. Of the substrate layers, the air bridge space is formed in the SiO 2 thin film.

まず、板材に本体層を貫通する空孔を形成する(空孔形成工程)。この空孔をここでは「エッチング剤導入用空孔」と呼ぶ。このエッチング剤導入用空孔は、完成後の2次元フォトニック結晶では異屈折率領域の一部になる。但し、この空孔形成工程では全ての異屈折率領域を形成するのではなく、本体層の一部分にのみ形成する。このエッチング剤導入用空孔は、例えばフォトリソグラフィー又は電子ビーム(EB)描画及びエッチングの技術を用いて形成することができる。   First, holes that penetrate the main body layer are formed in the plate material (hole forming step). Here, these holes are referred to as “etching agent introducing holes”. The holes for introducing the etching agent become a part of the different refractive index region in the completed two-dimensional photonic crystal. However, not all the different refractive index regions are formed in this hole forming step, but only in a part of the main body layer. The holes for introducing the etching agent can be formed using, for example, photolithography or electron beam (EB) drawing and etching techniques.

次に、エッチング剤導入用空孔を通して、基板層にエッチング剤を導入する。これにより、エッチング剤がエッチング剤導入用空孔から基板層に浸入し、基板層がエッチングされる。こうして、エッチング剤導入用空孔の周囲の基板層が除去され、その位置にはエアブリッジ空間が形成される(エアブリッジ空間形成工程)。エッチング剤には、既存のエッチング液やエッチングガスを用いることができる。例えば基板層がSiO2から成る場合にはフッ化水素溶液を用いることができる。 Next, the etching agent is introduced into the substrate layer through the holes for introducing the etching agent. As a result, the etching agent enters the substrate layer from the etching agent introduction hole, and the substrate layer is etched. Thus, the substrate layer around the holes for introducing the etchant is removed, and an air bridge space is formed at that position (air bridge space forming step). An existing etchant or etching gas can be used as the etchant. For example, when the substrate layer is made of SiO 2 may be used hydrogen fluoride solution.

前記エッチングの終了後、本体層に、所定の大きさだけ該本体層を除去して成る空孔を周期的に形成する。この工程により全ての異屈折率領域が形成される。それと共に、エアブリッジ空間に面して本体層に点状欠陥を形成する。点状欠陥は、他の空孔とは異なる径の空孔を設けたり、空孔を欠損させること等により形成する。これらの作業により、本体層に2次元フォトニック結晶が形成される(2次元フォトニック結晶形成工程)。空孔や点状欠陥は、特許文献1に記載の方法と同様に、フォトリソグラフィー又はEB描画及びエッチングの技術等を用いて形成することができる。以上により、点状欠陥の下部にエアブリッジ空間が形成された2次元フォトニック結晶を製造することができる。   After the etching is completed, holes are formed periodically in the main body layer by removing the main body layer by a predetermined size. By this process, all the different refractive index regions are formed. At the same time, point defects are formed in the main body layer facing the air bridge space. The point-like defect is formed by providing a hole having a diameter different from that of other holes, or by losing the hole. By these operations, a two-dimensional photonic crystal is formed in the main body layer (two-dimensional photonic crystal formation step). The vacancies and dot-like defects can be formed using photolithography, EB drawing and etching techniques, and the like, as in the method described in Patent Document 1. As described above, a two-dimensional photonic crystal in which an air bridge space is formed below the point defect can be manufactured.

2次元フォトニック結晶分合波器に用いる場合等、本発明の2次元フォトニック結晶に更に導波路を設ける場合には、前記2次元フォトニック結晶形成工程において、空孔の欠陥を線状に設ければよい。また、形成されたエアブリッジ空間に導波路が面する場合には、前記のようにその部分(エアブリッジ導波路部)の導波路の幅が他の部分よりも広くなるように導波路を形成することが望ましい。更に、製造時に導波路幅を変更する位置がずれたとしても、導波路の共通透過波長帯域が狭くなることを防ぐことができるように、前記のように、エアブリッジ導波路部から所定の距離だけ離れた位置まで、導波路の幅が他の部分の導波路の幅よりも所定の大きさだけ広く形成することが望ましい。   When a waveguide is further provided in the two-dimensional photonic crystal of the present invention, such as when used in a two-dimensional photonic crystal multiplexer / demultiplexer, in the two-dimensional photonic crystal formation step, the vacancy defects are linearized. What is necessary is just to provide. If the waveguide faces the formed air bridge space, the waveguide is formed so that the width of the waveguide of the portion (air bridge waveguide portion) is wider than the other portions as described above. It is desirable to do. Further, as described above, a predetermined distance from the air bridge waveguide portion can be prevented so that the common transmission wavelength band of the waveguide can be prevented from being narrowed even if the position where the waveguide width is changed during manufacturing is shifted. It is desirable that the width of the waveguide be formed by a predetermined size larger than the width of the waveguide in other portions up to a position that is far away.

本発明の製造方法により、半導体の製造で利用されている既存の技術を用いて、容易に、つまり低コストで、エアブリッジ構造を有する2次元フォトニック結晶を製造することができる。   According to the manufacturing method of the present invention, a two-dimensional photonic crystal having an air bridge structure can be manufactured easily, that is, at low cost, using an existing technique used in semiconductor manufacturing.

本発明のエアブリッジ構造を有する2次元フォトニック結晶の構成例を図2に示す。(a)はその斜視図、(b)は平面図、(c)は(b)に示したA-A'方向の断面図(左側)及びB-B'方向の断面図(右側)である。このデバイスは、Siから成る本体層11、SiO2から成るSiO2基板層12及びSiから成るSi基板層13を有する。SiO2基板層12とSi基板層13を合わせて、本体層11を支える基板となる。 A configuration example of the two-dimensional photonic crystal having the air bridge structure of the present invention is shown in FIG. (a) is a perspective view thereof, (b) is a plan view, (c) is a cross-sectional view in the AA ′ direction (left side) and a cross-sectional view in the BB ′ direction (right side) shown in (b). . The device has a Si substrate layer 13 made of SiO 2 substrate layer 12 and the Si consists body layer 11, SiO 2 composed of Si. The SiO 2 substrate layer 12 and the Si substrate layer 13 are combined to form a substrate that supports the main body layer 11.

本体層11に空孔15を三角格子状の周期で配置する。これにより、フォトニックバンドギャップが形成されるため、フォトニックバンドギャップ内のエネルギーに対応する波長の光は本体層内を伝播することができない。ここで、三角格子の周期aは0.41μmとした。また、直線状に並んだ3個の空孔15を欠損させる、即ち3個の空孔を設けないことにより、1個の点状欠陥16を形成する。SiO2基板層12のうち、点状欠陥16の下部の領域にSiO2のない空間17を設ける。この空間17を設ける範囲については、後述する。 The holes 15 are arranged in the main body layer 11 with a triangular lattice pattern. Thereby, since a photonic band gap is formed, light having a wavelength corresponding to the energy in the photonic band gap cannot propagate in the main body layer. Here, the period a of the triangular lattice was 0.41 μm. Further, one point-like defect 16 is formed by missing three holes 15 arranged in a straight line, that is, by not providing three holes. In the SiO 2 substrate layer 12, a space 17 free from SiO 2 is provided in a region below the point defect 16. The range in which this space 17 is provided will be described later.

本体層11の下側でSiO2基板層12に接している領域では、Si(屈折率〜3.5)とSiO2(屈折率〜1.5)の屈折率の差により、本体層11に垂直な方向に光を閉じ込めることはある程度可能である。しかし、本体層が空気と接している場合と比較するとその閉じ込めは不十分であり、仮に点状欠陥16の直下にSiO2が存在すると、光が点状欠陥16からSiO2基板層12に漏れてしまう。また、点状欠陥16の位置に上下非対称性が生じるため、TE波とTM波の結合が生じて、光が点状欠陥16から本体層11の面内に漏れてしまう。そのため、本実施例では点状欠陥16の下部に空間17を設け、光が点状欠陥16からSiO2基板層12や本体層11の面内に漏れることを防いでいる。 In a region in contact with the SiO 2 substrate layer 12 below the main body layer 11, a direction perpendicular to the main body layer 11 is caused by a difference in refractive index between Si (refractive index˜3.5) and SiO 2 (refractive index˜1.5). It is possible to confine light to some extent. However, the confinement is insufficient as compared with the case where the main body layer is in contact with air. If SiO 2 exists immediately below the point defect 16, light leaks from the point defect 16 to the SiO 2 substrate layer 12. End up. Further, since vertical asymmetry occurs at the position of the point defect 16, TE wave and TM wave are coupled, and light leaks from the point defect 16 into the surface of the main body layer 11. Therefore, in this embodiment, a space 17 is provided below the point defect 16 to prevent light from leaking from the point defect 16 into the surface of the SiO 2 substrate layer 12 and the main body layer 11.

図2のような構造の2次元フォトニック結晶について、時間領域差分法(Finite Difference Time Domain method; FDTD法)による計算から、点状欠陥16のQ値を求めた。ここでは、空間17を設ける範囲を点状欠陥16の直下のみ(図3(a))、点状欠陥16から格子1周期分だけ外側まで((b))、同じく2周期分外側まで((c))の場合についてそれぞれQ値を計算した。なお、空間17の深さは2aとした。また、比較のために、本体層11の上下共に全面を空気とした場合(無基板フォトニック結晶)と、点状欠陥16の直下を含む本体層11の下部全面にSiO2基板層12を設けた場合(基板付フォトニック結晶)についてQ値を計算した。これらの計算結果を図4に示す。なお、図4では無基板フォトニック結晶を「無基板」と、基板付フォトニック結晶を「基板付」と略して表記した。(b)、(c)の場合に、無基板フォトニック結晶に設けた点状欠陥と同等のQ値が得られる。従って、空間17は、(b)よりも広い範囲で、本体層11の強度が確保できる範囲とすればよい。以上のように、本実施例の2次元フォトニック結晶により高い性能を有する点状欠陥共振器が実現できることがわかる。 With respect to the two-dimensional photonic crystal having the structure as shown in FIG. 2, the Q value of the point defect 16 was obtained from the calculation by the time domain difference method (FDTD method). Here, the space 17 is provided only under the point defect 16 (FIG. 3 (a)), from the point defect 16 to the outside by one grating period ((b)), and to the outside by two periods ((( The Q value was calculated for each case of c)). The depth of the space 17 was 2a. For comparison, the SiO 2 substrate layer 12 is provided on the entire lower surface of the main body layer 11 including the area immediately below the point defect 16 when the entire upper and lower surfaces of the main body layer 11 are air (substrate-free photonic crystal). Q value was calculated for the case (photonic crystal with substrate). These calculation results are shown in FIG. In FIG. 4, the non-substrate photonic crystal is abbreviated as “no substrate”, and the photonic crystal with substrate is abbreviated as “with substrate”. In the cases (b) and (c), a Q value equivalent to the point defect provided in the substrate-free photonic crystal can be obtained. Therefore, the space 17 may be in a range in which the strength of the main body layer 11 can be ensured in a range wider than (b). As described above, it can be seen that a point-like defect resonator having high performance can be realized by the two-dimensional photonic crystal of this example.

本体層11に形成する点状欠陥には図2に示したもの以外にも様々なものがある。そのいくつかの例を図5に示す。(a)は、空孔15のうちの1つの径を他の空孔よりも大きくして点状欠陥161を形成したものである。このような点状欠陥は、その径を変化させることにより共振波長を容易に制御することができる。(b)は、同一の点状欠陥を2個並置したものである。これら2個の点状欠陥1621及び1622に対して1つの空間172を設けている。2個の点状欠陥1621及び1622は同じ波長の光に共振し、1個の共振器として機能する。(c)及び(d)は、1つのフォトニック結晶上に異なる複数の点状欠陥163〜165を配置したものである。各点状欠陥163〜165ではそれぞれ異なる波長の光を共振する。(c)では各点状欠陥毎に面してそれぞれ空間173〜175を設けている。それに対して(d)ではこれらの点状欠陥163〜165の全てに共通する1つの空間176を設けている。この空間176は空間173〜175よりも大きいが、点状欠陥163〜165の配列方向に垂直な面内方向の長さLが短いため、十分な強度が確保できる。   There are various types of point defects formed in the main body layer 11 other than those shown in FIG. Some examples are shown in FIG. (a) shows a point defect 161 formed by making one of the holes 15 larger in diameter than the other holes. Such a point defect can easily control the resonance wavelength by changing its diameter. (b) shows two identical point defects arranged side by side. One space 172 is provided for these two point-like defects 1621 and 1622. The two point-like defects 1621 and 1622 resonate with light of the same wavelength and function as one resonator. (c) and (d) are obtained by disposing a plurality of different point defects 163 to 165 on one photonic crystal. Each of the point defects 163 to 165 resonates light having different wavelengths. In (c), spaces 173 to 175 are provided facing each point-like defect. On the other hand, in (d), one space 176 common to all of these point-like defects 163 to 165 is provided. Although the space 176 is larger than the spaces 173 to 175, the length L in the in-plane direction perpendicular to the arrangement direction of the point-like defects 163 to 165 is short, so that sufficient strength can be secured.

図6に、本発明の2次元フォトニック結晶に導波路を設ける例を示す。導波路18は、空孔15を線状に欠損させる、即ち空孔15を設けないことにより構成される。また、空孔15を配列した三角格子の格子点から単に空孔15を欠損させてもよいが、更に空孔15の配列をずらして導波路18の幅を適宜設定することにより、導波路を透過する光の波長帯を調節することができる。点状欠陥の近傍にこのような導波路を設けることにより、導波路を流れる複数の波長の重畳光から共振波長の光を分波して結晶外部へ取り出したり、或いは共振波長の光を結晶外部から導波路の重畳光に合波する分合波器となる。   FIG. 6 shows an example in which a waveguide is provided in the two-dimensional photonic crystal of the present invention. The waveguide 18 is configured by missing the holes 15 in a linear manner, that is, by not providing the holes 15. In addition, the holes 15 may be simply deleted from the lattice points of the triangular lattice in which the holes 15 are arranged. However, by further shifting the arrangement of the holes 15 and appropriately setting the width of the waveguide 18, The wavelength band of transmitted light can be adjusted. By providing such a waveguide in the vicinity of the point-like defect, the light having the resonance wavelength is demultiplexed from the superposed light having a plurality of wavelengths flowing through the waveguide, and the light having the resonance wavelength is extracted outside the crystal. Thus, the multiplexer / demultiplexer multiplexes the superimposed light of the waveguide.

次に、本発明のエアブリッジ構造を有する2次元フォトニック結晶の製造方法の一実施例について、図7を用いて説明する。
Siから成る本体層11、SiO2基板層12及びSi基板層13の3層から成るSOI基板21を用意する。SOI基板21には市販のものを用いることができる。まず、本体層11にエッチング剤導入用空孔22を2個空ける((a))。エッチング剤導入用空孔22の形成は、例えば、本体層11の表面にEBレジストを塗布してエッチング剤導入用空孔22の位置にEB描画を行った後、エッチングガス(例えばSF6)を用いてドライエッチングを行うことにより行う。次に、SOI基板21をフッ化水素水溶液23中に浸す((b))。エッチング剤導入用空孔22から浸入したフッ化水素水溶液は、本体層11とSi基板層13には影響を及ぼすことなくSiO2基板層12のみをエッチングする。これにより、エッチング剤導入用空孔22から一定の距離まで、SiO2基板層12がエッチングされ、エアブリッジ空間24が形成される。次に、異屈折率領域となる空孔25を三角格子状に形成すると共に、エアブリッジ空間24上の位置に配置されるように、空孔が欠損した点状欠陥26を形成する。ここで、エッチング剤導入用空孔22が異屈折率領域の空孔の1つになるように、SOI基板21の位置を調整する。この空孔25の形成もエッチング剤導入用空孔22と同様にEB描画とドライエッチングの手法を用いて行う。こうして、本発明のエアブリッジ構造を有する2次元フォトニック結晶が完成する。
Next, an embodiment of a method for producing a two-dimensional photonic crystal having an air bridge structure according to the present invention will be described with reference to FIG.
An SOI substrate 21 composed of three layers of a main body layer 11 made of Si, an SiO 2 substrate layer 12 and an Si substrate layer 13 is prepared. A commercially available SOI substrate 21 can be used. First, two holes 22 for introducing an etching agent are formed in the main body layer 11 ((a)). For example, the etching agent introduction hole 22 is formed by applying an EB resist on the surface of the main body layer 11 and performing EB drawing at the position of the etching agent introduction hole 22 and then using an etching gas (for example, SF 6 ). It is performed by performing dry etching. Next, the SOI substrate 21 is immersed in the hydrogen fluoride aqueous solution 23 ((b)). The aqueous hydrogen fluoride solution that has entered through the holes 22 for introducing the etchant etches only the SiO 2 substrate layer 12 without affecting the main body layer 11 and the Si substrate layer 13. As a result, the SiO 2 substrate layer 12 is etched from the etching agent introduction hole 22 to a certain distance, and the air bridge space 24 is formed. Next, vacancies 25 serving as different refractive index regions are formed in a triangular lattice shape, and point-like defects 26 lacking vacancies are formed so as to be arranged at positions on the air bridge space 24. Here, the position of the SOI substrate 21 is adjusted so that the etching agent introducing hole 22 becomes one of the holes in the different refractive index region. The formation of the holes 25 is also performed by using the EB drawing and dry etching techniques in the same manner as the etching agent introducing holes 22. Thus, the two-dimensional photonic crystal having the air bridge structure of the present invention is completed.

更に導波路を設ける場合には、(c-1)の代わりに、(c-2)に示すように導波路27の位置の格子点には空孔25を空けないようにすればよい。   In the case where a waveguide is further provided, instead of (c-1), as shown in (c-2), it is only necessary to prevent the holes 25 from being formed in the lattice point at the position of the waveguide 27.

本実施例により製造された2次元フォトニック結晶の走査電子顕微鏡(SEM)写真を図8に示す。(a)及び(b)はこの2次元フォトニック結晶を本体層11の上部から見たものである。この例では、点状欠陥と導波路を形成している。変色して見える領域31では、その本体層11の直下にエアブリッジ空間が形成されている。領域31の境界付近におけるSOI基板21の断面を斜め上方から撮影したSEM写真を(c)に示す。SiO2基板層12がエッチングされ、エアブリッジ空間32が形成されている。また、SiO2基板層12が斜めにエッチングされている(符号33)のは、本体層に近いSiO2基板層12上部の方がエッチング剤導入用空孔22から遠いところまでエッチングされること、及びSiO2の結晶性によるためである。 FIG. 8 shows a scanning electron microscope (SEM) photograph of the two-dimensional photonic crystal manufactured according to this example. (a) and (b) show the two-dimensional photonic crystal as viewed from above the main body layer 11. In this example, a point defect and a waveguide are formed. In the region 31 that appears discolored, an air bridge space is formed immediately below the main body layer 11. An SEM photograph obtained by photographing a cross section of the SOI substrate 21 in the vicinity of the boundary of the region 31 from obliquely above is shown in FIG. The SiO 2 substrate layer 12 is etched to form an air bridge space 32. Further, the reason why the SiO 2 substrate layer 12 is etched obliquely (reference numeral 33) is that the upper portion of the SiO 2 substrate layer 12 closer to the main body layer is etched farther from the etching agent introducing hole 22; And the crystallinity of SiO 2 .

図8の(a)と(b)では、導波路とエアブリッジ空間との間の位置が異なる。(a)では導波路の一部が領域31を通過しているのに対して、(b)では導波路全体が領域31の外を通過している。但し、導波路と点状欠陥との位置関係については、(a)と(b)との違いはない。(b)では、点状欠陥をエアブリッジ空間上に配置して導波路をエアブリッジ空間以外に配置するために、点状欠陥の外縁を領域31の端にほぼ接する位置に配置した。   8A and 8B, the positions between the waveguide and the air bridge space are different. In (a), a part of the waveguide passes through the region 31, whereas in (b) the entire waveguide passes outside the region 31. However, there is no difference between (a) and (b) regarding the positional relationship between the waveguide and the point defect. In (b), in order to arrange the point defects on the air bridge space and arrange the waveguide outside the air bridge space, the outer edge of the point defects is arranged at a position substantially in contact with the end of the region 31.

(a)及び(b)の2次元フォトニック結晶について、導波路から点状欠陥に分波される光の分波スペクトルを測定した結果を図9に示す。この図には併せて、無基板フォトニック結晶及び基板付フォトニック結晶の分波スペクトルの測定結果を示す。点状欠陥のQ値は、(a)ではQ=1600、(b)ではQ=900であった。(a)、(b)共に基板付フォトニック結晶の場合よりも高いQ値が得られ、特に(a)では無基板フォトニック結晶のQ値と同等の値が得られた。(b)におけるQ値は無基板フォトニック結晶のQ値よりもやや低いが、これは(b)においては点状欠陥の外縁を領域31の端にほぼ接する位置に配置したために点状欠陥の下にSiO2が多少残存していることによると考えられる。 FIG. 9 shows the result of measuring the demultiplexing spectrum of the light demultiplexed from the waveguide into the point defect for the two-dimensional photonic crystals (a) and (b). This figure also shows the measurement results of the demultiplexed spectra of the substrate-free photonic crystal and the substrate-attached photonic crystal. The Q values of the point defects were Q = 1600 in (a) and Q = 900 in (b). In both (a) and (b), a higher Q value was obtained than in the case of the photonic crystal with substrate, and in particular, in (a), a value equivalent to the Q value of the substrate-free photonic crystal was obtained. The Q value in (b) is slightly lower than the Q value of the substrate-free photonic crystal. However, in (b), since the outer edge of the point defect is arranged at a position almost in contact with the end of the region 31, the point defect is This is considered to be due to the fact that some SiO 2 remains below.

次に、エアブリッジ構造を有する2次元フォトニック結晶において、エアブリッジ空間の直上に導波路を設けた場合の導波路透過帯域を解析した結果を示す。
まず、図10(a)に示すように、SiO2基板層の直上の領域41とエアブリッジ空間44の直上の領域42の導波路の幅が等しい(幅が空孔43の周期aの1.11倍)場合、領域41と領域42の導波路を共に光が透過する帯域は、図10(b)に示す共通帯域45になる。なお、(b)の縦軸は光の周波数に空孔43の周期を乗じて光速で除した規格化周波数であり、横軸は光の波数を示す。また、網掛け部は、導波路内にTE波がTM波と結合し、TM波が面内方向に漏れるため、導波路透過帯として用いるには好ましくない周波数帯域を示す。
Next, a result of analyzing a waveguide transmission band when a waveguide is provided immediately above the air bridge space in a two-dimensional photonic crystal having an air bridge structure is shown.
First, as shown in FIG. 10A, the widths of the waveguides in the region 41 immediately above the SiO 2 substrate layer and the region 42 directly above the air bridge space 44 are equal (the width is 1.11 times the period a of the hole 43). ), The band through which light passes through the waveguides in the region 41 and the region 42 is the common band 45 shown in FIG. The vertical axis of (b) is a normalized frequency obtained by multiplying the frequency of light by the period of the holes 43 and dividing by the speed of light, and the horizontal axis indicates the wave number of light. The shaded portion indicates a frequency band that is not preferable for use as a waveguide transmission band because the TE wave is coupled with the TM wave in the waveguide and the TM wave leaks in the in-plane direction.

それに対して、図11(a)に示すように、空孔43の位置を調節することにより領域42の導波路の幅を空孔43の周期aの1.16倍に拡げた場合、図11(b)に示すように領域42の導波路透過帯域が低周波数側にシフトし、導波路の幅を拡げない場合よりも共通帯域46を広くすることができる。   On the other hand, as shown in FIG. 11A, when the width of the waveguide in the region 42 is increased to 1.16 times the period a of the hole 43 by adjusting the position of the hole 43, FIG. ), The waveguide transmission band of the region 42 is shifted to the low frequency side, and the common band 46 can be made wider than when the width of the waveguide cannot be expanded.

次に、エアブリッジ構造を有する2次元フォトニック結晶を製造する際に、導波路の幅を拡げる領域の境界がエアブリッジ空間の境界からずれた場合について、上記と同様の解析を用いて検討する。図12(a)のように、エアブリッジ空間50の直上に導波路の狭い領域51が存在する場合、図12(b)に示すように、帯域53の光は領域51内の導波路を透過できないため、導波路全体の透過帯域55が上記ずれのない場合よりも狭くなる。それに対して、図13(a)のように、エアブリッジ空間50の外側に導波路の広い領域52が存在する場合、図13(b)に示すように、帯域54の光は、TM波がスラブの面内方向に漏れるものの、導波路全体を伝播可能である。領域52が狭ければこの漏れの影響は小さい。それ以外の帯域では領域52が影響を及ぼすことはない。従って、エアブリッジ空間50の外側に導波路の広い領域52が存在しても導波路の共通透過波長帯域56が狭くなることはない。   Next, when manufacturing a two-dimensional photonic crystal having an air bridge structure, the case where the boundary of the region where the width of the waveguide is widened deviates from the boundary of the air bridge space is examined using the same analysis as described above. . As shown in FIG. 12A, when a narrow waveguide region 51 exists immediately above the air bridge space 50, the light in the band 53 passes through the waveguide in the region 51 as shown in FIG. Since this is not possible, the transmission band 55 of the entire waveguide is narrower than in the case where there is no deviation. On the other hand, when a wide waveguide region 52 exists outside the air bridge space 50 as shown in FIG. 13 (a), the light in the band 54 has a TM wave as shown in FIG. 13 (b). Although it leaks in the in-plane direction of the slab, it can propagate through the entire waveguide. If the region 52 is narrow, the influence of this leakage is small. In other bands, the region 52 has no influence. Therefore, even if the wide waveguide region 52 exists outside the air bridge space 50, the common transmission wavelength band 56 of the waveguide is not narrowed.

従来の無基板フォトニック結晶((a))と基板付フォトニック結晶((b))に設けた点状欠陥の共振波長スペクトルの実験値。Experimental values of resonance wavelength spectra of point defects provided on conventional substrate-free photonic crystals ((a)) and photonic crystals with substrates ((b)). 本発明のエアブリッジ構造を有する2次元フォトニック結晶の一実施例を示す斜視図、平面図及び断面図。The perspective view, top view, and sectional drawing which show one Example of the two-dimensional photonic crystal which has an air bridge structure of this invention. 点状欠陥のQ値の計算対象としたエアブリッジ空間を示す図。The figure which shows the air bridge space made into the calculation object of the Q value of a point defect. 本実施例における点状欠陥のQ値を計算した結果を示すグラフ。The graph which shows the result of having calculated the Q value of the point defect in a present Example. 本実施例における点状欠陥の他の例を示す平面図。The top view which shows the other example of the point defect in a present Example. 本実施例における導波路の一例を示す平面図。The top view which shows an example of the waveguide in a present Example. 本発明のエアブリッジ構造を有する2次元フォトニック結晶の製造方法の一実施例を示す図。The figure which shows one Example of the manufacturing method of the two-dimensional photonic crystal which has an air bridge structure of this invention. 本実施例で製造されたエアブリッジ構造を有する2次元フォトニック結晶のSEM写真。The SEM photograph of the two-dimensional photonic crystal which has the air bridge structure manufactured in the present Example. 本実施例で製造されたエアブリッジ構造を有する2次元フォトニック結晶及び従来の2次元フォトニック結晶の分波スペクトルを示すグラフ。The graph which shows the demultiplexing spectrum of the two-dimensional photonic crystal which has the air bridge structure manufactured by the present Example, and the conventional two-dimensional photonic crystal. 導波路の幅が一様である場合の導波路透過帯域を示す図。The figure which shows a waveguide transmission zone | band in case the width | variety of a waveguide is uniform. エアブリッジ空間直上の導波路の幅を広くした場合の導波路透過帯域を示す図。The figure which shows the waveguide transmission zone | band when the width of the waveguide just above an air bridge space is made wide. エアブリッジ空間の直上に導波路の狭い領域が存在する場合の導波路透過帯域を示す図。The figure which shows a waveguide transmission zone | band in the case where the narrow area | region of a waveguide exists just above air bridge space. エアブリッジ空間の外側に導波路の広い領域が存在する場合の導波路透過帯域を示す図。The figure which shows a waveguide transmission zone | band in the case where the wide area | region of a waveguide exists in the outer side of air bridge space.

符号の説明Explanation of symbols

11…本体層
12…SiO2基板層
13…Si基板層
15、25、43…空孔
16、161,1621、1622、163、164、165、26…点状欠陥
17、171、172、173、174、175、176…空間
18、27…導波路
21…SOI基板
22…エッチング剤導入用空孔
23…フッ化水素水溶液
24、32、44、50…エアブリッジ空間
11 ... body layer 12 ... SiO 2 substrate layer 13 ... Si substrate layer 15,25,43 ... vacancies 16,161,1621,1622,163,164,165,26 ... point defect 17,171,172,173, 174, 175, 176 ... Spaces 18, 27 ... Waveguide 21 ... SOI substrate 22 ... Etching agent introduction hole 23 ... Hydrogen fluoride aqueous solution 24, 32, 44, 50 ... Air bridge space

Claims (12)

a)スラブ状の本体と、
b)前記本体の下面に設けた基板と、
c)前記本体に所定の周期で格子状に配置された複数の、本体とは屈折率の異なる領域と、
d)前記異屈折率領域の欠陥を点状に設けて成る点状欠陥と、
e)前記本体の前記異屈折率領域を設けた範囲の一部分の範囲のみに面して基板に設けたエアブリッジ空間と、
を備え、前記点状欠陥は前記一部分の範囲内に設けられていることを特徴とするエアブリッジ構造を有する2次元フォトニック結晶。
a) a slab body;
b) a substrate provided on the lower surface of the main body;
c) a plurality of regions arranged in a lattice pattern with a predetermined period on the main body, different in refractive index from the main body,
d) point-like defects formed by providing the defects of the different refractive index regions in the form of dots,
e) an air bridge space provided in the substrate facing only a part of the range in which the different refractive index region of the main body is provided;
A two-dimensional photonic crystal having an air bridge structure , wherein the point-like defects are provided within the range of the part .
前記異屈折率領域は本体に空孔を設けることにより形成されたものであることを特徴とする請求項1に記載のエアブリッジ構造を有する2次元フォトニック結晶。   2. The two-dimensional photonic crystal having an air bridge structure according to claim 1, wherein the different refractive index region is formed by providing a hole in a main body. 前記点状欠陥を複数設けたことを特徴とする請求項1又は2に記載のエアブリッジ構造を有する2次元フォトニック結晶。   The two-dimensional photonic crystal having an air bridge structure according to claim 1, wherein a plurality of the point defects are provided. 前記エアブリッジ空間の範囲は、本体の面内の少なくとも1方向について、前記点状欠陥の外縁から外方に異屈折率領域の周期の1〜25周期分であることを特徴とする請求項1〜3のいずれかに記載のエアブリッジ構造を有する2次元フォトニック結晶。 The range of the air bridge space is 1 to 25 periods of the period of the different refractive index region outward from the outer edge of the point defect in at least one direction within the surface of the main body. A two-dimensional photonic crystal having the air bridge structure according to any one of. 前記エアブリッジ空間の深さは異屈折率領域の周期の2倍以上であることを特徴とする請求項1〜4のいずれかに記載のエアブリッジ構造を有する2次元フォトニック結晶。 5. The two-dimensional photonic crystal having an air bridge structure according to claim 1, wherein the depth of the air bridge space is at least twice the period of the different refractive index region. 前記点状欠陥の近傍に、前記異屈折率領域の欠陥を線状に設けて成る導波路を更に備えることを特徴とする請求項1〜5のいずれかに記載のエアブリッジ構造を有する2次元フォトニック結晶。   The two-dimensional structure having an air bridge structure according to any one of claims 1 to 5, further comprising a waveguide in which defects in the different refractive index region are linearly provided in the vicinity of the point defects. Photonic crystal. 前記導波路の一部は、前記エアブリッジ空間に面するエアブリッジ導波路部であり、該エアブリッジ導波路部における導波路の幅が他の部分の導波路の幅よりも所定の大きさだけ広いことを特徴とする請求項6に記載のエアブリッジ構造を有する2次元フォトニック結晶。 A part of the waveguide is an air bridge waveguide portion facing the air bridge space, and the width of the waveguide in the air bridge waveguide portion is a predetermined size larger than the width of the waveguide of other portions. The two-dimensional photonic crystal having an air bridge structure according to claim 6, which is wide. 本体層と基板層が積層して成る板材から2次元フォトニック結晶を製造する方法において、
a)前記本体層を貫通するエッチング剤導入用空孔を形成する空孔形成工程と、
b)エッチング剤導入用空孔を通してエッチング剤を導入することにより、前記エッチング剤導入用空孔の周囲の基板層をエッチングして該基板層空間を形成するエアブリッジ空間形成工程と、
c)前記本体層の所定の範囲内に所定の大きさだけ本体層を除去して成る空孔を周期的に形成すると共に、前記空孔の点状の欠陥を形成する2次元フォトニック結晶形成工程と、
を有し、
前記空間は前記本体層の前記空孔を形成した範囲内の一部分の範囲のみに面するように前記基板層に形成され、
前記点状欠陥は、前記一部分の範囲内に設けられること、
を特徴とするエアブリッジ構造を有する2次元フォトニック結晶の製造方法。
In a method for producing a two-dimensional photonic crystal from a plate material in which a main body layer and a substrate layer are laminated,
a pore forming step of forming an etchant introduction holes penetrating the a) said body layer,
By introducing an etchant through b) etchant introduction holes, and the air-bridge space formation step of forming a space on the substrate layer by etching the substrate layer around the etchant introduction holes,
c) Formation of a two-dimensional photonic crystal that periodically forms vacancies formed by removing the main body layer by a predetermined size within a predetermined range of the main body layer and forms dot-like defects in the vacancies Process,
I have a,
The space is formed in the substrate layer so as to face only a part of the range in which the holes of the main body layer are formed,
The point defect is provided within the range of the portion;
A method for producing a two-dimensional photonic crystal having an air bridge structure.
前記2次元フォトニック結晶形成工程において、前記点状欠陥の近傍に、前記空孔の線状の欠陥を設けることにより導波路を形成することを特徴とする請求項8に記載のエアブリッジ構造を有する2次元フォトニック結晶の製造方法。   9. The air bridge structure according to claim 8, wherein, in the two-dimensional photonic crystal formation step, a waveguide is formed by providing a linear defect of the vacancy in the vicinity of the point defect. A method for producing a two-dimensional photonic crystal. 前記導波路の一部を、前記空間に面したエアブリッジ導波路部とし、該エアブリッジ導波路部における導波路の幅が他の部分の導波路の幅よりも所定の大きさだけ広くなるように導波路を形成することを特徴とする請求項9に記載のエアブリッジ構造を有する2次元フォトニック結晶の製造方法。
ク結晶の製造方法。
A part of the waveguide is an air bridge waveguide part facing the space, and the width of the waveguide in the air bridge waveguide part is larger than the width of the other part of the waveguide by a predetermined size. A method for producing a two-dimensional photonic crystal having an air bridge structure according to claim 9, wherein a waveguide is formed on the substrate.
A method for producing crystal.
前記板材の本体層はSiから成り、基板層にあって少なくとも前記空間が形成される層はSiO2から成ることを特徴とする請求項8〜10のいずれかに記載のエアブリッジ構造を有する2次元フォトニック結晶の製造方法。 2 main layer of the plate is made of Si, a layer of at least said space is formed by a substrate layer having an air-bridge structure according to claim 8, characterized in that it consists of SiO 2 A method for producing a two-dimensional photonic crystal. 前記エッチング剤はフッ化水素溶液であることを特徴とする請求項11に記載のエアブリッジ構造を有する2次元フォトニック結晶の製造方法。   The method of manufacturing a two-dimensional photonic crystal having an air bridge structure according to claim 11, wherein the etchant is a hydrogen fluoride solution.
JP2003307657A 2003-08-29 2003-08-29 Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof Expired - Lifetime JP4063740B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003307657A JP4063740B2 (en) 2003-08-29 2003-08-29 Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof
CNA2008100935422A CN101261341A (en) 2003-08-29 2004-08-27 Two-dimensional photonic crystal having air-bridge structure and method for manufacturing such a crystal
EP04772361A EP1666940A4 (en) 2003-08-29 2004-08-27 Two-dimensional photonic crystal with air bridge structure and manufacturing method for the crystal
CNB2004800249432A CN100394229C (en) 2003-08-29 2004-08-27 2-dimensional photonic crystal having air bridge structure and its manufacturing method
US10/569,879 US7333703B2 (en) 2003-08-29 2004-08-27 Two-dimensional photonic crystal having air-bridge structure and method for manufacturing such a crystal
PCT/JP2004/012405 WO2005022222A1 (en) 2003-08-29 2004-08-27 Two-dimensional photonic crystal with air bridge structure and manufacturing method for the crystal
US12/004,029 US7509014B2 (en) 2003-08-29 2007-12-20 Two-dimensional photonic crystal having air-bridge structure and method for manufacturing such a crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307657A JP4063740B2 (en) 2003-08-29 2003-08-29 Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005077711A JP2005077711A (en) 2005-03-24
JP4063740B2 true JP4063740B2 (en) 2008-03-19

Family

ID=34410386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307657A Expired - Lifetime JP4063740B2 (en) 2003-08-29 2003-08-29 Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4063740B2 (en)
CN (2) CN100394229C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875176B1 (en) 2005-04-29 2011-12-21 The Board Of Trustees Of The Leland Stanford Junior University High-sensitivity fiber-compatible optical acoustic sensor
JP4915898B2 (en) * 2005-07-21 2012-04-11 パナソニック株式会社 Infrared sensor
JP4933193B2 (en) * 2005-08-11 2012-05-16 キヤノン株式会社 Surface emitting laser and method for producing two-dimensional photonic crystal in the surface emitting laser
US7881565B2 (en) 2006-05-04 2011-02-01 The Board Of Trustees Of The Leland Stanford Junior University Device and method using asymmetric optical resonances
EP2104842B1 (en) 2007-01-09 2011-09-07 The Board of Trustees of The Leland Stanford Junior University Fabry-perot acoustic sensor and corresponding manufacturing method
CA3090851C (en) 2010-03-15 2023-03-07 The Board Of Trustees Of The Leland Stanford Junior University Optical-fiber-compatible acoustic sensor
CN101963736B (en) * 2010-08-11 2012-09-26 中国科学院半导体研究所 Slow light waveguide structure based on photonic crystal air bridge structure
JP5284393B2 (en) * 2011-03-07 2013-09-11 キヤノン株式会社 Manufacturing method of surface emitting laser
US11215481B2 (en) 2018-03-23 2022-01-04 The Board Of Trustees Of The Leland Stanford Junior University Diaphragm-based fiber acoustic sensor
CN112557771B (en) * 2020-12-02 2021-10-08 清华大学 High-sensitivity miniature electric field sensor with stable temperature
CN113376738B (en) * 2021-05-25 2022-06-17 太原理工大学 Funnel-shaped photonic crystal waveguide structure for realizing optical wave unidirectional transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925769B2 (en) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 Two-dimensional photonic crystal and multiplexer / demultiplexer
CN1156063C (en) * 2000-06-06 2004-06-30 中国科学院物理研究所 Photon crystal micro cavity structure
JP4446591B2 (en) * 2000-12-20 2010-04-07 京セラ株式会社 Optical waveguide and optical circuit board
US6466709B1 (en) * 2001-05-02 2002-10-15 California Institute Of Technology Photonic crystal microcavities for strong coupling between an atom and the cavity field and method of fabricating the same
JP3846228B2 (en) * 2001-06-07 2006-11-15 日本電気株式会社 Waveguide
CN1184753C (en) * 2001-08-08 2005-01-12 中国科学院物理研究所 New-type photon crystal wavelength division multiplex device
CN1170175C (en) * 2002-05-24 2004-10-06 中国科学院上海微系统与信息技术研究所 2D photon Si-base crystal waveguide don insulator with dual insulating burried layers and its preparing process

Also Published As

Publication number Publication date
CN1846157A (en) 2006-10-11
CN101261341A (en) 2008-09-10
JP2005077711A (en) 2005-03-24
CN100394229C (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US7509014B2 (en) Two-dimensional photonic crystal having air-bridge structure and method for manufacturing such a crystal
JP3925769B2 (en) Two-dimensional photonic crystal and multiplexer / demultiplexer
EP1791007A1 (en) Two-dimensional photonic crystal and optical device using the same
KR100578683B1 (en) Optical devices and methods of fabrication thereof
JP3459827B2 (en) Two-dimensional photonic crystal optical multiplexer / demultiplexer
KR101332293B1 (en) Two-dimensional photonic crystal
JP4063740B2 (en) Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof
US7323353B2 (en) Resonator for thermo optic device
JP4054348B2 (en) 2D photonic crystal resonator
JPWO2006080532A1 (en) 2D photonic crystal
WO2003081306A1 (en) Point-defect three-dimensional photonic crystal optical resonator
JP3886958B2 (en) Manufacturing method of two-dimensional photonic crystal with thin wire waveguide
JP2005077709A (en) Two-dimensional photonic crystal demultiplexer/multiplexer
JP2004510196A (en) Controlling birefringence in optical waveguides and arrayed waveguide gratings
JP4621920B2 (en) Two-dimensional photonic crystal manufacturing method
JP3999152B2 (en) Two-dimensional photonic crystal slab and optical device using the same
JP3920260B2 (en) Manufacturing method of two-dimensional photonic crystal with thin wire waveguide
US20160187579A1 (en) Waveguide arrangement
JP2001337236A (en) Photonic crystal
WO2006017485A2 (en) Photonic crystal resonator apparatus with improved out of plane coupling
JP4707614B2 (en) Planar waveguide element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Ref document number: 4063740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term