JP4061476B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4061476B2
JP4061476B2 JP2002196391A JP2002196391A JP4061476B2 JP 4061476 B2 JP4061476 B2 JP 4061476B2 JP 2002196391 A JP2002196391 A JP 2002196391A JP 2002196391 A JP2002196391 A JP 2002196391A JP 4061476 B2 JP4061476 B2 JP 4061476B2
Authority
JP
Japan
Prior art keywords
deterioration
correlation value
catalytic converter
fuel ratio
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002196391A
Other languages
Japanese (ja)
Other versions
JP2004036545A (en
Inventor
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002196391A priority Critical patent/JP4061476B2/en
Publication of JP2004036545A publication Critical patent/JP2004036545A/en
Application granted granted Critical
Publication of JP4061476B2 publication Critical patent/JP4061476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、触媒コンバータの劣化判定技術に関する。
【0002】
【関連する背景技術】
排気浄化用の触媒コンバータにおいては、触媒の有する酸素ストレージ能力が触媒性能と相関性が高いことから、特にセリア(Ce)等の酸素吸蔵物質を多く含むような触媒コンバータにおいて、触媒劣化検出方法として、当該酸素ストレージ能力の経時変化を監視することで触媒コンバータの劣化を判定する手法が採用されている。
【0003】
この触媒劣化検出方法は、触媒コンバータに流入する排気空燃比をリーン空燃比とリッチ空燃比間において所定周期(例えば、空燃比フィードバック制御の変調周期)、振幅で変調させると、酸素ストレージ能力が高ければ酸素が触媒コンバータに吸蔵されるために触媒下流の排気空燃比の応答が遅く或いは振幅が小さく、一方酸素ストレージ能力が低いと酸素は触媒コンバータにあまり吸蔵されることなく排出されるために触媒下流の排気空燃比の応答が速く或いは振幅が大きくなるという特性を利用しており、例えば、触媒下流に設けた酸素センサ(O2センサ)或いは空燃比センサ(LAFS)からの酸素濃度出力値の変動周期を検出し、或いは特開2002−30992号公報に開示されるように振幅を検出し、当該検出値が所定の基準値以上であると、酸素ストレージ能力が低下、即ち触媒コンバータが劣化したと判定するようにしている。
【0004】
【発明が解決しようとする課題】
ところが、上記公報に開示されるように排気空燃比の振幅に基づいて劣化判定を行う場合、振幅が最大振幅近傍になるとその後は同一の劣化状態となって劣化状況を判定できないという問題がある。
また、近年では環境保全の観点から排気浄化性能のさらなる向上が求められており、触媒コンバータの僅かな劣化をも検出することが要求されている。
【0005】
そこで、触媒コンバータが劣化すると触媒下流の排気空燃比が基準値(例えば、変動振幅中心値)よりもリーン空燃比側にある期間またはリッチ空燃比側にある期間の期間率(変調デューティ)が変化することに着目し、当該期間率をも考慮して劣化判定を行うことが考えられている。例えば、排気空燃比の振幅と当該期間率との積を求め、当該積の値が所定値よりも大か否かにより劣化判定を行うことが考えられている。これにより、上記公報に開示されるような振幅だけによる劣化判定よりも劣化の検出精度が向上し、触媒コンバータの劣化を比較的良好に判定可能となる。
【0006】
しかしながら、実験により、触媒コンバータがそれほど劣化しておらず酸素ストレージ能力があまり低下していない劣化小のときには、図3(a)に実線で示すように、触媒コンバータ下流において検出される排気空燃比の振幅(ΔO2)は小さく排気空燃比が基準値(例えば、変動振幅中心値)X1よりもリーン空燃比側にある期間(Tlean)が長く、触媒コンバータの劣化が進み劣化大になると、図3(c)に実線で示すように、排気空燃比の振幅は大きくなる一方、排気空燃比が基準値X1よりもリーン空燃比側にある期間(Tlean)が短くなり、特に劣化中程度の状況において、図3(b)に実線で示すように、排気空燃比がリーン空燃比側にある期間(Tlean)が劣化大のときよりも短くなっていることが確認された。なお、図3中、一点鎖線は触媒コンバータ上流における排気空燃比の変調を示している。
【0007】
このように、劣化の進行に連れて、排気空燃比の振幅は大きくなる一方、排気空燃比がリーン空燃比側にある期間が短くなると、振幅が最大振幅(ΔO2max)近傍となった後は良好に劣化状況(劣化中〜劣化大)を判別可能となるのであるが、振幅が最大振幅近傍になる前の劣化小から劣化中の間は排気空燃比の振幅(ΔO2)と期間率(Tlean)との積の値が同一となる場合があり、劣化度合いが異なるにも拘わらず同一の劣化状態と誤判定されるおそれがあるという問題がある。
【0008】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、触媒コンバータの劣化を正確に判定可能な内燃機関の排気浄化装置を提供することにある。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、内燃機関の排気通路に配設された触媒コンバータと、前記触媒コンバータに流入する排気空燃比を所定周期で変調させる排気空燃比変調手段と、前記触媒コンバータの下流に位置して設けられ、排気空燃比を検出する排気センサと、前記排気センサからの出力情報に基づき、前記触媒コンバータの下流における排気空燃比の振幅相関値を求めるとともに、前記触媒コンバータの下流における排気空燃比が基準値よりもリーン空燃比側にある期間またはリッチ空燃比側にある期間の期間率相関値を求める触媒下流変調状態検出手段と、前記触媒下流変調状態検出手段により求められた前記振幅相関値と前記期間率相関値とに基づき前記触媒コンバータの劣化を判定する劣化判定手段とを備え、前記劣化判定手段は、前記期間率相関値よりも前記振幅相関値の影響度合いが大きくなるよう前記振幅相関値に重み付けをして前記触媒コンバータの劣化を判定することを特徴としている。
【0010】
従って、触媒コンバータ下流における排気空燃比の振幅相関値と期間率相関値(変調デューティ)とに基づいて劣化判定を行うことにより、振幅相関値だけで劣化判定を行う場合に比べて触媒コンバータの劣化状況(特に劣化中〜劣化大)を比較的良好に検出可能となるが、さらに期間率相関値よりも振幅相関値の影響度合いの方が大きくなるよう振幅相関値に重み付けをすることにより、特に振幅相関値が最大振幅値となるまでの間、即ち振幅相関値が劣化状況に略比例して増加する状況(劣化小〜劣化中)において振幅相関値が強調され、触媒コンバータの劣化状況が確実に判別可能とされる。これにより、触媒コンバータの劣化を正確に判定可能となる。
【0011】
また、請求項2の発明では、さらに、前記触媒コンバータの上流における排気空燃比の振幅相関値を推定する触媒上流振幅相関値推定手段を備え、前記劣化判定手段は、前記触媒下流変調状態検出手段により求められた前記触媒コンバータの下流の振幅相関値を前記触媒上流振幅相関値推定手段により推定された前記触媒コンバータの上流の振幅相関値で除して重み係数を求め、該重み係数を前記下流の振幅相関値と前記期間率相関値との積に乗算することにより重み付けをして前記触媒コンバータの劣化を判定することを特徴としている。
【0012】
従って、触媒コンバータ下流における排気空燃比の振幅相関値と期間率相関値(変調デューティ)との積に基づいて劣化判定を行うことにより、振幅相関値だけで劣化判定を行う場合に比べて触媒コンバータの劣化状況(特に劣化中〜劣化大)を比較的良好に検出可能となるが、さらに期間率相関値よりも振幅相関値の影響度合いの方が大きくなるよう振幅相関値に重み係数(重み係数=触媒コンバータの下流の振幅相関値/触媒コンバータの上流の振幅相関値)を乗算することにより、特に振幅相関値が最大振幅値となるまでの間、即ち振幅相関値が劣化状況に略比例して増加する状況(劣化小〜劣化中)において振幅相関値が大であるほど強調され、触媒コンバータの劣化状況が確実に判別可能とされる。これにより、触媒コンバータの劣化を容易にして正確に判定可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。
図1を参照すると、本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、当該排気浄化装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、例えば、燃料噴射モードを切換えることで吸気行程での燃料噴射(吸気行程噴射)とともに圧縮行程での燃料噴射(圧縮行程噴射)を実施可能な筒内噴射型火花点火式4サイクル4気筒ガソリンエンジンが採用される。この筒内噴射型のエンジン1は、理論空燃比(ストイキオ)での運転の他、リッチ空燃比での運転(リッチ空燃比運転)やリーン空燃比での運転(リーン空燃比運転)を実現可能である。
【0014】
同図に示すように、エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4とともに電磁式の燃料噴射弁6が取り付けられており、これにより、燃料を燃焼室内に直接噴射可能である。
点火プラグ4には高電圧を出力する点火コイル8が接続されている。また、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。より詳しくは、燃料供給装置には、低圧燃料ポンプと高圧燃料ポンプとが設けられており、これにより、燃料タンク内の燃料を燃料噴射弁6に対し低燃圧或いは高燃圧で供給し、該燃料を燃料噴射弁6から燃焼室内に向けて所望の燃圧で噴射可能である。
【0015】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。なお、吸気マニホールド10には吸入空気量を調節する電磁式のスロットル弁14が設けられている。
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド20の一端がそれぞれ接続されている。排気マニホールド20としては、ここでは、デュアル型エキゾーストマニホールドシステムが採用される。
【0016】
このデュアル型エキゾーストマニホールドシステムからなる排気マニホールド20では、#1気筒からの排気通路と#4気筒からの排気通路及び#2気筒からの排気通路と#3気筒からの排気通路がそれぞれ合流するように構成されている(燃焼順序が#1→#3→#4→#2の場合)。
排気マニホールド20の他端には、集合管22を介して排気管28が接続されており、集合管22は、#1気筒及び#4気筒(以下、#1、#4気筒群)からの排ガスが流通する集合管22aと#2気筒及び#3気筒(以下、#2、#3気筒群)からの排ガスが流通する集合管22bの2本の管路(デュアル管路)から構成されている。
【0017】
そして、集合管22aには、#1、#4気筒群に対応する上流側触媒コンバータとしてセリア(Ce)等の酸素吸蔵物質を含む三元触媒コンバータ(マニホールドキャタライザコンバータ、以下MCCと略す)24が介装され、同様に、集合管22bには、#2、#3気筒群に対応する上流側触媒コンバータとしてやはりセリア(Ce)等の酸素吸蔵物質を含む三元触媒コンバータ(以下MCCと略す)26が介装されている。このようにMCC24、26が集合管22a及び集合管22bに介装されていると、エンジン1に近い位置であることから、エンジン1が冷態状態であってもMCC24、26の早期活性化が図られ、運転状態に拘わらず排気中の有害物質(HC、CO、NOx等)を良好に浄化可能である。
【0018】
MCC24の上流部分及びMCC26の上流部分には、排気センサとして排気空燃比(排気A/F)を検出する空燃比センサ(例えば、O2センサ、以下、フロントA/Fセンサという)21a、21bがそれぞれ設けられている。
さらに、集合管22aのMCC24よりも下流部分及び集合管22bのMCC26の下流部分にも同様の空燃比センサ(以下、ミドルA/Fセンサという)25、27がそれぞれ設けられている。
【0019】
排気管28には、さらに、下流側触媒コンバータとして三元触媒コンバータ(アンダーフロアキャタライザコンバータ、以下UCCと略す)30が介装されている。なお、当該UCC30もセリア(Ce)等の酸素吸蔵物質を含んでいる。
そして、排気管28のUCC30の上流部分には排気センサとして上記同様の空燃比センサ(以下、上流リヤA/Fセンサという)29が、UCC30の下流部分にも同様の空燃比センサ(以下、下流リヤA/Fセンサという)31が設けられている。
【0020】
電子コントロールユニット(ECU)60は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU60により、エンジン1を含めた排気浄化装置の総合的な制御が行われる。
ECU60の入力側には、上述したフロントA/Fセンサ21a、21b、ミドルA/Fセンサ25、27、上流リヤA/Fセンサ29、下流リヤA/Fセンサ31の他、クランク角センサ62等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ62によってクランク角が検出されると、当該クランク角に基づいて、現在の燃焼気筒が判別され、エンジン回転速度Neが求められる。
【0021】
一方、ECU60の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁14や警告灯62等の各種出力デバイスが接続されており、例えば、各A/Fセンサからの検出情報に基づき燃焼順(#1→#3→#4→#2)に燃焼空燃比(燃焼A/F)が設定されると、当該燃焼A/Fに応じて燃料噴射量や燃料噴射時期の指令信号が燃焼順に燃料噴射弁6に出力されるとともに吸入空気量の指令信号がスロットル弁14に出力され、さらに点火時期の指令信号が燃焼順に点火コイル8に出力される。これにより、燃料噴射弁6から適正量の燃料が適正なタイミングで噴射され、スロットル弁14が適正な開度とされ、点火プラグ4により適正なタイミングで火花点火が実施される。
【0022】
また、燃焼A/Fが設定されると、MCC24やMCC26にそれぞれ流入する排気A/Fは各A/Fセンサからの検出情報に基づいてフィードバック制御される。詳しくは、排気A/Fは、燃焼A/Fを例えば気筒毎の所定周期で所定の振幅となるようリッチ空燃比側及びリーン空燃比側に繰り返し変調することによって変調させられ、平均空燃比が目標空燃比(目標A/F)となるように制御される(排気空燃比変調手段)。
【0023】
以下、このように構成された本発明に係る内燃機関の排気浄化装置の作用、即ち本発明に係る触媒劣化判定の判定手法について説明する。
図2を参照すると、本発明に係る触媒劣化判定の制御ルーチンがフローチャートで示されており、以下当該フローチャートに沿い本発明に係る触媒劣化判定の判定手順について詳細に説明する。
【0024】
なお、本発明に係る触媒劣化判定は、基本的には、従来と同様にフィードバック制御を行って排気A/Fを所定周期で変調させ、このときの触媒コンバータの酸素ストレージ能力の経時変化を監視することで触媒コンバータの劣化を判定するものであり、触媒劣化判定の基本作用等については上述した通りであり説明を省略する。
【0025】
また、ここでは一例としてMCC24の劣化判定を行うが、MCC26やUCC30の劣化判定についても同様であり説明を省略する。
先ずステップS10では、所定周期で空燃比変調を行っているか否かを判別する。ここでは、例えば上記フィードバック制御を行っているか否かを判別する。なお、フィードバック制御の代わりに別途定めた所定周期で空燃比変調を行ってもよく、この場合には当該別途定めた所定周期での空燃比変調を行っているか否かを判別する。判別結果が偽(No)の場合には、空燃比変調が行われておらず劣化判定ができないため、そのまま当該ルーチンを抜ける。一方、判別結果が真(Yes)の場合には、ステップS12に進む。
【0026】
ステップS12では、1周期間の触媒下流O2センサの出力振幅ΔO2(振幅相関値)を実測する。ここでは、MCC24下流のミドルA/Fセンサ25の出力振幅ΔO2を実測する(触媒下流変調状態検出手段)。
ステップS14では、1周期間の触媒上流O2センサの出力振幅、即ち最大振幅ΔO2max(振幅相関値)を推定する(触媒上流振幅相関値推定手段)。ここでは、例えばフロントA/Fセンサ21aの出力振幅を測定する。なお、MCC24の上流では排気A/Fは燃焼A/Fと殆ど同じと考えられるため、フィードバック制御の所定の振幅から最大振幅ΔO2maxを求めるようにしてもよい。
【0027】
ステップS16では、1周期間の触媒下流O2センサ出力が基準値X1以下となる期間、即ち触媒下流の排気A/Fが基準値X1よりもリーン空燃比側にある期間Tleanを実測する(図3参照)。ここでは、ミドルA/Fセンサ25の出力が基準値X1よりもリーン空燃比側となる期間Tleanを求める。なお、基準値X1は上記図3における値と同一であり、例えば、変動振幅中心値(例えば、理論空燃比)である。
【0028】
そして、ステップS18では、1周期間の触媒上流O2センサ出力が基準値X1以下となる期間、即ち触媒上流の排気A/Fが基準値X1よりもリーン空燃比側にある期間Tlean0を推定する(図3参照)。ここでは、フロントA/Fセンサ21aの出力が基準値X1よりもリーン空燃比側となる期間Tlean0を求める。なお、フィードバック制御の所定のリーン空燃比側にある期間から期間Tlean0を求めるようにしてもよい。
【0029】
このように、出力振幅ΔO2、出力振幅ΔO2max、期間Tlean及び期間Tlean0が求められたら、ステップS20において、劣化判定値ΔOSCを次式(1)から算出する。
ΔOSC=ΔO2×{Tlean、Tlean0}×ΔO2/ΔO2max …(1)
但し、{Tlean、Tlean0}は、Tlean0≧TleanのときにはTlean/Tlean0であり、Tlean>Tlean0のときにはTlean0/Tleanである。また、ΔO2/ΔO2maxは重み係数である。
【0030】
つまり、基準値X1よりもリーン空燃比側にある期間Tleanの期間率相関値(変調デューティ)をTlean/Tlean0或いはTlean0/Tleanとして求め(触媒下流変調状態検出手段)、当該変調デューティTlean/Tlean0或いはTlean0/Tleanと出力振幅ΔO2との積を求め、この積の値に重み係数ΔO2/ΔO2maxを乗算して劣化判定値ΔOSCを求める。
【0031】
このように、MCC24下流の変調デューティと出力振幅との積を求め、この積の値にさらに重み係数を乗算するようにして劣化判定値ΔOSCを求めるようにすると、劣化大の場合と劣化中の場合に関しては、図3(b)、(c)に示すように、振幅は共に最大振幅ΔO2max近傍である一方で変調デューティTlean/Tlean0或いはTlean0/Tleanについては劣化大の場合の方が大きくなるため、劣化判定値ΔOSCは劣化大の場合の方が確実に大きくなり、劣化大と劣化中の劣化状況を良好に判別して劣化判定を行うことができ、さらに、振幅が最大振幅ΔO2max近傍になるまでの劣化小から劣化中の間に関しては、図3(a)、(b)から明らかなように、重み係数ΔO2/ΔO2maxを乗算することにより排気空燃比の振幅ΔO2が大きいほど振幅ΔO2の影響度合いが大きくなるため、劣化判定値ΔOSCは劣化小の場合よりも劣化中の場合の方が確実に大きくなり、劣化小と劣化中の劣化状況についても良好に判別して劣化判定を行うことができる。
【0032】
つまり、重み係数ΔO2/ΔO2maxを乗算すると振幅ΔO2が二次関数的に効くことになるため、劣化小と劣化中との異なった劣化状況下、即ち変調デューティTlean/Tlean0或いはTlean0/Tleanの値と振幅ΔO2の値とが異なっている劣化状況下において、たとえ変調デューティと出力振幅との積が同一であったとしても、振幅ΔO2の値が強調されることになり、劣化判定値ΔOSCは振幅ΔO2の小さい劣化小の場合に比べて振幅ΔO2の大きい劣化中の場合の方が確実に大きくなり、故に劣化小と劣化中の劣化状況を良好に判別して劣化判定を正確に実施することが可能となる。
【0033】
このように劣化判定値ΔOSCが求められたら、ステップS22において、当該劣化判定値ΔOSCが所定値X2よりも大きいか否か、即ち、MCC24が所定の劣化状態に達しているか否かを判別する(劣化判定手段)。判別結果が真(Yes)で劣化判定値ΔOSCが所定値X2よりも大と判定された場合には、ステップS24に進み、MCC24は劣化していると判定し、警告灯62を点灯させる。一方、判別結果が偽(No)で劣化判定値ΔOSCが所定値X2以下と判定された場合には、ステップS26に進み、MCC24は劣化していないと判定(劣化判定解除)し、警告灯62を消灯状態とする。
【0034】
好ましくは、ステップS22で劣化判定値ΔOSCが所定値X2よりも大と判定された場合には、この状態が所定時間継続した後に劣化と判定するのがよく、また、劣化判定値ΔOSCが所定値X2以下と判定された場合には、この状態が所定時間継続した後に劣化していないと判定するのがよく、これにより劣化判定の精度がさらに向上する。
【0035】
このように、本発明に係る触媒劣化判定では、劣化判定値ΔOSCを劣化状況(劣化小〜劣化中〜劣化大)に応じて正確に求め、当該正確な劣化判定値ΔOSCに基づいてMCC24の劣化判定を行うようにしている。
従って、触媒劣化の誤判定が解消されることになり、排気浄化装置全体としての信頼性を向上させることができる。
【0036】
なお、上述したように、MCC26やUCC30についても同様にして劣化判定値ΔOSCを正確に求め、劣化判定を実施可能であるが、MCC26の劣化判定の場合には、ミドルA/Fセンサ27が触媒下流O2センサに、フロントA/Fセンサ21bが触媒上流O2センサに対応し、UCC30の劣化判定の場合には、下流リヤA/Fセンサ31が触媒下流O2センサに、上流リヤA/Fセンサ29が触媒上流O2センサに対応する。また、UCC30の劣化判定の場合には、触媒上流O2センサはミドルA/Fセンサ27であってもよいし、フロントA/Fセンサ21a、21bであってもよい。
【0037】
以上で実施形態の説明を終えるが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、MCC24及びMCC26を備えるとともにUCC30を備えた装置構成としたが、排気通路に触媒コンバータを少なくとも一つ有していれば本発明を良好に適用可能である。
【0038】
また、上記実施形態では、MCC24、MCC26、UCC30等の三元触媒コンバータの劣化を判定するようにしたが、劣化判定の対象は三元触媒コンバータに限られず、NOx触媒コンバータ等如何なる触媒コンバータであってもよい。
また、上記実施形態では、ステップS16において、触媒下流の排気A/Fが基準値X1よりもリーン空燃比側にある期間Tleanを実測し、ステップS18において、触媒上流の排気A/Fが基準値X1よりもリーン空燃比側にある期間Tlean0を推定するようにして変調デューティTlean/Tlean0或いはTlean0/Tleanを求め、劣化判定を行うようにしたが、これに代えて、触媒下流の排気A/Fが基準値X1よりもリッチ空燃比側にある期間Trichを実測し、触媒上流の排気A/Fが基準値X1よりもリッチ空燃比側にある期間Trich0を推定するようにして変調デューティTrich/Trich0或いはTrich0/Trichを求め、劣化判定を行うようにしてもよい。
【0039】
また、上記実施形態では、重み付けを重み係数ΔO2/ΔO2maxを乗算して行うようにしたが、重み付けは振幅ΔO2が強調されるものであれば重み係数ΔO2/ΔO2maxに限られるものではなく、乗算に限らず2次以上の乗算或いは加算するような構成であってもよい。
また、上記実施形態では、エンジン1として筒内噴射型火花点火式4サイクル4気筒ガソリンエンジンを用いるようにしたが、エンジン1は吸気管噴射型ガソリンエンジン、2サイクルガソリンエンジン、ディーゼルエンジン等如何なるエンジンであってもよい。
【0040】
また、上記実施形態では、空燃比センサとして例えばO2センサを用いるようにしたがリニア空燃比センサ(LAFS)を用いるようにしてもよい。
【0041】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化装置によれば、触媒コンバータ下流における排気空燃比の振幅相関値と期間率相関値(変調デューティ)とに基づいて触媒コンバータの劣化判定を行うことにより、振幅相関値だけで劣化判定を行う場合に比べて触媒コンバータの劣化状況(特に劣化中〜劣化大)を比較的良好に検出可能となるが、さらに期間率相関値よりも振幅相関値の影響度合いの方が大きくなるよう振幅相関値に重み付けをすることにより、特に振幅相関値が最大振幅値となるまでの間、即ち振幅相関値が劣化状況に略比例して増加する状況(劣化小〜劣化中)において振幅相関値が強調され、触媒コンバータの劣化状況を確実に判別可能となる。これにより、触媒コンバータの劣化を正確に判定することができる。
【0042】
また、請求項2の内燃機関の排気浄化装置によれば、触媒コンバータ下流における排気空燃比の振幅相関値と期間率相関値(変調デューティ)との積に基づいて触媒コンバータの劣化判定を行うことにより、振幅相関値だけで劣化判定を行う場合に比べて触媒コンバータの劣化状況(特に劣化中〜劣化大)を比較的良好に検出可能となるが、さらに期間率相関値よりも振幅相関値の影響度合いの方が大きくなるよう振幅相関値に重み係数(重み係数=触媒コンバータの下流の振幅相関値/触媒コンバータの上流の振幅相関値)を乗算することにより、特に振幅相関値が最大振幅値となるまでの間、即ち振幅相関値が劣化状況に略比例して増加する状況(劣化小〜劣化中)において振幅相関値が大であるほど強調され、触媒コンバータの劣化状況を確実に判別可能となる。これにより、触媒コンバータの劣化を容易にして正確に判定することができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】本発明に係る触媒劣化判定の制御ルーチンを示すフローチャートである。
【図3】触媒コンバータ下流において検出される排気空燃比の出力波形であって、触媒コンバータが劣化小(a)、劣化中(b)、劣化大(c)である場合をそれぞれ示す図である。
【符号の説明】
1 エンジン
21a フロントA/Fセンサ
21b フロントA/Fセンサ
24 三元触媒コンバータ(MCC)
25 ミドルA/Fセンサ(排気センサ)
26 三元触媒コンバータ(MCC)
27 ミドルA/Fセンサ(排気センサ)
29 上流リヤA/Fセンサ
30 三元触媒コンバータ(UCC)
31 下流リヤA/Fセンサ(排気センサ)
60 電子コントロールユニット(ECU)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, to a deterioration determination technique for a catalytic converter.
[0002]
[Related background]
In exhaust gas catalytic converters, the oxygen storage capacity of the catalyst has a high correlation with the catalyst performance. Therefore, particularly in catalytic converters that contain a large amount of oxygen storage materials such as ceria (Ce), a catalyst deterioration detection method is used. Therefore, a method is adopted in which deterioration of the catalytic converter is determined by monitoring a change with time in the oxygen storage capacity.
[0003]
In this catalyst deterioration detection method, when the exhaust air-fuel ratio flowing into the catalytic converter is modulated between the lean air-fuel ratio and the rich air-fuel ratio by a predetermined period (for example, the modulation period of the air-fuel ratio feedback control) and the amplitude, the oxygen storage capacity is improved. Since oxygen is stored in the catalytic converter, the response of the exhaust air-fuel ratio downstream of the catalyst is slow or the amplitude is small. On the other hand, when the oxygen storage capacity is low, oxygen is discharged without being stored in the catalytic converter so much. The characteristic is that the response of the downstream exhaust air-fuel ratio is fast or the amplitude is increased. For example, the oxygen concentration output value from the oxygen sensor (O 2 sensor) or the air-fuel ratio sensor (LAFS) provided downstream of the catalyst is used. The fluctuation period is detected, or the amplitude is detected as disclosed in Japanese Patent Laid-Open No. 2002-30992, and the detected value is a predetermined value. If it is standard value or more, the oxygen storage capability is to be determined decreases, i.e. the catalytic converter has deteriorated.
[0004]
[Problems to be solved by the invention]
However, as disclosed in the above publication, when the deterioration determination is performed based on the amplitude of the exhaust air / fuel ratio, there is a problem that when the amplitude is close to the maximum amplitude, the deterioration state becomes the same and thereafter the deterioration state cannot be determined.
Further, in recent years, there has been a demand for further improvement in exhaust gas purification performance from the viewpoint of environmental conservation, and it has been required to detect even a slight deterioration of the catalytic converter.
[0005]
Therefore, when the catalytic converter deteriorates, the period ratio (modulation duty) of the period when the exhaust air-fuel ratio downstream of the catalyst is on the lean air-fuel ratio side or the rich air-fuel ratio side from the reference value (for example, the fluctuation amplitude center value) changes. It is considered that the deterioration determination is performed in consideration of the period rate. For example, it is considered that the product of the amplitude of the exhaust air-fuel ratio and the period rate is obtained and the deterioration determination is performed based on whether the value of the product is larger than a predetermined value. As a result, the detection accuracy of deterioration is improved as compared with the deterioration determination based on only the amplitude as disclosed in the above publication, and the deterioration of the catalytic converter can be determined relatively well.
[0006]
However, as a result of experiments, when the catalytic converter has not deteriorated so much and the oxygen storage capacity has not deteriorated so much, the exhaust air-fuel ratio detected downstream of the catalytic converter as shown by the solid line in FIG. The amplitude (ΔO 2 ) of the exhaust gas is small and the period (Tlean) in which the exhaust air-fuel ratio is on the lean air-fuel ratio side of the reference value (for example, the fluctuation amplitude center value) X1 is long. As indicated by the solid line in FIG. 3 (c), the amplitude of the exhaust air / fuel ratio increases, while the period during which the exhaust air / fuel ratio is on the lean air / fuel ratio side from the reference value X1 (Tlean) is shortened, and the deterioration is particularly moderate. 3B, it was confirmed that the period (Tlean) in which the exhaust air-fuel ratio is on the lean air-fuel ratio side is shorter than when the deterioration is large, as indicated by the solid line in FIG. In FIG. 3, the alternate long and short dash line indicates the modulation of the exhaust air / fuel ratio upstream of the catalytic converter.
[0007]
As described above, as the deterioration progresses, the amplitude of the exhaust air-fuel ratio increases. On the other hand, when the period during which the exhaust air-fuel ratio is on the lean air-fuel ratio becomes shorter, the amplitude becomes close to the maximum amplitude (ΔO 2 max). It is possible to discriminate the deterioration state (degrading to large deterioration) well, but the exhaust air-fuel ratio amplitude (ΔO 2 ) and period rate (Tlean) during the period from small to large before the amplitude becomes close to the maximum amplitude. ) May be the same, and there is a possibility that the same deterioration state may be erroneously determined even though the degree of deterioration is different.
[0008]
The present invention has been made to solve such problems, and an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can accurately determine deterioration of a catalytic converter.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a catalytic converter disposed in an exhaust passage of an internal combustion engine, and an exhaust air / fuel ratio modulating means for modulating an exhaust air / fuel ratio flowing into the catalytic converter at a predetermined period. And an exhaust sensor that is provided downstream of the catalytic converter and detects the exhaust air-fuel ratio, and obtains an amplitude correlation value of the exhaust air-fuel ratio downstream of the catalytic converter based on output information from the exhaust sensor. A catalyst downstream modulation state detecting means for obtaining a period rate correlation value during a period when the exhaust air-fuel ratio downstream of the catalytic converter is on the lean air-fuel ratio side or a rich air-fuel ratio side relative to a reference value; and the catalyst downstream modulation state Deterioration determining means for determining deterioration of the catalytic converter based on the amplitude correlation value and the period rate correlation value obtained by the detecting means; The deterioration determining unit is characterized in that than the time constant correlation value by weighting the amplitude correlation value so that the degree of influence of the amplitude correlation value increases to determine the deterioration of the catalytic converter.
[0010]
Therefore, by performing deterioration determination based on the amplitude correlation value of the exhaust air-fuel ratio downstream of the catalytic converter and the period rate correlation value (modulation duty), the deterioration of the catalytic converter can be achieved as compared with the case where deterioration determination is performed using only the amplitude correlation value. The situation (especially degrading to large deterioration) can be detected relatively well, but by further weighting the amplitude correlation value so that the influence degree of the amplitude correlation value is larger than the period rate correlation value, Until the amplitude correlation value reaches the maximum amplitude value, that is, in a situation where the amplitude correlation value increases substantially in proportion to the deterioration state (small deterioration to under deterioration), the amplitude correlation value is emphasized, and the deterioration state of the catalytic converter is ensured. Can be determined. Thereby, it is possible to accurately determine the deterioration of the catalytic converter.
[0011]
The invention according to claim 2 further comprises catalyst upstream amplitude correlation value estimating means for estimating an amplitude correlation value of the exhaust air-fuel ratio upstream of the catalytic converter, wherein the deterioration determining means is the catalyst downstream modulation state detecting means. Dividing the amplitude correlation value downstream of the catalytic converter obtained by the above by the amplitude correlation value upstream of the catalytic converter estimated by the catalyst upstream amplitude correlation value estimating means to obtain a weighting factor, and calculating the weighting factor to the downstream The deterioration of the catalytic converter is determined by weighting by multiplying the product of the amplitude correlation value and the period rate correlation value.
[0012]
Therefore, by performing the deterioration determination based on the product of the amplitude correlation value of the exhaust air-fuel ratio downstream of the catalytic converter and the period rate correlation value (modulation duty), the catalytic converter is compared with the case where the deterioration determination is performed using only the amplitude correlation value. Can be detected relatively well, but the amplitude correlation value has a weighting factor (weighting factor) so that the degree of influence of the amplitude correlation value is greater than the period rate correlation value. = Amplitude correlation value downstream of the catalytic converter / Amplitude correlation value upstream of the catalytic converter), in particular, until the amplitude correlation value reaches the maximum amplitude value, that is, the amplitude correlation value is substantially proportional to the deterioration state. Therefore, the larger the amplitude correlation value is, the higher the amplitude correlation value is, the more the deterioration state of the catalytic converter can be reliably determined. Thereby, deterioration of the catalytic converter can be facilitated and accurately determined.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention. Hereinafter, the configuration of the exhaust gas purification apparatus will be described.
As shown in the figure, an engine body (hereinafter simply referred to as an engine) 1 that is an internal combustion engine includes, for example, a fuel injection in an intake stroke (intake stroke injection) and a fuel in a compression stroke by switching a fuel injection mode. An in-cylinder injection spark ignition type 4-cycle 4-cylinder gasoline engine capable of performing injection (compression stroke injection) is employed. The in-cylinder injection type engine 1 can be operated at a rich air-fuel ratio (rich air-fuel ratio operation) or a lean air-fuel ratio operation (lean air-fuel ratio operation) in addition to the operation at the stoichiometric air-fuel ratio (stoichio). It is.
[0014]
As shown in the figure, the cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 6 together with a spark plug 4 for each cylinder, so that fuel can be directly injected into the combustion chamber. .
An ignition coil 8 that outputs a high voltage is connected to the spark plug 4. Further, a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. More specifically, the fuel supply device is provided with a low pressure fuel pump and a high pressure fuel pump, whereby fuel in the fuel tank is supplied to the fuel injection valve 6 at a low fuel pressure or a high fuel pressure. Can be injected from the fuel injection valve 6 into the combustion chamber at a desired fuel pressure.
[0015]
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 10 is connected so as to communicate with each intake port. The intake manifold 10 is provided with an electromagnetic throttle valve 14 for adjusting the intake air amount.
Further, an exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of the exhaust manifold 20 is connected to communicate with each exhaust port. Here, as the exhaust manifold 20, a dual type exhaust manifold system is employed.
[0016]
In the exhaust manifold 20 comprising this dual exhaust manifold system, the exhaust passage from the # 1 cylinder, the exhaust passage from the # 4 cylinder, the exhaust passage from the # 2 cylinder, and the exhaust passage from the # 3 cylinder are joined together. (The combustion order is # 1 → # 3 → # 4 → # 2).
An exhaust pipe 28 is connected to the other end of the exhaust manifold 20 via a collecting pipe 22, and the collecting pipe 22 is exhaust gas from the # 1 cylinder and the # 4 cylinder (hereinafter referred to as # 1, # 4 cylinder group). Is constituted by two collecting pipes (dual pipes) of collecting pipe 22b through which exhaust gas from the # 2 cylinder and # 3 cylinder (hereinafter referred to as # 2, # 3 cylinder group) flows. .
[0017]
The collecting pipe 22a has a three-way catalytic converter (manifold catalyzer converter, hereinafter abbreviated as MCC) 24 containing an oxygen storage material such as ceria (Ce) as an upstream catalytic converter corresponding to the # 1, # 4 cylinder group. Similarly, in the collecting pipe 22b, a three-way catalytic converter (hereinafter abbreviated as MCC) containing an oxygen storage material such as ceria (Ce) as an upstream side catalytic converter corresponding to the # 2 and # 3 cylinder groups. 26 is interposed. When the MCCs 24 and 26 are interposed in the collecting pipe 22a and the collecting pipe 22b as described above, the MCCs 24 and 26 can be activated early even if the engine 1 is in a cold state because the MCCs 24 and 26 are located close to the engine 1. Therefore, it is possible to satisfactorily purify harmful substances (HC, CO, NOx, etc.) in the exhaust gas regardless of the operating state.
[0018]
In the upstream portion of the MCC 24 and the upstream portion of the MCC 26, air-fuel ratio sensors (for example, O 2 sensors, hereinafter referred to as front A / F sensors) 21a and 21b for detecting an exhaust air-fuel ratio (exhaust A / F) are provided as exhaust sensors. Each is provided.
Further, similar air-fuel ratio sensors (hereinafter referred to as middle A / F sensors) 25 and 27 are also provided in a downstream portion of the collecting pipe 22a from the MCC 24 and a downstream portion of the collecting pipe 22b from the MCC 26, respectively.
[0019]
Further, a three-way catalytic converter (underfloor catalyzer converter, hereinafter abbreviated as UCC) 30 is interposed in the exhaust pipe 28 as a downstream catalytic converter. The UCC 30 also contains an oxygen storage material such as ceria (Ce).
An air-fuel ratio sensor (hereinafter referred to as an upstream rear A / F sensor) 29 as an exhaust sensor is disposed in an upstream portion of the UCC 30 of the exhaust pipe 28, and a similar air-fuel ratio sensor (hereinafter referred to as downstream) is also disposed in a downstream portion of the UCC 30. A rear A / F sensor) 31 is provided.
[0020]
The electronic control unit (ECU) 60 includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Overall control of the exhaust emission control device is performed.
On the input side of the ECU 60, the front A / F sensors 21 a and 21 b, the middle A / F sensors 25 and 27, the upstream rear A / F sensor 29, the downstream rear A / F sensor 31, the crank angle sensor 62, etc. These sensors are connected, and detection information from these sensors is input. When the crank angle is detected by the crank angle sensor 62, the current combustion cylinder is determined based on the crank angle, and the engine speed Ne is obtained.
[0021]
On the other hand, the output side of the ECU 60 is connected to various output devices such as the fuel injection valve 6, the ignition coil 8, the throttle valve 14 and the warning lamp 62, and for example, detection information from each A / F sensor. When the combustion air-fuel ratio (combustion A / F) is set in the combustion order (# 1 → # 3 → # 4 → # 2) based on the combustion order, the command signal for the fuel injection amount and the fuel injection timing is determined according to the combustion A / F. Are output to the fuel injection valve 6 in the order of combustion, a command signal for the intake air amount is output to the throttle valve 14, and a command signal for the ignition timing is output to the ignition coil 8 in the order of combustion. Accordingly, an appropriate amount of fuel is injected from the fuel injection valve 6 at an appropriate timing, the throttle valve 14 is set to an appropriate opening degree, and spark ignition is performed at an appropriate timing by the spark plug 4.
[0022]
When the combustion A / F is set, the exhaust A / F flowing into the MCC 24 and the MCC 26 is feedback-controlled based on detection information from each A / F sensor. Specifically, the exhaust A / F is modulated by repeatedly modulating the combustion A / F to the rich air-fuel ratio side and the lean air-fuel ratio side, for example, so as to have a predetermined amplitude at a predetermined cycle for each cylinder, and the average air-fuel ratio is Control is performed to achieve the target air-fuel ratio (target A / F) (exhaust air-fuel ratio modulation means).
[0023]
Hereinafter, the operation of the exhaust gas purification apparatus for an internal combustion engine according to the present invention configured as described above, that is, the determination method for determining catalyst deterioration according to the present invention will be described.
Referring to FIG. 2, a control routine for determining catalyst deterioration according to the present invention is shown in a flowchart, and the determination procedure for determining catalyst deterioration according to the present invention will be described in detail below along the flowchart.
[0024]
In the catalyst deterioration determination according to the present invention, basically, feedback control is performed in the same manner as in the past to modulate the exhaust A / F at a predetermined period, and the change over time of the oxygen storage capacity of the catalytic converter at this time is monitored. Thus, the deterioration of the catalytic converter is determined, and the basic action of the catalyst deterioration determination is the same as described above, and the description thereof is omitted.
[0025]
Further, here, the deterioration determination of the MCC 24 is performed as an example, but the same applies to the deterioration determination of the MCC 26 and the UCC 30 and the description thereof is omitted.
First, in step S10, it is determined whether or not air-fuel ratio modulation is performed at a predetermined period. Here, for example, it is determined whether or not the feedback control is performed. Instead of the feedback control, air-fuel ratio modulation may be performed with a predetermined cycle separately determined. In this case, it is determined whether or not the air-fuel ratio modulation is performed with the predetermined cycle. If the determination result is false (No), the air-fuel ratio modulation is not performed and the deterioration cannot be determined, so the routine is exited as it is. On the other hand, if the determination result is true (Yes), the process proceeds to step S12.
[0026]
In step S12, the output amplitude ΔO 2 (amplitude correlation value) of the catalyst downstream O 2 sensor for one cycle is measured. Here, the output amplitude ΔO 2 of the middle A / F sensor 25 downstream of the MCC 24 is measured (catalyst downstream modulation state detecting means).
In step S14, the output amplitude of the catalyst upstream O 2 sensor for one cycle, that is, the maximum amplitude ΔO 2 max (amplitude correlation value) is estimated (catalyst upstream amplitude correlation value estimation means). Here, for example, the output amplitude of the front A / F sensor 21a is measured. Since the exhaust A / F is considered to be almost the same as the combustion A / F upstream of the MCC 24, the maximum amplitude ΔO 2 max may be obtained from a predetermined amplitude of feedback control.
[0027]
In step S16, the period Tlean in which the catalyst downstream O 2 sensor output for one cycle is equal to or lower than the reference value X1, that is, the period Tlean in which the exhaust A / F downstream of the catalyst is on the lean air-fuel ratio side from the reference value X1 is actually measured (FIG. 3). Here, a period Tlean in which the output of the middle A / F sensor 25 is leaner than the reference value X1 is obtained. The reference value X1 is the same as the value in FIG. 3, and is, for example, the fluctuation amplitude center value (for example, the theoretical air-fuel ratio).
[0028]
In step S18, a period Tlean0 in which the catalyst upstream O 2 sensor output for one cycle is equal to or lower than the reference value X1, that is, a period Tlean0 in which the exhaust A / F upstream of the catalyst is on the lean air-fuel ratio side from the reference value X1 is estimated. (See FIG. 3). Here, a period Tlean0 in which the output of the front A / F sensor 21a is leaner than the reference value X1 is obtained. Note that the period Tlean0 may be obtained from a period on the predetermined lean air-fuel ratio side of the feedback control.
[0029]
When the output amplitude ΔO 2 , the output amplitude ΔO 2 max, the period Tlean, and the period Tlean0 are obtained in this way, in step S20, the deterioration determination value ΔOSC is calculated from the following equation (1).
ΔOSC = ΔO 2 × {Tlean, Tlean0} × ΔO 2 / ΔO 2 max (1)
However, {Tlean, Tlean0} is Tlean / Tlean0 when Tlean0 ≧ Tlean, and Tlean0 / Tlean when Tlean> Tlean0. ΔO 2 / ΔO 2 max is a weighting factor.
[0030]
That is, the period rate correlation value (modulation duty) of the period Tlean on the lean air-fuel ratio side of the reference value X1 is obtained as Tlean / Tlean0 or Tlean0 / Tlean (catalyst downstream modulation state detecting means), and the modulation duty Tlean / Tlean0 or The product of Tlean0 / Tlean and the output amplitude ΔO 2 is obtained, and the value of this product is multiplied by a weighting factor ΔO 2 / ΔO 2 max to obtain the deterioration judgment value ΔOSC.
[0031]
As described above, when the product of the modulation duty downstream of the MCC 24 and the output amplitude is obtained, and the deterioration judgment value ΔOSC is obtained by further multiplying the value of this product by the weighting factor, the deterioration is large and the deterioration is in progress. Regarding the case, as shown in FIGS. 3B and 3C, the amplitudes are both near the maximum amplitude ΔO 2 max, while the modulation duty Tlean / Tlean0 or Tlean0 / Tlean is larger when the deterioration is large. Therefore, the deterioration determination value ΔOSC is surely increased in the case of large deterioration, the deterioration determination can be performed by properly determining the large deterioration and the deterioration state during deterioration, and the amplitude is the maximum amplitude ΔO 2. As is apparent from FIGS. 3A and 3B, the amplitude ΔO 2 of the exhaust air-fuel ratio is obtained by multiplying the weighting coefficient ΔO 2 / ΔO 2 max as apparent from FIGS. The larger the amplitude Since the degree of influence of ΔO 2 becomes large, the deterioration determination value ΔOSC is surely larger in the case of the deterioration than in the case of the low deterioration, and the deterioration determination is performed by better discriminating the deterioration state and the deterioration state during the deterioration. It can be performed.
[0032]
That is, when the weighting coefficient ΔO 2 / ΔO 2 max is multiplied, the amplitude ΔO 2 is effective as a quadratic function. Therefore, under different deterioration conditions between small deterioration and under deterioration, that is, modulation duty Tlean / Tlean0 or Tlean0 / Under a degradation situation where the value of Tlean and the value of amplitude ΔO 2 are different, even if the product of the modulation duty and the output amplitude is the same, the value of amplitude ΔO 2 will be emphasized and degradation will occur. judgment value ΔOSC has become certainly larger towards the case in large deterioration in amplitude delta O.D. 2 than in the case of a small deterioration small amplitude delta O.D. 2, thus satisfactorily discriminated by degradation determination degradation conditions during degradation and deterioration small Can be carried out accurately.
[0033]
When the deterioration determination value ΔOSC is obtained in this way, in step S22, it is determined whether or not the deterioration determination value ΔOSC is larger than a predetermined value X2, that is, whether or not the MCC 24 has reached a predetermined deterioration state ( Degradation judging means). If the determination result is true (Yes) and it is determined that the deterioration determination value ΔOSC is greater than the predetermined value X2, the process proceeds to step S24, where it is determined that the MCC 24 has deteriorated and the warning lamp 62 is turned on. On the other hand, if the determination result is false (No) and the deterioration determination value ΔOSC is determined to be equal to or less than the predetermined value X2, the process proceeds to step S26, where it is determined that the MCC 24 has not deteriorated (deterioration of deterioration determination), and the warning lamp 62 Is turned off.
[0034]
Preferably, when it is determined in step S22 that the deterioration determination value ΔOSC is greater than the predetermined value X2, it is preferable to determine that the deterioration has occurred after this state has continued for a predetermined time, and the deterioration determination value ΔOSC is a predetermined value. If it is determined that it is X2 or less, it is preferable to determine that this state has not deteriorated after a predetermined time has elapsed, thereby further improving the accuracy of the deterioration determination.
[0035]
As described above, in the catalyst deterioration determination according to the present invention, the deterioration determination value ΔOSC is accurately obtained according to the deterioration state (low deterioration to middle deterioration to high deterioration), and the MCC 24 is deteriorated based on the accurate deterioration determination value ΔOSC. Judgment is made.
Accordingly, erroneous determination of catalyst deterioration is eliminated, and the reliability of the exhaust emission control device as a whole can be improved.
[0036]
As described above, the deterioration determination value ΔOSC can be accurately obtained and the deterioration determination can be performed similarly for the MCC 26 and the UCC 30 as well. However, in the case of the deterioration determination of the MCC 26, the middle A / F sensor 27 is connected to the catalyst. For the downstream O 2 sensor, the front A / F sensor 21b corresponds to the catalyst upstream O 2 sensor, and in the case of judging the deterioration of the UCC 30, the downstream rear A / F sensor 31 serves as the catalyst downstream O 2 sensor and the upstream rear A / F sensor. The F sensor 29 corresponds to the catalyst upstream O 2 sensor. In the case of determining the deterioration of the UCC 30, the catalyst upstream O 2 sensor may be the middle A / F sensor 27 or the front A / F sensors 21a and 21b.
[0037]
The description of the embodiment is finished as above, but the present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the apparatus configuration includes the MCC 24 and the MCC 26 and the UCC 30. However, the present invention can be applied satisfactorily if the exhaust passage has at least one catalytic converter.
[0038]
In the above embodiment, the deterioration of the three-way catalytic converter such as the MCC 24, MCC 26, or UCC 30 is determined. However, the object of the deterioration determination is not limited to the three-way catalytic converter, and any catalytic converter such as a NOx catalytic converter may be used. May be.
In the above embodiment, the period Tlean in which the exhaust A / F downstream of the catalyst is on the lean air-fuel ratio side of the reference value X1 is actually measured in step S16, and the exhaust A / F upstream of the catalyst is the reference value in step S18. The modulation duty Tlean / Tlean0 or Tlean0 / Tlean is obtained by estimating the period Tlean0 that is on the lean air-fuel ratio side of X1, and instead the deterioration determination is performed. Instead, the exhaust A / F downstream of the catalyst is determined. The modulation duty Trich / Trich0 is determined by actually measuring the period Trich in which the engine is on the rich air-fuel ratio side of the reference value X1 and estimating the period Trich0 in which the exhaust A / F upstream of the catalyst is on the rich air-fuel ratio side of the reference value X1. Alternatively, Trich0 / Trich may be obtained and the deterioration determination may be performed.
[0039]
In the above embodiment, the weighting is performed by multiplying the weighting coefficient ΔO 2 / ΔO 2 max. However, the weighting is limited to the weighting coefficient ΔO 2 / ΔO 2 max as long as the amplitude ΔO 2 is emphasized. However, the present invention is not limited to multiplication, and may be configured to perform second or higher order multiplication or addition.
In the above embodiment, a cylinder injection type spark ignition type four-cycle four-cylinder gasoline engine is used as the engine 1, but the engine 1 can be any engine such as an intake pipe injection type gasoline engine, a two-cycle gasoline engine, a diesel engine, or the like. It may be.
[0040]
In the above embodiment, for example, an O 2 sensor is used as the air-fuel ratio sensor, but a linear air-fuel ratio sensor (LAFS) may be used.
[0041]
【The invention's effect】
As described above in detail, according to the exhaust gas purification apparatus for an internal combustion engine of claim 1 of the present invention, the catalyst is based on the amplitude correlation value and the period rate correlation value (modulation duty) of the exhaust air-fuel ratio downstream of the catalytic converter. By judging the deterioration of the converter, it is possible to detect the deterioration state of the catalytic converter (especially during deterioration to large deterioration) relatively better than when performing the deterioration judgment only by the amplitude correlation value, but further, the period rate correlation By weighting the amplitude correlation value so that the degree of influence of the amplitude correlation value is greater than the value, especially until the amplitude correlation value reaches the maximum amplitude value, that is, the amplitude correlation value is substantially proportional to the degradation state. Therefore, the amplitude correlation value is emphasized in a situation where the degradation is small (during degradation to during degradation), and the degradation status of the catalytic converter can be reliably determined. Thereby, deterioration of the catalytic converter can be accurately determined.
[0042]
According to the exhaust gas purification apparatus for an internal combustion engine according to claim 2, the deterioration determination of the catalytic converter is performed based on the product of the amplitude correlation value of the exhaust air-fuel ratio downstream of the catalytic converter and the period rate correlation value (modulation duty). This makes it possible to detect the deterioration state of the catalytic converter (especially during deterioration to large deterioration) relatively better than when performing deterioration determination using only the amplitude correlation value. By multiplying the amplitude correlation value by the weighting coefficient (weighting coefficient = amplitude correlation value downstream of the catalytic converter / amplitude correlation value upstream of the catalytic converter) so that the degree of influence becomes larger, the amplitude correlation value is particularly set to the maximum amplitude value. In the situation where the amplitude correlation value increases substantially in proportion to the deterioration state (small deterioration to during deterioration), the larger the amplitude correlation value, the more emphasized the deterioration state of the catalytic converter. The the reliably determine possible. Thereby, deterioration of the catalytic converter can be facilitated and accurately determined.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust emission control device for an internal combustion engine according to the present invention.
FIG. 2 is a flowchart showing a control routine for determining catalyst deterioration according to the present invention.
FIG. 3 is an output waveform of the exhaust air / fuel ratio detected downstream of the catalytic converter, and shows a case where the catalytic converter is low in deterioration (a), in deterioration (b), and in high deterioration (c), respectively. .
[Explanation of symbols]
1 Engine 21a Front A / F sensor 21b Front A / F sensor 24 Three-way catalytic converter (MCC)
25 Middle A / F sensor (exhaust sensor)
26 Three-way catalytic converter (MCC)
27 Middle A / F sensor (exhaust sensor)
29 Upstream rear A / F sensor 30 Three-way catalytic converter (UCC)
31 Downstream rear A / F sensor (exhaust sensor)
60 Electronic control unit (ECU)

Claims (2)

内燃機関の排気通路に配設された触媒コンバータと、
前記触媒コンバータに流入する排気空燃比を所定周期で変調させる排気空燃比変調手段と、
前記触媒コンバータの下流に位置して設けられ、排気空燃比を検出する排気センサと、
前記排気センサからの出力情報に基づき、前記触媒コンバータの下流における排気空燃比の振幅相関値を求めるとともに、前記触媒コンバータの下流における排気空燃比が基準値よりもリーン空燃比側にある期間またはリッチ空燃比側にある期間の期間率相関値を求める触媒下流変調状態検出手段と、
前記触媒下流変調状態検出手段により求められた前記振幅相関値と前記期間率相関値とに基づき前記触媒コンバータの劣化を判定する劣化判定手段とを備え、
前記劣化判定手段は、前記期間率相関値よりも前記振幅相関値の影響度合いが大きくなるよう前記振幅相関値に重み付けをして前記触媒コンバータの劣化を判定することを特徴とする内燃機関の排気浄化装置。
A catalytic converter disposed in an exhaust passage of the internal combustion engine;
Exhaust air-fuel ratio modulating means for modulating the exhaust air-fuel ratio flowing into the catalytic converter in a predetermined cycle;
An exhaust sensor that is provided downstream of the catalytic converter and detects an exhaust air-fuel ratio;
Based on the output information from the exhaust sensor, an amplitude correlation value of the exhaust air-fuel ratio downstream of the catalytic converter is obtained, and a period during which the exhaust air-fuel ratio downstream of the catalytic converter is on the lean air-fuel ratio side from the reference value or rich Catalyst downstream modulation state detecting means for obtaining a period rate correlation value for a period on the air-fuel ratio side;
Deterioration determining means for determining deterioration of the catalytic converter based on the amplitude correlation value obtained by the catalyst downstream modulation state detecting means and the period rate correlation value;
The deterioration determination means weights the amplitude correlation value to determine deterioration of the catalytic converter so that an influence degree of the amplitude correlation value is larger than the period rate correlation value, and determines deterioration of the catalytic converter. Purification equipment.
さらに、前記触媒コンバータの上流における排気空燃比の振幅相関値を推定する触媒上流振幅相関値推定手段を備え、
前記劣化判定手段は、前記触媒下流変調状態検出手段により求められた前記触媒コンバータの下流の振幅相関値を前記触媒上流振幅相関値推定手段により推定された前記触媒コンバータの上流の振幅相関値で除して重み係数を求め、該重み係数を前記下流の振幅相関値と前記期間率相関値との積に乗算することにより重み付けをして前記触媒コンバータの劣化を判定することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
Further, a catalyst upstream amplitude correlation value estimation means for estimating an amplitude correlation value of the exhaust air-fuel ratio upstream of the catalytic converter is provided,
The deterioration determination means divides the amplitude correlation value downstream of the catalytic converter obtained by the catalyst downstream modulation state detection means by the amplitude correlation value upstream of the catalyst converter estimated by the catalyst upstream amplitude correlation value estimation means. The weighting factor is obtained, and the weighting is performed by multiplying the weighting factor by the product of the downstream amplitude correlation value and the period rate correlation value to determine deterioration of the catalytic converter. Item 2. An exhaust emission control device for an internal combustion engine according to Item 1.
JP2002196391A 2002-07-04 2002-07-04 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4061476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196391A JP4061476B2 (en) 2002-07-04 2002-07-04 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196391A JP4061476B2 (en) 2002-07-04 2002-07-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004036545A JP2004036545A (en) 2004-02-05
JP4061476B2 true JP4061476B2 (en) 2008-03-19

Family

ID=31704500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196391A Expired - Fee Related JP4061476B2 (en) 2002-07-04 2002-07-04 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4061476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136075B2 (en) 2019-12-25 2022-09-13 トヨタ自動車株式会社 Catalyst deterioration detector

Also Published As

Publication number Publication date
JP2004036545A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US6405527B2 (en) Fuel supply conrol system for internal combustion engine
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
US6453663B1 (en) NOx sensor monitoring
US7040307B2 (en) System for diagnosing degradation of air-fuel sensor
US5533332A (en) Method and apparatus for self diagnosis of an internal combustion engine
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
JP2860866B2 (en) Vehicle catalyst temperature detector
US6829885B2 (en) Nox trap efficiency
US6092368A (en) Function diagnostic system for an exhaust gas purifying apparatus in an internal combustion engine
US9328646B2 (en) Integrated fuel catalyst monitor
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JP3759567B2 (en) Catalyst degradation state detection device
US20040168430A1 (en) Vehicle having an emission control device diagnostic computer
JP4317423B2 (en) Engine control device
JP4106529B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP3962892B2 (en) Exhaust purification device
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4061476B2 (en) Exhaust gas purification device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP4635365B2 (en) Exhaust purification catalyst deterioration judgment device
JP4089507B2 (en) Catalyst deterioration detection device for internal combustion engine
JP2000073927A (en) Burning condition detecting device for internal combustion engine
US6591604B2 (en) Oxygen storage capacity estimation
JP2837690B2 (en) Oxygen sensor abnormality detection device
GB2447181A (en) (EN) air-fuel ratio judging method in internal combustion engine based in ion current (JA)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees