JP4061441B2 - UV cold filter - Google Patents

UV cold filter Download PDF

Info

Publication number
JP4061441B2
JP4061441B2 JP03231598A JP3231598A JP4061441B2 JP 4061441 B2 JP4061441 B2 JP 4061441B2 JP 03231598 A JP03231598 A JP 03231598A JP 3231598 A JP3231598 A JP 3231598A JP 4061441 B2 JP4061441 B2 JP 4061441B2
Authority
JP
Japan
Prior art keywords
refractive index
low refractive
high refractive
film
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03231598A
Other languages
Japanese (ja)
Other versions
JPH11219613A (en
Inventor
保文 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP03231598A priority Critical patent/JP4061441B2/en
Publication of JPH11219613A publication Critical patent/JPH11219613A/en
Application granted granted Critical
Publication of JP4061441B2 publication Critical patent/JP4061441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は紫外線光源の前方に配置する紫外線コールドフィルターの改良に関する。
【0002】
【従来の技術】
従来、プラスチックやガラス等の表面に紫外線により硬化する塗料やインキを被着し、同塗料やインキに紫外線を照射することにより硬化することが実施されている。また食品の容器や医療品の容器に紫外線を照射し、容器に付着した黴菌を殺菌することが実施されている。さらにプラスチックや塗膜等の劣化を短時間に試験するために使用する耐候性試験装置の内部に紫外線光源を装着し、同紫外線光源からの紫外線によるプラスチックや塗膜等の劣化試験が行われている。
また紫外線光源からの高熱による被照射物への悪影響を防止するために、紫外線光源は例えば水冷ジャケットの内部に装着し、熱を除去することが実施されている。
【0003】
【発明が解決しようとする課題】
ところで、紫外線光源を水冷ジャケットの内部に装着する構造とすると、装置が複雑となる欠点がある。そこで従来、紫外線光源の前方に熱線カットフィルターを配置し、被照射物が高熱により劣化するのを防止することが実施されている。従来、実施されている熱線カットフィルターは2mm乃至3mm程度の厚さの石英ガラスの表面にSiOからなる低屈折率膜と、ZrOからなる高屈折率膜を順次25層程度積層し構成してある。
【0004】
しかし、同低屈折率膜と高屈折率膜を積層する構造によると、図5に示すように、分光特性が250nm乃至400nmの光の透過率が低く、また800nm乃至1200nmの光の反射率が低く、紫外線を効果的に利用することができず、さらに赤外線により高熱が熱線カットフィルターを透過して被照射物に悪影響を与える欠点がある。さらに紫外線光源を水冷ジャケット内に装着して熱をカットし、被照射物が高熱により悪影響を受けないようにしなければならず、装置が複雑となる欠点がある。
【0005】
本発明は、上記の点に鑑み発明したものであって、効率よく熱線をカットし、さらに効率よく紫外線を透過することができ、また簡単な装置により容易に製造することができる熱線カットフィルターを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために次の構成とする。つまり請求項1に記載の発明は、石英ガラス板の両面若しくは片面に、高屈折率膜と低屈折率膜とを交互に被着し、また同高屈折率膜と低屈折率膜との間に、高屈折率膜と低屈折率膜と同じ物質で且つ同高屈折率膜と低屈折率膜より薄い膜で構成してなる低屈折率膜と高屈折率膜を被着して構成してある。さらに、分光特性が250nm乃至400nmの光を透過し、800nm乃至1200nmの光を反射するように構成してある。
【0007】
【発明の実施の形態】
以下本発明を図1図乃至図4について説明する。図1において、1は2mm乃至3mm程度の厚さに構成した紫外線コールドフィルターであって、石英ガラス板で構成してある。また同紫外線コールドフィルターの両面若しくは片面に、高屈折率膜11と低屈折率膜12とを交互に多数層被着し、分光特性が250nm乃至400nmを透過し、800nm乃至1200nmを反射するように構成する。2は反射体3に装着してなる紫外線光源であって、例えば15キロワットの高圧放電ランプを用いて構成してある。4は紫外線コールドフィルター1の前方に配置し、紫外線を照射するワークであって、例えば食品や医療品の容器である。
【0008】
また石英ガラス板の両面若しくは片面に、高屈折率膜と低屈折率膜とを交互に被着し、また同高屈折率膜と低屈折率膜との間に、高屈折率膜と低屈折率膜と同じ物質で且つ同高屈折率膜と低屈折率膜より薄い膜で構成してなる低屈折率膜13と高屈折率膜14を被着して構成してある。
【0009】
次に紫外線コールドフィルター1の片面にZrO2あるいはHfO2からなる高屈折率膜とSiO2からなる低屈折率膜とを交互に多数層被着し、さらに同高屈折率膜と低屈折率膜の間に、同高屈折率膜と低屈折率膜より薄い厚さのSiO2からなる低屈折率膜と、ZrO2あるいはHfO2からなる高屈折率膜とを被着する。この場合の各膜の厚さは例えば次のように61層構成する。
【0010】
【表1】
層 物質 膜厚(nm)
1 低屈折率 57.92
2 高屈折率 11.82
3 低屈折率 17.54
4 高屈折率 89.63
5 低屈折率 15.79
6 高屈折率 13.63
7 低屈折率 115.88
8 高屈折率 12.89
9 低屈折率 13.7
10 高屈折率 89.08
11 低屈折率 13.32
12 高屈折率 13.55
13 低屈折率 114.59
14 高屈折率 13.33
15 低屈折率 12.39
16 高屈折率 88.54
17 低屈折率 11.96
18 高屈折率 13.35
19 低屈折率 113.82
20 高屈折率 13.73
21 低屈折率 11.71
22 高屈折率 88.27
23 低屈折率 11.44
24 高屈折率 13.69
25 低屈折率 113.46
26 高屈折率 13.72
27 低屈折率 11.59
28 高屈折率 88.17
29 低屈折率 11.62
30 高屈折率 14.00
31 低屈折率 113.35
32 高屈折率 13.24
33 低屈折率 11.42
34 高屈折率 88.11
35 低屈折率 12.53
36 高屈折率 13.9
37 低屈折率 112.97
38 高屈折率 13.24
39 低屈折率 12.33
40 高屈折率 88.08
41 低屈折率 12.22
42 高屈折率 13.29
43 低屈折率 113.04
44 高屈折率 13.71
45 低屈折率 12.88
46 高屈折率 88.17
47 低屈折率 11.46
48 高屈折率 13.03
49 低屈折率 113.59
50 高屈折率 14.1
51 低屈折率 12.96
52 高屈折率 88.31
53 低屈折率 10.76
54 高屈折率 13.3
55 低屈折率 114.21
56 高屈折率 14.39
57 低屈折率 11.82
58 高屈折率 88.49
59 低屈折率 6.01
60 高屈折率 15.46
61 低屈折率 55.78
【0011】
表1に示す紫外線コールドフィルターによると、図2に示す分光透過特性を得ることができる。同分光透過特性によると、250nmから400nmの紫外線は90%程度と効率よく透過し、また800nmから1000nmの範囲の赤外線の反射率は、97%程度と効率よくカットすることができる。これは、高屈折率膜と低屈折率膜の間に、薄い厚さの高屈折率膜と低屈折率膜とを被着することにより、図2に示すように、紫外線と赤外線を効率よく制御できるためである。
【0012】
なお、【0003】で説明した従来の構成によると、分光透過特性は図5に示す通りであり、赤外線の反射率は悪く、また紫外線の透過率も悪く、被照射面における温度は高くなり、紫外線による紫外線塗料やインキの硬化に時間を要する。
【0013】
次に両面にZrO2あるいはHfO2からなる高屈折率膜とSiO2からなる低屈折率膜とを交互に多数層被着し、さらに同高屈折率膜と低屈折率膜の間に、SiO2からなる薄い厚さの低屈折率膜と、ZrO2あるいはHfO2からなる薄い厚さの高屈折率膜とを被着してる実施例について説明する。この場合の各膜の厚さは例えば次のように構成する。表面の膜の厚さは表2に示すように61層構成する。
【0014】
【表2】
層 物質 膜厚(nm)
1 低屈折率 57.62
2 高屈折率 9.42
3 低屈折率 21.73
4 高屈折率 88.5
5 低屈折率 19.36
6 高屈折率 12.42
7 低屈折率 116.65
8 高屈折率 9.16
9 低屈折率 16.42
10 高屈折率 85.72
11 低屈折率 17.13
12 高屈折率 12.44
13 低屈折率 113.84
14 高屈折率 10.14
15 低屈折率 15.23
16 高屈折率 85.89
17 低屈折率 14.32
18 高屈折率 13.11
19 低屈折率 113.37
20 高屈折率 12.91
21 低屈折率 11.64
22 高屈折率 86.69
23 低屈折率 10.38
24 高屈折率 15.08
25 低屈折率 113.36
26 高屈折率 14.73
27 低屈折率 7.75
28 高屈折率 87.17
29 低屈折率 8.61
30 高屈折率 17.48
31 低屈折率 112.92
32 高屈折率 14.83
33 低屈折率 6.65
34 高屈折率 87.72
35 低屈折率 8.52
36 高屈折率 17.27
37 低屈折率 112.58
38 高屈折率 15.00
39 低屈折率 9.27
40 高屈折率 87.91
41 低屈折率 9.84
42 高屈折率 13.39
43 低屈折率 112.69
44 高屈折率 15.88
45 低屈折率 13.27
46 高屈折率 87.1
47 低屈折率 9.91
48 高屈折率 8.87
49 低屈折率 113.35
50 高屈折率 17.68
51 低屈折率 15.35
52 高屈折率 85.08
53 低屈折率 7.47
54 高屈折率 7.58
55 低屈折率 114.2
56 高屈折率 19.57
57 低屈折率 14.12
58 高屈折率 81.08
59 低屈折率 0
60 高屈折率 11.57
61 低屈折率 54.33
【0015】
また裏面の膜の厚さは、表3に示すように61層構成する。
【0016】
【表3】
層 物質 膜厚(nm)
1 低屈折率 70.44
2 高屈折率 11.69
3 低屈折率 19.05
4 高屈折率 105.21
5 低屈折率 15.42
6 高屈折率 17.18
7 低屈折率 138.4
8 高屈折率 16.42
9 低屈折率 16.79
10 高屈折率 108.36
11 低屈折率 16.91
12 高屈折率 16.01
13 低屈折率 139.88
14 高屈折率 15.76
15 低屈折率 16.39
16 高屈折率 108.53
17 低屈折率 16.87
18 高屈折率 15.74
19 低屈折率 139.54
20 高屈折率 15.87
21 低屈折率 16.04
22 高屈折率 109.25
23 低屈折率 16.7
24 高屈折率 15.23
25 低屈折率 140.22
26 高屈折率 15.32
27 低屈折率 16.73
28 高屈折率 108.45
29 低屈折率 15.89
30 高屈折率 16.13
31 低屈折率 138.02
32 高屈折率 15.99
33 低屈折率 16.54
34 高屈折率 107.57
35 低屈折率 16.83
36 高屈折率 15.92
37 低屈折率 138.24
38 高屈折率 16.37
39 低屈折率 15.49
40 高屈折率 109.1
41 低屈折率 17.69
42 高屈折率 14.57
43 低屈折率 143.15
44 高屈折率 14.99
45 低屈折率 17.00
46 高屈折率 109.96
47 低屈折率 15.23
48 高屈折率 16.5
49 低屈折率 138.82
50 高屈折率 15.64
51 低屈折率 17.54
52 高屈折率 105.3
53 低屈折率 16.44
54 高屈折率 16.79
55 低屈折率 127.67
56 高屈折率 14.94
57 低屈折率 10.00
58 高屈折率 104.34
59 低屈折率 3.63
60 高屈折率 17.28
61 低屈折率 54.89
【0017】
表2と表3に示す紫外線コールドフィルターによると、図3に示す分光透過特性を得ることができる。
同分光透過特性によると、表1示すものと同様に、250nmから400nmの紫外線は90%程度と効率よく透過し、また800nmから1200nmの範囲の赤外線の反射率は、99%程度と効率よくカットすることができる。
これは、高屈折率膜と低屈折率膜の間に、薄い厚さの高屈折率膜と低屈折率膜とを被着したことにより、図3に示すように、紫外線と赤外線を効率よく制御できるためである。
さらに両面に膜を構成したので、透過特性及び耐久性が向上する。
【0018】
また膜の被着は、高屈折率膜と低屈折率膜の二種について、基板温度や真空圧や蒸着速度を変えることにより、容易に形成することができる。
また上記した熱線カットフィルターを内部に紫外線光源を装着してなる紫外線照射装置の前面に配置し実施すると、照射装置の前面が高熱になることがなく、被照射物に対する熱的悪影響が生じることがなく、さらに紫外線を効果的に透過するので、確実に紫外線塗料やインキを硬化することができる。また従来の水冷式の装置に比べ構造が簡単となる。
【0019】
【発明の効果】
上記した請求項1と請求項2に記載2発明によると、効率よく熱線をカットし、効率よく紫外線を透過することができ、さらに容易に熱線カットフィルターを製造することができる特別な効果がある。
【図面の簡単な説明】
【図1】本発明に係る熱線カットフィルターの実施例図。
【図2】本発明に係る熱線カットフィルターの分光透過特性を示す図。
【図3】本発明に係る他の熱線カットフィルターの分光透過特性を示す図。
【図4】図1における熱線カットフィルターの一部拡大図。
【図5】従来の熱線カットフィルターの分光透過特性を示す図。
【符号説明】
1 石英ガラス板
2 紫外線光源
3 反射体
4 ワーク
11 高屈折率膜
12 低屈折率膜
13 低屈折率膜
14 高屈折率膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an ultraviolet cold filter disposed in front of an ultraviolet light source.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it has been practiced that a paint or ink that is cured by ultraviolet rays is applied to the surface of plastic, glass or the like, and cured by irradiating the paint or ink with ultraviolet rays. In addition, it is practiced to sterilize the koji mold adhering to the container by irradiating food containers and medical containers with ultraviolet rays. In addition, an ultraviolet light source is installed inside the weather resistance test equipment used to test the deterioration of plastics and coating films in a short time, and the deterioration test of plastics and coating films by ultraviolet rays from the ultraviolet light source is performed. Yes.
Further, in order to prevent an adverse effect on the irradiated object due to high heat from the ultraviolet light source, the ultraviolet light source is mounted in, for example, a water-cooled jacket to remove heat.
[0003]
[Problems to be solved by the invention]
By the way, when the ultraviolet light source is mounted inside the water cooling jacket, there is a drawback that the apparatus becomes complicated. Therefore, conventionally, a heat ray cut filter is disposed in front of the ultraviolet light source to prevent the irradiated object from being deteriorated by high heat. Conventionally, a heat ray cut filter that has been implemented is configured by laminating about 25 layers of a low refractive index film made of SiO 2 and a high refractive index film made of ZrO 2 sequentially on a surface of quartz glass having a thickness of about 2 mm to 3 mm. It is.
[0004]
However, according to the structure in which the low-refractive index film and the high-refractive index film are stacked, as shown in FIG. 5, the spectral characteristic is low in the transmittance of light of 250 nm to 400 nm and the reflectance of the light in the range of 800 nm to 1200 nm. It has a drawback that ultraviolet rays cannot be effectively used, and high heat is transmitted by the infrared ray filter through the heat ray cut filter, which adversely affects the irradiated object. Furthermore, an ultraviolet light source must be installed in the water cooling jacket to cut the heat so that the irradiated object is not adversely affected by the high heat, resulting in a disadvantage that the apparatus becomes complicated.
[0005]
The present invention has been invented in view of the above points, and provides a heat ray cut filter that can efficiently cut heat rays, transmit ultraviolet rays more efficiently, and can be easily manufactured by a simple device. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The present invention has the following configuration in order to solve the above problems. In other words, the invention described in claim 1 is that the high refractive index film and the low refractive index film are alternately deposited on both sides or one side of the quartz glass plate, and between the high refractive index film and the low refractive index film. In addition, a low refractive index film and a high refractive index film, which are made of the same material as the high refractive index film and the low refractive index film and are thinner than the high refractive index film and the low refractive index film, are deposited. It is. Further, it is configured to transmit light having a spectral characteristic of 250 nm to 400 nm and reflect light of 800 nm to 1200 nm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to FIGS. In FIG. 1, reference numeral 1 denotes an ultraviolet cold filter having a thickness of about 2 mm to 3 mm, which is made of a quartz glass plate. Further, multiple layers of the high refractive index film 11 and the low refractive index film 12 are alternately deposited on both surfaces or one surface of the ultraviolet cold filter so that the spectral characteristics are transmitted from 250 nm to 400 nm and reflected from 800 nm to 1200 nm. Constitute. Reference numeral 2 denotes an ultraviolet light source mounted on the reflector 3 and is configured using, for example, a 15 kilowatt high-pressure discharge lamp. Reference numeral 4 denotes a work that is disposed in front of the ultraviolet cold filter 1 and irradiates ultraviolet rays, and is, for example, a container for food or medical products.
[0008]
In addition, a high refractive index film and a low refractive index film are alternately deposited on both sides or one side of a quartz glass plate, and a high refractive index film and a low refractive index film are interposed between the high refractive index film and the low refractive index film. The low refractive index film 13 and the high refractive index film 14 made of the same material as the refractive index film and made of the same high refractive index film and a film thinner than the low refractive index film are deposited.
[0009]
Next, a high refractive index film made of ZrO 2 or HfO 2 and a low refractive index film made of SiO 2 are alternately deposited on one side of the ultraviolet cold filter 1, and the high refractive index film and the low refractive index film are further deposited. A low refractive index film made of SiO 2 having a thickness thinner than that of the high refractive index film and the low refractive index film and a high refractive index film made of ZrO 2 or HfO 2 are deposited. The thickness of each film in this case is composed of 61 layers as follows, for example.
[0010]
[Table 1]
Layer Material Film thickness (nm)
1 Low refractive index 57.92
2 High refractive index 11.82
3 Low refractive index 17.54
4 High refractive index 89.63
5 Low refractive index 15.79
6 High refractive index 13.63
7 Low refractive index 115.88
8 High refractive index 12.89
9 Low refractive index 13.7
10 High refractive index 89.08
11 Low refractive index 13.32
12 High refractive index 13.55
13 Low refractive index 114.59
14 High refractive index 13.33
15 Low refractive index 12.39
16 High refractive index 88.54
17 Low refractive index 11.96
18 High refractive index 13.35
19 Low refractive index 113.82
20 High refractive index 13.73
21 Low refractive index 11.71
22 High refractive index 88.27
23 Low refractive index 11.44
24 High refractive index 13.69
25 Low refractive index 113.46
26 High refractive index 13.72
27 Low refractive index 11.59
28 High refractive index 88.17
29 Low refractive index 11.62
30 High refractive index 14.00
31 Low refractive index 113.35
32 High refractive index 13.24
33 Low refractive index 11.42
34 High refractive index 88.11
35 Low refractive index 12.53
36 High refractive index 13.9
37 Low refractive index 112.97
38 High refractive index 13.24
39 Low refractive index 12.33
40 High refractive index 88.08
41 Low refractive index 12.22
42 High refractive index 13.29
43 Low refractive index 113.04
44 High refractive index 13.71
45 Low refractive index 12.88
46 High refractive index 88.17
47 Low refractive index 11.46
48 High refractive index 13.03
49 Low refractive index 113.59
50 High refractive index 14.1
51 Low refractive index 12.96
52 High refractive index 88.31
53 Low refractive index 10.76
54 High refractive index 13.3
55 Low refractive index 114.21
56 High refractive index 14.39
57 Low refractive index 11.82
58 High refractive index 88.49
59 Low refractive index 6.01
60 High refractive index 15.46
61 Low refractive index 55.78
[0011]
According to the ultraviolet cold filter shown in Table 1, the spectral transmission characteristics shown in FIG. 2 can be obtained. According to the spectral transmission characteristic, ultraviolet rays from 250 nm to 400 nm are efficiently transmitted at about 90%, and infrared reflectance in the range from 800 nm to 1000 nm is efficiently cut at about 97%. As shown in FIG. 2, ultraviolet rays and infrared rays are efficiently produced by depositing a thin high refractive index film and a low refractive index film between a high refractive index film and a low refractive index film. This is because it can be controlled.
[0012]
According to the conventional configuration described in FIG. 5, the spectral transmission characteristics are as shown in FIG. 5, the infrared reflectance is poor, the ultraviolet transmittance is also poor, and the temperature on the irradiated surface is high, It takes time to cure UV paints and inks by UV rays.
[0013]
Next, a high refractive index film made of ZrO 2 or HfO 2 and a low refractive index film made of SiO 2 are alternately deposited on both sides, and SiO SiO 2 is further sandwiched between the high refractive index film and the low refractive index film. An embodiment in which a thin low refractive index film made of 2 and a thin high refractive index film made of ZrO 2 or HfO 2 are applied will be described. The thickness of each film in this case is configured as follows, for example. As shown in Table 2, the thickness of the surface film is composed of 61 layers.
[0014]
[Table 2]
Layer Material Film thickness (nm)
1 Low refractive index 57.62
2 High refractive index 9.42
3 Low refractive index 21.73
4 High refractive index 88.5
5 Low refractive index 19.36
6 High refractive index 12.42
7 Low refractive index 116.65
8 High refractive index 9.16
9 Low refractive index 16.42
10 High refractive index 85.72
11 Low refractive index 17.13
12 High refractive index 12.44
13 Low refractive index 113.84
14 High refractive index 10.14
15 Low refractive index 15.23
16 High refractive index 85.89
17 Low refractive index 14.32
18 High refractive index 13.11
19 Low refractive index 113.37
20 High refractive index 12.91
21 Low refractive index 11.64
22 High refractive index 86.69
23 Low refractive index 10.38
24 High refractive index 15.08
25 Low refractive index 113.36
26 High refractive index 14.73
27 Low refractive index 7.75
28 High refractive index 87.17
29 Low refractive index 8.61
30 High refractive index 17.48
31 Low refractive index 112.92
32 High refractive index 14.83
33 Low refractive index 6.65
34 High refractive index 87.72
35 Low refractive index 8.52
36 High refractive index 17.27
37 Low refractive index 112.58
38 High refractive index 15.00
39 Low refractive index 9.27
40 High refractive index 87.91
41 Low refractive index 9.84
42 High refractive index 13.39
43 Low refractive index 112.69
44 High refractive index 15.88
45 Low refractive index 13.27
46 High refractive index 87.1
47 Low refractive index 9.91
48 High refractive index 8.87
49 Low refractive index 113.35
50 High refractive index 17.68
51 Low refractive index 15.35
52 High refractive index 85.08
53 Low refractive index 7.47
54 High refractive index 7.58
55 Low refractive index 114.2
56 High refractive index 19.57
57 Low refractive index 14.12
58 High refractive index 81.08
59 Low refractive index 0
60 High refractive index 11.57
61 Low refractive index 54.33
[0015]
Further, as shown in Table 3, the thickness of the film on the back surface is 61 layers.
[0016]
[Table 3]
Layer Material Film thickness (nm)
1 Low refractive index 70.44
2 High refractive index 11.69
3 Low refractive index 19.05
4 High refractive index 105.21
5 Low refractive index 15.42
6 High refractive index 17.18
7 Low refractive index 138.4
8 High refractive index 16.42
9 Low refractive index 16.79
10 High refractive index 108.36
11 Low refractive index 16.91
12 High refractive index 16.01
13 Low refractive index 139.88
14 High refractive index 15.76
15 Low refractive index 16.39
16 High refractive index 108.53
17 Low refractive index 16.87
18 High refractive index 15.74
19 Low refractive index 139.54
20 High refractive index 15.87
21 Low refractive index 16.04
22 High refractive index 109.25
23 Low refractive index 16.7
24 High refractive index 15.23
25 Low refractive index 140.22
26 High refractive index 15.32
27 Low refractive index 16.73
28 High refractive index 108.45
29 Low refractive index 15.89
30 High refractive index 16.13
31 Low refractive index 138.02
32 High refractive index 15.99
33 Low refractive index 16.54
34 High refractive index 107.57
35 Low refractive index 16.83
36 High refractive index 15.92
37 Low refractive index 138.24
38 High refractive index 16.37
39 Low refractive index 15.49
40 High refractive index 109.1
41 Low refractive index 17.69
42 High refractive index 14.57
43 Low refractive index 143.15
44 High refractive index 14.99
45 Low refractive index 17.00
46 High refractive index 109.96
47 Low refractive index 15.23
48 High refractive index 16.5
49 Low refractive index 138.82
50 High refractive index 15.64
51 Low refractive index 17.54
52 High refractive index 105.3
53 Low refractive index 16.44
54 High refractive index 16.79
55 Low refractive index 127.67
56 High refractive index 14.94
57 Low refractive index 10.00
58 High refractive index 104.34
59 Low refractive index 3.63
60 High refractive index 17.28
61 Low refractive index 54.89
[0017]
According to the ultraviolet cold filter shown in Tables 2 and 3, the spectral transmission characteristics shown in FIG. 3 can be obtained.
According to the spectral transmission characteristics, as shown in Table 1, ultraviolet rays from 250 nm to 400 nm are efficiently transmitted at about 90%, and infrared reflectance in the range from 800 nm to 1200 nm is efficiently cut at about 99%. can do.
As shown in FIG. 3, ultraviolet rays and infrared rays are efficiently emitted by depositing a thin high refractive index film and a low refractive index film between the high refractive index film and the low refractive index film. This is because it can be controlled.
Furthermore, since the film is formed on both sides, the transmission characteristics and durability are improved.
[0018]
Further, the film can be easily formed by changing the substrate temperature, the vacuum pressure, and the vapor deposition rate for the high refractive index film and the low refractive index film.
In addition, when the above-mentioned heat ray cut filter is disposed and implemented on the front surface of an ultraviolet irradiation device having an ultraviolet light source mounted therein, the front surface of the irradiation device does not become hot and a thermal adverse effect on the irradiated object may occur. Furthermore, since ultraviolet rays are effectively transmitted, ultraviolet paints and inks can be reliably cured. In addition, the structure is simple compared to conventional water-cooled devices.
[0019]
【The invention's effect】
According to the first and second aspects of the present invention, the heat ray can be efficiently cut, the ultraviolet ray can be efficiently transmitted, and the heat ray cut filter can be easily manufactured. .
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a heat ray cut filter according to the present invention.
FIG. 2 is a view showing spectral transmission characteristics of a heat ray cut filter according to the present invention.
FIG. 3 is a diagram showing spectral transmission characteristics of another heat ray cut filter according to the present invention.
4 is a partially enlarged view of the heat ray cut filter in FIG. 1. FIG.
FIG. 5 is a view showing spectral transmission characteristics of a conventional heat ray cut filter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz glass plate 2 Ultraviolet light source 3 Reflector 4 Workpiece 11 High refractive index film 12 Low refractive index film 13 Low refractive index film 14 High refractive index film

Claims (1)

石英ガラス板の両面若しくは片面に、高屈折率膜と低屈折率膜とを交互に被着し、また同高屈折率膜と低屈折率膜との間に、高屈折率膜と低屈折率膜と同じ物質で且つ同高屈折率膜と低屈折率膜より薄い膜で構成してなる低屈折率膜と高屈折率膜を被着して、分光特性が250nm乃至400nmの光を透過し、800nm乃至1200nmの光を反射するように構成したことを特徴とする紫外線コールドフィルター。A high refractive index film and a low refractive index film are alternately deposited on both sides or one side of a quartz glass plate, and a high refractive index film and a low refractive index film are interposed between the high refractive index film and the low refractive index film. A low-refractive index film and a high-refractive index film made of the same material as the film and made of the same high-refractive index film and a film thinner than the low-refractive index film are deposited to transmit light having a spectral characteristic of 250 nm to 400 nm. An ultraviolet cold filter configured to reflect light of 800 nm to 1200 nm.
JP03231598A 1998-01-30 1998-01-30 UV cold filter Expired - Fee Related JP4061441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03231598A JP4061441B2 (en) 1998-01-30 1998-01-30 UV cold filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03231598A JP4061441B2 (en) 1998-01-30 1998-01-30 UV cold filter

Publications (2)

Publication Number Publication Date
JPH11219613A JPH11219613A (en) 1999-08-10
JP4061441B2 true JP4061441B2 (en) 2008-03-19

Family

ID=12355516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03231598A Expired - Fee Related JP4061441B2 (en) 1998-01-30 1998-01-30 UV cold filter

Country Status (1)

Country Link
JP (1) JP4061441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843949A (en) * 2017-11-20 2018-03-27 北京空间机电研究所 A kind of high accuracy positioning carries the ultraprecise optical filter of error compensation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577602B2 (en) * 2001-07-31 2010-11-10 岩崎電気株式会社 UV irradiation equipment
JP4630574B2 (en) * 2004-05-31 2011-02-09 キヤノン株式会社 Optical element, mirror and antireflection film
WO2018100991A1 (en) * 2016-11-30 2018-06-07 旭硝子株式会社 Ultraviolet ray transmission filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843949A (en) * 2017-11-20 2018-03-27 北京空间机电研究所 A kind of high accuracy positioning carries the ultraprecise optical filter of error compensation
CN107843949B (en) * 2017-11-20 2020-08-14 北京空间机电研究所 High-precision positioning ultra-precise optical filter with error compensation function

Also Published As

Publication number Publication date
JPH11219613A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US7880966B2 (en) Optical article including a layer siox as main component and manufacturing method of the same
US7679820B2 (en) IR absorbing reflector
JP4275692B2 (en) Wire grid polarizer and liquid crystal display using the same
EP2680048A1 (en) Fine structure form and liquid-crystal display device comprising fine structure form
KR20080005427A (en) Multilayer reflector comprising optically thick layers with a non-uniform layer thickness profile
JPH08101395A (en) Production of liquid crystal display element
CN103732391A (en) Transparent laminated film
JP4061441B2 (en) UV cold filter
TWI831909B (en) Light unit and display device comprising the same
US20100284088A1 (en) Dichroic filters formed using silicon carbide based layers
JP3153334B2 (en) Multilayer filter for ultraviolet irradiation equipment
JP2013092551A (en) Resin glass
JPH05341121A (en) Multi-layer film reflecting mirror for ultraviolet ray irradiating device and ultraviolet ray irradiating device
Bartholomew et al. Rugate filters by laser flash evaporation of SiOxNy on room temperature polycarbonate
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JPH07159603A (en) Antireflection film and its production
JPH0646304B2 (en) UV curing irradiation device
JP2004255635A (en) Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device
JP4281930B2 (en) Manufacturing method of color filter
WO2017159471A1 (en) Optical phase difference member, composite optical member provided with optical phase difference member and manufacturing method for optical phase difference member
JP6179211B2 (en) Laminated film for transparent substrate and display panel using the same
WO2023112940A1 (en) Optical filter and sterilization device
JP4811293B2 (en) Absorption-type multilayer ND filter and method for manufacturing the same
JP2011227130A (en) Method for manufacturing wire grid polarizer
JPS61220844A (en) Ultraviolet rays irradiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees