JP4061248B2 - Vacuum chamber for particle accelerator - Google Patents

Vacuum chamber for particle accelerator Download PDF

Info

Publication number
JP4061248B2
JP4061248B2 JP2003202725A JP2003202725A JP4061248B2 JP 4061248 B2 JP4061248 B2 JP 4061248B2 JP 2003202725 A JP2003202725 A JP 2003202725A JP 2003202725 A JP2003202725 A JP 2003202725A JP 4061248 B2 JP4061248 B2 JP 4061248B2
Authority
JP
Japan
Prior art keywords
metal
ceramic member
fixing member
metal tube
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202725A
Other languages
Japanese (ja)
Other versions
JP2005050549A (en
Inventor
晃一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003202725A priority Critical patent/JP4061248B2/en
Publication of JP2005050549A publication Critical patent/JP2005050549A/en
Application granted granted Critical
Publication of JP4061248B2 publication Critical patent/JP4061248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波またはパルス状の電磁場によって、電子、重粒子等の粒子を加速したり偏向させるための粒子加速器用真空チャンバの改良に関するものである。
【0002】
【従来の技術】
従来の粒子加速器用真空チャンバ(以下、単にチャンバともいう)の一例を図2に示す。図2(a)は従来のチャンバの軸方向に平行な面における断面図、図2(b)は従来のチャンバの軸方向に垂直な面における断面図である。
【0003】
チャンバは、高周波またはパルス状電磁場により電気絶縁性かつ非磁性材料からなる筒状のセラミック部材(シリンダ)21の内部に電子、重粒子等の粒子を加速あるいは偏向させる際の粒子軌道用の真空空洞部22が形成された構造である。また、真空空洞部22の内壁面には、導電性非磁性材料からなる薄層24が形成されている。
【0004】
なお、セラミック部材21の両端には通常、接続用の金属部材(フランジ)(図示せず)が真空空洞部22と同軸状に取り付けられ、電磁場を発生させるための電磁石と組み合わせて使用される。
【0005】
また、近年、チャンバには、セラミック部材21の薄層24によって引き起こされる誘導電流によって発生する熱をチャンバの外部へ漏らすことのないように、セラミック部材21が冷却または断熱の機能を併せ持つことが要求されている。これは、粒子線の高エネルギー化に伴い、印加する電磁場もより強力なものとなっているため、導電性非磁性材の薄層24より誘導電流が原因となって発生する熱の量も増大傾向にあり、この熱がチャンバのセラミック部材21を伝わり、チャンバ外部に設置されている電磁石を構成するフェライト等のコア材料を加熱してその強磁性体としての特性が失われ、電磁石が本来の特性を発揮できなくなり易いという事情による。
【0006】
そこで、従来より、セラミック部材21をアルミナ(Al)質焼結体などのセラミックスによって形成し、セラミック部材21自身に渦電流が励起されることを防ぐとともに、セラミック部材21内面の薄層24より発生する熱を外部へ漏らさぬよう、セラミック部材21内に冷却機能を具備するものが提案されている。
【0007】
例えば、下記の特許文献1では、図2(a)に示すように、セラミック部材21の軸方向に冷却水を流すための複数の貫通孔23を真空空洞部22の周囲に形成し、形成した貫通孔23のうち隣接する数個の貫通孔23を端部で連結させて1つの水路として構成することにより、冷却水による冷却効果を均一化することが提案されている。この貫通孔23は、金属管26を介して、外部の冷却用配管に接続している。
【0008】
【特許文献1】
特開平11−283795号公報
【0009】
【発明が解決しようとする課題】
しかしながら、金属管26に冷却水用配管を接続する際に、金属管26には様々な方向に外力が加わることになり、その応力が直接セラミック部材21の金属管26との接合部へ作用し、セラミック部材21にクラック等の破損が生じたり、金属管26がセラミック部材21から外れるという問題点があった。
【0010】
その結果、セラミック部材21内部を真空に保持できなくなったり、貫通孔23に冷却水を送りこむことができなくなってセラミック部材21の冷却機能を損なってしまうという問題点があった。
【0011】
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、内部の気密信頼性が高くかつ冷却機能を損なうことのない粒子加速器用真空チャンバを提供することにある。
【0012】
【課題を解決するための手段】
本発明の粒子加速器用真空チャンバは、粒子加速用の真空空洞部を形成する筒状体から成るとともに、該筒状体の内部に複数の冷却液用の貫通孔が一方の端面から他方の端面にかけて形成されたセラミック部材と、
筒体から成るとともに外周面の一方の端部に全周にわたって鍔部が形成され、該鍔部に前記貫通孔の少なくとも1つに対向する貫通穴が形成された、前記鍔部が全周にわたって前記セラミック部材の前記一方の端面に接合されるとともに前記真空空洞部と同軸状に設けられた金属部材と、
前記金属部材の外周面に設けられた金属固定部材と
前記金属部材に前記貫通穴と同軸状に接合されるとともに前記金属固定部材と接合され、前記金属部材との接合部および前記金属固定部材との接合部の間が屈曲してなる金属管と、
を具備しており、
該金属固定部材は、その先端面が前記金属管の外面に当接し、且つ、長手方向が前記先端面に平行であるとともに前記金属管の軸方向に直交する溝が形成されていることを特徴とする。
【0013】
本発明の粒子加速器用真空チャンバは、金属部材の外周面に設けられるとともにその先端面が金属管の外面に当接して接合された金属固定部材を具備しており、この金属固定部材は、長手方向が先端面に平行であるとともに金属管の軸方向に直交する溝が形成されていることにより、金属管に冷却液用配管を接続する際に金属管に応力が加わっても、その応力が金属固定部材の溝部によって吸収され、直接セラミック部材と金属管との接合部へ応力が作用することを有効に防止できる。従って、セラミック部材にクラック等の破損が生じるのを有効に防止してセラミック部材の内部を長期にわたってより確実に真空に保持することができるとともに、金属管がセラミック部材から外れるのを防止して長期にわたって冷却機能を維持させることができ、長期にわたって正常かつ安定に作動する信頼性の高いものとすることができる。
【0014】
【発明の実施の形態】
以下、本発明の粒子加速器用真空チャンバの一例を図面をもとに説明する。
【0015】
図1は、本発明のチャンバの実施の形態の一例を示す図で、図1(a)はチャンバの軸方向に平行な面における断面図、図2(b)はチャンバの軸方向に垂直な面における断面図である。
【0016】
なお、同図において、1はセラミック部材、2は加速粒子が通過するための真空空洞部、3は軸方向に貫通し冷却液を通すための貫通孔、4は、導電性非磁性材からなる薄層、5は金属部材、6は貫通孔に接続される金属管、7は金属固定部材である。
【0017】
本発明のチャンバは、粒子加速用の真空空洞部2を形成する筒状体から成るとともに、この筒状体の内部に複数の冷却液用の貫通孔3が一方の端面から他方の端面にかけて形成されたセラミック部材1と、筒体から成るとともに外周面の一方の端部に全周にわたって鍔部5bが形成され、この鍔部5bに貫通孔3の少なくとも1つに対向する貫通穴5aが形成された、鍔部5bが全周にわたってセラミック部材1の一方の端面に接合されるとともに真空空洞部2と同軸状に設けられた金属部材5と、この金属部材5に貫通穴5aと同軸状に接合された金属管6と、金属部材5の外周面に設けられ、その先端面が金属管6の外面に当接して接合された金属固定部材7とを具備しており、この金属固定部材7は、長手方向が先端面に平行であるとともに金属管6の軸方向に直交する溝7aが形成されている。
【0018】
このチャンバにおいて、セラミック部材1は、Al質焼結体などのセラミックスからなる肉厚の円筒状体から構成され、その内側には、粒子を通過させるための真空空洞部2が形成されている。そして、真空空洞部2の内壁面には、チタン(Ti)等の導電性非磁性材からなる薄層4が形成されている。導電性非磁性材の薄層4は、真空空洞部2を通過する粒子線により励起される誘導電流を流すための導電域をセラミック部材1の内壁面上に確保するためのものである。
【0019】
セラミック部材1には、筒状体の内部の真空空洞部2の周囲に、セラミック部材1の一方の端面から他方の端面にかけて複数の貫通孔3が互いに平行に形成されている。
【0020】
貫通孔3内には、水等の冷却液を流すことにより、その貫通孔3周囲の熱を冷却液に吸収させ、その熱を冷却液を媒体にして系外に放出させる役割を有する。
【0021】
また、セラミック部材1の両端面において、金属部材5が銀(Ag)−銅(Cu)ロウやAgロウ等のロウ材を介して接合されている。好ましくは、冷却液がセラミック部材1内部を効率よく循環するように、セラミック部材1の端面に隣接する貫通孔3同士を折り返すように連結するための溝が形成されているのがよく、各貫通孔3を流れる冷却液の流れをより完全に均一化できる。
【0022】
金属部材5は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金やFe−Ni合金等からなり、中央部の空隙が真空空間を形成する。また、金属部材5は、セラミック部材1に接合される側の一方の端部に全周にわたって、平面視形状がセラミック部材1の端面と同一形状の鍔部5bが形成されている。そして、セラミック部材1と接合していない他方の端部を他の真空容器もしくは真空部品に接続することにより真空境界を連続的に形成できる。なお、金属部材5の鍔部5bには、貫通孔3の少なくとも1つに対向する貫通穴5aが形成されている。
【0023】
金属管6は、Cu,Fe−Ni−Co合金,Fe−Ni合金,ステンレス鋼(SUS)等の金属からなる円筒状部材であり、冷却液を貫通孔3に導入、排出するためのもので、金属部材5の貫通穴5aの開口の周囲にAg−CuロウやAgロウ等のロウ材によって接合されている。好ましくは、金属管6はCuからなるのがよく、この構成によって耐水性に優れたものとなり、また、Cuは比較的軟らかいため、外力が加わった場合でも適度に変形することによってセラミック部材1に応力が伝わるのを有効に抑制することができる。
【0024】
金属固定部材7はCu,Fe−Ni−Co合金,Fe−Ni合金,SUS等の金属からなり、金属部材5に取り付けられた金属管6を固定するための部材である。また、金属固定部材7には、長手方向が金属管6の外面に当接して接合された先端面に平行であるとともに金属管6の軸方向に直交する溝7aが形成されている。
【0025】
この金属固定部材7の金属部材5への固定はAg−CuロウやAgロウ等のロウ材による接合法または溶接法によって、また、金属管6と金属固定部材7との接合はAg−CuロウやAgロウ等のロウ材による接合法または溶接法によって行われる。
【0026】
この構成によって、金属管6に冷却液用配管を接続する際に金属管6に応力が加わっても、その応力が金属固定部材7の溝7a部によって吸収され、直接セラミック部材1と金属管6との接合部へ応力が作用することを有効に防止できる。従って、セラミック部材1にクラック等の破損が生じるのを有効に防止してセラミック部材1の内部を長期にわたってより確実に真空に保持することができるとともに、金属管6がセラミック部材1から外れるのを防止して長期にわたって冷却機能を維持させることができ、長期にわたって正常かつ安定に作動する信頼性の高いものとすることができる。
【0027】
また、チャンバが完成した後に、チャンバ全体に300℃程度に加熱しながらチャンバの内部の真空引きの作業を行なう。この作業により、チャンバ表面に付着した水分等を完全に除去することができ、チャンバの内部をより真空度の高いものとすることができる。しかしながら、チャンバ全体が熱膨張を起こし、セラミック部材1の金属管6との接合部に熱膨張差による応力が加わり易くなる。特に、金属部材5と金属管6とが異なる材質からなる場合、金属部材5,金属管6との熱膨張差がチャンバの軸方向で大きくなる。そこで、金属固定部材7には軸方向に直交するように溝7aを形成することによって、金属固定部材7の溝7aによって薄肉となった部分が適度に変形し、金属部材5と金属管6との熱膨張差を有効に吸収することができる。その結果、セラミック部材1にクラック等の破損が生じるのを防止できるとともに、金属管6がセラミック部材1から外れてしまうのを有効に防止できる。
【0028】
より好ましくは、溝7aは複数形成されているとともに、隣接するもの同士が金属固定部材7の一方の面とそれに対向する面とに互い違いに設けられているのがよい。これにより、金属固定部材7がより適度に変形し易くなり、金属管6の熱膨張や収縮に応じて追従するように変形することにより応力をより緩和することができる。
【0029】
さらに、溝7aが複数形成されているとともに、隣接するもの同士が金属固定部材7の一方の面とそれに対向する面とに互い違いに設けられている場合、金属固定部材7の溝7aによって薄くなった部分の肉厚は、隣接する溝7a間の金属固定部材7の厚さよりも薄いのがよい。この構成によって、金属管6をより確実に支持固定できるとともに、金属部材5と金属管6との熱膨張差をより有効に吸収することができる。
【0030】
また、金属管6は、図1(a)に示すように、金属部材5との接合部および金属固定部材7との接合部の間が屈曲しているのがよい。これにより、金属管6が熱膨張しても、この屈曲部が適度に変形することによって、金属管6の熱膨張により金属管6と金属部材5との接合部や金属管6と金属固定部材7との接合部に応力が生じるのを有効に抑制することができる。
【0031】
以上の構成により、チャンバの本体をセラミック部材1で構成したことにより、セラミック部材1自身に渦電流が励起されることがないとともに、セラミック部材1内面の薄層4より発生する熱を外部へ漏らすことがない。また、セラミック部材1内に冷却機能を具備し、冷却用の金属管6を溝7aを有する金属固定部材7で固定したことから、セラミック部材1にクラック等の破損が生じるのを防止できるとともに、金属管6がセラミック部材1から外れてしまうのを防止できる。その結果、内部を長期にわたって確実に真空に保持するとともに、長期にわたって冷却機能を維持させ、長期にわたって正常かつ安定に作動する信頼性の高いチャンバとすることができる。
【0032】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。
【0033】
【発明の効果】
本発明の粒子加速器用真空チャンバは、粒子加速用の真空空洞部を形成する筒状体から成るとともに、該筒状体の内部に複数の冷却液用の貫通孔が一方の端面から他方の端面にかけて形成されたセラミック部材と、筒体から成るとともに外周面の一方の端部に全周にわたって鍔部が形成され、該鍔部に前記貫通孔の少なくとも1つに対向する貫通穴が形成された、前記鍔部が全周にわたって前記セラミック部材の前記一方の端面に接合されるとともに前記真空空洞部と同軸状に設けられた金属部材と、前記金属部材の外周面に設けられた金属固定部材と前記金属部材に前記貫通穴と同軸状に接合されるとともに前記金属固定部材と接合され、前記金属部材との接合部および前記金属固定部材との接合部の間が屈曲してなる金属管と、を具備しており、該金属固定部材は、その先端面が前記金属管の外面に当接し、且つ、長手方向が前記先端面に平行であるとともに前記金属管の軸方向に直交する溝が形成されていることにより、金属管に冷却液用配管を接続する際に金属管に応力が加わっても、その応力が金属固定部材の溝部によって吸収され、直接セラミック部材と金属管との接合部へ応力が作用することを有効に防止できる。従って、セラミック部材にクラック等の破損が生じるのを有効に防止してセラミック部材の内部を長期にわたってより確実に真空に保持することができるとともに、金属管がセラミック部材から外れるのを防止して長期にわたって冷却機能を維持させることができ、長期にわたって正常かつ安定に作動する信頼性の高いものとすることができる。
【図面の簡単な説明】
【図1】(a)は本発明の粒子加速器用真空チャンバについて実施の形態の一例を示す軸方向に平行な面における断面図、(b)は(a)の軸方向に垂直な面における断面図である。
【図2】(a)は従来の粒子加速器用真空チャンバの軸方向に平行な面における断面図、(b)は(a)の軸方向に垂直な面における断面図である。
【符号の説明】
1:セラミック部材
2:真空空洞部
3:貫通孔
5:金属部材
6:金属管
7:金属固定部材
7a:溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a vacuum chamber for a particle accelerator for accelerating or deflecting particles such as electrons and heavy particles by a high frequency or pulsed electromagnetic field.
[0002]
[Prior art]
An example of a conventional vacuum chamber for a particle accelerator (hereinafter also simply referred to as a chamber) is shown in FIG. 2A is a cross-sectional view in a plane parallel to the axial direction of the conventional chamber, and FIG. 2B is a cross-sectional view in a plane perpendicular to the axial direction of the conventional chamber.
[0003]
The chamber is a vacuum cavity for particle orbit when accelerating or deflecting particles such as electrons and heavy particles inside a cylindrical ceramic member (cylinder) 21 made of an electrically insulating and nonmagnetic material by a high frequency or pulsed electromagnetic field. In this structure, the portion 22 is formed. A thin layer 24 made of a conductive nonmagnetic material is formed on the inner wall surface of the vacuum cavity 22.
[0004]
A metal member (flange) for connection (not shown) is usually attached to both ends of the ceramic member 21 coaxially with the vacuum cavity 22 and used in combination with an electromagnet for generating an electromagnetic field.
[0005]
In recent years, the chamber is required to have a cooling or heat insulating function so that heat generated by the induced current caused by the thin layer 24 of the ceramic member 21 does not leak to the outside of the chamber. Has been. This is because with the higher energy of the particle beam, the applied electromagnetic field becomes stronger, so the amount of heat generated due to the induced current from the thin layer 24 of conductive nonmagnetic material also increases. This heat is transmitted through the ceramic member 21 of the chamber, and the core material such as ferrite constituting the electromagnet installed outside the chamber is heated to lose its properties as a ferromagnetic material. This is due to the fact that it is difficult to exhibit the characteristics.
[0006]
Therefore, conventionally, the ceramic member 21 is formed of ceramics such as an alumina (Al 2 O 3 ) -based sintered body to prevent eddy currents from being excited in the ceramic member 21 itself, and a thin layer on the inner surface of the ceramic member 21. In order to prevent the heat generated from 24 from leaking to the outside, a ceramic member 21 having a cooling function has been proposed.
[0007]
For example, in the following Patent Document 1, as shown in FIG. 2A, a plurality of through holes 23 for flowing cooling water in the axial direction of the ceramic member 21 are formed around the vacuum cavity portion 22. It has been proposed that several through-holes 23 adjacent to each other among the through-holes 23 are connected to each other at one end to form a single water channel so that the cooling effect by the cooling water is made uniform. This through hole 23 is connected to an external cooling pipe through a metal pipe 26.
[0008]
[Patent Document 1]
JP-A-11-283795 [0009]
[Problems to be solved by the invention]
However, when the cooling water pipe is connected to the metal pipe 26, an external force is applied to the metal pipe 26 in various directions, and the stress acts directly on the joint portion of the ceramic member 21 with the metal pipe 26. In addition, the ceramic member 21 has problems such as cracks and the like, and the metal tube 26 is detached from the ceramic member 21.
[0010]
As a result, there is a problem in that the inside of the ceramic member 21 cannot be maintained in a vacuum, or the cooling water cannot be fed into the through hole 23 and the cooling function of the ceramic member 21 is impaired.
[0011]
The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a vacuum chamber for a particle accelerator that has high internal airtight reliability and does not impair the cooling function.
[0012]
[Means for Solving the Problems]
The vacuum chamber for a particle accelerator according to the present invention includes a cylindrical body that forms a vacuum cavity for accelerating particles, and a plurality of through holes for cooling liquid are formed inside the cylindrical body from one end surface to the other end surface. A ceramic member formed between
The flange portion is formed over the entire circumference at one end portion of the outer peripheral surface, and the flange portion is formed over the entire periphery with a through hole facing at least one of the through holes. A metal member joined to the one end face of the ceramic member and provided coaxially with the vacuum cavity;
A metal fixing member provided on the outer peripheral surface of the metal member ;
The bonded to the metal member in the through hole coaxially joined with Rutotomoni the metal fixing member, and the metal tube between the junction of the junction and the metal fixing member and the metal member is bent,
It has
The metal fixing member has a front end surface abutting on an outer surface of the metal tube, and a groove having a longitudinal direction parallel to the front end surface and perpendicular to the axial direction of the metal tube. And
[0013]
The vacuum chamber for a particle accelerator according to the present invention includes a metal fixing member that is provided on the outer peripheral surface of a metal member and whose front end surface is in contact with and joined to the outer surface of the metal tube. Since the direction is parallel to the tip surface and the groove perpendicular to the axial direction of the metal tube is formed, even when stress is applied to the metal tube when connecting the coolant pipe to the metal tube, the stress is It is possible to effectively prevent the stress from being absorbed by the groove portion of the metal fixing member and acting directly on the joint portion between the ceramic member and the metal tube. Therefore, it is possible to effectively prevent the ceramic member from being damaged such as cracks and to hold the interior of the ceramic member in a vacuum more reliably over a long period of time, and to prevent the metal tube from being detached from the ceramic member for a long time. The cooling function can be maintained over a long period of time, and it can be reliable to operate normally and stably over a long period of time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of a vacuum chamber for a particle accelerator according to the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a diagram showing an example of an embodiment of a chamber according to the present invention. FIG. 1 (a) is a cross-sectional view in a plane parallel to the axial direction of the chamber, and FIG. 2 (b) is perpendicular to the axial direction of the chamber. It is sectional drawing in a surface.
[0016]
In the figure, 1 is a ceramic member, 2 is a vacuum cavity for allowing accelerated particles to pass through, 3 is a through-hole for passing through an axial direction and allowing a coolant to pass, and 4 is made of a conductive nonmagnetic material. The thin layer 5 is a metal member, 6 is a metal tube connected to the through hole, and 7 is a metal fixing member.
[0017]
The chamber of the present invention includes a cylindrical body that forms a vacuum cavity 2 for particle acceleration, and a plurality of through holes 3 for coolant are formed in the cylindrical body from one end surface to the other end surface. The ceramic member 1 and the cylindrical body are formed, and a flange portion 5b is formed on one end portion of the outer peripheral surface over the entire periphery, and a through hole 5a that faces at least one of the through holes 3 is formed in the flange portion 5b. The flange portion 5b is joined to one end face of the ceramic member 1 over the entire circumference and is provided coaxially with the vacuum cavity portion 2, and the metal member 5 is coaxial with the through hole 5a. A metal pipe 6 that is joined, and a metal fixing member 7 that is provided on the outer peripheral surface of the metal member 5 and that has a tip end surface in contact with and joined to the outer surface of the metal pipe 6 are provided. If the longitudinal direction is parallel to the tip surface Groove 7a which is perpendicular to the axial direction of the monitor metal pipe 6 is formed.
[0018]
In this chamber, the ceramic member 1 is composed of a thick cylindrical body made of ceramics such as an Al 2 O 3 sintered body, and a vacuum cavity 2 for allowing particles to pass through is formed inside thereof. ing. A thin layer 4 made of a conductive nonmagnetic material such as titanium (Ti) is formed on the inner wall surface of the vacuum cavity 2. The thin layer 4 of conductive nonmagnetic material is for securing a conductive region on the inner wall surface of the ceramic member 1 for flowing an induced current excited by a particle beam passing through the vacuum cavity 2.
[0019]
In the ceramic member 1, a plurality of through holes 3 are formed in parallel to each other from one end surface of the ceramic member 1 to the other end surface around the vacuum cavity 2 inside the cylindrical body.
[0020]
By flowing a coolant such as water into the through hole 3, the heat around the through hole 3 is absorbed by the coolant, and the heat is discharged from the system using the coolant as a medium.
[0021]
Moreover, the metal member 5 is joined to both end surfaces of the ceramic member 1 via a brazing material such as silver (Ag) -copper (Cu) brazing or Ag brazing. Preferably, a groove for connecting the through holes 3 adjacent to the end face of the ceramic member 1 so as to be folded back is formed so that the coolant circulates in the ceramic member 1 efficiently. The flow of the coolant flowing through the holes 3 can be made more complete and uniform.
[0022]
The metal member 5 is made of an iron (Fe) -nickel (Ni) -cobalt (Co) alloy, an Fe—Ni alloy, or the like, and a gap in the center portion forms a vacuum space. Further, the metal member 5 has a flange portion 5 b having a shape in plan view identical to that of the end surface of the ceramic member 1 over the entire circumference at one end portion on the side joined to the ceramic member 1. And a vacuum boundary can be continuously formed by connecting the other edge part which is not joined to ceramic member 1 to other vacuum containers or vacuum parts. Note that a through hole 5 a that faces at least one of the through holes 3 is formed in the flange portion 5 b of the metal member 5.
[0023]
The metal tube 6 is a cylindrical member made of a metal such as Cu, Fe—Ni—Co alloy, Fe—Ni alloy, stainless steel (SUS), etc., and is used for introducing and discharging the coolant into the through hole 3. The metal member 5 is joined around the opening of the through hole 5a by a brazing material such as Ag-Cu brazing or Ag brazing. Preferably, the metal tube 6 is made of Cu, and this structure makes it excellent in water resistance. Also, since Cu is relatively soft, even when an external force is applied, the metal tube 6 is appropriately deformed to form the ceramic member 1. It is possible to effectively suppress the transmission of stress.
[0024]
The metal fixing member 7 is made of a metal such as Cu, Fe—Ni—Co alloy, Fe—Ni alloy, SUS, or the like, and is a member for fixing the metal tube 6 attached to the metal member 5. Further, the metal fixing member 7 is formed with a groove 7 a whose longitudinal direction is parallel to the front end surface joined to the outer surface of the metal tube 6 and orthogonal to the axial direction of the metal tube 6.
[0025]
The metal fixing member 7 is fixed to the metal member 5 by a joining method or a welding method using a brazing material such as Ag-Cu brazing or Ag brazing, and the metal pipe 6 and the metal fixing member 7 are joined by an Ag-Cu brazing. Or a brazing material such as Ag brazing or a welding method.
[0026]
With this configuration, even when a stress is applied to the metal pipe 6 when connecting the coolant pipe to the metal pipe 6, the stress is absorbed by the groove 7 a portion of the metal fixing member 7, and the ceramic member 1 and the metal pipe 6 directly. It is possible to effectively prevent stress from acting on the joint portion. Therefore, it is possible to effectively prevent the ceramic member 1 from being damaged such as cracks, so that the interior of the ceramic member 1 can be more securely held in a vacuum for a long period of time, and the metal tube 6 can be prevented from coming off from the ceramic member 1. Therefore, the cooling function can be maintained over a long period of time, and it can be reliable and operate normally and stably over a long period of time.
[0027]
In addition, after the chamber is completed, the inside of the chamber is evacuated while heating the entire chamber to about 300 ° C. By this operation, moisture and the like attached to the chamber surface can be completely removed, and the inside of the chamber can be made to have a higher degree of vacuum. However, the entire chamber undergoes thermal expansion, and stress due to the difference in thermal expansion is easily applied to the joint portion of the ceramic member 1 with the metal tube 6. In particular, when the metal member 5 and the metal tube 6 are made of different materials, the difference in thermal expansion between the metal member 5 and the metal tube 6 increases in the axial direction of the chamber. Therefore, by forming the groove 7a in the metal fixing member 7 so as to be orthogonal to the axial direction, the thinned portion by the groove 7a of the metal fixing member 7 is appropriately deformed, and the metal member 5 and the metal tube 6 The thermal expansion difference of can be effectively absorbed. As a result, it is possible to prevent breakage such as cracks in the ceramic member 1 and to effectively prevent the metal tube 6 from being detached from the ceramic member 1.
[0028]
More preferably, a plurality of grooves 7a are formed, and adjacent ones are provided alternately on one surface of the metal fixing member 7 and the surface facing it. Thereby, the metal fixing member 7 is more easily deformed moderately, and the stress can be further relaxed by being deformed so as to follow the thermal expansion or contraction of the metal tube 6.
[0029]
Further, when a plurality of grooves 7a are formed and adjacent ones are alternately provided on one surface of the metal fixing member 7 and a surface facing the groove 7a, the grooves 7a are thinned by the grooves 7a of the metal fixing member 7. It is preferable that the thickness of the portion is thinner than the thickness of the metal fixing member 7 between the adjacent grooves 7a. With this configuration, the metal tube 6 can be more reliably supported and fixed, and the thermal expansion difference between the metal member 5 and the metal tube 6 can be more effectively absorbed.
[0030]
Further, as shown in FIG. 1A, the metal tube 6 is preferably bent between the joint portion with the metal member 5 and the joint portion with the metal fixing member 7. Thereby, even if the metal tube 6 is thermally expanded, the bent portion is appropriately deformed, so that the metal tube 6 and the metal member 5 are joined by the thermal expansion of the metal tube 6 or the metal tube 6 and the metal fixing member. It is possible to effectively suppress the occurrence of stress in the joint portion with 7.
[0031]
With the above configuration, the chamber main body is formed of the ceramic member 1, so that eddy current is not excited in the ceramic member 1 itself and heat generated from the thin layer 4 on the inner surface of the ceramic member 1 is leaked to the outside. There is nothing. Since the ceramic member 1 has a cooling function and the metal pipe 6 for cooling is fixed by the metal fixing member 7 having the groove 7a, the ceramic member 1 can be prevented from being damaged such as cracks, It is possible to prevent the metal tube 6 from being detached from the ceramic member 1. As a result, it is possible to reliably maintain the interior in a vacuum for a long period of time, maintain a cooling function for a long period of time, and provide a highly reliable chamber that operates normally and stably for a long period of time.
[0032]
Note that the above are merely examples of the embodiments of the present invention, and the present invention is not limited to these embodiments, and various modifications and improvements may be added without departing from the scope of the present invention. .
[0033]
【The invention's effect】
The vacuum chamber for a particle accelerator according to the present invention includes a cylindrical body that forms a vacuum cavity for accelerating particles, and a plurality of through holes for cooling liquid are formed inside the cylindrical body from one end surface to the other end surface. And a flange formed on one end of the outer peripheral surface, and a through hole facing at least one of the through holes is formed on the flange. A metal member that is joined to the one end face of the ceramic member over the entire circumference and provided coaxially with the vacuum cavity, and a metal fixing member provided on the outer peripheral face of the metal member; the metal member the joined to the through hole and coaxially joined with Rutotomoni the metal fixing member, and the metal tube between the junction formed by bending the joint and the metal fixing member and the metal member , the provided And, the metal fixing member, the front end surface is brought into contact with the outer surface of the metal tube, and a groove longitudinal direction perpendicular to the axial direction of the metal tube as well as a parallel to the tip surface is formed Therefore, even when stress is applied to the metal pipe when connecting the coolant pipe to the metal pipe, the stress is absorbed by the groove of the metal fixing member, and the stress acts directly on the joint between the ceramic member and the metal pipe. Can be effectively prevented. Therefore, it is possible to effectively prevent the ceramic member from being damaged such as cracks and to hold the interior of the ceramic member in a vacuum more reliably over a long period of time, and to prevent the metal tube from being detached from the ceramic member for a long time. The cooling function can be maintained over a long period of time, and it can be reliable to operate normally and stably over a long period of time.
[Brief description of the drawings]
1A is a cross-sectional view in a plane parallel to an axial direction showing an example of an embodiment of a vacuum chamber for particle accelerator according to the present invention, and FIG. 1B is a cross-sectional view in a plane perpendicular to the axial direction in FIG. FIG.
2A is a cross-sectional view of a conventional particle accelerator vacuum chamber in a plane parallel to the axial direction, and FIG. 2B is a cross-sectional view of a plane perpendicular to the axial direction of FIG.
[Explanation of symbols]
1: Ceramic member 2: Vacuum cavity portion 3: Through hole 5: Metal member 6: Metal tube 7: Metal fixing member 7a: Groove

Claims (1)

粒子加速用の真空空洞部を形成する筒状体から成るとともに、該筒状体の内部に複数の冷却液用の貫通孔が一方の端面から他方の端面にかけて形成されたセラミック部材と、
筒体から成るとともに外周面の一方の端部に全周にわたって鍔部が形成され、該鍔部に前記貫通孔の少なくとも1つに対向する貫通穴が形成された、前記鍔部が全周にわたって前記セラミック部材の前記一方の端面に接合されるとともに前記真空空洞部と同軸状に設けられた金属部材と、
前記金属部材の外周面に設けられた金属固定部材と
前記金属部材に前記貫通穴と同軸状に接合されるとともに前記金属固定部材と接合され、前記金属部材との接合部および前記金属固定部材との接合部の間が屈曲してなる金属管と、
を具備しており、
該金属固定部材は、その先端面が前記金属管の外面に当接し、且つ、長手方向が前記先端面に平行であるとともに前記金属管の軸方向に直交する溝が形成されていることを特徴とする粒子加速器用真空チャンバ。
A ceramic member comprising a cylindrical body forming a vacuum cavity for particle acceleration, and a plurality of through holes for cooling liquid formed in the cylindrical body from one end surface to the other end surface;
The flange portion is formed over the entire circumference at one end portion of the outer peripheral surface, and the flange portion is formed over the entire periphery with a through hole facing at least one of the through holes. A metal member joined to the one end face of the ceramic member and provided coaxially with the vacuum cavity;
A metal fixing member provided on the outer peripheral surface of the metal member ;
The bonded to the metal member in the through hole coaxially joined with Rutotomoni the metal fixing member, and the metal tube between the junction of the junction and the metal fixing member and the metal member is bent,
It has
The metal fixing member has a front end surface abutting on an outer surface of the metal tube, and a groove having a longitudinal direction parallel to the front end surface and perpendicular to the axial direction of the metal tube. A vacuum chamber for a particle accelerator.
JP2003202725A 2003-07-28 2003-07-28 Vacuum chamber for particle accelerator Expired - Fee Related JP4061248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202725A JP4061248B2 (en) 2003-07-28 2003-07-28 Vacuum chamber for particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202725A JP4061248B2 (en) 2003-07-28 2003-07-28 Vacuum chamber for particle accelerator

Publications (2)

Publication Number Publication Date
JP2005050549A JP2005050549A (en) 2005-02-24
JP4061248B2 true JP4061248B2 (en) 2008-03-12

Family

ID=34262324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202725A Expired - Fee Related JP4061248B2 (en) 2003-07-28 2003-07-28 Vacuum chamber for particle accelerator

Country Status (1)

Country Link
JP (1) JP4061248B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036745A (en) * 2008-05-23 2011-04-27 特斯拉工程有限公司 Vacuum chamber
JP7203233B2 (en) * 2019-08-29 2023-01-12 京セラ株式会社 Electromagnetic field control parts

Also Published As

Publication number Publication date
JP2005050549A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
CN108605406B (en) Input coupler for acceleration cavity and accelerator
JP4061248B2 (en) Vacuum chamber for particle accelerator
KR20230104691A (en) Multi-layer vacuum electronic device and manufacturing method
US11749486B1 (en) Systems, methods and apparatus for fabricating and utilizing a cathode
JP7203233B2 (en) Electromagnetic field control parts
JP3762298B2 (en) Vacuum chamber for particle accelerator
US5821693A (en) Electron beam tubes having a unitary envelope having stepped inner surface
JP2005050646A (en) High-frequency electron gun
JP6845749B2 (en) High frequency transmission window structure and high frequency input coupler
JP3850133B2 (en) Vacuum chamber for particle accelerator
JP2019175768A (en) Traveling wave tube
JPS6039724A (en) Housing of vacuum switch implement
JP3184288B2 (en) Vacuum terminal and method of manufacturing the same
JP2000182800A (en) Vacuum container
JP4153645B2 (en) High frequency filter for high frequency accelerator
JPH0541173A (en) Magnetic circuit for magnetron
JPS58500682A (en) laser
JPS61294740A (en) Direct-advance beam klystron
JP3266771B2 (en) Slow wave circuit for traveling wave tube
JP2005243364A (en) Accelerating tube
JP6408337B2 (en) High-frequency transmission window structure
JP3715878B2 (en) Vacuum-tight terminal and electric kettle
JPH0850999A (en) Beam duct
JP2007257990A (en) Microwave tube, and method of manufacturing anode pole piece electrode
JPH0514014A (en) High frequency power coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4061248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees