JP4061088B2 - Method for producing electrode for electrochemical storage device - Google Patents

Method for producing electrode for electrochemical storage device Download PDF

Info

Publication number
JP4061088B2
JP4061088B2 JP2002034384A JP2002034384A JP4061088B2 JP 4061088 B2 JP4061088 B2 JP 4061088B2 JP 2002034384 A JP2002034384 A JP 2002034384A JP 2002034384 A JP2002034384 A JP 2002034384A JP 4061088 B2 JP4061088 B2 JP 4061088B2
Authority
JP
Japan
Prior art keywords
carbon material
current collector
conductive polymer
storage device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002034384A
Other languages
Japanese (ja)
Other versions
JP2003234249A (en
Inventor
進 野本
琢磨 浅利
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002034384A priority Critical patent/JP4061088B2/en
Publication of JP2003234249A publication Critical patent/JP2003234249A/en
Application granted granted Critical
Publication of JP4061088B2 publication Critical patent/JP4061088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical storage device having long life, high output density and high energy density, and to provide its manufacturing method. <P>SOLUTION: A powder-like carbon material 3 adhered of a conductive polymer 4 is embedded in the surface of a current collecting body 1, and covered with a conductive polymer film 4. On the surface of the current collecting body 1, an area where the powder-like carbon material does not exist is covered with an insulating membrane 2. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学蓄電デバイスおよびその製造方法に関するものであり、詳しくは、電気化学キャパシタおよびその製造方法に関する。
【0002】
【従来の技術】
いわゆる電気化学蓄電デバイスとして、電気二重層キャパシタと二次電池が広く利用されている。この内、電気二重層キャパシタは、二次電池より長寿命であって、高出力密度であるため、高い信頼性が要求されるバックアップ電源等に使用されている。
【0003】
電気二重層キャパシタと二次電池には、電気エネルギーの蓄電メカニズムに基づく相違点がある。即ち、電気二重層キャパシタでは、充放電時には電解液中に含まれるイオンが移動するのみで電極と電解液の間の電気化学反応が起こらないため一般に長寿命となり、また、イオンの移動速度が大きいため高出力密度である。一方、二次電池は、充放電に伴う電気化学反応によって劣化することから、電気二重層キャパシタより短寿命であり、また反応速度が小さいために出力密度も低い。しかし、電極材料自体にエネルギーが蓄積されるため、電極と電解液の界面にのみエネルギーが蓄積される電気二重層キャパシタより高エネルギー密度である。
【0004】
電気二重層キャパシタの一種である電気化学キャパシタが、これら電気二重層キャパシタと二次電池双方の特徴を併せ持ち、長寿命、高出力密度、さらにエネルギー密度も比較的高いことから近年注目を集めている。この電気化学キャパシタの電極材料には、ポリアニリンやポリチオフェン等の導電性ポリマーを用いるのが代表的であるが、こうした導電性ポリマーは一般に電気導電性が低く、また導電性ポリマーの電気導電性は電極電位に左右され易いという欠点があるため、電気化学キャパシタの電極母材には電気導電性の高い炭素材料が用いられる。ところが、このような電極母材上に、有機モノマーを化学重合または電解重合することによって導電性ポリマーを単に付着することのみでは、電気化学キャパシタの出力密度を十分に高めることは困難であった。
【0005】
無機系電解液を用いた電気化学キャパシタにおいては、高出力密度を実現する技術が、例えば、特許第2974012号公報に開示されている。一方、有機系電解液を用いたものは、無機系電解液を用いたものより耐電圧が高い点で優れているが、反面、電解液の抵抗値が高いため、無機系電解液を用いたものより出力密度が劣っていた。
【0006】
これに対して、本発明者等は、アルミニウムを集電体に用い、その上に粉体状の炭素材料を含むインクを塗布して乾燥後、有機モノマーを電解重合して導電性ポリマーを集電体の表面に付着し、得られる電極体の抵抗値を下げることで、有機系電解液を用いた電気化学キャパシタに高い出力密度を実現する技術の開発を試みた。
【0007】
【発明が解決しようとする課題】
しかし、この技術では、導電性ポリマーが、粉体状炭素材料よりも導電性の高いアルミニウムに優先的に付着したり、炭素材料表面のラフネスによって重合性にバラツキを生じたりして、得られる導電性ポリマー膜の厚さが不均一となり、厚さが増した部分では電極体の抵抗値が高くなる問題を生じた。
【0008】
本発明は、こうした従来技術の問題点を解決し、長寿命かつ高出力密度であり、さらにエネルギー密度も高い電気化学蓄電デバイスおよびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明の電気化学蓄電デバイス用電極の製造方法は、集電体の表面の自然酸化被膜を除去する工程と、前記自然酸化被膜が除去された前記集電体の表面に、気相蒸着によって針状の炭素材料を所定間隔で形成する工程と、前記針状の炭素材料が形成された前記集電体の表面の、前記針状の炭素材料が存在しない領域を絶縁被膜で被う工程と、フッ素イオンを含むチオフェン類またはその誘導体の有機モノマーを電解重合することによって、前記針状の炭素材料を導電性ポリマーで被う工程とを有することを特徴とする。
【0012】
これにより、電気化学蓄電デバイスのエネルギー密度を高めるため、導電性ポリマーの量を多くした場合でも、電極体の抵抗値の上昇が効果的に抑制され、この電極体を用いることにより、高出力密度かつ高エネルギー密度の電気化学蓄電デバイスが得られる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0018】
(第一の実施の形態)
図1に、本実施の形態による電気化学蓄電デバイス用電極体の断面模式図を示す。このように、粉体状炭素材料3は、その一部を露出した状態で集電体1の表面に埋め込まれており、粉体状炭素材料3の露出した部分には、導電性ポリマー4が付着している。さらに、集電体1の表面において、粉体状炭素材料3が存在しない領域は、絶縁皮膜2で被われている。
【0019】
図1に示す電極体は、例えば、次のようにして得られる。即ち、粉体状の炭素材料を含む塗料を集電体1の表面に塗布した後、5〜100kPaで加圧して炭素材料を集電体1に埋め込み、次に、絶縁皮膜2を形成して集電体1の表面の炭素材料が存在しない領域を被い、その後、フッ素イオンを含むチオフェン類またはその誘導体等の有機モノマーを化学重合または電解重合することによって粉体状炭素材料3に導電性ポリマー4を付着させる。
【0020】
なお、このように炭素材料を集電体に埋め込まず、例えば、粉体状の炭素材料を含むインクを集電体上に塗布し、乾燥することで炭素材料を集電体の表面に緩やかに付着させても、炭素材料に導電性ポリマーを付着することは可能である。しかし、この場合は、炭素材料と集電体の間の抵抗値が上昇するため集電体の方に導電性ポリマーが優先して付着し、得られる電気化学蓄電デバイス全体の抵抗値が上昇してしまい、好ましくない。
【0021】
(第二の実施の形態)
図2に、本実施の形態による電気化学蓄電デバイス用電極体の断面模式図を示す。このように、針状炭素材料5は、集電体1の表面に付着しており、針状炭素材料5は、導電性ポリマー4で被われている。また、集電体1の表面において、針状炭素材料5が存在しない領域は、絶縁皮膜2で被われている。
【0022】
図2に示す電極体は、例えば、次のようにして得られる。即ち、集電体1の表面において、物理的気相蒸着、化学的気相蒸着、電気化学的反応等によって炭素材料を針状に成長させ付着した後、フッ素イオンを含むチオフェン類またはその誘導体等の有機モノマーを化学重合または電解重合することによって針状炭素材料5を導電性ポリマー4で被う。なお、物理的気相蒸着の一種であるスパッタ法は、真空装置を使用する点で若干の制約があるが、炭素を高純度に成長させるのに有効な手段である。
【0023】
一般に、加圧して炭素材料を集電体に埋め込んだ場合、用いる有機モノマーの特性や重合条件によっては、集電体自体に導電性ポリマーが優先的に付着することがある。また、導電性ポリマーの付着量を増やした場合、電気化学蓄電デバイスのエネルギー密度は高められるが、炭素材料から充放電部位までの距離が長くなり、電気化学蓄電デバイス全体の抵抗値が上昇して出力密度が低下することがある。
【0024】
ところが、本実施の形態によれば、集電体に埋め込まれた炭素材料の方に導電性ポリマーが優先的に付着し、導電性ポリマーの付着量を増やしても炭素材料から充放電部位までの距離の変化は少ないことから、そのような問題が効果的に解消される。
【0025】
上述した第一および第二の実施の形態において、集電体1には、アルミニウムを材料に用いるのが好ましい。例えば、集電体1にアルミニウム箔を用いると、集電体1の表面において、自然酸化皮膜(酸化アルミニウム)が形成されて炭素材料が存在しない領域はマスクされ、導電性ポリマー4が炭素材料上に選択的かつ均一に付着するようになる。なお、こうした自然酸化皮膜の形成が不十分な場合は、酸化アルミニウム皮膜を作為的に形成するか、または、有機系樹脂等の絶縁皮膜2を用いて当該領域を被って導電性ポリマー4を粉体状炭素材料3上に選択的かつ均一に付着させるのが好ましい。なお、得られる電気化学蓄電デバイスの動作が安定する限り、集電体1には、アルミニウム以外の金属材料、例えば、銅、チタニウム、SUS等を用いても良い。
【0026】
酸化アルミニウム皮膜の形成には、電解コンデンサで用いられる、いわゆるアノード酸化法を用いるのが望ましい。また、炭素材料が集電体1中への埋め込みが不十分な場合は、酸化アルミニウム皮膜が炭素材料と集電体の間に介在して電極体の抵抗値が上昇することがあるため、炭素材料の大きさ(粒子径、全長)は0.1〜100μmとし、かつ、その約半分が集電体1中に埋め込まれた状態とするのが好ましい。
【0027】
本発明において、集電体上に形成する導電性ポリマー4には、耐電圧が高くエネルギー密度に優れることから、フッ素系イオンを含むチオフェン類またはその誘導体の重合体が好ましく用いられる。その他、導電性ポリマー4には、モノマーを化学重合または電解重合によって集電体上に容易に付着することができ、かつ、有機系電解液中において安定に存在し、電気化学的にが蓄積されうるものであれば、その種類は特に限定されずに用いることができる。
【0028】
なお、本発明においては、電気化学蓄電デバイスの正極と負極に用いる導電性ポリマー4は、同種でも異種でも良い。
【0029】
【実施例】
以下、実施例によって本発明をさらに具体的に説明する。なお、本発明は、これら実施例に限定されず、本発明の技術的思想に基づいて広くその他実施形態に適用することができる。
【0030】
(実施例1)
粉体状のアセチレンブラックと界面活性剤を水中に分散させたディスパージョン液を準備し、これを塗布後の膜厚が1μmになるように中高圧電解コンデンサ用アルミエッチド箔(電解エッチング処理を施したアルミニウム箔、膜厚75μm)上に塗布し、さらに直径15cmのロールコーターを用いて線厚98MPaで加圧してアルミエッチド箔にアセチレンブラックを埋め込んだ。次に、超音波洗浄を行い、残余のアセチレンブラックを除去した。さらにアジピン酸アンモニウムの150g/リットル水溶液中で対極に対して+3.0Vで1時間、陽極酸化を行い、アルミエッチド箔上に酸化アルミニウムからなる酸化皮膜(陽極酸化膜)を形成した。次いで、このアルミエッチド箔から1m四方の測定サンプルを切り出し、これを真空容器中、150℃で一昼夜乾燥して水分を除去した。その後、3-(4-フルオロフェニル)チオフェンとテトラエチルアンモニウムテトラフルオロボレートをそれぞれ0.1mole/リットル、1.5mole/リットル含むアセトニトリル溶液中で、Ag+/AgNO3を参照電極に用い、ガルバノスタットにより定電流制御しながらサンプルに単位面積当たり3mA/cm2の酸化電流を約330秒間通電し、溶液中のポリフルオロフェニルチオフェンを電解重合した。こうして、アルミエッチド箔の表面にアセチレンブラック粒子が埋め込まれ、アセチレンブラック粒子上にポリフルオロフェニルチオフェンポリマーが付着し、さらにアルミニウム箔の表面においてアセチレンブラック粒子の存在しない領域は陽極酸化膜で被われた電極体を作製した。
【0031】
(実施例2)
アルミエッチド箔上に陽極酸化膜を形成しなかったこと以外は、実施例1と同様にして、アルミエッチド箔の表面にアセチレンブラック粒子が埋め込まれ、アセチレンブラック粒子上にポリフルオロフェニルチオフェンポリマーが付着した電極体を作製した。
【0032】
(実施例3)
予め表面の自然酸化皮膜を0.1mole/リットルのフッ酸水溶液により除去したアルミニウム箔(膜厚75μm)を準備した。次に、アルゴンガス雰囲気下、1μm角の開口部が、1μmの間隔で規則的に配列されたパターンを有するマスクを通して、ターゲットに炭素材料を用いてスパッタリングすることにより、アルミニウム箔の表面に当該パターンに従って針状の炭素を形成した。さらにアジピン酸アンモニウムの150g/リットル水溶液中で対極に対して+3.0Vで1時間、陽極酸化を行い、アルミニウム箔の表面に陽極酸化膜を形成した。次いで、実施例1と同様にして、アルミニウム箔の表面に針状炭素材料が付着し、針状炭素材料がポリフルオロフェニルチオフェンのポリマーで被われ、アルミニウム箔の表面において針状炭素材料の存在しない領域は陽極酸化膜で被われた電極体を作製した。
【0033】
(比較例1)
アルミエッチド箔にディスパージョン液を塗布した後に加圧しなかったこと以外は実施例2と同様にして、アルミエッチド箔の表面にアセチレンブラック粒子が緩やかに付着し、アセチレンブラック粒子上にポリフルオロフェニルチオフェンポリマーが付着した電極体を作製した。
【0034】
これら実施例と比較例で得られた電極体について、下記手順によりその特性を測定、評価した。即ち、得られた電極体をサンプルとし、テトラエチルアンモニウムテトラフルオロボレートを0.6mole/リットル含むプロピレンカーボネート溶液中で、Ag+/AgNO3を参照電極に用い、速度20mV/secで−2.0〜+0.75Vの範囲で掃引してサイクリックボルタンメトリーを行った。このとき得られたサイクリックボルタモグラムの囲まれた部分の面積から電極体の容量(Wh)を求めた。さらにサンプルをSEM撮像して導電性ポリマーの厚みを測定し、この厚みとサンプルの面積から導電性ポリマーが占有する体積(リットル)を計算し、電極体の容量(Wh)をこの体積(リットル)で除してエネルギー密度(Wh/リットル)を算出した。さらに、いわゆる交流インピーダンス法を用い、周波数10mHzでのインピーダンスを電極体の内部抵抗とした(電位は、参照電極に対して+0.6Vとした)。この結果を表1に示す。
【0035】
【表1】

Figure 0004061088
【0036】
上表より、100サイクル充放電を繰り返した後において、本発明による電極体では、内部抵抗の上昇が比較例より大幅に抑制され、エネルギー密度が高い状態に維持されていることが判る。
【0037】
【発明の効果】
以上説明したように、本発明によれば、粉体状炭素材料が集電体の表面に埋め込まれ、その粉体状炭素材料には導電性ポリマーが付着している電極体を用いることから、長寿命かつ高出力密度であり、さらにエネルギー密度の高い電気化学キャパシタが得られる。
【図面の簡単な説明】
【図1】 第一の実施の形態による電気化学キャパシタ用電極体を示す断面模式図
【図2】 第二の実施の形態による電気化学キャパシタ用電極体を示す断面模式図
【符号の説明】
1 集電体
2 絶縁皮膜
3 粉体状炭素材料
4 導電性ポリマー
5 針状炭素材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical storage device and a method for manufacturing the same, and more particularly to an electrochemical capacitor and a method for manufacturing the same.
[0002]
[Prior art]
As so-called electrochemical storage devices, electric double layer capacitors and secondary batteries are widely used. Among them, the electric double layer capacitor has a longer life than a secondary battery and has a high output density, and is therefore used for a backup power source or the like that requires high reliability.
[0003]
There is a difference between the electric double layer capacitor and the secondary battery based on the electric energy storage mechanism. In other words, in an electric double layer capacitor, the ions contained in the electrolytic solution only move during charging and discharging, and the electrochemical reaction between the electrode and the electrolytic solution does not occur, so the life is generally long, and the ion moving speed is high. Therefore, it has a high power density. On the other hand, the secondary battery is deteriorated by an electrochemical reaction accompanying charging / discharging, and therefore has a shorter life than an electric double layer capacitor, and has a low output density due to a low reaction rate. However, since energy is stored in the electrode material itself, the energy density is higher than that of an electric double layer capacitor in which energy is stored only at the interface between the electrode and the electrolyte.
[0004]
An electrochemical capacitor, which is a kind of electric double layer capacitor, has attracted attention in recent years because it has the characteristics of both electric double layer capacitor and secondary battery, and has long life, high output density, and relatively high energy density. . Typically, a conductive polymer such as polyaniline or polythiophene is used as the electrode material of this electrochemical capacitor. However, such a conductive polymer generally has low electrical conductivity, and the electrical conductivity of the conductive polymer is the electrode. Due to the drawback of being easily affected by the potential, a carbon material having high electrical conductivity is used for the electrode base material of the electrochemical capacitor. However, it has been difficult to sufficiently increase the output density of the electrochemical capacitor by simply depositing a conductive polymer on such an electrode base material by chemical polymerization or electrolytic polymerization of an organic monomer.
[0005]
In an electrochemical capacitor using an inorganic electrolyte, a technique for realizing a high output density is disclosed in, for example, Japanese Patent No. 2974012. On the other hand, the one using the organic electrolyte is superior in terms of having a higher withstand voltage than the one using the inorganic electrolyte, but on the other hand, since the resistance of the electrolyte is high, the inorganic electrolyte was used. The power density was inferior to that.
[0006]
On the other hand, the present inventors used aluminum as a current collector, applied an ink containing a powdery carbon material thereon, dried, and then electropolymerized an organic monomer to collect a conductive polymer. We attempted to develop a technology that achieves a high output density in an electrochemical capacitor using an organic electrolytic solution by lowering the resistance value of the resulting electrode body attached to the surface of the electric body.
[0007]
[Problems to be solved by the invention]
However, with this technique, the conductive polymer is preferentially attached to aluminum, which has higher conductivity than the powdered carbon material, or the polymerization property varies due to the roughness of the carbon material surface. The thickness of the conductive polymer film became non-uniform, and the resistance value of the electrode body increased at the portion where the thickness increased.
[0008]
An object of the present invention is to solve such problems of the prior art, and to provide an electrochemical energy storage device having a long lifetime, high output density, and high energy density, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the method for producing an electrode for an electrochemical storage device of the present invention includes a step of removing a natural oxide film on the surface of a current collector, and a surface of the current collector from which the natural oxide film has been removed. In addition, a step of forming acicular carbon material at a predetermined interval by vapor deposition and a region of the surface of the current collector on which the acicular carbon material is formed where the acicular carbon material does not exist are insulated. And a step of covering the acicular carbon material with a conductive polymer by electropolymerizing an organic monomer of a thiophene containing fluorine ions or a derivative thereof.
[0012]
As a result, in order to increase the energy density of the electrochemical storage device, even when the amount of the conductive polymer is increased, an increase in the resistance value of the electrode body is effectively suppressed. By using this electrode body, a high output density is achieved. In addition, an electrochemical energy storage device having a high energy density can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(First embodiment)
In FIG. 1, the cross-sectional schematic diagram of the electrode body for electrochemical storage devices by this Embodiment is shown. Thus, the powdery carbon material 3 is embedded in the surface of the current collector 1 with a part thereof exposed, and the conductive polymer 4 is formed in the exposed part of the powdery carbon material 3. It is attached. Further, a region where the powdery carbon material 3 does not exist on the surface of the current collector 1 is covered with an insulating film 2.
[0019]
The electrode body shown in FIG. 1 is obtained as follows, for example. That is, after a coating material containing a powdery carbon material is applied to the surface of the current collector 1, the carbon material is embedded in the current collector 1 by applying a pressure of 5 to 100 kPa, and then an insulating film 2 is formed. The surface of the current collector 1 is covered with a region where no carbon material is present, and then the powdery carbon material 3 is made conductive by chemical polymerization or electrolytic polymerization of organic monomers such as thiophenes containing fluorine ions or derivatives thereof. Polymer 4 is deposited.
[0020]
In addition, the carbon material is not embedded in the current collector in this way. For example, the carbon material is gently applied to the surface of the current collector by applying an ink containing a powdery carbon material on the current collector and drying. Even if it adheres, it is possible to adhere the conductive polymer to the carbon material. However, in this case, since the resistance value between the carbon material and the current collector increases, the conductive polymer preferentially adheres to the current collector, and the overall resistance value of the resulting electrochemical storage device increases. This is not preferable.
[0021]
(Second embodiment)
In FIG. 2, the cross-sectional schematic diagram of the electrode body for electrochemical storage devices by this Embodiment is shown. Thus, the acicular carbon material 5 is attached to the surface of the current collector 1, and the acicular carbon material 5 is covered with the conductive polymer 4. In addition, a region where the acicular carbon material 5 is not present on the surface of the current collector 1 is covered with an insulating film 2.
[0022]
The electrode body shown in FIG. 2 is obtained as follows, for example. That is, after the carbon material is grown and attached in a needle shape on the surface of the current collector 1 by physical vapor deposition, chemical vapor deposition, electrochemical reaction, or the like, thiophenes containing fluorine ions or derivatives thereof, etc. The acicular carbon material 5 is covered with the conductive polymer 4 by chemical polymerization or electrolytic polymerization of the organic monomer. The sputtering method, which is a kind of physical vapor deposition, is an effective means for growing carbon with high purity, although there are some restrictions in using a vacuum apparatus.
[0023]
In general, when a carbon material is embedded in a current collector by applying pressure, a conductive polymer may preferentially adhere to the current collector itself depending on the characteristics of the organic monomer used and the polymerization conditions. In addition, increasing the amount of conductive polymer attached increases the energy density of the electrochemical storage device, but increases the distance from the carbon material to the charge / discharge site and increases the resistance of the entire electrochemical storage device. The power density may decrease.
[0024]
However, according to the present embodiment, the conductive polymer preferentially adheres to the carbon material embedded in the current collector, and even if the amount of the conductive polymer attached is increased, the carbon material to the charge / discharge site is increased. Since the change in distance is small, such a problem is effectively solved.
[0025]
In the first and second embodiments described above, the current collector 1 is preferably made of aluminum. For example, when an aluminum foil is used for the current collector 1, a region where a natural oxide film (aluminum oxide) is formed on the surface of the current collector 1 and no carbon material is present is masked, and the conductive polymer 4 is placed on the carbon material. It adheres selectively and uniformly. When the formation of such a natural oxide film is insufficient, an aluminum oxide film is formed intentionally or the conductive polymer 4 is powdered by covering the region with an insulating film 2 such as an organic resin. It is preferable to deposit selectively and uniformly on the body carbon material 3. In addition, as long as operation | movement of the electrochemical storage device obtained is stabilized, you may use metal materials other than aluminum, for example, copper, titanium, SUS, etc. for the electrical power collector 1. FIG.
[0026]
For the formation of the aluminum oxide film, it is desirable to use a so-called anodic oxidation method used in an electrolytic capacitor. In addition, when the carbon material is not sufficiently embedded in the current collector 1, the resistance value of the electrode body may increase due to an aluminum oxide film interposed between the carbon material and the current collector. The size of the material (particle diameter, total length) is preferably 0.1 to 100 μm, and about half of the material is preferably embedded in the current collector 1.
[0027]
In the present invention, the conductive polymer 4 formed on the current collector is preferably a polymer of a thiophene containing fluorine-based ions or a derivative thereof since it has a high withstand voltage and excellent energy density. In addition, in the conductive polymer 4, the monomer can be easily attached on the current collector by chemical polymerization or electrolytic polymerization, and is stably present in the organic electrolyte solution, and electrochemically accumulated. If it can, the kind can be used without particular limitation.
[0028]
In the present invention, the conductive polymer 4 used for the positive electrode and the negative electrode of the electrochemical storage device may be the same or different.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to these Examples, It can apply to other embodiment widely based on the technical idea of this invention.
[0030]
Example 1
Prepare a dispersion liquid in which powdery acetylene black and a surfactant are dispersed in water, and apply this to an aluminum-etched foil for medium- and high-pressure electrolytic capacitors (electrolytic etching treatment) so that the film thickness after coating is 1 μm. The film was applied onto an aluminum foil having a thickness of 75 μm), and further pressed using a roll coater having a diameter of 15 cm at a wire thickness of 98 MPa to embed acetylene black in the aluminum etched foil. Next, ultrasonic cleaning was performed to remove the remaining acetylene black. Furthermore, anodic oxidation was performed for 1 hour at +3.0 V with respect to the counter electrode in a 150 g / liter aqueous solution of ammonium adipate to form an oxide film (anodized film) made of aluminum oxide on the aluminum etched foil. Next, a 1 m square measurement sample was cut out from this aluminum etched foil, and this was dried in a vacuum container at 150 ° C. for a whole day and night to remove moisture. Thereafter, Ag + / AgNO 3 was used as a reference electrode in an acetonitrile solution containing 0.1 mole / liter and 1.5 mole / liter of 3- (4-fluorophenyl) thiophene and tetraethylammonium tetrafluoroborate, respectively, by galvanostat. While controlling the constant current, an oxidation current of 3 mA / cm 2 per unit area was passed through the sample for about 330 seconds to electropolymerize polyfluorophenylthiophene in the solution. Thus, the acetylene black particles are embedded on the surface of the aluminum etched foil, the polyfluorophenylthiophene polymer is adhered on the acetylene black particles, and the region where the acetylene black particles are not present on the surface of the aluminum foil is covered with the anodic oxide film. An electrode body was prepared.
[0031]
(Example 2)
Except that the anodic oxide film was not formed on the aluminum etched foil, acetylene black particles were embedded on the surface of the aluminum etched foil in the same manner as in Example 1, and the polyfluorophenylthiophene polymer was formed on the acetylene black particles. An electrode body with attached was prepared.
[0032]
(Example 3)
An aluminum foil (thickness: 75 μm) from which the natural oxide film on the surface was previously removed with a 0.1 mole / liter hydrofluoric acid aqueous solution was prepared. Next, the pattern is formed on the surface of the aluminum foil by sputtering with a carbon material on the target through a mask having a pattern in which openings of 1 μm square are regularly arranged at intervals of 1 μm in an argon gas atmosphere. According to this, acicular carbon was formed. Furthermore, anodic oxidation was performed at +3.0 V for 1 hour in a 150 g / liter aqueous solution of ammonium adipate with respect to the counter electrode to form an anodic oxide film on the surface of the aluminum foil. Next, in the same manner as in Example 1, the acicular carbon material adheres to the surface of the aluminum foil, the acicular carbon material is covered with the polymer of polyfluorophenylthiophene, and the acicular carbon material does not exist on the surface of the aluminum foil. An electrode body covered with an anodized film in the region was produced.
[0033]
(Comparative Example 1)
The acetylene black particles gently adhered to the surface of the aluminum etched foil except that no pressure was applied after the dispersion liquid was applied to the aluminum etched foil, and polyfluoro was deposited on the acetylene black particles. An electrode body with a phenylthiophene polymer attached thereto was produced.
[0034]
About the electrode body obtained by these Examples and the comparative example, the characteristic was measured and evaluated by the following procedure. That is, using the obtained electrode body as a sample, in a propylene carbonate solution containing 0.6 mole / liter of tetraethylammonium tetrafluoroborate, Ag + / AgNO 3 was used as a reference electrode, and −2.0˜ at a rate of 20 mV / sec. Cyclic voltammetry was performed by sweeping in the range of + 0.75V. The capacity (Wh) of the electrode body was determined from the area of the enclosed portion of the cyclic voltammogram obtained at this time. Further, SEM images of the sample were taken to measure the thickness of the conductive polymer, and the volume (liter) occupied by the conductive polymer was calculated from this thickness and the area of the sample, and the capacity (Wh) of the electrode body was calculated as this volume (liter). The energy density (Wh / liter) was calculated by dividing by. Furthermore, the so-called AC impedance method was used, and the impedance at a frequency of 10 mHz was defined as the internal resistance of the electrode body (the potential was set to +0.6 V with respect to the reference electrode). The results are shown in Table 1.
[0035]
[Table 1]
Figure 0004061088
[0036]
From the above table, it can be seen that, after 100 cycles of charge and discharge are repeated, in the electrode body according to the present invention, the increase in internal resistance is significantly suppressed as compared with the comparative example and the energy density is maintained at a high level.
[0037]
【The invention's effect】
As described above, according to the present invention, the powdery carbon material is embedded in the surface of the current collector, and the powdery carbon material uses an electrode body to which a conductive polymer is attached. An electrochemical capacitor having a long life and a high output density and a high energy density can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an electrode body for an electrochemical capacitor according to a first embodiment. FIG. 2 is a schematic sectional view showing an electrode body for an electrochemical capacitor according to a second embodiment.
DESCRIPTION OF SYMBOLS 1 Current collector 2 Insulation film 3 Powdery carbon material 4 Conductive polymer 5 Acicular carbon material

Claims (3)

集電体の表面の自然酸化被膜を除去する工程と、Removing the natural oxide film on the surface of the current collector;
前記自然酸化被膜が除去された前記集電体の表面に、気相蒸着によって針状の炭素材料を所定間隔で形成する工程と、Forming a needle-like carbon material at predetermined intervals by vapor deposition on the surface of the current collector from which the natural oxide film has been removed;
前記針状の炭素材料が形成された前記集電体の表面の、前記針状の炭素材料が存在しない領域を絶縁被膜で被う工程と、Covering the surface of the current collector on which the acicular carbon material is formed with an insulating coating on a region where the acicular carbon material does not exist;
フッ素イオンを含むチオフェン類またはその誘導体の有機モノマーを電解重合することによって、前記針状の炭素材料を導電性ポリマーで被う工程とを有することを特徴とする電気化学蓄電デバイス用電極の製造方法。A method for producing an electrode for an electrochemical storage device, comprising: electropolymerizing an organic monomer of a thiophene containing fluorine ions or a derivative thereof, and covering the needle-shaped carbon material with a conductive polymer. .
前記有機モノマーがポリフルオロフェニルチオフェンである、請求項1に記載の電気化学蓄電デバイス用電極の製造方法。The method for producing an electrode for an electrochemical storage device according to claim 1, wherein the organic monomer is polyfluorophenylthiophene. 前記集電体がアルミニウムである、請求項1に記載の電気化学蓄電デバイス用電極の製造方法。The method for producing an electrode for an electrochemical storage device according to claim 1, wherein the current collector is aluminum.
JP2002034384A 2002-02-12 2002-02-12 Method for producing electrode for electrochemical storage device Expired - Fee Related JP4061088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034384A JP4061088B2 (en) 2002-02-12 2002-02-12 Method for producing electrode for electrochemical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034384A JP4061088B2 (en) 2002-02-12 2002-02-12 Method for producing electrode for electrochemical storage device

Publications (2)

Publication Number Publication Date
JP2003234249A JP2003234249A (en) 2003-08-22
JP4061088B2 true JP4061088B2 (en) 2008-03-12

Family

ID=27776902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034384A Expired - Fee Related JP4061088B2 (en) 2002-02-12 2002-02-12 Method for producing electrode for electrochemical storage device

Country Status (1)

Country Link
JP (1) JP4061088B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187411A (en) * 2008-09-04 2011-09-14 加利福尼亚大学董事会 Charge storage device architecture for increasing energy and power density
WO2010032462A1 (en) * 2008-09-18 2010-03-25 パナソニック株式会社 Capacitor and method for manufacturing same
JP2017073423A (en) * 2015-10-05 2017-04-13 東洋アルミニウム株式会社 Conductive substance-coated aluminum material and method for manufacturing the same
JP6608668B2 (en) * 2015-10-23 2019-11-20 日産自動車株式会社 Electrode and manufacturing method thereof
WO2019216219A1 (en) * 2018-05-07 2019-11-14 パナソニックIpマネジメント株式会社 Electrochemical device and method for manufacturing electrochemical device
CN114758895A (en) * 2022-05-05 2022-07-15 肇庆绿宝石电子科技股份有限公司 Method for improving voltage resistance of capacitor

Also Published As

Publication number Publication date
JP2003234249A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures
KR100821630B1 (en) Electrode, and method for preparing the same
KR101031019B1 (en) Method for manufacturing metal electrode having transition metallic coating layer and metal electrode manufactured thereby
KR20130026791A (en) Current collector, method for preparing the same, and electrochemical capacitors comprising the same
JP2010141323A (en) Cathode using wet type capacitor
JP2006527461A (en) Electrode and manufacturing method thereof
Arslan Supercapacitor applications of polyaniline and poly (N-methylaniline) coated pencil graphite electrode
WO2006132141A1 (en) Electrolytic capacitor element and process for producing the same
TW201639220A (en) Electrode material and energy storage apparatus
TWI457956B (en) Integration of energy storage devices onto substrates for microelectronics and mobile devices
Arslan et al. Electrochemical storage properties of polyaniline-, poly (N-methylaniline)-, and poly (N-ethylaniline)-coated pencil graphite electrodes
JP4061088B2 (en) Method for producing electrode for electrochemical storage device
KR101391136B1 (en) Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same
Xie et al. High capacitance properties of electrodeposited PANI-Ag nanocable arrays
Dinh et al. High resolution electrochemical micro-capacitors based on oxidized multi-walled carbon nanotubes
Liu et al. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors
CN103855421A (en) Self-charging film lithium ion battery
US5189770A (en) Method of making solid electrolyte capacitor
Lee et al. Fabrication of polypyrrole nanorod arrays for supercapacitor: effect of length of nanorods on capacitance
Kim et al. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors
US20150364267A1 (en) Passivated porous silicon nanowires
CN104217863A (en) Manufacturing method of field-effect regulated supercapacitor
US20130058010A1 (en) Metal current collector, method for preparing the same, and electrochemical capacitors with same
JPH1079326A (en) Capacitor and manufacturing method thereof
JPWO2014119312A1 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4061088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees