JP4059948B2 - Automatic tracking device for position measurement plotter - Google Patents

Automatic tracking device for position measurement plotter Download PDF

Info

Publication number
JP4059948B2
JP4059948B2 JP01333897A JP1333897A JP4059948B2 JP 4059948 B2 JP4059948 B2 JP 4059948B2 JP 01333897 A JP01333897 A JP 01333897A JP 1333897 A JP1333897 A JP 1333897A JP 4059948 B2 JP4059948 B2 JP 4059948B2
Authority
JP
Japan
Prior art keywords
tracking
light receiving
light
unit
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01333897A
Other languages
Japanese (ja)
Other versions
JPH10197247A (en
Inventor
和雄 牧村
滋 小島
正美 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP01333897A priority Critical patent/JP4059948B2/en
Publication of JPH10197247A publication Critical patent/JPH10197247A/en
Application granted granted Critical
Publication of JP4059948B2 publication Critical patent/JP4059948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交通事故見分における現場見取図等を作成する位置計測作図装置に用いられ、計測ヘッド部を測定点指示部へ自動的に向けるための自動追尾装置の構成に関する。
【0002】
【従来の技術】
交通事故処理業務では、実況見分の際に現場見取図が作成されており、この現場見取図を迅速かつ正確に作成するために、近年では、位置計測作図装置が用いられるようになってきた。この位置計測作図装置は、従来、巻尺を用いて行っていた事故現場の関係地点間の測定と見取図の作成を現場で同時に行ったり、また測定データを持帰り、後の見取図等の作成に利用するために用いられる。従来の位置計測作図装置としては、例えば特開平5−60560号公報に示されるものがある。
【0003】
図8には、従来の位置計測作図装置の構成が示されており、図示されるように、事故処理車等に搭載される計測機側には、車載架台1に支持された計測ヘッド部2が設けられる。この計測ヘッド部2は、俯仰方向、旋回方向に回動するように構成され、このヘッド部2内には、TVカメラ3、対物光学系4Aを有する光波距離計4が配置される。
【0004】
この光波距離計4は、レーザー光(測定光)を出射してその反射光により距離を測定する光波距離計部と、同一の対物光学系4Aを介して入射した光を受光するための受光素子5(光波距離計と受光素子が構造的に合体している)を備えている。この受光素子5は、4分割された受光素子であり、追尾用の光を検出すると共に、通信用光信号を受信することができる。
【0005】
この計測機側では、その他にも、TVモニタ、上記光波距離計4の計測データ等に基づいて見取図作成のための処理をする作図演算コンピュータや計測に関する操作をする操作部等が設けられる。
【0006】
一方、車載された計測機側に対し、道路等の測定地点にセットされるターゲット部(測定点指示部)7が備えられており、このターゲット部7は、指示棒8の所定の高さ位置に設けられたコーナーキューブ反射鏡9とこの反射鏡9の外周部に配置された複数の発光部(LED等)10を有している。
【0007】
上記の構成によれば、まず上記のターゲット部7を測定点に配置し、その反射鏡9を計測ヘッド部2の方へ向けるが、このとき、複数の発光部10から追尾用の光が出力される。一方、この計測ヘッド部2の受光素子5では、分割素子部により上記追尾光を受光し、計測ヘッド2が反射鏡9の正面を向くするように回動制御される。そして、ターゲット部7へのセット状態が確認された後、測定開始スイッチ等を押すことにより、測定が開始される。
【0008】
即ち、上記光波距離計4からは測定光が出射され、上記反射鏡9からの反射光を受光することにより、ターゲット部7までの距離が測定される。そうして、この距離データは、計測ヘッド部2の俯仰角度及び旋回角度情報と共に、作図演算コンピュータに入力され、ここで演算処理されて3次元座標データが得られる。次に、この3次元座標データに基づいて作図処理を行い、この作図データをプロッターへ出力することにより、現場見取図を得ることができる。
【0009】
【発明が解決しようとする課題】
しかし、上記位置計測作図装置の自動追尾装置では、上述のように、光波距離計4の対物光学系4Aを利用して追尾光を受光素子5へ導く構成となっていることから、追尾を精度よく実行できるという利点がある反面、追尾範囲が狭いという問題がある。
【0010】
即ち、上記対物光学系4Aは、距離測定との関係から焦点距離fが比較的長いレンズ系を用いており、追尾のための検出領域が狭くなっている。従って、自動追尾中に計測ヘッド部2とターゲット部7との間に障害物が通過したりすると、追尾動作ができなくなる場合があり、この場合には、計測者がTVモニタの映像を見ながら手動で指令を与えて計測ヘッド部2を動かし、検出可能領域に入るようにしなければならなかった。
【0011】
本発明は上記問題点に鑑みてなされたものであり、その目的は、光波距離計の対物光学系を利用した高精度の追尾動作を維持しながら広範囲の追尾が可能となり、作業効率のよい位置計測作図装置の自動追尾装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、測距用反射鏡を有する測定点指示部に配置され、追尾用の光を出力する追尾光発光部と、上記測距用反射鏡へ向けて出射した測定光の反射光を受光して測定点までの距離を測定する光波距離計を有する計測ヘッド部と、この計測ヘッド部に配置され、上記光波距離計の対物光学系から入射した上記追尾光を分割受光素子で受光する標準追尾用受光部と、を備え、この標準追尾用受光部の分割受光素子の各素子で受光した追尾光の状態から上記計測ヘッド部を上記測距用反射鏡へ向けるように追尾する位置計測作図装置の自動追尾装置において、上記計測ヘッド部に、上記光波距離計の対物光学系を含む標準追尾用受光部とは別個に、この標準追尾用受光部で追尾光を検出する範囲よりも広い範囲で追尾光を検出するための対物光学系及び分割受光素子からなる広範囲追尾用受光部を配置し、かつこの広範囲追尾用受光部の分割受光素子の各素子で受光した追尾光の状態から上記計測ヘッド部を上記測距用反射鏡へ向ける追尾ができるように構成し、上記標準追尾用受光部で追尾光を検出したときこの標準追尾用受光部に基づく追尾制御を実行し、この標準追尾用受光部で追尾光を検出しないときは上記広範囲追尾用受光部に基づく追尾制御を実行することを特徴とする。
請求項2に係る発明は、上記標準追尾用受光部及び広範囲追尾用受光部の分割受光素子として4分割のものを用いると共に、上記広範囲追尾用受光部の分割受光素子として上記標準追尾用受光部の分割受光素子受光面よりも水平方向が長い受光面の分割受光素子を用いたことを特徴とする。
【0013】
上記の構成によれば、標準追尾用受光部で追尾できない位置・範囲に測定点指示部がある場合でも、広範囲追尾用受光部により測定点指示部の追尾光発光部から出力される追尾光が捉えられ、これにより計測ヘッド部が測定点指示部の測距用反射鏡の方向を向くように動かされる。そうすると、標準追尾用受光部でも追尾光が捉えられることになり、この後は、この標準追尾用受光部の検出出力に基づき、精度のよい追尾動作が行われる。
【0014】
また、位置計測作図装置においては、地上面の物体の位置を測定することが目的となるから、測定点指示部の移動範囲は水平方向に広がることになる。従って、上記広範囲追尾用受光部では、水平方向の受光領域が広い受光素子を用いることにより、特に水平方向の追尾範囲を効率よく広くすることが可能となる。
【0015】
【発明の実施の形態】
図1及び図2には、実施形態の一例に係る位置計測作図装置の自動追尾装置の構成が示されており、まず図2により全体構成を説明する。図2において、事故処理車等に搭載される計測機12側には、計測ヘッド部13が車載架台14により支持されており、この架台14によって計測ヘッド部13が水平状態に維持される。また、この計測ヘッド部13は俯仰方向及び旋回方向への動作が可能であり、この俯仰角度及び旋回角度は作図データとして当該ヘッド部13から出力される。
【0016】
この計測ヘッド部13内には、測定地点の周辺を撮影するTVカメラ16、詳細は後述するが、対物光学系17Aと受光素子18を有する光波距離計17、広範囲追尾用受光部20が設けられる。上記光波距離計17は、対物光学系17Aを介して測定光を出射し、その反射光を受光して距離を測定することができ、また従来と同様に、同一の対物光学系17Aを介して入射した追尾光を受光素子18で捉えることにより、後述の反射鏡部を自動追尾する。
【0017】
また、上記計測機12内には制御部21と、各部へ動作電力を供給する電源部22が配置され、上記制御部21内には、TVモニタ23、自動追尾回路24、作図演算部(コンピュータ)25、操作部26が設けられる。上記作図演算部25は、上記計測ヘッド部13で得られた距離等のデータに基づき、3次元座標上での各測定点の位置を演算し、また各測定点間の距離を求める等、作図のための演算処理をする。上記操作部26には、測定、作図のための操作スイッチが設けられ、作図モードや作図のための例えば横断歩道、センターライン、電柱、車の種類等のデータも入力することができる。
【0018】
一方、上記計測機12から離れた測定地点には、測定点指示部(ターゲット部)28が設けられ、このターゲット部28は、指示棒29、この指示棒29の途中に配置された反射鏡部30を有している。この反射鏡部30は、従来と同様に、コーナーキューブ反射鏡31とこの外周部に等間隔で配置された複数の発光部32を備えており、この発光部32により、計測ヘッド部13の自動追尾機能のための追尾光を出射する。なお、この発光部32は操作制御のための制御信号も同時に出力できるようになっている。
【0019】
図1には、上記図2の追尾機能に関する構成が示されており、まず上述した光波距離計17では、対物光学系17Aが焦点距離f1 のレンズ(又はレンズ群)からなり、受光素子18は図示のように、全体をA〜Dに4分割した素子からなる。この受光素子18は、従来と同様に標準追尾用受光部として配置される。
【0020】
また、この光波距離計17の近傍に、広範囲追尾用受光部20が配置されており、この広範囲追尾用受光部20は、上記焦点距離f1 よりも小さい焦点距離f2 (f2 <f1 )を持つ対物光学(レンズ)系34と、全体をE〜Hに4分割した受光素子35から構成される。上記対物光学系34によれば、標準追尾用の対物光学系17Aよりも焦点距離が短いので、広範囲の視野を捉えることができることになる。
【0021】
更に、実施形態例では、上記受光素子35の各素子として横長(水平方向が長い)の受光面のものを用い、特に水平方向の受光範囲を更に拡大するようにしている。上記の構成によれば、例えば、図4に示されるように、左右方向で説明すると、受光素子18を含む光波距離計17(標準追尾用受光部)では、αの範囲の追尾光を受光し、広範囲追尾用受光部20では、β(β>α)の広い範囲の追尾光を受光できることになる。
【0022】
上記の受光素子18,35には、上述した自動追尾回路(図2)24が接続されており、この自動追尾部24として、アンプ37A,37B、フィルタ38A,38B、検波器39A,39B、A/D変換器40A,40B及びマイコン41が設けられる。即ち、上記フィルタ38A,38B及び検波器39A,39Bにより、上記ターゲット部28の発光部32から出力された発光パルス信号を抽出し、受光素子18ではA〜Dの各素子の光量、受光素子35ではE〜Hの各素子の光量を検出する。
【0023】
図3には、上記発光部32からの発光パルス信号の一例が示されており、例えばT(T:送信サイクル)/2の周期に8個のパルスを有する信号が追尾信号として用いられる。また、図示の鎖線で示されるように、各パルス間に挿入した0ビットから7ビットに対応したパルスを制御信号として利用することができる。
【0024】
そして、上記マイコン41では、4分割受光素子18,35の検出光量により自動追尾制御のための追尾信号を演算し、上下(俯仰)方向へ上記計測ヘッド部13を回動させる上下方向追尾信号と、左右(旋回)方向へ回動させる左右方向追尾信号を計測ヘッド部13へ出力する。
【0025】
実施形態例は以上の構成からなり、以下にその作用を説明する。図4には、計測ヘッド部13の追尾動作が示され、図5乃至図7には、上記マイコン41で実行される追尾処理制御が示されている。まず、現場見取図の作成では、図2のターゲット部28の指示棒29の先端を測定点に置き、反射鏡部30を計測ヘッド部13へ向ける。このとき、この反射鏡部30の発光部32から追尾光(S1 )が出射されることになり、この追尾光を計測ヘッド部13の標準追尾用受光部(17A,18)と広範囲追尾用受光部20で受光し、図5の追尾処理を行う。
【0026】
図5において、ステップ101では、広範囲追尾用の受光素子35のE〜Hの素子で検出された光量e,f,g,hがしきい値jよりも大きいか否かが検出され、何れの光量もj値より小さい[N(NO)]ときは、距離が遠いか或いは光路が遮られた場合で、ステップ102の検出外処理を行う。一方、何れかの光量がj値よりも大きい[Y(YES )]ときは、ステップ103へ移行する。
【0027】
このステップ103では、|(e+f)−(g+h)|>k1 又は|(e+h)−(f+g)|>k2 (k1 ,k2 :定数)を満たすか否かの判定が行われる。即ち、追尾光受光の偏りが上下方向にあるか、左右方向にあるかを判定し、何れか又は両者に偏りがある場合は、図6の広範囲追尾制御(ステップ104)を行う(Nの場合はステップ105へ移行する)。
【0028】
図6において、ステップ201では、(e+f)−(g+h)>k1 を満たすか否かの判定が行われ、上側素子(E,F)部の受光量が大きく、下方向から追尾光が照射されているとき(Yのとき)、ステップ202で下方向への追尾信号を出力し、Nのときはこの下方向への追尾信号を出力しない(ステップ203)。次のステップ204では、(e+f)−(g+h)<−k1 を満たすか否かの判定が行われ、下側素子(G,H)部の受光量が大きく、上方向から追尾光が照射されているとき(Yのとき)、ステップ205で上方向への追尾信号を出力し、Nのときはこの上方向への追尾信号を出力しない(ステップ206)。
【0029】
次に、ステップ207では、(e+h)−(f+g)>k2 を満たすか否かの判定が行われ、計測ヘッド部13からターゲット部28を見る方向の右側素子(E,H)部の受光量が大きく、左方向から追尾光が照射されているとき(Yのとき)、ステップ208で左方向への追尾信号を出力し、Nのときはこの左方向への追尾信号を出力しない(ステップ209)。次のステップ210では、(e+h)−(f+g)>−k2 を満たすか否かの判定が行われ、左側素子(F,G)部の受光量が大きく、右方向から追尾光が照射されているとき(Yのとき)、ステップ211で右方向への追尾信号を出力し、Nのときはこの左方向への追尾信号を出力しない(ステップ212)。
【0030】
このようにして、広範囲追尾制御が行われると、上記計測ヘッド部13はターゲット部28の反射鏡部30の正面を徐々に向くことになる。例えば、図4(A)に示される状態は、計測ヘッド部13の向きが右側にずれており、上記ステップ207で、右側素子(E,H)部の受光量が大きく、左方向から追尾光が照射されている場合となる。この場合は、ステップ208で左方向追尾信号を出力することにより、計測ヘッド部13はβのみの範囲から左方向へ旋回し、図4(B)に示されるように、αの範囲に移動することになる。
【0031】
図5において、次のステップ105では、標準追尾用の受光素子18のA〜Dの素子で検出された光量a,b,c,dがしきい値Jよりも大きいか否かが検出され、何れの光量もJ値より小さい(N)ときは、ステップ102の検出外処理を行う。一方、何れかの光量がJ値よりも大きい(Y)ときは、ステップ106の従来と同様の標準範囲追尾制御へ移行する。
【0032】
図7には、この標準範囲追尾制御動作が示されており、この動作も定数K1 ,K2 の相違があるだけで上記図6の動作と基本的には同じとなる。すなわち、(a+b)−(c+d)>K1 の判定(ステップ301)により、下方向追尾信号を出力(ステップ302)し、(a+b)−(c+d)<−K1 の判定(ステップ304)により、上方向追尾信号を出力(ステップ305)し、(a+d)−(b+c)>K2 の判定(ステップ307)により、左方向追尾信号を出力(ステップ308)し、(a+d)−(b+c)<−K2 の判定(ステップ310)により、右方向追尾信号を出力(ステップ311)する。
【0033】
このようにして、標準範囲追尾制御が行われると、図4(B)に示されるように、上記計測ヘッド部13はターゲット部28の反射鏡部30の正面を向くことになる。そして、上記受光素子18を含む光波距離計17によれば、検出範囲αが狭く限定されるので、計測ヘッド部13を高精度で追尾することができる。
【0034】
この後、上記光波距離計17において、図2に示されるように、測定光を出射し、コーナーキューブ反射鏡31から反射された反射光(S2 )を受光して距離測定が行われ、この距離測定値は上記の自動追尾の際に動かした計測ヘッド部13の現在の俯仰角度及び旋回角度と共に、作図演算部25へ出力される。そして、この作図演算部25からプロッターへ作図データを出力することにより、現場見取図が印刷される。
【0035】
上記実施形態例では、広範囲追尾用受光部20を設け、標準追尾用受光部と共に二段で追尾光を検出するようにしたが、この広範囲追尾用受光部を二段等とし、三段以上の範囲で追尾光を検出してもよい。
【0036】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、測距用反射鏡へ向けて出射した測定光の反射光を受光して測定点までの距離を測定する光波距離計を備えた位置計測作図装置で、上記光波距離計の対物光学系から入射した追尾光を分割受光素子で受光する従来の標準追尾用受光部とは別個に、この標準追尾用受光部で追尾光を受光する範囲よりも広い範囲で追尾光を受光するための対物光学系及び分割受光素子からなる広範囲追尾用受光部を配置し、標準追尾用受光部で追尾光を検出したときこの標準追尾用受光部に基づく追尾制御を実行し、この標準追尾用受光部で追尾光を検出しないときは上記広範囲追尾用受光部に基づく追尾制御を実行するようにしたので、高精度の追尾動作を維持しながら追尾範囲を広くでき、位置計測作図装置による現場見取図の作成作業を効率よく行うことができるという利点がある。
【0037】
請求項2に係る発明によれば、上記広範囲追尾用受光部には、標準追尾用受光部及び広範囲追尾用受光部の分割受光素子として4分割のものを用いると共に、広範囲追尾用受光部には標準追尾用受光部の分割受光素子受光面よりも水平方向が長い受光面の分割受光素子を配置したので、特に水平方向において広い追尾範囲を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る位置計測作図装置の自動追尾装置の構成を示すブロック図である。
【図2】実施形態例の位置計測作図装置の全体構成を示すブロック図である。
【図3】実施形態例の追尾信号及び制御信号として用いられる発光信号を示す波形図である。
【図4】 図の計測ヘッド部の追尾動作を示す図である。
【図5】図1のマイコンでの追尾処理を示すフローチャートである。
【図6】図5の追尾処理における広範囲追尾制御動作を示すフローチャートである。
【図7】図5の追尾処理における標準追尾制御動作を示すフローチャートである。
【図8】従来の位置計測作図装置の構成を示すブロック図である。
【符号の説明】
1,14 … 車載架台、
2,13 … 計測ヘッド部、
7,28 … ターゲット部、
12 … 計測機、
17 … 光波距離計(追尾用受光素子を含む)、
17A,34 … 対物光学系、
18,35 … 受光素子、
20 … 広範囲追尾用受光部、
24 … 自動追尾回路、
30 … 反射鏡部、
32 … 発光部、
41 … マイコン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a configuration of an automatic tracking device that is used in a position measurement plotting device that creates a floor plan or the like for a traffic accident identification and that automatically points a measurement head unit toward a measurement point indicating unit.
[0002]
[Prior art]
In the traffic accident processing business, a site sketch is created when the actual situation is identified, and in recent years, a position measurement plotting apparatus has been used in order to quickly and accurately create this site sketch. This position measurement plotting device is used for the measurement at the site at the same time and the creation of a sketch at the site at the same time, and the measurement data is taken home and used for the creation of subsequent sketches etc. Used to do. As a conventional position measurement drawing apparatus, for example, there is one disclosed in JP-A-5-60560.
[0003]
FIG. 8 shows a configuration of a conventional position measurement / drawing apparatus. As shown in the figure, a measuring head unit 2 supported by an in-vehicle mount 1 is provided on the side of a measuring instrument mounted on an accident handling vehicle or the like. Is provided. The measurement head unit 2 is configured to rotate in the elevation direction and the turning direction, and in the head unit 2, a lightwave distance meter 4 having a TV camera 3 and an objective optical system 4A is disposed.
[0004]
The light wave distance meter 4 emits laser light (measurement light) and measures the distance by the reflected light, and a light receiving element for receiving light incident through the same objective optical system 4A. 5 (the light wave distance meter and the light receiving element are structurally united). The light receiving element 5 is a light receiving element divided into four, and can detect a tracking light and receive a communication optical signal.
[0005]
In addition to this, on the measuring instrument side, a TV monitor, a drawing calculation computer that performs a process for creating a sketch based on the measurement data of the light wave distance meter 4, an operation unit that performs operations related to measurement, and the like are provided.
[0006]
On the other hand, a target unit (measurement point indicating unit) 7 set at a measurement point such as a road is provided on the vehicle-mounted measuring instrument side, and this target unit 7 is provided at a predetermined height position of the pointing rod 8. And a plurality of light emitting units (LEDs, etc.) 10 arranged on the outer periphery of the reflecting mirror 9.
[0007]
According to the above configuration, the target unit 7 is first arranged at the measurement point, and the reflecting mirror 9 is directed toward the measurement head unit 2. At this time, tracking light is output from the plurality of light emitting units 10. Is done. On the other hand, in the light receiving element 5 of the measurement head unit 2, the tracking light is received by the dividing element unit, and the rotation is controlled so that the measurement head 2 faces the front of the reflecting mirror 9. Then, after the set state on the target unit 7 is confirmed, the measurement is started by pressing a measurement start switch or the like.
[0008]
That is, the measurement light is emitted from the light wave distance meter 4 and the distance to the target unit 7 is measured by receiving the reflected light from the reflecting mirror 9. Then, this distance data is input to the drawing calculation computer together with the elevation angle and turning angle information of the measurement head unit 2, and is calculated here to obtain three-dimensional coordinate data. Next, drawing processing is performed based on the three-dimensional coordinate data, and the drawing data can be output to a plotter to obtain a site sketch.
[0009]
[Problems to be solved by the invention]
However, the automatic tracking device of the position measurement / drawing apparatus is configured to guide the tracking light to the light receiving element 5 using the objective optical system 4A of the optical wave distance meter 4 as described above. While there is an advantage that it can be executed well, there is a problem that the tracking range is narrow.
[0010]
That is, the objective optical system 4A uses a lens system having a relatively long focal length f in relation to distance measurement, and the detection area for tracking is narrow. Accordingly, if an obstacle passes between the measurement head unit 2 and the target unit 7 during automatic tracking, the tracking operation may not be performed. In this case, the measurer is watching the video on the TV monitor. It was necessary to manually give a command to move the measuring head unit 2 so as to enter the detectable region.
[0011]
The present invention has been made in view of the above problems, and its purpose is to enable a wide range of tracking while maintaining a highly accurate tracking operation using the objective optical system of the optical wave distance meter, and a position with high work efficiency. An object of the present invention is to provide an automatic tracking device for a measurement plotting device.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is provided in a measurement point indicating unit having a ranging reflector, and outputs a tracking light emitting unit that outputs tracking light, and the ranging reflector. A measurement head unit having a light wave distance meter that receives the reflected light of the measurement light emitted toward and measures the distance to the measurement point, and is disposed on the measurement head unit and incident from the objective optical system of the light wave distance meter A standard tracking light receiving unit that receives the tracking light with a divided light receiving element, and the distance measurement unit detects the distance from the tracking light received by each element of the divided light receiving element of the standard tracking light receiving unit. the automatic tracking apparatus position measuring plotter for tracking to direct the use reflectors, in the measuring head unit, separately from the standard tracking light receiving unit including the objective optical system of the light wave distance meter, the standard tracking light receiving Wider than the tracking light detection range A wide-range tracking light-receiving unit composed of an objective optical system and a divided light-receiving element for detecting tracking light in a range, and the above-described tracking light received by each element of the divided light-receiving element of the wide-range tracking light-receiving unit The measurement head unit is configured to be able to track the distance measuring reflector, and when tracking light is detected by the standard tracking light receiving unit, tracking control based on the standard tracking light receiving unit is executed, and this standard tracking is performed. When tracking light is not detected by the light receiving unit for tracking, tracking control based on the light receiving unit for wide-range tracking is executed.
The invention according to claim 2, together with the use of those quartered as the light receiving device of the standard tracking light receiving unit and extensive tracking light receiving unit, the standard tracking light receiving unit as a light receiving element of the extensive tracking light receiving unit The divided light-receiving element having a light-receiving surface that is longer in the horizontal direction than the light-receiving surface of the divided light-receiving element is used .
[0013]
According to the above configuration, even when there is a measurement point indicating unit at a position / range that cannot be tracked by the standard tracking light receiving unit, the tracking light output from the tracking light emitting unit of the measurement point indicating unit by the wide range tracking light receiving unit is As a result, the measurement head unit is moved to face the direction of the distance measuring reflecting mirror of the measurement point indicating unit. Then, the tracking light is captured by the standard tracking light receiving unit, and thereafter, a precise tracking operation is performed based on the detection output of the standard tracking light receiving unit.
[0014]
Further, in the position measurement drawing apparatus, the purpose is to measure the position of the object on the ground surface, and therefore the moving range of the measurement point indicating unit extends in the horizontal direction. Therefore, in the above-described wide-range tracking light receiving unit, it is possible to efficiently widen the tracking range in the horizontal direction in particular by using a light receiving element having a wide horizontal light receiving region.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a configuration of an automatic tracking device of a position measurement drawing apparatus according to an example of the embodiment. First, the overall configuration will be described with reference to FIG. In FIG. 2, a measurement head unit 13 is supported by an in-vehicle mount 14 on the side of the measuring instrument 12 mounted on an accident handling vehicle or the like, and the measurement head unit 13 is maintained in a horizontal state by the mount 14. The measuring head unit 13 can operate in the elevation direction and the turning direction, and the elevation angle and the turning angle are output from the head unit 13 as drawing data.
[0016]
In the measurement head unit 13, a TV camera 16 that captures the periphery of the measurement point, a lightwave distance meter 17 having an objective optical system 17A and a light receiving element 18, and a wide-range tracking light receiving unit 20 are provided. . The optical wave distance meter 17 emits measurement light via the objective optical system 17A, can receive the reflected light, and can measure the distance. Similarly to the conventional case, the optical wave distance meter 17 can pass through the same objective optical system 17A. By capturing the incident tracking light with the light receiving element 18, a later-described reflecting mirror portion is automatically tracked.
[0017]
Further, a control unit 21 and a power supply unit 22 for supplying operating power to each unit are arranged in the measuring instrument 12, and in the control unit 21, a TV monitor 23, an automatic tracking circuit 24, a drawing calculation unit (computer) ) 25, an operation unit 26 is provided. The drawing calculation unit 25 calculates the position of each measurement point on the three-dimensional coordinate based on the data such as the distance obtained by the measurement head unit 13, and calculates the distance between the measurement points. Processing for The operation unit 26 is provided with operation switches for measurement and drawing, and data such as a drawing mode and drawing, such as a pedestrian crossing, a center line, a utility pole, and a car type, can also be input.
[0018]
On the other hand, a measurement point indicating unit (target unit) 28 is provided at a measurement point away from the measuring instrument 12, and the target unit 28 includes an indicating rod 29 and a reflecting mirror unit disposed in the middle of the indicating rod 29. 30. The reflector 30 includes a corner cube reflector 31 and a plurality of light emitters 32 arranged at equal intervals on the outer periphery, as in the prior art. The tracking light for the tracking function is emitted. The light emitting unit 32 can output a control signal for operation control at the same time.
[0019]
FIG. 1 shows a configuration related to the tracking function shown in FIG. 2. First, in the above-described optical wave distance meter 17, the objective optical system 17A is composed of a lens (or a lens group) having a focal length f1, and the light receiving element 18 includes: As shown in the figure, the whole is composed of elements divided into four parts A to D. The light receiving element 18 is arranged as a standard tracking light receiving unit as in the conventional case.
[0020]
Further, a wide-range tracking light receiving unit 20 is disposed in the vicinity of the lightwave distance meter 17, and the wide-range tracking light receiving unit 20 has an objective having a focal length f2 (f2 <f1) smaller than the focal length f1. It comprises an optical (lens) system 34 and a light receiving element 35 that is divided into E to H as a whole. According to the objective optical system 34, since the focal length is shorter than the objective optical system 17A for standard tracking, a wide field of view can be captured.
[0021]
Further, in the embodiment, each of the light receiving elements 35 has a horizontally long (long horizontal direction) light receiving surface, and particularly extends the light receiving range in the horizontal direction. According to the above configuration, for example, as illustrated in FIG. 4, in the left-right direction, the optical distance meter 17 (standard tracking light receiving unit) including the light receiving element 18 receives tracking light in the range of α. The wide-range tracking light receiving unit 20 can receive tracking light in a wide range of β (β> α).
[0022]
The above-described automatic tracking circuit (FIG. 2) 24 is connected to the light receiving elements 18 and 35. As the automatic tracking unit 24, amplifiers 37A and 37B, filters 38A and 38B, detectors 39A, 39B, A / D converters 40A and 40B and a microcomputer 41 are provided. That is, the light emission pulse signals output from the light emitting unit 32 of the target unit 28 are extracted by the filters 38A and 38B and the detectors 39A and 39B. In the light receiving element 18, the light amounts of the respective elements A to D and the light receiving element 35 are extracted. Then, the light quantity of each element of EH is detected.
[0023]
FIG. 3 shows an example of a light emission pulse signal from the light emitting unit 32. For example, a signal having 8 pulses in a period of T (T: transmission cycle) / 2 is used as a tracking signal. Further, as shown by the chain line in the figure, a pulse corresponding to 0 to 7 bits inserted between each pulse can be used as a control signal.
[0024]
The microcomputer 41 calculates a tracking signal for automatic tracking control based on the detected light quantity of the four-divided light receiving elements 18 and 35, and a vertical tracking signal for rotating the measuring head unit 13 in the vertical (elevation) direction. The left and right direction tracking signal for rotating in the left and right (turning) direction is output to the measurement head unit 13.
[0025]
The embodiment is configured as described above, and its operation will be described below. FIG. 4 shows the tracking operation of the measurement head unit 13, and FIGS. 5 to 7 show the tracking processing control executed by the microcomputer 41. First, in creating the site sketch, the tip of the pointing rod 29 of the target unit 28 in FIG. 2 is placed at the measurement point, and the reflecting mirror unit 30 is directed to the measurement head unit 13. At this time, the tracking light (S1) is emitted from the light emitting section 32 of the reflecting mirror section 30, and this tracking light is received by the standard tracking light receiving section (17A, 18) of the measuring head section 13 and the wide range tracking light receiving. The light is received by the unit 20 and the tracking process of FIG. 5 is performed.
[0026]
In FIG. 5, in step 101, it is detected whether or not the light amounts e, f, g, and h detected by the elements E to H of the wide-range tracking light receiving element 35 are larger than the threshold value j. When the amount of light is smaller than the j value [N (NO)], the out-of-detection process in step 102 is performed when the distance is long or the optical path is blocked. On the other hand, when any light quantity is larger than the j value [Y (YES)], the routine proceeds to step 103.
[0027]
In this step 103, it is determined whether or not | (e + f)-(g + h) |> k1 or | (e + h)-(f + g) |> k2 (k1, k2: constant) is satisfied. That is, it is determined whether the tracking light reception bias is in the vertical direction or the horizontal direction, and if either or both are biased, the wide range tracking control (step 104) in FIG. 6 is performed (in the case of N). Goes to step 105).
[0028]
In FIG. 6, in step 201, it is determined whether or not (e + f)-(g + h)> k1 is satisfied, the amount of light received by the upper element (E, F) is large, and tracking light is emitted from below. If it is (when Y), a downward tracking signal is output in step 202, and if it is N, this downward tracking signal is not output (step 203). In the next step 204, it is determined whether or not (e + f)-(g + h) <-k1 is satisfied, the amount of light received by the lower element (G, H) is large, and tracking light is emitted from above. If it is (when Y), an upward tracking signal is output in step 205, and if it is N, this upward tracking signal is not output (step 206).
[0029]
Next, in step 207, it is determined whether or not (e + h)-(f + g)> k2 is satisfied, and the amount of light received by the right element (E, H) portion in the direction of viewing the target portion 28 from the measurement head portion 13 is determined. When tracking light is emitted from the left direction (when Y), a tracking signal in the left direction is output in step 208, and when N, the tracking signal in the left direction is not output (step 209). ). In the next step 210, it is determined whether or not (e + h)-(f + g)>-k2 is satisfied, the amount of light received by the left element (F, G) is large, and tracking light is emitted from the right direction. If it is (Y), a tracking signal in the right direction is output in step 211, and if N, this tracking signal in the left direction is not output (step 212).
[0030]
In this way, when the wide range tracking control is performed, the measurement head unit 13 gradually faces the front surface of the reflecting mirror unit 30 of the target unit 28. For example, in the state shown in FIG. 4A, the direction of the measurement head unit 13 is shifted to the right side, and in step 207, the received light amount of the right element (E, H) unit is large, and the tracking light from the left direction. Will be irradiated. In this case, by outputting a left direction tracking signal in step 208, the measurement head unit 13 turns leftward from the range of only β, and moves to the range of α as shown in FIG. 4B. It will be.
[0031]
In FIG. 5, in the next step 105, it is detected whether or not the light amounts a, b, c, d detected by the elements A to D of the standard tracking light receiving element 18 are larger than the threshold value J. If any light quantity is smaller than the J value (N), the non-detection process in step 102 is performed. On the other hand, when any of the light amounts is larger than the J value (Y), the routine proceeds to the standard range tracking control of the conventional step 106.
[0032]
FIG. 7 shows this standard range tracking control operation. This operation is basically the same as the operation of FIG. 6 except that the constants K1 and K2 are different. That is, the downward tracking signal is output (step 302) by the determination of (a + b)-(c + d)> K1 (step 301), and the upward is determined by the determination (step 304) of (a + b)-(c + d) <-K1. A direction tracking signal is output (step 305), and a determination of (a + d)-(b + c)> K2 (step 307) outputs a left tracking signal (step 308), and (a + d)-(b + c) <-K2. In step 310, the right tracking signal is output (step 311).
[0033]
Thus, when the standard range tracking control is performed, the measurement head unit 13 faces the front surface of the reflecting mirror unit 30 of the target unit 28 as shown in FIG. And according to the optical wave rangefinder 17 including the light receiving element 18, the detection range α is limited to be narrow, and therefore the measurement head unit 13 can be tracked with high accuracy.
[0034]
Thereafter, as shown in FIG. 2, the optical distance meter 17 emits measurement light, receives the reflected light (S2) reflected from the corner cube reflecting mirror 31, and performs distance measurement. The measured value is output to the drawing calculation unit 25 together with the current elevation angle and turning angle of the measurement head unit 13 moved during the automatic tracking. Then, by outputting the drawing data from the drawing calculation unit 25 to the plotter, the site sketch is printed.
[0035]
In the above embodiment, the wide-range tracking light-receiving unit 20 is provided and the tracking light is detected in two stages together with the standard tracking light-receiving unit. Tracking light may be detected in a range.
[0036]
【The invention's effect】
As described above, according to the first aspect of the present invention, the position including the light wave distance meter that receives the reflected light of the measurement light emitted toward the distance measuring reflector and measures the distance to the measurement point. In the measurement plotter, the tracking light is received by the standard tracking light receiving unit separately from the conventional standard tracking light receiving unit that receives the tracking light incident from the objective optical system of the light wave distance meter by the divided light receiving element. A wide-range tracking light-receiving unit consisting of an objective optical system and a divided light-receiving element for receiving tracking light in a wider range is arranged, and when tracking light is detected by the standard tracking light-receiving unit, it is based on this standard tracking light-receiving unit When tracking control is executed and tracking light is not detected by the standard tracking light receiving unit, tracking control based on the wide-range tracking light receiving unit is executed, so the tracking range can be set while maintaining high-precision tracking operation. Wide, position measurement plotting equipment There is the advantage that it is possible to efficiently perform the task of creating the site sketch by.
[0037]
According to the second aspect of the present invention, the wide-range tracking light receiving unit uses four-divided light receiving elements for the standard tracking light receiving unit and the wide-range tracking light receiving unit, and the wide-range tracking light receiving unit includes Since the divided light receiving surface having a light receiving surface that is longer in the horizontal direction than the divided light receiving surface of the standard tracking light receiving unit is disposed, a wide tracking range can be obtained particularly in the horizontal direction.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an automatic tracking device of a position measurement drawing apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing an overall configuration of a position measurement drawing apparatus according to an embodiment.
FIG. 3 is a waveform diagram showing a light emission signal used as a tracking signal and a control signal in the embodiment.
4 is a diagram illustrating a tracking operation of the measurement head unit of FIG. 2 ;
FIG. 5 is a flowchart showing tracking processing in the microcomputer of FIG. 1;
6 is a flowchart showing a wide range tracking control operation in the tracking process of FIG. 5;
7 is a flowchart showing a standard tracking control operation in the tracking process of FIG.
FIG. 8 is a block diagram showing a configuration of a conventional position measurement drawing apparatus.
[Explanation of symbols]
1,14 ... On-vehicle mount,
2, 13 ... measuring head,
7, 28 ... target part,
12 ... Measuring instrument,
17: Lightwave distance meter (including tracking light receiving element),
17A, 34 ... Objective optical system,
18, 35... Light receiving element,
20 ... Light-receiving part for wide-range tracking,
24 ... Automatic tracking circuit,
30 ... Reflector part,
32 ... light emitting part,
41 ... Microcomputer.

Claims (2)

測距用反射鏡を有する測定点指示部に配置され、追尾用の光を出力する追尾光発光部と、
上記測距用反射鏡へ向けて出射した測定光の反射光を受光して測定点までの距離を測定する光波距離計を有する計測ヘッド部と、
この計測ヘッド部に配置され、上記光波距離計の対物光学系から入射した上記追尾光を分割受光素子で受光する標準追尾用受光部と、を備え、
この標準追尾用受光部の分割受光素子の各素子で受光した追尾光の状態から上記計測ヘッド部を上記測距用反射鏡へ向けるように追尾する位置計測作図装置の自動追尾装置において、
上記計測ヘッド部に、上記光波距離計の対物光学系を含む標準追尾用受光部とは別個に、この標準追尾用受光部で追尾光を検出する範囲よりも広い範囲で追尾光を検出するための対物光学系及び分割受光素子からなる広範囲追尾用受光部を配置し、
かつこの広範囲追尾用受光部の分割受光素子の各素子で受光した追尾光の状態から上記計測ヘッド部を上記測距用反射鏡へ向ける追尾ができるように構成し、
上記標準追尾用受光部で追尾光を検出したときこの標準追尾用受光部に基づく追尾制御を実行し、この標準追尾用受光部で追尾光を検出しないときは上記広範囲追尾用受光部に基づく追尾制御を実行することを特徴とする位置計測作図装置の自動追尾装置。
A tracking light emitting unit that is disposed in a measurement point indicating unit having a ranging mirror and outputs tracking light;
A measuring head unit having a light wave rangefinder that receives the reflected light of the measuring light emitted toward the reflecting mirror for distance measurement and measures the distance to the measuring point;
A standard tracking light receiving unit that is disposed in the measurement head unit and receives the tracking light incident from the objective optical system of the light wave distance meter with a divided light receiving element;
In the automatic tracking device of the position measurement plotting device that tracks the measurement head unit from the state of the tracking light received by each element of the divided light receiving elements of the standard tracking light receiving unit so as to face the reflecting mirror for distance measurement,
In order to detect the tracking light in a range wider than the range in which the tracking light is detected by the standard tracking light receiving unit separately from the standard tracking light receiving unit including the objective optical system of the lightwave distance meter in the measurement head unit. A light-receiving part for wide-range tracking consisting of an objective optical system and a divided light-receiving element is arranged,
And it is configured so that the measurement head unit can be tracked from the state of the tracking light received by each element of the divided light receiving element of the wide-range tracking light receiving unit toward the reflecting mirror for ranging,
When tracking light is detected by the standard tracking light receiving unit, tracking control based on the standard tracking light receiving unit is executed. When tracking light is not detected by the standard tracking light receiving unit, tracking based on the wide-range tracking light receiving unit is performed. An automatic tracking device for a position measurement plotting device, wherein control is executed.
上記標準追尾用受光部及び広範囲追尾用受光部の分割受光素子として4分割のものを用いると共に、上記広範囲追尾用受光部の分割受光素子として上記標準追尾用受光部の分割受光素子受光面よりも水平方向が長い受光面の分割受光素子を用いたことを特徴とする請求項1記載の位置計測作図装置の自動追尾装置。With use those quartered as the light receiving device of the standard tracking light receiving unit and extensive tracking light receiving unit, than split light receiving element receiving surface of the standard tracking light receiving unit as a light receiving element of the extensive tracking light receiving unit 2. An automatic tracking device for a position measuring and drawing apparatus according to claim 1, wherein a divided light receiving element having a light receiving surface having a long horizontal direction is used .
JP01333897A 1997-01-08 1997-01-08 Automatic tracking device for position measurement plotter Expired - Fee Related JP4059948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01333897A JP4059948B2 (en) 1997-01-08 1997-01-08 Automatic tracking device for position measurement plotter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01333897A JP4059948B2 (en) 1997-01-08 1997-01-08 Automatic tracking device for position measurement plotter

Publications (2)

Publication Number Publication Date
JPH10197247A JPH10197247A (en) 1998-07-31
JP4059948B2 true JP4059948B2 (en) 2008-03-12

Family

ID=11830350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01333897A Expired - Fee Related JP4059948B2 (en) 1997-01-08 1997-01-08 Automatic tracking device for position measurement plotter

Country Status (1)

Country Link
JP (1) JP4059948B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150234B2 (en) * 2007-12-14 2013-02-20 株式会社トプコン Surveying equipment
KR200457044Y1 (en) 2009-02-20 2011-12-02 김동입 Moving object by light or heat
KR200457045Y1 (en) 2009-02-20 2011-12-02 김동입 Rotating object by light or heat
US9411036B2 (en) 2012-12-14 2016-08-09 National Institute Of Advanced Industrial Science And Technology Light source position detection apparatus, light source tracking apparatus, control method and program

Also Published As

Publication number Publication date
JPH10197247A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
CA3017819C (en) Lidar based 3-d imaging with varying illumination intensity
CN111521161B (en) Method of determining a direction to a target, surveying arrangement and machine-readable carrier
CN107192380B (en) Laser tracker, method and storage medium for determining industrial coordinate position of target
US9170096B2 (en) Laser rangefinder sensor
US6031606A (en) Process and device for rapid detection of the position of a target marking
US7161664B2 (en) Apparatus and method for optical determination of intermediate distances
JP4405155B2 (en) Image analysis system
CN101310189B (en) Optical device for measuring moving speed of an object relative to a surface
US11859976B2 (en) Automatic locating of target marks
KR20200103832A (en) LIDAR-based distance measurement using hierarchical power control
JPH07320199A (en) Obstacle detector for vehicle
JP4210792B2 (en) Position detection device
JP2000088566A (en) Optical range finder
US20020051128A1 (en) Distance measuring apparatus and distance measuring method
CN103050010B (en) Integrated laser scanning traffic survey device and integrated laser scanning traffic survey method
JP3647608B2 (en) Surveyor automatic tracking device
US20080304041A1 (en) Measuring system
CN103076002A (en) Image measuring system
JP4960599B2 (en) Collision prevention device and vehicle equipped with collision prevention device
JP4059948B2 (en) Automatic tracking device for position measurement plotter
EP0262646A2 (en) Shape measuring instrument
JPH10105868A (en) Vehicle measuring device/method
JPH07139942A (en) Surveying apparatus
JPH0777424A (en) Optical surveying instrument
JP4175736B2 (en) Automatic tracking device for position measurement drawing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051124

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees