JP4057503B2 - Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded - Google Patents

Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded Download PDF

Info

Publication number
JP4057503B2
JP4057503B2 JP2003357179A JP2003357179A JP4057503B2 JP 4057503 B2 JP4057503 B2 JP 4057503B2 JP 2003357179 A JP2003357179 A JP 2003357179A JP 2003357179 A JP2003357179 A JP 2003357179A JP 4057503 B2 JP4057503 B2 JP 4057503B2
Authority
JP
Japan
Prior art keywords
resolution
video
filter coefficient
encoding
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003357179A
Other languages
Japanese (ja)
Other versions
JP2005123913A (en
Inventor
健 中村
健 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003357179A priority Critical patent/JP4057503B2/en
Publication of JP2005123913A publication Critical patent/JP2005123913A/en
Application granted granted Critical
Publication of JP4057503B2 publication Critical patent/JP4057503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Television Systems (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Image Processing (AREA)

Description

本発明は,画像および映像の解像度の拡大・縮小処理を行なう映像処理技術およびそれを伴う映像符号化技術に関し,特に,映像信号の解像度を拡大した後に拡大前の解像度に縮小する場合に,解像度の拡大処理のほぼ逆変換となる縮小処理を可能にするための解像度変換用フィルタ係数決定方法,画像解像度変換方法,画像解像度変換装置,映像再符号化方法,映像再符号化装置,解像度変換用フィルタ係数決定プログラム,画像解像度変換プログラム,映像再符号化プログラムおよびそれらのプログラムを記録した記録媒体に関する。   The present invention relates to a video processing technique for performing enlargement / reduction processing of image and video resolution, and a video encoding technique accompanied therewith, and in particular, when the resolution of a video signal is enlarged and then reduced to the resolution before enlargement. Filter coefficient determination method for resolution conversion, image resolution conversion method, image resolution conversion device, video re-encoding method, video re-encoding device, for resolution conversion The present invention relates to a filter coefficient determination program, an image resolution conversion program, a video re-encoding program, and a recording medium on which these programs are recorded.

一般に映像の解像度を水平または垂直の1次元方向に拡大するには,拡大前の画像の画素と画素の間の位置のデータを近傍画素データの重み付け線形和によって補間することで,拡大画像の各画素データを求める。拡大前後の画素位置の関係によって,数種類の補間位置における処理を繰り返しながら,拡大画像の各画素のデータを求めて行くことになり,その補間位置ごとに異なる重み付け係数を用いる。この重み付け線形和の演算は一種の1次元フィルタと解釈できるので,以下,この重み付け係数をフィルタ係数と呼ぶ。   In general, in order to enlarge the resolution of a video image in the horizontal or vertical one-dimensional direction, each pixel of the enlarged image is interpolated by weighted linear sum of neighboring pixel data of pixels between pixels of the image before enlargement. Obtain pixel data. Depending on the relationship between the pixel positions before and after the enlargement, the data of each pixel of the enlarged image is obtained while repeating the processing at several types of interpolation positions, and a different weighting coefficient is used for each interpolation position. Since the calculation of the weighted linear sum can be interpreted as a kind of one-dimensional filter, the weighting coefficient is hereinafter referred to as a filter coefficient.

このフィルタ係数は,一般に拡大前の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに拡大前後の画素位置の相関関係を考慮して決定する。また,フィルタ設計の段階でFIRフィルタのタップ数を有限に制限することにより,拡大処理に用いる近傍画素の数は数個から数十個程度とするのが一般的である(例えば,非特許文献1参照)。   This filter coefficient is generally determined in consideration of the correlation between pixel positions before and after enlargement based on the FIR filter coefficient having the Nyquist frequency of the image before enlargement as a cutoff frequency. In general, by limiting the number of taps of the FIR filter at the filter design stage, the number of neighboring pixels used for the enlargement process is generally several to several tens (for example, non-patent literature). 1).

また同様に,映像の縮小においても,縮小前画像の近傍画素データの重み付け線形和によって縮小後画像の各画素データを求める。そのフィルタ係数は,一般に縮小後の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに,縮小前後の画素位置の相関関係を考慮して決定する。   Similarly, also in video reduction, each pixel data of the reduced image is obtained by a weighted linear sum of neighboring pixel data of the image before reduction. The filter coefficient is generally determined in consideration of the correlation between the pixel positions before and after reduction based on the FIR filter coefficient having the Nyquist frequency of the reduced image as a cutoff frequency.

なお,後述するMPEG−2(例えば,非特許文献2参照)などの映像符号化における映像の再符号化について,下記の非特許文献3に記載されている。
金沢勝,曽根原源,“ディジタルテレビ時代の映像処理の基本映像信号の方式とその変換処理技術”,Interface 1月号 2000 ISO/IEC 13818-2 International Standard,Jan.1995 P.Guilote1,et a1.,"Adaptive Encoders: The New Generation of MPEG-2 Encoders",SMPTE journa1,April 2000
Note that video re-encoding in video encoding such as MPEG-2 (for example, see Non-Patent Document 2) described later is described in Non-Patent Document 3 below.
Masaru Kanazawa, Gen Sone, “Basic Video Signal System and Its Conversion Processing Technology in the Digital TV Era”, Interface January 2000 ISO / IEC 13818-2 International Standard, Jan. 1995 P.Guilote1, et a1., "Adaptive Encoders: The New Generation of MPEG-2 Encoders", SMPTE journa1, April 2000

しかし,変換前後のカットオフ周波数を考慮して決定したフィルタ係数を用いて,画像の解像度を拡大し,もとの解像度に縮小すると,通常は両者は可逆の変換となっておらず,拡大前の画像と縮小後の画像は一致しない。これにより様々な場面で問題が生じる。   However, when the resolution of the image is enlarged and reduced to the original resolution by using the filter coefficient determined in consideration of the cutoff frequency before and after the conversion, both of them are usually not reversible, and before the enlargement. The image after and the image after reduction do not match. This causes problems in various situations.

1つの例が映像の再符号化である。例えば,非特許文献2に記載されたMPEG−2などの映像符号化においては,復号画像を再符号化する際に,前段の符号化パラメータを完全に継承することで,ほぼ劣化のない再符号化が可能であることが知られている(例えば,非特許文献3参照)。   One example is video re-encoding. For example, in video encoding such as MPEG-2 described in Non-Patent Document 2, when re-encoding a decoded image, re-encoding with almost no degradation is achieved by completely inheriting the encoding parameters of the previous stage. Is known to be possible (see, for example, Non-Patent Document 3).

しばしば映像符号化においては,符号化器において入力映像の色差信号の解像度を4:2:2と呼ばれるフォーマットから4:2:0と呼ばれるフォーマットに垂直方向に2分の1に縮小してから符号化が行なわれ,復号器において,復号映像を4:2:0フォーマットから4:2:2フォーマットに垂直方向に2倍に拡大してから出力される。そして再符号化する際には,再符号化器において,再度4:2:2フォーマットを4:2:0フォーマットに変換する。このときに,通常復号器の拡大処理と再符号化器の縮小処理が可逆でないために,色差信号の不一致が生じる。   Often in video encoding, the resolution of the color difference signal of the input video is reduced by a half in the vertical direction from a format called 4: 2: 2 to a format called 4: 2: 0 in the encoder. In the decoder, the decoded video is doubled in the vertical direction from the 4: 2: 0 format to the 4: 2: 2 format and then output. When re-encoding is performed, the re-encoder again converts the 4: 2: 2 format into the 4: 2: 0 format. At this time, since the enlargement process of the normal decoder and the reduction process of the re-encoder are not reversible, a color difference signal mismatch occurs.

これにより,たとえ前段の符号化パラメータを完全に継承しても,ほぼ劣化のない再符号化を実現することは不可能となる。ちなみに,映像信号の伝送インタフェースはほとんどが4:2:2フォーマットであるために,復号映像を4:2:0フォーマットのまま伝送することは一般にあまり行なわれない。   As a result, even if the previous encoding parameters are completely inherited, it becomes impossible to realize re-encoding with almost no deterioration. Incidentally, since most video signal transmission interfaces are in the 4: 2: 2 format, transmission of the decoded video in the 4: 2: 0 format is not generally performed.

また,他にも映像符号化において,符号化時に入力映像の解像度の縮小を行い,復号時に復号映像の解像度の拡大を行なう手法は多く知られており,これらの手法と前段の符号化パラメータを完全に継承する再符号化の手法を同時に用いる場合に,同様の問題が生じる。   In addition, in video coding, there are many known methods for reducing the resolution of the input video at the time of coding and increasing the resolution of the decoded video at the time of decoding. A similar problem occurs when using the re-encoding technique that inherits completely.

このような理由により,拡大前の画像と縮小後の画像が一致するような拡大・縮小処理が必要とされる。ここで,拡大後の画像の画質にこだわる必要がない場合は,例えば上記の4:2:0−4:2:2変換の場合においては,拡大時に画素データを垂直方向にコピーして,縮小時に垂直方向に画素データを間引くことにより可逆の変換とすることができる。しかし,拡大後の画像の画質が問題となる場合には,このような方法では極めて画質の悪い拡大画像となってしまう。   For these reasons, enlargement / reduction processing is required so that the image before enlargement matches the image after reduction. Here, when it is not necessary to pay attention to the image quality of the enlarged image, for example, in the case of the 4: 2: 0-4: 2: 2 conversion described above, the pixel data is copied in the vertical direction at the time of enlargement and reduced. Sometimes, reversible conversion can be achieved by thinning out pixel data in the vertical direction. However, when the image quality of the enlarged image becomes a problem, such a method results in an enlarged image with extremely poor image quality.

本発明は,上記従来技術の問題点を解決し,画像信号の解像度を1次元フィルタを用いて拡大した後に1次元フィルタを用いて拡大前の解像度に縮小する際に,解像度の拡大処理のほぼ逆変換となる縮小処理を行なうことが可能な映像解像度の変換技術を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and when the resolution of an image signal is enlarged using a one-dimensional filter and then reduced to a resolution before enlargement using a one-dimensional filter, the resolution enlargement process is almost the same. It is an object of the present invention to provide a video resolution conversion technique capable of performing a reduction process as inverse conversion.

上記課題を解決するために,本発明では拡大処理のフィルタ係数を通常の方法によって決定し,その逆変換となる縮小処理のフィルタ係数を求め,その係数を用いて縮小処理を行なう。   In order to solve the above problem, in the present invention, the filter coefficient for the enlargement process is determined by a normal method, the filter coefficient for the reduction process that is the inverse transform is obtained, and the reduction process is performed using the coefficient.

すなわち,本発明は,映像符号化ストリームを復号した復号映像の解像度を拡大処理用フィルタを用いて拡大した画像信号を,拡大前の解像度に縮小してから再符号化を行なう際に,前記解像度の縮小に用いる縮小処理用フィルタのフィルタ係数を決定する解像度変換用フィルタ係数決定方法であって,前記解像度の拡大処理に用いた拡大処理用フィルタのフィルタ係数であって,少なくとも画像端境界処理が影響する領域以外に適用された一定パターンのフィルタ係数を入力し,記憶手段に記憶する過程と,拡大前のN画素の1次元画像データを表す1列N行の行列をX,拡大後のM(M>N)画素の1次元画像データを表す1列M行の行列をY,拡大処理を表すY=AXとなるN列M行の拡大変換行列をAとし,縮小後のN画素からなる1次元画像データを表す1列N行の行列をZ,縮小処理を表すZ=BYとなるM列N行の縮小変換行列をB,N列N行の単位行列をIとするときに,前記記憶した拡大処理用フィルタの一定パターンのフィルタ係数を少なくとも画像端境界処理が影響しない領域部分の行列中の行方向の要素の並びに含む,該フィルタ係数によって定まる拡大変換行列Aから,BA=Iとなる縮小変換行列Bを算出する過程と,算出した縮小変換行列Bに基づいて縮小処理用フィルタのフィルタ係数を決定する過程とを有することを特徴とする。 That is, the present invention relates to the resolution when the image signal obtained by expanding the resolution of the decoded video obtained by decoding the video encoded stream using the enlargement processing filter is re-encoded after being reduced to the resolution before the enlargement. A resolution conversion filter coefficient determination method for determining a filter coefficient of a reduction processing filter used for image reduction, wherein the filter coefficient of the enlargement processing filter used for the resolution enlargement process is at least an image edge boundary process. A process of inputting a filter coefficient of a fixed pattern applied to a region other than the affected area and storing it in the storage means, a matrix of 1 column N rows representing 1-dimensional image data of N pixels before enlargement, X, and M after enlargement (M> N) Y is a matrix with 1 column and M rows representing 1-dimensional image data of pixels, and A is an expansion conversion matrix with N columns and M rows with Y = AX representing enlargement processing, and N pixels after reduction. A matrix of 1 row N rows representing dimensional image data Z, the reduction transformation matrix M rows N row Z = a BY representing the reduction process B, and a unit matrix of N rows N row when the I, the storage BA = I from the expansion transformation matrix A determined by the filter coefficient including the row direction elements in the matrix of the region portion where the image edge boundary processing does not affect at least the filter coefficient of the fixed pattern of the expansion processing filter. a process of calculating the reduction transformation matrix B, and characterized by having a step of determining a filter coefficient of the reduction processing for the filter based on the calculated reduction transformation matrix B.

また,前記BA=Iとなる縮小変換行列Bを算出する過程では,前記縮小変換行列Bと前記拡大変換行列Aとの積BAが,少なくとも拡大縮小処理における画像端境界処理が影響しない領域部分においてN列N行の単位行列Iと等しくなるような縮小処理のフィルタ係数を求めるために,前記行列B,A,Iの画像端境界処理が影響しない領域において行列の行方向の要素の値の並びが繰り返し同じように現れる部分の同一の繰り返しパターンの単位を,前記行列B,A,Iからそれぞれ行列B’,A’,I’として抜き出し,B’A’=I’となる行列B’を求め,それに基づいて縮小処理用フィルタのフィルタ係数を決定することを特徴とする。 Further, in the process of calculating the reduced transformation matrix B with BA = I, the product BA of the reduced transformation matrix B and the enlarged transformation matrix A is at least in an area portion that is not affected by the image edge boundary processing in the enlargement / reduction processing. In order to obtain a filter coefficient for reduction processing that is equal to the unit matrix I of N columns and N rows, the array of element values in the row direction of the matrix in the region where the image end boundary processing of the matrices B, A, and I is not affected Are extracted from the matrices B, A, and I as matrices B ′, A ′, and I ′ , respectively, and a matrix B ′ in which B′A ′ = I ′ is obtained. The filter coefficient of the reduction processing filter is determined based on the obtained value.

前記縮小処理用フィルタのフィルタ係数の決定に自由度がある場合には,その自由度の範囲内で複数の縮小処理用フィルタのフィルタ係数の候補を算出し,その算出した複数のフィルタ係数の候補の中から,他の方法に基づいて決定した同縮尺率の縮尺用のフィルタ係数に最も近いものを選択する。   If there is a degree of freedom in determining the filter coefficient of the reduction processing filter, filter coefficient candidates of a plurality of reduction processing filters are calculated within the range of the degree of freedom, and the calculated plurality of filter coefficient candidates Among them, the one closest to the filter coefficient for the scale having the same scale ratio determined based on another method is selected.

また,本発明は,映像符号化ストリームを復号した復号映像の解像度を拡大処理用フィルタを用いて拡大した画像信号を,再符号化する前に拡大前の解像度に縮小する画像解像度変換方法において,前記拡大処理用フィルタを用いて解像度を拡大した画像信号を入力し,上記の解像度変換用フィルタ係数決定方法を用いて決定されたフィルタ係数からなる縮小処理用フィルタを用いて,前記入力した画像信号の解像度を拡大前の解像度に縮小することを特徴とする。 The present invention also provides an image resolution conversion method for reducing an image signal obtained by enlarging the resolution of a decoded video obtained by decoding a video encoded stream using an enlargement processing filter to a resolution before enlargement before re-encoding . An image signal whose resolution is enlarged using the enlargement processing filter is input, and the input image signal is input using a reduction processing filter composed of filter coefficients determined using the resolution conversion filter coefficient determination method. The resolution is reduced to the resolution before enlargement.

また,本発明は,復号器による映像符号化ストリーム復号時に復号映像の解像度を拡大し,再符号化器によるその映像の再符号化時に入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化方法において,前記復号器において復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報を前記再符号化器に伝達し,その伝達された解像度変換用フィルタ係数の情報から,上記の解像度変換用フィルタ係数決定方法を用いて,縮小処理用フィルタのフィルタ係数を決定し,決定されたフィルタ係数からなる縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小とし,解像度を縮小した映像信号を再符号化することを特徴とする。   In addition, the present invention increases the resolution of the decoded video when decoding the video encoded stream by the decoder, and reduces the resolution of the input video to the resolution before enlargement when re-encoding the video by the re-encoder. In the video re-encoding method for encoding, the information on the resolution conversion filter coefficient used to increase the resolution of the decoded video in the decoder is transmitted to the re-encoder, and the transmitted resolution conversion filter coefficient is transmitted. From the above information, the filter coefficient of the reduction processing filter is determined using the resolution conversion filter coefficient determination method described above, and the resolution of the input video signal is determined using the reduction processing filter composed of the determined filter coefficients. The video signal is reduced to the resolution before enlargement, and the video signal with the reduced resolution is re-encoded.

また,本発明は,復号器による映像符号化ストリーム復号時に復号映像の解像度を拡大し,再符号化器によるその映像の再符号化時に入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化方法において,前記復号器において復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報から,上記の解像度変換用フィルタ係数決定方法を用いて決定した縮小処理用フィルタのフィルタ係数情報と映像信号とを,前記再符号化器に入力し,入力したフィルタ係数情報に基づく縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小し,解像度を縮小した映像信号を再符号化することを特徴とする。   In addition, the present invention increases the resolution of the decoded video when decoding the video encoded stream by the decoder, and reduces the resolution of the input video to the resolution before enlargement when re-encoding the video by the re-encoder. In the video re-encoding method for encoding, the reduction processing determined using the resolution conversion filter coefficient determination method described above from the information of the resolution conversion filter coefficient used for enlarging the resolution of the decoded video in the decoder The filter coefficient information of the filter and the video signal are input to the re-encoder, and the resolution of the input video signal is reduced to the resolution before enlargement using a reduction processing filter based on the input filter coefficient information. The video signal with reduced resolution is re-encoded.

以上の処理は,コンピュータとソフトウェアプログラムとによって実現することができ,そのプログラムをコンピュータ読み取り可能な記録媒体に記録して提供することも,ネットワークを通して提供することも可能である。   The above processing can be realized by a computer and a software program, and the program can be provided by being recorded on a computer-readable recording medium or can be provided through a network.

本発明によれば,画像信号の解像度を1次元フィルタを用いて拡大した後に1次元フィルタを用いて拡大前の解像度に縮小する際に,解像度の拡大処理のほぼ逆変換となる縮小処理を行なうことができる。   According to the present invention, when the resolution of an image signal is enlarged using a one-dimensional filter and then reduced to a pre-enlargement resolution using a one-dimensional filter, a reduction process that is substantially the inverse conversion of the resolution enlargement process is performed. be able to.

また,1次元方向の解像度変換を複数回行なうことで実現される映像の2次元方向の解像度変換において,本発明による解像度変換処理を複数回用いることで,ほぼ逆変換となる2次元の解像度変換処理を行なうことができる。   Further, in the resolution conversion in the two-dimensional direction of the video realized by performing the resolution conversion in the one-dimensional direction a plurality of times, the two-dimensional resolution conversion that is almost the inverse conversion by using the resolution conversion processing according to the present invention a plurality of times. Processing can be performed.

また,これにより映像の拡大,縮小を伴う映像再符号化において,前段の符号化情報を用いることによりほぼ劣化のない再符号化が可能となる。   This also enables re-encoding with almost no deterioration by using the previous-stage encoding information in video re-encoding accompanied with video enlargement / reduction.

通常,拡大縮小処理は画素データの線形和演算であるので,1次元の画像データを表す行列(ベクトル)と,フィルタ係数を成分とする変換行列で表現することができる。拡大前のN画素の1次元画像データを表す1列N行の行列X,拡大後のM(M>N)画素の1次元画像データを表す1列M行の行列Y,縮小後のN画素からなる1次元画像データを表す1列N行の行列Zとする。   Normally, the enlargement / reduction process is a linear sum operation of pixel data, and therefore can be expressed by a matrix (vector) representing one-dimensional image data and a transformation matrix having filter coefficients as components. 1-column N-row matrix X representing 1-dimensional image data of N pixels before enlargement, 1-column M-row matrix Y representing 1-dimensional image data of M (M> N) pixels after enlargement, N pixels after reduction A matrix Z having 1 column and N rows representing one-dimensional image data consisting of

X=(x0 ,x1 ,x2 ,・・・・・・・・,xN-2 ,xN-1 T (1)
Y=(y0 ,y1 ,y2 ,・・・・・・・・,yM-2 ,yM-1 T (2)
Z=(z0 ,z1 ,z2 ,・・・・・・・・,zN-2 ,zN-1 T (3)
また,拡大処理を表すY=AXとなるN列M行の変換行列をA,縮小処理を表すZ=BYとなるM列N行の変換行列をBとする。
X = (x 0 , x 1 , x 2 ,..., X N−2 , x N−1 ) T (1)
Y = (y 0 , y 1 , y 2 ,..., Y M−2 , y M−1 ) T (2)
Z = (z 0 , z 1 , z 2 ,..., Z N−2 , z N−1 ) T (3)
Further, A is a conversion matrix of N columns and M rows where Y = AX representing the enlargement process, and B is a conversion matrix of M columns and N rows where Z = BY representing the reduction process.

Y=AX (4)
Z=BY (5)
ここで,M=2Nとし,拡大処理において,通常のフィルタ係数決定手法により,下記のようなフィルタ係数(a1 ,a2 ,a3 ,a4 ),(b1 ,b2 ,b3 ,b4 )が定まったとする。
Y = AX (4)
Z = BY (5)
Here, M = 2N, and in the enlargement process, the following filter coefficients (a 1 , a 2 , a 3 , a 4 ), (b 1 , b 2 , b 3 , Suppose b 4 ) is determined.

2n=a1 ×xn-2 +a2 ×xn-1 +a3 ×xn +a4 ×xn+1 (6)
2n+1=b1 ×xn-1 +b2 ×xn +b3 ×xn+1 +b4 ×xn+2 (7)
N=10,M=20とした場合,式(4)で示される拡大変換は,変換行列Aを用いて下記の式(8)のように表される。
y 2n = a 1 × x n -2 + a 2 × x n-1 + a 3 × x n + a 4 × x n + 1 (6)
y 2n + 1 = b 1 × x n-1 + b 2 × x n + b 3 × x n + 1 + b 4 × x n + 2 (7)
When N = 10 and M = 20, the expansion conversion represented by the expression (4) is expressed as the following expression (8) using the conversion matrix A.

Figure 0004057503
ここで,
Figure 0004057503
here,

Figure 0004057503
である。変換行列Aにおいて,*は鏡像反転処理により係数が変化する成分を表している。
Figure 0004057503
It is. In the transformation matrix A, * represents a component whose coefficient changes due to mirror image inversion processing.

一般に画像境界付近では鏡像反転処理を行なう。鏡像反転処理とは,画像境界付近の画素の近傍画素のデータを用いる際に,その近傍画素が画像境界の外側に位置する場合はx0 またはxN-1 (Nは画像サイズ)を対称軸として,画像境界の内側の画像の鏡像反転したデータが外側に存在するものと仮定して,計算を行なうもので,x-1=x1 ,x-2=x2 ,…,x-n=xn ,xN =xN-2 ,xN+1 =xN-3 ,…,xN+n =xN-n-2 とする処理である。 In general, mirror image inversion processing is performed near the image boundary. In the mirror image inversion processing, when using the data of the neighboring pixels of the pixels near the image boundary, if the neighboring pixels are located outside the image boundary, x 0 or x N-1 (N is the image size) is the axis of symmetry. Assuming that mirror-inverted data of the image inside the image boundary exists outside, the calculation is performed, and x −1 = x 1 , x −2 = x 2 ,..., X −n = x n, x n = x n -2, x n + 1 = x n-3, ..., is a process to x n + n = x Nn- 2.

変換行列Aにおける画像の端に対応する成分(変換行列Aの*で示す成分)は,鏡像反転のデータ分の係数が加算されるために,他の領域とは異なった値となっている。それ以外の領域においては,規則的なパターンの繰り返しである。この拡大画像に対する縮小処理に,下記のような変換を用いると仮定する。   The component corresponding to the edge of the image in the transformation matrix A (the component indicated by * in the transformation matrix A) has a value different from that of the other regions because the coefficient for the mirror image inversion data is added. In other areas, the pattern repeats regularly. It is assumed that the following conversion is used for the reduction processing for the enlarged image.

n =s1 ×y2n-3+s2 ×y2n-2+s3 ×y2n-1+s4 ×y2n+s5 ×y2n+1+s6 ×y2n+2+s7 ×y2n+3+s8 ×y2n+4 (9)
ここで,縮小フィルタ処理の係数は,同一補間位置の場合,同一係数を使用するものとする。この場合,式(5)で示される縮小変換は,変換行列Bを用いて下記の式(10)のように表わされる。
z n = s 1 × y 2n -3 + s 2 × y 2n-2 + s 3 × y 2n-1 + s 4 × y 2n + s 5 × y 2n + 1 + s 6 × y 2n + 2 + s 7 × y 2n + 3 + S 8 × y 2n + 4 (9)
Here, it is assumed that the same coefficient is used as the coefficient of the reduction filter processing in the case of the same interpolation position. In this case, the reduction conversion represented by the equation (5) is represented by the following equation (10) using the transformation matrix B.

Figure 0004057503
ここで,
Figure 0004057503
here,

Figure 0004057503
である。変換行列Bにおいて,*は鏡像反転処理により係数が変化する成分を表している。
Figure 0004057503
It is. In the transformation matrix B, * represents a component whose coefficient changes due to mirror image inversion processing.

前述した行列Aによる拡大処理を見ると,y0 からy2 とyM-3 からyM-1 (式(8)ではy17からy19)は,拡大処理時において鏡像反転処理の影響を受ける。そのため,行列Bにおいて,0列から2列と,M−3列からM−1列に0以外の成分を持っている行列Bの0行から2行と,M−3行からM−1行は,鏡像反転処理の影響を受ける。 Looking at the enlargement process using the matrix A described above, y 0 to y 2 and y M-3 to y M-1 (y 17 to y 19 in equation (8)) show the influence of the mirror image inversion process during the enlargement process. receive. Therefore, in the matrix B, the 0th to 2nd rows, the 0th to 2nd rows of the matrix B having components other than 0 in the 0th column, the M-3th column to the M-1th column, and the M-3th row to the M-1th row. Are affected by the mirror image inversion process.

上記式(10)に示す行列において,線の外側部分が拡大時の鏡像反転処理が影響する領域である。すなわち,z0 からz2 とzM-3 からzM-1 は,鏡像反転処理の影響を受ける。ちなみに,この鏡像反転処理の影響を受ける領域の大きさは,拡大処理に用いる画素数,拡大率,変換前後の画素の相関位置によって変化する。 In the matrix shown in the above formula (10), the outer part of the line is an area affected by the mirror image reversal process at the time of enlargement. That is, z 0 to z 2 and z M−3 to z M−1 are affected by mirror image inversion processing. Incidentally, the size of the area affected by the mirror image inversion process changes depending on the number of pixels used for the enlargement process, the enlargement ratio, and the correlation position of the pixels before and after the conversion.

以上の拡大縮小変換において,可逆変換となる条件,すなわちZ=Xとなる条件は,Z=BAXより,N列N行の単位行列Iを用いて,
BA=I (11)
となる。
In the above scaling conversion, the condition for the reversible conversion, that is, the condition for Z = X, uses the unit matrix I of N columns and N rows from Z = BAX,
BA = I (11)
It becomes.

すなわち,与えられた行列Aに対して,行列の積BAが単位行列Iと等しくなる縮小変換行列Bを求められれば,それに基づいて縮小処理のフィルタ係数を決定することで,解像度の拡大処理の逆変換となる縮小処理を行なうことができる。   That is, for a given matrix A, if a reduced transformation matrix B in which the matrix product BA is equal to the unit matrix I is obtained, a filter coefficient for the reduction process is determined based on the reduced conversion matrix B. Reduction processing that is inverse transformation can be performed.

ここでは,画像端境界処理が影響する領域の成分については無視して,画像端境界処理が影響しない領域の成分について可逆変換が成立する縮小フィルタ係数(s1 ,s2 ,…,s8 )を求める方法を考える。 Here, the components of the region affected by the image edge boundary processing are ignored, and the reduced filter coefficients (s 1 , s 2 ,..., S 8 ) in which reversible transformation is established for the components of the region not affected by the image edge boundary processing. Think about how to ask.

Figure 0004057503
ここで,*は鏡像反転処理により係数が変化する成分,線の外側は拡大時の鏡像反転処理が影響する領域,?は可逆とならない成分を表している。
Figure 0004057503
Where * is a component whose coefficient changes due to mirror image reversal processing, the area outside the line is the area affected by the mirror image reversal processing during enlargement,? Represents a component that is not reversible.

上記の式(12)において,画像端境界処理が影響しない領域の成分については,同じパターンの繰り返しであるため,行列B,A,Iの画像端境界処理が影響しない領域における同一の繰り返しパターンを行列B’,A’,I’として抜き出し,B’A’=I’となる行列B’を求める。   In the above equation (12), since the components in the region that is not affected by the image edge boundary processing are the same pattern repetition, the same repetition pattern in the region where the image edge boundary processing of the matrices B, A, and I is not affected. Extracted as matrices B ′, A ′, and I ′, a matrix B ′ that satisfies B′A ′ = I ′ is obtained.

Figure 0004057503
このB’を求めることで,画像境界の影響のある成分以外において等式が成り立ち,可逆変換とすることができる。上記の例は,等式に対し未知数が1つ多い連立1次方程式であり,自由度が1で解が存在する。
Figure 0004057503
By obtaining this B ′, an equation is established except for the component having an influence on the image boundary, and reversible conversion can be performed. The above example is a simultaneous linear equation with one unknown greater than the equation, with a degree of freedom of 1 and a solution.

この解の自由度は拡大率によって変わり,2倍未満の拡大率であれば解が存在しない場合もあり得る。解が複数存在する場合,通常の方法で求めた同率縮尺の縮小処理用フィルタに近いフィルタ係数を選択することで,画像境界付近等の可逆変換が成立しない領域についても不自然な縮小画像にならないようにすることができる。   The degree of freedom of the solution varies depending on the enlargement ratio, and there may be no solution if the enlargement ratio is less than twice. If there are multiple solutions, selecting a filter coefficient close to the reduction filter of the same scale obtained by the normal method will not result in an unnatural reduced image even in a region where reversible transformation such as the image boundary is not established. Can be.

また,実際には,フィルタ係数の精度や,拡大縮小処理時の画素値の丸めのために,誤差が入り込み,完全には可逆変換とはならないが,比較的小さな誤差である。   In practice, an error is introduced due to the accuracy of the filter coefficient and the rounding of the pixel value at the time of enlargement / reduction processing, and although it is not completely reversible, it is a relatively small error.

一方,画像端境界処理が影響する領域については,係数の値を他の領域とは別に画素ごとに可逆となるようなフィルタ係数を逐一求める方法もあり得るが,実装が複雑になる欠点がある。そのため,画像端境界処理が影響する領域については,可逆変換とすることをあきらめて,拡大,縮小とも,画像内で一定パターンのフィルタ係数を用いることで,拡大縮小処理の実装を容易にする方法をとることが望ましい。これは,画像の大きさに対して,画像端境界処理が影響する領域が極めて小さいことを考慮すると経済的な方法である。   On the other hand, for the area affected by image edge boundary processing, there may be a method to obtain the filter coefficient that makes the coefficient value reversible for each pixel separately from other areas, but it has the disadvantage of complicated implementation . Therefore, a method that makes it easy to implement enlargement / reduction processing by giving up reversible conversion for areas affected by image edge boundary processing and using a filter coefficient of a certain pattern in the image for both enlargement and reduction. It is desirable to take This is an economical method considering that the area affected by the image edge boundary processing is extremely small with respect to the size of the image.

また,以下に,N=10,M=25とした場合の例について述べる。拡大変換行列をA,縮小変換行列をBとすると,画像端境界処理が影響する領域において可逆変換となる条件BA=Iは,例えば下記のようになる。   An example where N = 10 and M = 25 will be described below. Assuming that the enlargement transformation matrix is A and the reduction transformation matrix is B, the condition BA = I for reversible transformation in the region affected by the image edge boundary processing is as follows, for example.

Figure 0004057503
この場合,変換率が2対5なので変換前後の画素位置の関係から,拡大処理には5セットの係数,縮小には2セットの係数が必要となる。そのため,行列B,A,Iの画像端境界処理が影響しない領域における同一の繰り返しパターンとして行列B’,A’,I’と,B”,A”,I”の2系統を抜きだし,それぞれ,B’A’=I’,B”A”=I”が成立するB’,B”を求めることで,可逆変換となる縮小処理用フィルタ係数を求めることができる。
Figure 0004057503
In this case, since the conversion rate is 2 to 5, from the relationship between the pixel positions before and after conversion, 5 sets of coefficients are required for enlargement processing and 2 sets of coefficients are required for reduction. For this reason, the matrix B ′, A ′, I ′ and the two systems B ″, A ″, I ″ are extracted as the same repetitive pattern in the region where the image edge boundary processing of the matrices B, A, I is not affected. , B′A ′ = I ′, and B ′, B ″ satisfying B ″ A ″ = I ″ can be obtained, so that a reduction processing filter coefficient that becomes a reversible transformation can be obtained.

Figure 0004057503
Figure 0004057503

Figure 0004057503
Figure 0004057503

図1は,本発明の実施例1に係る装置構成を示す図である。図2は,本発明の実施例1に係る処理フローチャートである。   FIG. 1 is a diagram illustrating an apparatus configuration according to Embodiment 1 of the present invention. FIG. 2 is a process flowchart according to the first embodiment of the present invention.

図1において,10は復号器(デコーダ),20は再符号化器である。復号器10において,11は入力されたビットストリームを復号する復号部,12は復号映像(4:2:0フォーマット映像)に対して420−422変換を行なう420−422変換部,13は変換後の4:2:2フォーマット映像をデコーダ出力映像として出力する映像出力部,14は復号部11から得た符号化情報と420−422変換部12から得た420−422変換用フィルタ係数を出力する情報出力部である。   In FIG. 1, 10 is a decoder (decoder), and 20 is a re-encoder. In the decoder 10, 11 is a decoding unit that decodes an input bit stream, 12 is a 420-422 conversion unit that performs 420-422 conversion on decoded video (4: 2: 0 format video), and 13 is a post-conversion unit The 4: 2: 2 format video is output as a decoder output video, and the video output unit 14 outputs the encoding information obtained from the decoding unit 11 and the 420-422 conversion filter coefficient obtained from the 420-422 conversion unit 12. It is an information output unit.

また,再符号化器20において,21は復号器10の映像出力部13から出力されたデコーダ出力映像が入力される映像入力部,22は復号器10の情報出力部14から出力された符号化情報および420−422変換用フィルタ係数が入力される情報入力部,23は420−422変換用フィルタ係数をもとに422−420変換用フィルタ係数を求める可逆フィルタ計算部,24は映像入力部21から入力された4:2:2フォーマット映像に対して422−420変換を行ない,4:2:0フォーマット映像を出力する422−420変換部,25は4:2:0フォーマット映像の再符号化を行ない,符号化ビットストリームを出力する再符号化部である。   In the re-encoder 20, 21 is a video input unit to which a decoder output video output from the video output unit 13 of the decoder 10 is input, and 22 is an encoding output from the information output unit 14 of the decoder 10. An information input unit to which information and a filter coefficient for 420-422 conversion are input, 23 is a reversible filter calculation unit for obtaining a filter coefficient for 422-420 conversion based on the filter coefficient for 420-422 conversion, and 24 is a video input unit 21 422-420 conversion unit that performs 4: 2: 2 format video input from 4: 2: 0 format video and outputs 4: 2: 0 format video, 25 is a re-encoding of 4: 2: 0 format video And a re-encoding unit that outputs an encoded bit stream.

実施例1での再符号化方法は,復号器10における復号・拡大処理と再符号化器20における縮小処理・再符号化のプロセスからなる。   The re-encoding method according to the first embodiment includes a decoding / enlargement process in the decoder 10 and a reduction process / re-encoding process in the re-encoder 20.

復号器10の復号部11において,入力された4:2:0フォーマットで符号化されたMPEG−2ビットストリームを復号した後(ステップS1,S2),420−422変換部12において,4:2:0フォーマット復号映像の420−422変換を行なう(ステップS3)。420−422変換は,映像の色差成分についてのみ,垂直方向に2倍に拡大する変換であり,この例の場合,下記のように近傍の4画素の画素値の重み付け線形和によって変換後の各サンプル位置の画素値を決定する。   After decoding the input MPEG-2 bit stream encoded in the 4: 2: 0 format in the decoding unit 11 of the decoder 10 (steps S1 and S2), the 420-422 conversion unit 12 uses 4: 2 : 420-422 conversion of 0 format decoded video is performed (step S3). The 420-422 conversion is a conversion in which only the color difference component of the video is doubled in the vertical direction. In this example, each of the converted pixels is converted by a weighted linear sum of pixel values of four neighboring pixels as follows. The pixel value at the sample position is determined.

2n=a×xn-2 +b×xn-1 +c×xn +d×xn+1 (20)
2n+1=e×xn-1 +f×xn +g×xn+1 +h×xn+2 (21)
ここで,nは0以上N未満の整数,xは変換前の画素値,yは変換後の画素値であり,インデクスは垂直方向座標,Nは変換前の垂直方向の画素数を表し,画像境界においては,鏡像反転処理が行なわれるものとする。すなわち,x-1=x1 ,x-2=x2 ,…,x-n=xn ,xN =xN-2 ,xN+1 =xN-3 ,…,xN+n =xN-n-2 とする。また,上式で得た画素値は画素値がとり得る値,0−255の整数に丸められる。
y 2n = a × x n−2 + b × x n−1 + c × x n + d × x n + 1 (20)
y 2n + 1 = e × x n-1 + f × x n + g × x n + 1 + h × x n + 2 (21)
Here, n is an integer greater than or equal to 0 and less than N, x is a pixel value before conversion, y is a pixel value after conversion, an index is a vertical coordinate, and N is a number of pixels in the vertical direction before conversion. It is assumed that mirror image inversion processing is performed at the boundary. That is, x −1 = x 1 , x −2 = x 2 ,..., X −n = x n , x N = x N−2 , x N + 1 = x N−3 ,. xNn-2 . In addition, the pixel value obtained by the above equation is rounded to a value that the pixel value can take, which is an integer from 0 to 255.

この420−422変換用フィルタ係数(a,b,c,d),(e,f,g,h)は,拡大前の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに拡大前後の画素位置の相関関係を考慮して求め,その値を適当な精度に丸めた値を用いる。   These 420-422 conversion filter coefficients (a, b, c, d) and (e, f, g, h) are expanded based on the FIR filter coefficients having the Nyquist frequency of the image before the expansion as a cutoff frequency. A value obtained by considering the correlation between the previous and subsequent pixel positions and rounding the value to an appropriate accuracy is used.

420−422変換部12は,このようにして得られた4:2:2フォーマット映像を映像出力部13に渡し,映像出力部13はこれをデコーダ出力映像として出力する。これとともに,情報出力部14は,復号部11より得られたDCT係数以外の動きベクトルやマクロブロックモード等を含む全ての符号化情報を出力する。また同時に,420−422変換部12より得た,420−422変換用フィルタ係数(a,b,c,d),(e,f,g,h)を出力する(ステップS4)。   The 420-422 conversion unit 12 passes the 4: 2: 2 format video thus obtained to the video output unit 13, and the video output unit 13 outputs this as a decoder output video. At the same time, the information output unit 14 outputs all encoded information including a motion vector other than the DCT coefficient obtained from the decoding unit 11 and a macroblock mode. At the same time, 420-422 conversion filter coefficients (a, b, c, d) and (e, f, g, h) obtained from the 420-422 conversion unit 12 are output (step S4).

再符号化器20には,符号化情報,映像出力部13から出力されたデコーダ出力映像(4:2:2フォーマット映像),420−422変換用フィルタ係数が入力される(ステップS5)。再符号化器20の映像入力部21は,入力されたデコーダ出力映像である4:2:2フォーマット映像を422−420変換部24に渡す。   The re-encoder 20 receives the encoded information, the decoder output video (4: 2: 2 format video) output from the video output unit 13, and the filter coefficient for 420-422 conversion (step S5). The video input unit 21 of the re-encoder 20 passes the 4: 2: 2 format video that is the input decoder output video to the 422-420 conversion unit 24.

再符号化器20の情報入力部22は,入力された符号化情報から,前段符号化が4:2:0フォーマットで行なわれていたことを確認し(ステップS6),同じく入力された420−422変換用フィルタ係数(a,b,c,d),(e,f,g,h)を可逆フィルタ計算部23に渡す。   The information input unit 22 of the re-encoder 20 confirms from the input encoded information that the pre-encoding has been performed in the 4: 2: 0 format (step S6), and the input 420- The filter coefficients (a, b, c, d) and (e, f, g, h) for 422 conversion are passed to the reversible filter calculation unit 23.

可逆フィルタ計算部23は,この420−422変換用フィルタ係数をもとに,   Based on the 420-422 conversion filter coefficients, the reversible filter calculation unit 23

Figure 0004057503
を満たす,422−420変換用フィルタ係数(p,q,r,s,t,u,v,w)を求める(ステップS7)。
Figure 0004057503
422-420 conversion filter coefficients (p, q, r, s, t, u, v, w) that satisfy the above are obtained (step S7).

この式は,等式に対し未知数が1つ多い連立1次方程式であり,自由度が1で解が存在するため,例えばsなど一つの変数を固定して,ガウスの消去法などの連立1次方程式の解法により解を求める。これを複数のsについて行ない,デフォルトの422−420変換用フィルタ係数(p’,q’,r’,s’,t’,u’,v’,w’)との差分を評価し,最も差分が小さい係数を選ぶ(ステップS8)。   This equation is a simultaneous linear equation with one more unknown than the equation, and since there is a solution with one degree of freedom, for example, a single variable such as s is fixed and a simultaneous 1 such as Gaussian elimination is used. Find the solution by solving the following equation. This is performed for a plurality of s, and the difference from the default filter coefficients (p ′, q ′, r ′, s ′, t ′, u ′, v ′, w ′) for the 422-420 conversion is evaluated. A coefficient with a small difference is selected (step S8).

この評価には,例えば係数同士の差分の2乗和などを用いる。また,デフォルトの422−420変換用フィルタ係数は,あらかじめ通常の方法で求めておいたフィルタ係数であり,縮小後の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに縮小前後の画素位置の相関関係を考慮して決定しておく。   For this evaluation, for example, the sum of squares of differences between coefficients is used. The default filter coefficient for 422-420 conversion is a filter coefficient obtained in advance by a normal method, and before and after the reduction based on the FIR filter coefficient using the Nyquist frequency of the reduced image as the cutoff frequency. This is determined in consideration of the correlation between pixel positions.

可逆フィルタ計算部23は,このようにして決まった422−420変換用フィルタ係数(p,q,r,s,t,u,v,w)を422−420変換部24に渡す。422−420変換部24は,このフィルタ係数を用いて,4:2:2フォーマット映像に対して下記のように422−420変換を行ない(ステップS9),4:2:0フォーマット映像を出力する。   The reversible filter calculation unit 23 passes the 422-420 conversion filter coefficients (p, q, r, s, t, u, v, w) determined in this way to the 422-420 conversion unit 24. Using this filter coefficient, the 422-420 conversion unit 24 performs 422-420 conversion on the 4: 2: 2 format video as follows (step S9), and outputs the 4: 2: 0 format video. .

n =p×y2n-3+q×y2n-2+r×y2n-1+s×y2n+t×y2n+1+u×y2n+2+v×y2n+3+w×y2n+4 (23)
ここで,nは0以上N未満の整数,yは変換前の画素値,zは変換後の画素値,インデクスは垂直方向座標,2Nは変換前の垂直方向の画素数を表し,画像境界においては,鏡像反転処理が行なわれるものとする。すなわち,y-1=y1 ,y-2=y2 ,…,y-n=yn ,y2N=y2N-2,y2N+1=y2N-3,…,y2N+n=y2N-n-2とする。また,上式で得た画素値は画素値がとり得る値,0−255の整数に丸められる。これにより,復号器10における4:2:0フォーマットの復号映像とほぼ等しい4:2:0フォーマット映像を得ることができる。
z n = p × y 2n−3 + q × y 2n−2 + r × y 2n−1 + s × y 2n + t × y 2n + 1 + u × y 2n + 2 + v × y 2n + 3 + w × y 2n + 4 ( 23)
Here, n is an integer greater than or equal to 0 and less than N, y is a pixel value before conversion, z is a pixel value after conversion, an index is a vertical coordinate, and 2N is a number of pixels in the vertical direction before conversion. Is assumed to be mirror-inverted. That, y -1 = y 1, y -2 = y 2, ..., y -n = y n, y 2N = y 2N-2, y 2N + 1 = y 2N-3, ..., y 2N + n = Let y 2N-n-2 . In addition, the pixel value obtained by the above equation is rounded to a value that the pixel value can take, which is an integer from 0 to 255. As a result, a 4: 2: 0 format video substantially equal to the 4: 2: 0 format decoded video in the decoder 10 can be obtained.

この方法では,画像の上下端各3ラインが鏡像処理の影響を受け,画像が変化するが,デフォルトのフィルタ係数に近いフィルタ係数を用いているため,大きな劣化とはならない。   In this method, the three lines at the top and bottom of the image are affected by mirror image processing and the image changes. However, since filter coefficients close to the default filter coefficients are used, there is no significant deterioration.

さらに,再符号化部25は,このようにして得られた4:2:0フォーマット映像を情報入力部22から得られる符号化情報に従って再符号化を行ない(ステップS10),ビットストリームを出力する(ステップS11)。これにより,再符号化された映像ストリームの復号映像は,前段の復号映像に比べてほとんど劣化のない画質となる。   Further, the re-encoding unit 25 re-encodes the 4: 2: 0 format video obtained in this way according to the encoding information obtained from the information input unit 22 (step S10), and outputs a bit stream. (Step S11). As a result, the decoded video of the re-encoded video stream has almost no deterioration compared to the previous decoded video.

図3は,本発明の実施例2に係る装置構成を示す図である。図4は,本発明の実施例2に係る処理フローチャートである。   FIG. 3 is a diagram showing a device configuration according to Embodiment 2 of the present invention. FIG. 4 is a process flowchart according to the second embodiment of the present invention.

図3において,30は復号器,40は再符号化器である。復号器30において,31は入力されたビットストリームを復号する復号部,32は復号映像に対して拡大処理を行なう拡大処理部,33は拡大映像をデコーダ出力映像として出力する映像出力部,34は復号部31から得た符号化情報を出力するとともに,縮小処理用フィルタ係数を出力する情報出力部である。   In FIG. 3, 30 is a decoder and 40 is a re-encoder. In the decoder 30, 31 is a decoding unit that decodes an input bit stream, 32 is an enlargement processing unit that performs an enlargement process on the decoded video, 33 is a video output unit that outputs the enlarged video as a decoder output video, and 34 is It is an information output unit that outputs encoded information obtained from the decoding unit 31 and outputs filter coefficients for reduction processing.

また,再符号化器40において,41は復号器30の映像出力部33から出力されたデコーダ出力映像が入力される映像入力部,42は復号器30の情報出力部34から出力された符号化情報および縮小処理用フィルタ係数が入力される情報入力部,43は縮小処理用フィルタ係数をもとに,入力映像の縮小処理を行い,縮小映像を出力する縮小処理部,44は縮小映像の再符号化を行ない,ビットストリームを出力する再符号化部である。   In the re-encoder 40, 41 is a video input unit to which a decoder output video output from the video output unit 33 of the decoder 30 is input, and 42 is an encoding output from the information output unit 34 of the decoder 30. An information input unit 43 to which information and a filter coefficient for reduction processing are input, 43 performs a reduction process on the input video based on the filter coefficient for reduction processing, and outputs a reduced video. A re-encoding unit that performs encoding and outputs a bit stream.

実施例2に示す再符号化方法の例は,復号器30における復号・拡大処理と再符号化器40における縮小処理・再符号化のプロセスからなる。復号器30に入力される符号化されたMPEG−2ビットストリームは,符号化時に,2/5に水平方向に縮小された後,符号化されたストリームであるとする。   The example of the re-encoding method shown in the second embodiment includes a decoding / enlargement process in the decoder 30 and a reduction process / re-encoding process in the re-encoder 40. The encoded MPEG-2 bit stream input to the decoder 30 is assumed to be an encoded stream after being reduced in the horizontal direction to 2/5 at the time of encoding.

復号器30の復号部31が,入力されたビットストリームを復号した後(ステップS21,S22),拡大処理部32が復号映像を水平方向に5/2倍に拡大する(ステップS23)。この例の場合,下記のように近傍の4画素の画素値の重み付け線形和によって変換後の各サンプル位置の画素値を決定する。   After the decoding unit 31 of the decoder 30 decodes the input bit stream (steps S21 and S22), the enlargement processing unit 32 enlarges the decoded video by 5/2 times in the horizontal direction (step S23). In this example, the pixel value at each sample position after conversion is determined by the weighted linear sum of the pixel values of the four neighboring pixels as described below.

5n=a1 ×x2n-2+a2 ×x2n-1+a3 ×x2n+a4 ×x2n+1 (24)
5n+1=b1 ×x2n-1+b2 ×x2n+b3 ×x2n+1+b4 ×x2n+2 (25)
5n+2=c1 ×x2n-1+c2 ×x2n+c3 ×x2n+1+c4 ×x2n+2 (26)
5n+3=d1 ×x2n-1+d2 ×x2n+d3 ×x2n+1+d4 ×x2n+2 (27)
5n+4=e1 ×x2n+e2 ×x2n-1+e3 ×x2n+e4 ×x2n+3 (28)
ここで,nは0以上N未満の整数,xは変換前の画素値,yは変換後の画素値であり,インデクスは水平方向座標,2Nは拡大前の水平方向の画素数を表し,画像境界においては,鏡像反転処理が行なわれるものとする。すなわち,x-1=x1 ,x-2=x2 ,…,x-n=xn ,x2N=x2N-2,x2N+1=x2N-3,…,x2N+n=x2N-n-2とする。また,上式で得た画素値は画素値がとり得る値,0−255の整数に丸められる。
y 5n = a 1 × x 2n -2 + a 2 × x 2n-1 + a 3 × x 2n + a 4 × x 2n + 1 (24)
y 5n + 1 = b 1 × x 2n-1 + b 2 × x 2n + b 3 × x 2n + 1 + b 4 × x 2n + 2 (25)
y 5n + 2 = c 1 × x 2n-1 + c 2 × x 2n + c 3 × x 2n + 1 + c 4 × x 2n + 2 (26)
y 5n + 3 = d 1 × x 2n-1 + d 2 × x 2n + d 3 × x 2n + 1 + d 4 × x 2n + 2 (27)
y 5n + 4 = e 1 × x 2n + e 2 × x 2n-1 + e 3 × x 2n + e 4 × x 2n + 3 (28)
Here, n is an integer greater than or equal to 0 and less than N, x is a pixel value before conversion, y is a pixel value after conversion, an index is a horizontal coordinate, 2N indicates a horizontal pixel number before enlargement, and an image It is assumed that mirror image inversion processing is performed at the boundary. That, x -1 = x 1, x -2 = x 2, ..., x -n = x n, x 2N = x 2N-2, x 2N + 1 = x 2N-3, ..., x 2N + n = x2N-n-2 . In addition, the pixel value obtained by the above equation is rounded to a value that the pixel value can take, which is an integer from 0 to 255.

この拡大処理用フィルタ係数は,拡大前の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに拡大前後の画素位置の相関関係を考慮して求め,その値を適当な精度に丸めた値を用いる。   This enlargement processing filter coefficient is obtained by considering the correlation between the pixel positions before and after enlargement based on the FIR filter coefficient having the Nyquist frequency of the image before enlargement as a cutoff frequency, and rounding the value to an appropriate accuracy. Value is used.

拡大処理部32は,このようにして得られた拡大映像を映像出力部33に渡し,映像出力部33はデコーダ出力映像として出力する。これとともに,情報出力部34は,復号部31により得られたDCT係数以外の動きベクトルやマクロブロックモード等を含む全ての符号化情報を出力する。また,同時に拡大処理の可逆変換となる縮小処理用フィルタ係数を出力する(ステップS24)。   The enlargement processing unit 32 passes the enlarged video obtained in this way to the video output unit 33, and the video output unit 33 outputs it as a decoder output video. At the same time, the information output unit 34 outputs all encoded information including a motion vector other than the DCT coefficient obtained by the decoding unit 31 and a macroblock mode. At the same time, the filter coefficient for reduction processing that is reversible conversion of the enlargement processing is output (step S24).

この縮小処理用フィルタ係数(s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,s9 ,s10),(t1 ,t2 ,t3 ,t4 ,t5 ,t6 ,t7 ,t8 ,t9 ,t10)は,図5に示す処理に従って以下のように求めておく。 This reduction processing filter coefficient (s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 , s 9 , s 10 ), (t 1 , t 2 , t 3 , t 4 , T 5 , t 6 , t 7 , t 8 , t 9 , t 10 ) are obtained as follows according to the process shown in FIG.

拡大率5/2の場合の拡大処理用フィルタ係数を通常の方法で求め(ステップS241),縮小率2/5の場合のデフォルトの縮小処理用フィルタ係数を通常の方法で求める(ステップS242)。デフォルトの縮小処理用のフィルタの係数は,縮小後の画像のナイキスト周波数をカットオフ周波数とするFIRフィルタ係数をもとに縮小前後の画素位置の相関関係を考慮して決定しておく。   The enlargement processing filter coefficient in the case of the enlargement ratio 5/2 is obtained by a normal method (step S241), and the default reduction processing filter coefficient in the case of the reduction ratio 2/5 is obtained by a normal method (step S242). The default reduction filter coefficient is determined in consideration of the correlation between the pixel positions before and after reduction based on the FIR filter coefficient whose cutoff frequency is the Nyquist frequency of the reduced image.

そして,拡大処理用フィルタ係数から,   From the enlargement processing filter coefficients,

Figure 0004057503
Figure 0004057503

Figure 0004057503
を満たす縮小処理用フィルタ係数を求める。
Figure 0004057503
The filter coefficient for reduction processing that satisfies the above is obtained.

これらの式は,等式に対し未知数が3つ多い連立1次方程式であり,自由度が3で解が存在するため,例えばs4 ,s5 ,s6 など3つの変数を固定して,ガウスの消去法などの連立1次方程式の解法により解を求める。 These equations are simultaneous linear equations with three unknowns compared to the equation, and there are 3 degrees of freedom, so there are three solutions, for example, fixing three variables such as s 4 , s 5 , and s 6 , A solution is obtained by solving simultaneous linear equations such as Gaussian elimination.

これを複数のパターンについて行ない,デフォルトの縮小処理用のフィルタ係数(s'1,s'2,s'3,s'4,s'5,s'6,s'7,s'8,s'9,s'10 ),(t'1,t'2,t'3,t'4,t'5,t'6,t'7,t'8,t'9,t'10 )との係数同士の差分の2乗和を評価し,最も小さい係数を縮小処理用フィルタ係数として選ぶ(ステップS244)。 This is performed for a plurality of patterns, and filter coefficients (s ′ 1 , s ′ 2 , s ′ 3 , s ′ 4 , s ′ 5 , s ′ 6 , s ′ 7 , s ′ 8 , s for default reduction processing are performed. '9, s' 10), and (t '1, t' 2 , t '3, t' 4, t '5, t' 6, t '7, t' 8, t '9, t' 10) Are evaluated, and the smallest coefficient is selected as a filter coefficient for reduction processing (step S244).

拡大処理用フィルタ係数と,縮小処理用フィルタ係数は,復号器30に記憶させておく(ステップS245)。復号器30の情報出力部34は,このようにしてあらかじめ求めておいた縮小処理用のフィルタ係数を,符号化情報とともに出力する。   The enlargement processing filter coefficient and the reduction processing filter coefficient are stored in the decoder 30 (step S245). The information output unit 34 of the decoder 30 outputs the filter coefficient for reduction processing previously obtained in this way together with the encoded information.

再符号化器40には,上記縮小処理用フィルタ係数,デコーダ出力映像,符号化情報が入力される(ステップS25)。再符号化器40の情報入力部42は,入力された符号化情報の符号化画像サイズとデコーダ出力映像の画像サイズから,復号器30における拡大率が水平方向5/2倍であることを確認した上で(ステップS26),同じく入力された縮小処理用フィルタ係数を縮小処理部43に渡す。縮小処理部43は,この縮小処理用フィルタ係数をもとに,下記のように2/5の縮小処理を行なう(ステップS27)。   The re-encoder 40 receives the filter coefficient for reduction processing, the decoder output video, and the encoding information (step S25). The information input unit 42 of the re-encoder 40 confirms that the enlargement ratio in the decoder 30 is 5/2 times in the horizontal direction from the encoded image size of the input encoded information and the image size of the decoder output video. After that (step S26), the same input filter coefficient for reduction processing is transferred to the reduction processing unit 43. The reduction processing unit 43 performs 2/5 reduction processing based on the reduction processing filter coefficient as follows (step S27).

2n=s1 ×y5n-4+s2 ×y5n-3+s3 ×y5n-2+s4 ×y5n-1+s5 ×y5n+s6 ×y5n+1+s7 ×y5n+2+s8 ×y5n+3+s9 ×y5n+4+s10×y5n+5 (31)
2n+1=t1 ×y5n-1+t2 ×y5n+t3 ×y5n+1+t4 ×y5n+2+t5 ×y5n+3+t6 ×y5n+4+t7 ×y5n+5+t8 ×y5n+6+t9 ×y5n+7+t10×y5n+8 (32)
ここで,nは0以上N未満の整数,yは変換前の画素値,zは変換後の画素値,インデクスは水平方向座標,5Nは縮小前の水平方向画像サイズを表し,画像境界においては,鏡像反転処理が行なわれるものとする。すなわち,y-1=y1 ,y-2=y2 ,…,y-n=yn ,y5N=y5N-2,y5N+1=y5N-3,…,y5N+n=y5N-n-2とする。また,上式で得た画素値は画素値がとり得る値,0−255の整数に丸められる。
z 2n = s 1 × y 5n -4 + s 2 × y 5n-3 + s 3 × y 5n-2 + s 4 × y 5n-1 + s 5 × y 5n + s 6 × y 5n + 1 + s 7 × y 5n + 2 + S 8 × y 5n + 3 + s 9 × y 5n + 4 + s 10 × y 5n + 5 (31)
z 2n + 1 = t 1 × y 5n-1 + t 2 × y 5n + t 3 × y 5n + 1 + t 4 × y 5n + 2 + t 5 × y 5n + 3 + t 6 × y 5n + 4 + t 7 × y 5n +5 + t 8 × y 5n + 6 + t 9 × y 5n + 7 + t 10 × y 5n + 8 (32)
Here, n is an integer from 0 to less than N, y is a pixel value before conversion, z is a pixel value after conversion, an index is a horizontal coordinate, 5N is a horizontal image size before reduction, and at an image boundary, Assume that mirror image inversion processing is performed. That, y -1 = y 1, y -2 = y 2, ..., y -n = y n, y 5N = y 5N-2, y 5N + 1 = y 5N-3, ..., y 5N + n = y 5N-n-2 . In addition, the pixel value obtained by the above equation is rounded to a value that the pixel value can take, an integer from 0 to 255.

これにより,復号器30における拡大前の復号映像とほぼ等しい映像を得ることができる。この方法では,画像の上下端各3ラインが鏡像処理の影響を受け,画像が変化するが,デフォルトのフィルタ係数に近いフィルタ係数を用いているため,大きな劣化とはならない。   As a result, it is possible to obtain a video substantially equal to the decoded video before enlargement in the decoder 30. In this method, the three lines at the top and bottom of the image are affected by mirror image processing and the image changes. However, since filter coefficients close to the default filter coefficients are used, there is no significant deterioration.

さらに,再符号化器40はこのようにして得られた縮小映像を入力された符号化情報に従って再符号化を行ない(ステップS28),ビットストリームを出力する(ステップS29)。これにより,再符号化された映像ストリームの復号映像は,前段の復号映像に比べてほとんど劣化のない画質となる。   Further, the re-encoder 40 re-encodes the reduced video obtained in this way according to the input encoding information (step S28), and outputs a bit stream (step S29). As a result, the decoded video of the re-encoded video stream has almost no deterioration compared to the previous decoded video.

本発明の実施例1に係る装置構成を示す図である。It is a figure which shows the apparatus structure which concerns on Example 1 of this invention. 本発明の実施例1に係る処理フローチャートである。It is a processing flowchart concerning Example 1 of the present invention. 本発明の実施例2に係る装置構成を示す図である。It is a figure which shows the apparatus structure which concerns on Example 2 of this invention. 本発明の実施例2に係る処理フローチャートである。It is a processing flowchart concerning Example 2 of the present invention. 縮小処理用フィルタ係数を算出する処理フローチャートである。It is a process flowchart which calculates the filter coefficient for a reduction process.

符号の説明Explanation of symbols

10,30 復号器
11,31 復号部
12 420−422変換部
13,33 映像出力部
14,34 情報出力部
20,40 再符号化器
21,41 映像入力部
22,42 情報入力部
23 可逆フィルタ計算部
24 422−420変換部
25,44 再符号化部
32 拡大処理部
43 縮小処理部
DESCRIPTION OF SYMBOLS 10,30 Decoder 11,31 Decoding part 12 420-422 conversion part 13,33 Video output part 14,34 Information output part 20,40 Re-encoder 21,41 Video input part 22,42 Information input part 23 Reversible filter Calculation unit 24 422-420 conversion unit 25, 44 Re-encoding unit 32 Enlargement processing unit 43 Reduction processing unit

Claims (14)

映像符号化ストリームを復号した復号映像の解像度を拡大処理用フィルタを用いて拡大した画像信号を,拡大前の解像度に縮小してから再符号化を行なう際に,前記解像度の縮小に用いる縮小処理用フィルタのフィルタ係数を決定する解像度変換用フィルタ係数決定方法であって,
前記解像度の拡大処理に用いた拡大処理用フィルタのフィルタ係数であって,少なくとも画像端境界処理が影響する領域以外に適用された一定パターンのフィルタ係数を入力し,記憶手段に記憶する過程と,
拡大前のN画素の1次元画像データを表す1列N行の行列をX,拡大後のM(M>N)画素の1次元画像データを表す1列M行の行列をY,拡大処理を表すY=AXとなるN列M行の拡大変換行列をAとし,縮小後のN画素からなる1次元画像データを表す1列N行の行列をZ,縮小処理を表すZ=BYとなるM列N行の縮小変換行列をB,N列N行の単位行列をIとするときに,前記記憶した拡大処理用フィルタの一定パターンのフィルタ係数を少なくとも画像端境界処理が影響しない領域部分の行列中の行方向の要素の並びに含む,該フィルタ係数によって定まる拡大変換行列Aから,BA=Iとなる縮小変換行列Bを算出する過程と,
算出した縮小変換行列Bに基づいて縮小処理用フィルタのフィルタ係数を決定する過程とを有する
ことを特徴とする解像度変換用フィルタ係数決定方法。
A reduction process used to reduce the resolution when re-encoding an image signal obtained by expanding the resolution of a decoded video obtained by decoding a video encoded stream using an enlargement processing filter after reducing the resolution to the resolution before the enlargement. A resolution conversion filter coefficient determination method for determining a filter coefficient of a filter for an image,
A process of inputting a filter coefficient of a fixed pattern applied to at least a region other than the region affected by the image edge boundary processing and storing it in a storage means , which is a filter coefficient of the enlargement processing filter used for the resolution enlargement processing;
A matrix of 1 column and N rows representing 1-dimensional image data of N pixels before enlargement is X, a matrix of 1 column and M rows representing 1-dimensional image data of M (M> N) pixels after enlargement is Y, and enlargement processing is performed. An N-column, M-row expansion transformation matrix representing Y = AX is represented as A, a 1-column N-row matrix representing one-dimensional image data composed of N pixels after the reduction is represented as Z, and M representing Z = BY representing a reduction process. A matrix of a region portion in which at least image edge boundary processing does not affect at least the filter coefficient of a predetermined pattern of the stored enlargement processing filter, where B is a reduced conversion matrix of N columns and I is a unit matrix of N columns and N rows A process of calculating a reduced transformation matrix B satisfying BA = I from an enlarged transformation matrix A determined by the filter coefficient , including a row of elements in the row direction ,
A resolution conversion filter coefficient determination method, comprising: determining a filter coefficient of a reduction processing filter based on the calculated reduction conversion matrix B.
請求項1記載の解像度変換用フィルタ係数決定方法において,
前記BA=Iとなる縮小変換行列Bを算出する過程では,前記縮小変換行列Bと前記拡大変換行列Aとの積BAが,少なくとも拡大縮小処理における画像端境界処理が影響しない領域部分においてN列N行の単位行列Iと等しくなるような縮小処理のフィルタ係数を求めるために,前記行列B,A,Iの画像端境界処理が影響しない領域において行列の行方向の要素の値の並びが繰り返し同じように現れる部分の同一の繰り返しパターンの単位を,前記行列B,A,Iからそれぞれ行列B’,A’,I’として抜き出し,B’A’=I’となる行列B’を求め,それに基づいて縮小処理用フィルタのフィルタ係数を決定する
ことを特徴とする解像度変換用フィルタ係数決定方法。
In the resolution conversion filter coefficient determination method according to claim 1,
In the process of calculating the reduced transformation matrix B with BA = I, the product BA of the reduced transformation matrix B and the enlarged transformation matrix A is N columns at least in the region portion where the image edge boundary processing in the enlargement / reduction processing does not affect. In order to obtain a filter coefficient for the reduction process that is equal to the unit matrix I of N rows, the arrangement of the element values in the row direction of the matrix is repeated in the region where the image edge boundary processing of the matrices B, A, I is not affected. The same repeating pattern unit of the portion that appears in the same manner is extracted from the matrices B, A, and I as matrices B ′, A ′, and I ′ , respectively, and a matrix B ′ that satisfies B′A ′ = I ′ is obtained. A resolution conversion filter coefficient determination method, comprising: determining a filter coefficient of a reduction processing filter based thereon.
映像符号化ストリームを復号した復号映像の解像度を拡大処理用フィルタを用いて拡大した画像信号を,再符号化する前に拡大前の解像度に縮小する画像解像度変換方法において,
前記拡大処理用フィルタを用いて解像度を拡大した画像信号を入力する過程と,
請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて決定されたフィルタ係数からなる縮小処理用フィルタを用いて,前記入力した画像信号の解像度を拡大前の解像度に縮小する過程とを有する
ことを特徴とする画像解像度変換方法。
In an image resolution conversion method for reducing an image signal obtained by enlarging the resolution of a decoded video obtained by decoding a video encoded stream using an enlargement processing filter to a resolution before enlargement before re-encoding ,
A step of inputting an image signal with an enlarged resolution using the enlargement processing filter;
3. The resolution of the input image signal is reduced to the resolution before enlargement using a reduction processing filter comprising filter coefficients determined using the resolution conversion filter coefficient determination method according to claim 1 or 2. And a process for converting the image resolution.
映像符号化ストリームを復号した復号映像の解像度を拡大処理用フィルタを用いて拡大した画像信号を,再符号化する前に拡大前の解像度に縮小する画像解像度変換装置において,
前記拡大処理用フィルタを用いて解像度を拡大した画像信号を入力する手段と,
請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて決定されたフィルタ係数からなる縮小処理用フィルタを用いて,前記入力した画像信号の解像度を拡大前の解像度に縮小する手段とを備える
ことを特徴とする画像解像度変換装置。
In an image resolution conversion apparatus for reducing an image signal obtained by enlarging a resolution of a decoded video obtained by decoding a video encoded stream using an enlargement processing filter to a resolution before enlargement before re-encoding ,
Means for inputting an image signal whose resolution is enlarged using the enlargement processing filter;
3. The resolution of the input image signal is reduced to the resolution before enlargement using a reduction processing filter comprising filter coefficients determined using the resolution conversion filter coefficient determination method according to claim 1 or 2. An image resolution conversion apparatus.
復号器による映像符号化ストリーム復号時に復号映像の解像度を拡大し,再符号化器によるその映像の再符号化時に入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化方法において,
前記復号器において復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報を前記再符号化器に伝達する過程と,
前記再符号化器に伝達された解像度変換用フィルタ係数の情報から,請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて,縮小処理用フィルタのフィルタ係数を決定する過程と,
決定されたフィルタ係数からなる縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小する過程と,
解像度を縮小した映像信号を再符号化する過程とを有する
ことを特徴とする映像再符号化方法。
When re-encoding the video encoded stream by the decoder, the resolution of the decoded video is increased. When the video is re-encoded by the re-encoder, the resolution of the input video is reduced to the pre-enlargement resolution before re-encoding. In the encoding method,
Transmitting information on resolution conversion filter coefficients used for enlarging the resolution of decoded video in the decoder to the re-encoder;
3. The filter coefficient of the reduction processing filter is determined from the resolution conversion filter coefficient information transmitted to the re-encoder using the resolution conversion filter coefficient determination method according to claim 1 or 2. Process,
A process of reducing the resolution of an input video signal to a resolution before enlargement using a reduction filter composed of the determined filter coefficients;
And a process of re-encoding the video signal with reduced resolution.
復号器による映像符号化ストリーム復号時に復号映像の解像度を拡大し,再符号化器によるその映像の再符号化時に入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化方法において,
前記復号器において復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報から,請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて決定した縮小処理用フィルタのフィルタ係数情報と映像信号とを,前記再符号化器に入力する過程と,
前記入力したフィルタ係数情報に基づく縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小する過程と,
解像度を縮小した映像信号を再符号化する過程とを有する
ことを特徴とする映像再符号化方法。
When re-encoding the video encoded stream by the decoder, the resolution of the decoded video is increased. When the video is re-encoded by the re-encoder, the resolution of the input video is reduced to the pre-enlargement resolution before re-encoding. In the encoding method,
A reduction processing filter determined using the resolution conversion filter coefficient determination method according to claim 1 or 2 from information on resolution conversion filter coefficients used for increasing the resolution of decoded video in the decoder. Inputting filter coefficient information and a video signal to the re-encoder;
Using the reduction filter based on the input filter coefficient information to reduce the resolution of the input video signal to the resolution before enlargement;
And a process of re-encoding the video signal with reduced resolution.
映像符号化ストリーム復号時に復号映像の解像度を拡大した映像信号を入力し,その入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化装置において,
再符号化する映像信号を入力する映像入力手段と,
前記映像符号化ストリーム復号時に復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報を入力する情報入力手段と,
前記入力した解像度変換用フィルタ係数の情報から,請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて,縮小処理用フィルタのフィルタ係数を決定する可逆フィルタ計算手段と,
決定されたフィルタ係数からなる縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小する解像度変換手段と,
解像度を縮小した映像信号を再符号化する再符号化手段とを備える
ことを特徴とする映像再符号化装置。
In a video re-encoding device that inputs a video signal obtained by enlarging the resolution of a decoded video at the time of decoding a video encoded stream and re-encodes after reducing the resolution of the input video to the resolution before enlargement,
Video input means for inputting a video signal to be re-encoded;
Information input means for inputting information on resolution conversion filter coefficients used for enlarging the resolution of the decoded video at the time of decoding the video encoded stream;
Reversible filter calculation means for determining the filter coefficient of the reduction processing filter from the input resolution conversion filter coefficient information using the resolution conversion filter coefficient determination method according to claim 1 or 2 ;
Resolution conversion means for reducing the resolution of the input video signal to the resolution before enlargement using a reduction processing filter comprising the determined filter coefficients;
A video re-encoding apparatus comprising: a re-encoding unit that re-encodes a video signal with reduced resolution.
映像符号化ストリーム復号時に復号映像の解像度を拡大した映像信号を入力し,その入力映像の解像度を拡大前の解像度に縮小してから再符号化を行なう映像再符号化装置において,
再符号化する映像信号を入力する映像入力手段と,
前記映像符号化ストリーム復号時に復号映像の解像度の拡大に用いた解像度変換用フィルタ係数の情報から,請求項1または請求項2に記載された解像度変換用フィルタ係数決定方法を用いて決定した縮小処理用フィルタのフィルタ係数を入力する情報入力手段と,
前記入力したフィルタ係数情報に基づく縮小処理用フィルタを用いて,入力した映像信号の解像度を拡大前の解像度に縮小する解像度変換手段と,
解像度を縮小した映像信号を再符号化する再符号化手段とを備える
ことを特徴とする映像再符号化装置。
In a video re-encoding device that inputs a video signal obtained by enlarging the resolution of a decoded video at the time of decoding a video encoded stream and re-encodes after reducing the resolution of the input video to the resolution before enlargement,
Video input means for inputting a video signal to be re-encoded;
3. Reduction processing determined using the resolution conversion filter coefficient determination method according to claim 1 or 2 from information on resolution conversion filter coefficients used to increase resolution of decoded video during decoding of the video encoded stream Information input means for inputting the filter coefficient of the filter for use,
Resolution conversion means for reducing the resolution of the input video signal to the resolution before enlargement using the reduction processing filter based on the input filter coefficient information;
A video re-encoding apparatus comprising: a re-encoding unit that re-encodes a video signal with reduced resolution.
請求項1または請求項2に記載の解像度変換用フィルタ係数決定方法を,コンピュータに実行させるための解像度変換用フィルタ係数決定プログラム。 A resolution conversion filter coefficient determination program for causing a computer to execute the resolution conversion filter coefficient determination method according to claim 1 . 請求項に記載の画像解像度変換方法を,コンピュータに実行させるための画像解像度変換プログラム。 An image resolution conversion program for causing a computer to execute the image resolution conversion method according to claim 3 . 請求項または請求項に記載の映像再符号化方法を,コンピュータに実行させるための映像再符号化プログラム。 A video re-encoding program for causing a computer to execute the video re-encoding method according to claim 5 or 6 . 請求項1または請求項2に記載の解像度変換用フィルタ係数決定方法を,コンピュータに実行させるための解像度変換用フィルタ係数決定プログラムを記録した記録媒体。 A recording medium recording a resolution conversion filter coefficient determination program for causing a computer to execute the resolution conversion filter coefficient determination method according to claim 1 . 請求項に記載の画像解像度変換方法を,コンピュータに実行させるための画像解像度変換プログラムを記録した記録媒体。 A recording medium recording an image resolution conversion program for causing a computer to execute the image resolution conversion method according to claim 3 . 請求項または請求項に記載の映像再符号化方法を,コンピュータに実行させるための映像再符号化プログラムを記録した記録媒体。 A recording medium on which a video re-encoding program for causing a computer to execute the video re-encoding method according to claim 5 or 6 is recorded.
JP2003357179A 2003-10-17 2003-10-17 Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded Expired - Lifetime JP4057503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357179A JP4057503B2 (en) 2003-10-17 2003-10-17 Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357179A JP4057503B2 (en) 2003-10-17 2003-10-17 Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded

Publications (2)

Publication Number Publication Date
JP2005123913A JP2005123913A (en) 2005-05-12
JP4057503B2 true JP4057503B2 (en) 2008-03-05

Family

ID=34614143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357179A Expired - Lifetime JP4057503B2 (en) 2003-10-17 2003-10-17 Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded

Country Status (1)

Country Link
JP (1) JP4057503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237325B2 (en) 2012-09-21 2016-01-12 Kabushiki Kaisha Toshiba Decoding device and encoding device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519001B2 (en) * 2005-05-30 2010-08-04 三洋電機株式会社 Filter processing circuit
GB2443665A (en) * 2006-11-10 2008-05-14 Tandberg Television Asa Down-sampling a video signal to an estimated previously encoded resolution
JP5262879B2 (en) * 2009-03-18 2013-08-14 株式会社Jvcケンウッド Re-encoding device and re-encoding method
WO2012090334A1 (en) 2010-12-29 2012-07-05 富士通株式会社 Image signal encryption device, and image signal encryption method and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237325B2 (en) 2012-09-21 2016-01-12 Kabushiki Kaisha Toshiba Decoding device and encoding device
US9621867B2 (en) 2012-09-21 2017-04-11 Kabushiki Kaisha Toshiba Decoding device and encoding device
US9781440B2 (en) 2012-09-21 2017-10-03 Kabushiki Kaisha Toshiba Decoding device and encoding device
US9998747B2 (en) 2012-09-21 2018-06-12 Kabushiki Kaisha Toshiba Decoding device
US10250898B2 (en) 2012-09-21 2019-04-02 Kabushiki Kaisha Toshiba Decoding device and encoding device
US10728566B2 (en) 2012-09-21 2020-07-28 Kabushiki Kaisha Toshiba Decoding device and encoding device
US10972745B2 (en) 2012-09-21 2021-04-06 Kabushiki Kaisha Toshiba Decoding device and encoding device
US11381831B2 (en) 2012-09-21 2022-07-05 Kabushiki Kaisha Toshiba Decoding device and encoding device
US12022099B2 (en) 2012-09-21 2024-06-25 Kabushiki Kaisha Toshiba Decoding device and encoding device

Also Published As

Publication number Publication date
JP2005123913A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP6114419B2 (en) Method and apparatus for interpolating video using asymmetric interpolation filter
RU2456761C1 (en) Operations of repeated digitisation and variation of image size for video coding and decoding with alternating defining power
JP5144545B2 (en) Moving picture codec apparatus and method
US9118927B2 (en) Sub-pixel interpolation and its application in motion compensated encoding of a video signal
JP5727873B2 (en) Motion vector detection device, encoding device, and program thereof
JP2008507190A (en) Motion compensation method
JP2010045816A (en) Device and method for performing half-pixel accuracy fast search in video coding
JP5766815B2 (en) Image encoding method and image encoding apparatus
KR20100019541A (en) Dynamic image encoding device, dynamic image encoding method, dynamic image encoding program, dynamic image decoding device, dynamic image decoding method, and dynamic image decoding program
US20070047651A1 (en) Video prediction apparatus and method for multi-format codec and video encoding/decoding apparatus and method using the video prediction apparatus and method
JP2008054267A (en) Image processing apparatus, image encoding device and image decoding device
KR100658660B1 (en) Cubic convolution interpolation factor producing method
WO2011121716A1 (en) Moving image encoding method, decoding method, encoder apparatus and decoder apparatus
JP4057503B2 (en) Resolution conversion filter coefficient determination method, image resolution conversion method, image resolution conversion apparatus, video re-encoding method, video re-encoding apparatus, resolution conversion filter coefficient determination program, image resolution conversion program, video re-encoding program, and the like Recording medium on which the program is recorded
KR101690253B1 (en) Image processing method and Apparatus
JPH0495463A (en) Method and device for image processing
KR101522260B1 (en) Method for scaling a resolution and an apparatus thereof
KR101526321B1 (en) Method for scaling a resolution and an apparatus thereof
JP6487002B2 (en) Decryption method and decryption apparatus
KR101059649B1 (en) Encoding device, method and decoding device using adaptive interpolation filter
JP3775180B2 (en) Image processing method and apparatus
JP2012120108A (en) Interpolation image generating apparatus and program, and moving image decoding device and program
JP4250553B2 (en) Image data processing method and apparatus
KR101683378B1 (en) Method for scaling a resolution and an apparatus thereof
JP2894140B2 (en) Image coding method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4057503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term