JP4057257B2 - Vehicle detection device - Google Patents

Vehicle detection device Download PDF

Info

Publication number
JP4057257B2
JP4057257B2 JP2001230801A JP2001230801A JP4057257B2 JP 4057257 B2 JP4057257 B2 JP 4057257B2 JP 2001230801 A JP2001230801 A JP 2001230801A JP 2001230801 A JP2001230801 A JP 2001230801A JP 4057257 B2 JP4057257 B2 JP 4057257B2
Authority
JP
Japan
Prior art keywords
acoustic
acoustic signal
time difference
signal
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001230801A
Other languages
Japanese (ja)
Other versions
JP2003043143A (en
Inventor
真人 鈴木
一之 佐藤
明彦 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Corp
Original Assignee
Amano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Corp filed Critical Amano Corp
Priority to JP2001230801A priority Critical patent/JP4057257B2/en
Publication of JP2003043143A publication Critical patent/JP2003043143A/en
Application granted granted Critical
Publication of JP4057257B2 publication Critical patent/JP4057257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駐車場等で利用して好適な音響信号を利用した車両等の検出装置に関する。
【0002】
【従来の技術】
現状の駐車場等での車両検出方法としては、駐車場ゲート近傍にループコイル、超音波センサー、光電管等を配設して使用した方法がある。
【0003】
ループコイルによる車両検出方法は、地面に埋設したコイルが作る磁界に車両が入った時、ループコイルのインダクタンスの変化を検出して、車両の有無を判定している。
【0004】
超音波センサーによる車両検出方法は、図10に示すように、地面に向けて取付けられた超音波発信機SNから発信された超音波が、車両OMから反射して戻ってくるまでの時間を求めることで車両を検出している。ここで、車両が存在する時は、存在しない時よりも超音波が戻ってくるまでの時間が短い。
【0005】
光電管によるセンサーは、発光器から受光器に向けて赤外線を飛ばす装置であり、光電管による方法は、これ等発光器と受光器との間に車両が入った時に赤外線が遮断されることを検出して、車両の有無を検出している。
【0006】
【発明が解決しようとする課題】
しかし、上述した各車両検出方法には夫々以下の如き問題点を有していた。
(1) 上述したループコイルによる車両検出方法は、ループコイルの埋設費が掛かると共に、設置時の感度調整に手間がかかる、舗装路面の厚さ変化等の経年変化等などによる感度変化等の問題がある。
(2) 超音波による方法は、風やサーモクライン(温度逆転層)などの環境要因によって、超音波が戻るまでの時間に差が生じ、車両検出が失敗する恐れがある。
(3) 光電管による車両検出では、赤外線のオン、オフだけの検出方法であり、検出物体の大きさ等認識出来ず、車両なのか、それ以外の物なのかの区別が不可能である。また、定期的にレンズの掃除等のメンテナンスが必要、設置時の角度調整などのチューニングに手間が掛かるなどの問題がある。
【0007】
そこで本発明の技術的課題は、埋設工事等が不要で風やサーモクライン(温度逆転層)などの環境要因の影響が無い安価にして、高性能な車両等の検出装置を提供することである。
【0008】
【課題を解決するための手段】
上述の技術的課題を解決するために、本発明に係る車両等の検出装置は、前記請求項1に記載の如く、音響信号を発生する音響発信器を含む音響信号発信手段と、前記音響信号を受信する少なくとも3つの音響受信器を含む音響信号受信手段と、前記音響発信器からの音響信号が前記少なくとも3つの音響受信器に到達する時間の各時間差を求める到達時間差演算手段、前記到達時間差に基づいて、前記音響信号発信手段と前記音響信号受信手段との間の音響信号経路上に存在する物体を検知する物体検知手段、及び、これ等各手段を制御するための演算処理装置とを備えて成る車両等の検出装置であって、上記演算処理装置によって制御される上記の到達時間差演算手段によって、上記少なくとも3つの音響受信器によって受信される音響信号のうち2つの音響信号の到達時間差を相互相関関数により演算することにより、上記物体検知手段による上記音響信号経路上に存在する物体検知を可能と成し、上記音響信号発信手段によって発信される音響信号を生成するに当って、上記の演算処理装置が、設置空間の音響特性に起因する音響信号の周波数成分が増幅、減衰する周波数帯域を把握するために、車両等の物体が存在しない時の上記音響信号発信手段より発信されたチャープ信号と、上記音響信号受信手段によって受信された信号間の伝達関数を求めて、白色雑音より当該伝達関数の出力により把握された設置空間の音響特性に起因して増幅、減衰する周波数帯域と、予想される騒音の周波数帯域を除去するためのデジタルフイルタ処理を行うと共に、上記物体の検知に当たって、上記の演算処理装置が、上記音響信号受信手段が受信した音響信号に対して、上記と同条件のデジタルフイルタ処理を行うことを特徴としている。
【0009】
更に、本発明に係る車両等の検出装置は、前記請求項3に記載の如く、駐車場のカーゲートに、音響信号を発生する音響発信器を含む音響信号発信手段と、前記音響信号を受信する少なくとも3つの音響受信器を含む音響信号受信手段と、前記音響発信器からの音響信号が前記少なくとも3つの音響受信器に到達する時間の各時間差を求める到達時間差演算手段、前記到達時間差に基づいて、前記音響信号発信手段と前記音響信号受信手段との間の音響信号経路上に存在する物体を検知する物体検知手段、及び、これ等各手段を制御するための演算処理装置とを設け、前記音響信号が前記音響発信器から前記音響受信器に到達するまでの到達時間差を求めることにより、前記カーゲート近傍に存在する車両を検出する車両等の検出装置であって、上記音響発信器と少くとも3つの前記音響受信器のうち、両端の受信器を除く少くとも1つを結ぶ仮想線が、通常ゲートが閉まった状態では車両の存在する可能性のないゲートバーの下で、且つ、ゲートバーと平行になるように配置され、上記演算処理装置によって制御される上記の到達時間差演算手段によって、上記少なくとも3つの音響受信器によって受信される音響信号のうち2つの音響信号の到達時間差を相互相関関数により演算することにより、上記物体検知手段による上記音響信号経路上に存在する物体検知を可能と成し、上記音響信号発信手段によって発信される音響信号を生成するに当って、上記の演算処理装置が、設置空間の音響特性に起因する音響信号の周波数成分が増幅、減衰する周波数帯域を把握するために、車両等の物体が存在しない時の上記音響信号発信手段より発信されたチャープ信号と、上記音響信号受信手段によって受信された信号間の伝達関数を求めて、白色雑音より当該伝達関数の出力により把握された設置空間の音響特性に起因して増幅、減衰する周波数帯域と、予想される騒音の周波数帯域を除去するためのデジタルフイルタ処理を行うと共に、上記物体の検知に当たっても、上記の演算処理装置が、上記音響信号受信手段が受信した音響信号をA/Dコンバータによって量子化したデジタル信号を取り込んで、生成したデジタル音響信号に対して、上記と同条件のデジタルフイルタ処理を行うことを特徴としている。
【0010】
上述した各手段によれば、音響信号発生手段であるスピーカから音響信号を発信すると、スピーカと対向する側に設けられた音響信号受信手段である複数のマイクで音響信号を受信し、その信号をA/Dコンバータにより量子化して演算処理装置に送信する。演算処理装置で量子化した各マイクの受信信号のうち、任意の2組に関する相互相関関数を計算し、各マイクに音響信号が到達するまでの時間差をそれぞれ求める。
【0011】
ゲートが閉まっている状態では、音響受信手段の少くとも3つのうち、両端の2つを除いたものの1つとスピーカを結ぶ線は、ゲートバーと平行に設置してあるため、この音響受信手段はスピーカの発信した音響を回析の影響を受けることなく受信することになる。従って、この受信手段を基準に考えることができる。
【0012】
スピーカと各マイク間に何も物体が存在していない時(Ta≒Tc時)の、音響信号が各マイクに到達するまでの時間差(Ta−Tb及びTc−Tb)を予め測定しておく。そして、Ta−Tb、又はTc−Tbが変化し、且つ、Ta≠Tcとなった時は(図2のような状態、以下この図について説明する)、物体が存在すると判定し、Ta−Tbの変化量により物体の大きさを判定し、存在する物体が車両かそれ以外の物かの判別を行う。
【0013】
Ta−Tb、又は、Tc−Tbが変化しても、Ta≒Tc(物体が存在しない状態)となった場合は、気温の影響で時間差が変化したものと判断し、再度Ta−Tb及びTc−Tbを測定し、次回からの基準時間差とする。
【0014】
そして、上記音響信号を生成するに当たって、演算処理装置によって、上記音響信号発信手段より発信したチャープ信号と、上記音響信号受信手段で受信された信号間の伝達関数を求めて、白色雑音より当該伝達関数の出力により把握された設置空間の音響特性に起因して増幅、減衰する周波数帯域と、予想される騒音の周波数帯域を除去するためのデジタルフイルタ処理を行う。また、車両等の検出に当たっては、受信した音響信号にも上述したのと同じ条件のデジタルフイルタ処理を行って、雑音中から発信された音響信号をほぼ忠実に抽出する。
【0015】
【発明の実施の形態】
以下に本発明に係る車両等の検出装置の実施の形態を図1から図10を参照しながら説明する。図1と図2は本発明に係る車両検出装置の基本原理を示すもので、図1に於いて、SPは音響源であるスピーカ、1A,1B,1CはそれぞれスピーカSPに対向して配置された音響受信器であるマイク、SA,SB,SCはそれぞれスピーカSPからマイク1A,1B,1Cに到達する音響信号、TaはスピーカSPからマイク1Aに音響信号SAが到達する到達時間、TbはスピーカSPからマイク1Bに音響信号SBが到達する到達時間、TcはスピーカSPからマイク1Cに音響信号SCが到達する到達時間である。
【0016】
図2に示すように、複数の(少くとも3つの)マイク1A〜1CをスピーカSPと対向するように設置する。スピーカSPから発信した音響信号SA〜SCが、車両MCで回析(回り込むこと)して伝達距離が伸び、各マイク1A〜1Cに音響信号SA〜SCが到達するまでの時間Ta〜Tcに差が出ることを利用し、車両を検出する。
【0017】
スピーカとマイクとの間に何も物体が存在していない時(Ta≒Tc時)の、音響信号が各マイクに到達するまでの到達時間差(Ta−Tb及びTc−Tb)を予め測定しておく。そして、到達時間差Ta−Tb又はTc−Tbが変化し、且つ、Ta≠Tcとなった時は(図2のような状態)、物体が存在すると判定し、Ta−Tbの変化量により物体の大きさを判定し、存在する物体が車両MCかそれ以外の物かの判別を行う。
【0018】
Ta−Tb、又は、Tc−Tbが変化しても、Ta≒Tc(物体が存在しない状態)となった場合は、気温の影響で時間差が変化したものと判断し、再度到達時間差Ta−Tb、及び、Tc−Tbを測定し、次回からの基準時間差とする。
【0019】
マイク1A〜1Cは、量子化(アナログ→デジタル変換)手段としての(A/Dコンバータ4(図5参照)を介して、演算処理装置10(図5参照)と接続する。その演算処理装置10で、各マイクに音響信号が到達するまでの到達時間差を相互相関関数により計測し、車両の有無を判定する。
【0020】
相互相関関数とは、2つの信号データの類似している箇所を見つけ、2つの信号の到達時間にどの位の時間差があるかを求める関数である。図3は、相互相関関数の一例を示すもので、信号Aに対して信号Bがどの位の時間差で遅れているかを求めている。信号A,Bのそれぞれの波形データを以下の関数で表わす。即ち、信号Aの時刻0からはじまる長さNの波形をA0(n)、信号Bの時刻kから始まる長さNの波形をB0(n)とすると、時刻kに於ける信号Aと信号Bの相互相関関数Crrは以下の通りとなる。
【数1】
【0021】
音響車両検出器設置場所の音響特性を把握する手段として、車両等が存在しない環境下でチャー信号(周波数が漸減又は漸増する信号)を音響化して放射し、これを各マイクで検出し、元信号に対する伝達関数を求めると共に、その伝達関数の出力が0(dB)に近い周波数帯:fωを把握する。伝達関数の出力(dB)の絶対値が大きいと、元信号が周波数環境の音響特性により変質しているため、各マイクで検出する信号間の相互相関関数の結果に対する信頼性が乏しくなる。
【0022】
伝達関数とは、あるシステムの周波数特性を調査する手段の一つであり、システムに入力された信号の各周波数成分のパワーがそのシステムによりどの程度増幅、減衰されるかを、各周波数毎に調べる信号処理関数である。
【0023】
音響信号が周囲の雑音に埋もれた場合、マイクで音響信号を受信したか否かの判断が不可能になるため、車のエンジン音や、人の話し声などの周波数領域から外れた音響信号でなければならない。また、音響信号は次の必要条件を満たしておれば、相互相関関数のピークが顕著に出力される。即ち、必要条件とは(1)一連の信号中のパワー変化が不規則であること。(2)一連の信号中において周波数変化が不規則であること。(3)周辺環境の音響特性により、各マイクに到達するまでに変質しないことである。
【0024】
そこで、発信する信号は周波数とパワーが不規則に変化する一連の信号(白色雑音、周波数分析をすると観測可能な全ての周波数帯域で一様なパワー分布である。)に対し、上記伝達関数の出力により把握された設置空間の音響特性に起因して増幅、減衰する周波数帯域(伝達関数の出力が0dBに近い周波数帯域以外の帯域)と、予想される周囲の雑音の周波数領域を除ためのデジタルフイルタ処理を行う。デジタルフイルタとは、信号に対しハードウエア、または、ソフトウエアにより信号を構成している周波数成分のうち、必要な周波数成分のみを抽出する信号処理を行うフイルタである。
【0025】
そして、受信した音響信号にも上述した処理と同じ条件のデジタルフイルタ処理を行うことで、雑音中から発信した音響信号をほぼ忠実に抽出することができる。
【0026】
図4は、デジタルフイルタ処理の動作フローを示す。白色雑音が発信すると、フイルタ処理に於いて、ステップR1で伝達関数0dB近傍の周波数域を抽出し、ステップR2で周囲の外乱信号の周波数域を除去して、音響信号を発信する。
【0027】
図5は、物体の検出フローを示すもので、演算処理装置10における音響信号発信手段5によって音響信号増幅手段であるアンプ2に音響信号を入力する。アンプ2によって増幅された音響信号により音響信号発生手段であるスピーカSPから音響信号が発生され、この音響信号はマイク1A,1B,1Cに入力される。
【0028】
マイクによって受信された音響信号はアンプ3により増幅されてA/Dコンバータ4に入力され、量子化される。演算処理装置10では、ステップS1でA/Dコンバータ4によって量子化されたデジタル信号データを取り込んで、前述したデジタルフイルタ処理を行った後、ステップS2で相互相関関数演算を行い、ステップS3で物体有無判定手段6時間差変化量により物体の概略の大きさを判定し、存在する物体が処理対象物体であるか否かを判定する。次にステップS4に進み、時間差が変化した時に物体が存在するか否かを判定する手段8により、音響信号の到達時間Ta,Tbの比較計算を行い、ステップS5で基準時間差(Ta−Tb,Tc−Tb)を測定する。
【0029】
図6は、車両検出の動作フローを示し、ステップS10でスピーカとマイクとの間に物体が存在しない時の音響信号到達時間差(基準時間差)を測定し、次にステップS11で音響信号を発信し、マイクでその音響信号を受信する。マイクで受信した音響信号はA/Dコンバータに入力され、ステップS14で前記図5に示した演算処理装置10に入力されたか否かを判断する。入力されておれば、ステップS15で受信信号に対して、外乱信号の周波数領域を除去するために前述したデジタルフイルタ処理を行う。入力されていなければ、ステップS16でシステム故障と判定する。次に、ステップS17に進み、音響信号到達時間差に変化があるか否かを判断し、変化がなければ、ステップS18で物体無しの検出を行う。変化があれば、ステップS19に進み、到達時間Ta≠Tcであるか否かを判断する。Ta≠Tcでなければ、ステップS20で基準時間差を測定してステップS11に戻る。Ta≠Tcであれば、ステップS21に進み、時間差の変化量から、物体は車両程度の大きさか否かを判断する。物体が車両程度の大きさでなければ、ステップS22に進み、車両以外の物体(人、自転車等)の検出を行う。物体が車両程度の大きさであれば、ステップS23で車両検出を行う。
【0030】
図7は、本発明の車両等の検出装置をカーゲート近傍の車両検出に応用した実施例を示す。図7に於いて、20はカーゲート、20Tはゲートバー、21はカーゲートに配置されたスピーカ、22はアームキャッチャー、23はアームキャッチャー22の近傍に設けられた円弧状のマイク取付板、M1,M2,M3,M4,M5は、それぞれ、スピーカ21に対向して取付板23に設けられたマイクである。
【0031】
図7に示すように、カーゲート本体にスピーカ21を取付け、アームキャッチャー22側に複数のマイクM1〜M5を取付ける。スピーカから発信した音響信号がマイクM1〜M5に到達するまでの到達時間差を求めることで、カーゲート21の近傍の車両検出可能である。
【0032】
スピーカ21とマイクM1〜M5との間の距離は、図7に示すように全て等距離でも良い。等距離であれば、いかなる気温でも全てのマイクに同時に音響信号が到達するので、温度補正等の必要が無くなり、処理が簡潔になる。アームキャッチャー22側に取付けているマイクの中で、ゲートバー真下に位置するマイクM3は、ゲートバー20Tの真下に車両が存在するか否かを検出するためのもので、ゲート真下に車両が居た場合はゲートバー20Tが降りないように制御する。
【0033】
図8は上記実施例の動作を示すゲート制御用ブロック図であって、20Aは信号処理及び音響車両検出手段、20Bは制御対象装置のアクション制御手段である。スピーカ21からの音響信号はマイクM1,M2,M3に向けられ、マイクの音響信号はアンプ24によって増幅された後に、A/Dコンバータ25に入力され、量子化される。量子化されたデータは手段20Aによって信号処理され、手段20Bによってアクション制御し、制御対象装置によってゲート開、発券動作等が行われる。
【0034】
即ち、図9の動作フローに示すように、ステップS30で音響信号を発信し、この発信信号に基づいてステップS31で物体が存在するか否かを判断し、ステップS32で、物体は検出したい対象物程度の大きさか否かの判断を行う。物体が検出したい程度の大きさでなければ、ステップS33に進み、対象物以外の物体を検出したと判断し、ステップS30に戻る。ステップS32で物体が対象物程度の大きさと判断すれば、ステップS34に進み、音響検出器で制御する装置のゲート開、発券動作等のアクション開始を行う。その後、ステップS35で物体がその場所から離れたか否かを判断し、離れておればアクションを終了する。
【0035】
【発明の効果】
以上説明したように、本発明に係る車両等の検出装置は、音響信号を発生する音響発信器を含む音響信号発信手段と、前記音響信号を受信する少くとも3つの音響受信器を含む音響信号受信手段と、前記音響発信器からの音響信号が前記少くとも3つの音響受信器に到達する時間の各時間差を求める到達時間差演算手段、及び、前記到達時間差に基づいて、前記音響発信器と前記音響受信器との間の音響信号経路上に存在する物体を検知すると共に、発信する音響信号と受信した音響信号に対して同条件のデジタルフイルタ処理を行うことで、雑音中から発信された音響信号をほぼ忠実に抽出できるものであるから、埋設工事等が不要で、しかも、風やサーモクライン(温度逆転層)などの環境要因の影響が無い安価にして、高性能な車両等の検出装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例による基本原理を示す説明図。
【図2】 本発明の実施例による基本原理を示す説明図。
【図3】 本発明で使用する相互相関関数波形の一例を示す説明図。
【図4】 白色雑音処理のフロー図。
【図5】 本発明の実施例による物体検知フロー図。
【図6】 本発明の実施例による車両検出の動作フロー図。
【図7】 本発明を駐車場管理装置に適用した実施例による説明図。
【図8】 図7の駐車場管理装置の動作フロー図。
【図9】 図7の駐車場管理装置の動作フロー図。
【図10】 従来の車両検出方法の一例を示す説明図。
【符号の説明】
1A,1B,1C マイク
4 A/Dコンバータ
10 演算処理装置
20 カーゲート
20T ゲートバー
21 スピーカ
22 ゲートキャッチャー
SP スピーカ
MC 車両
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a detection device for a vehicle or the like that uses an acoustic signal suitable for use in a parking lot or the like.
[0002]
[Prior art]
As a vehicle detection method in a current parking lot or the like, there is a method in which a loop coil, an ultrasonic sensor, a phototube or the like is provided in the vicinity of a parking lot gate.
[0003]
In the vehicle detection method using a loop coil, when a vehicle enters a magnetic field created by a coil embedded in the ground, a change in the inductance of the loop coil is detected to determine the presence or absence of the vehicle.
[0004]
As shown in FIG. 10, the vehicle detection method using the ultrasonic sensor obtains the time until the ultrasonic wave transmitted from the ultrasonic transmitter SN attached to the ground is reflected from the vehicle OM and returned. The vehicle is detected. Here, when the vehicle exists, the time until the ultrasonic wave returns is shorter than when the vehicle does not exist.
[0005]
A phototube sensor is a device that emits infrared light from a light emitter toward a light receiver. The phototube method detects that the infrared light is blocked when a vehicle enters between the light emitter and the light receiver. The presence or absence of a vehicle is detected.
[0006]
[Problems to be solved by the invention]
However, each of the vehicle detection methods described above has the following problems.
(1) The above-described vehicle detection method using a loop coil requires a loop coil burying cost and takes time to adjust the sensitivity at the time of installation, and problems such as a sensitivity change due to a secular change such as a thickness change of a paved road surface There is.
(2) In the method using ultrasonic waves, there is a risk that vehicle detection may fail due to a difference in time until the ultrasonic waves return due to environmental factors such as wind and thermocline (temperature inversion layer).
(3) Vehicle detection using a phototube is a detection method that only turns on and off infrared rays, and the size of the detected object cannot be recognized, so that it is impossible to distinguish between a vehicle and other objects. In addition, there is a problem that maintenance such as cleaning of the lens is required regularly, and tuning such as angle adjustment at the time of installation is troublesome.
[0007]
Therefore, a technical problem of the present invention is to provide a high-performance detection device for a vehicle and the like that is inexpensive and does not need to be affected by environmental factors such as wind and thermocline (temperature inversion layer). .
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned technical problem, a detection device for a vehicle or the like according to the present invention includes an acoustic signal transmitting means including an acoustic transmitter for generating an acoustic signal, and the acoustic signal as described in claim 1. An acoustic signal receiving means including at least three acoustic receivers for receiving the signal, an arrival time difference calculating means for obtaining each time difference between the time when the acoustic signal from the acoustic transmitter reaches the at least three acoustic receivers, and the arrival An object detecting means for detecting an object existing on an acoustic signal path between the acoustic signal transmitting means and the acoustic signal receiving means based on the time difference, and an arithmetic processing device for controlling these means ; a detecting device for a vehicle or the like made comprises a sound by the arrival time difference calculating means controlled by said processing unit, which is received by said at least three acoustic receivers Among the signals, by calculating the cross-correlation function of the arrival time difference between the two acoustic signals, forms allow detection of an object present on the acoustic signal path by the object detecting means, emitted by the acoustic signal transmitter When generating the acoustic signal to be generated, there is an object such as a vehicle in order for the arithmetic processing unit to grasp the frequency band in which the frequency component of the acoustic signal due to the acoustic characteristics of the installation space is amplified and attenuated. a chirp signal transmitted from the audio signal transmitting means when not, seek a transfer function between signals received by said acoustic signal receiving means, acoustic been installation space grasped by the output of the transfer function from the white noise Digital filter processing is performed to remove the frequency band that is amplified and attenuated due to the characteristics and the expected frequency band of noise, and the object is detected. Against the above-mentioned processing apparatus, to the acoustic signal from which the acoustic signal received by the receiving means, is characterized by performing the digital filter processing of the same condition.
[0009]
Furthermore, the detection device for a vehicle or the like according to the present invention receives an acoustic signal transmitting means including an acoustic transmitter for generating an acoustic signal in a car gate of a parking lot, and the acoustic signal. an acoustic signal receiving means comprises at least three acoustic receivers, and the arrival time difference calculating means for determining a respective time difference between the time the acoustic signal reaches the said at least three acoustic receivers from the acoustic transmitter, based on the time difference of arrival Te, object detecting means for detecting an object existing on the acoustic signal path between the audio signal transmitting means and said acoustic signal receiving means, and a processing unit for controlling the like each means is provided, by determining the arrival time difference to said acoustic signal reaches the acoustic receiver from the acoustic transmitter, detector der of a vehicle or the like for detecting a vehicle existing in the Kerr gate near In addition, a virtual line connecting at least one of the acoustic transmitter and at least three of the acoustic receivers excluding the receivers at both ends is a gate bar in which there is no possibility that a vehicle is normally present when the gate is closed. Of the acoustic signals received by the at least three acoustic receivers by the arrival time difference computing means , which is arranged in parallel with the gate bar and controlled by the arithmetic processing unit. by calculating the cross-correlation function of the difference between the arrival times of the acoustic signals, forms allow detection of an object present on the acoustic signal path by the object detecting means, generates an acoustic signal emitted by the acoustic signal transmitter hitting to said arithmetic processing unit, a frequency component of the acoustic signal due to the acoustic characteristics of the installation space is amplified and grasp the frequency band to be attenuated To the chirp signal which objects such as a vehicle was originated from the acoustic signal transmitter of the absence, seeking a transfer function between signals received by said acoustic signal receiving means, the output of the transfer function from the white noise In addition to performing digital filter processing to remove the frequency band that is amplified and attenuated due to the acoustic characteristics of the installation space grasped by the above and the expected frequency band of noise, the above calculation is performed even when detecting the object. The processing device takes in a digital signal obtained by quantizing the acoustic signal received by the acoustic signal receiving means by an A / D converter, and performs digital filter processing under the same conditions as above on the generated digital acoustic signal . It is a feature.
[0010]
According to each means described above, when an acoustic signal is transmitted from a speaker which is an acoustic signal generating means, the acoustic signal is received by a plurality of microphones which are acoustic signal receiving means provided on the side facing the speaker, and the signal is received. It is quantized by the A / D converter and transmitted to the arithmetic processing unit. Of the received signals of each microphone quantized by the arithmetic processing unit, a cross-correlation function regarding any two sets is calculated, and a time difference until the acoustic signal reaches each microphone is obtained.
[0011]
In the state where the gate is closed, the line connecting the speaker to one of the at least three of the sound receiving means excluding the two at both ends and the speaker is installed in parallel with the gate bar. Will be received without being affected by diffraction. Therefore, this receiving means can be considered as a reference.
[0012]
A time difference (Ta−Tb and Tc−Tb) until an acoustic signal reaches each microphone when no object is present between the speaker and each microphone (when Ta≈Tc) is measured in advance. When Ta-Tb or Tc-Tb changes and Ta ≠ Tc (state as shown in FIG. 2, this figure will be described below), it is determined that an object exists, and Ta-Tb The size of the object is determined based on the amount of change, and it is determined whether the existing object is a vehicle or any other object.
[0013]
Even if Ta-Tb or Tc-Tb changes, if Ta≈Tc (state in which no object is present), it is determined that the time difference has changed due to the influence of the temperature, and Ta-Tb and Tc again. -Tb is measured and set as a reference time difference from the next time.
[0014]
Then, in order to generate the acoustic signal, by the processing unit to seek a chirp signal originating from the acoustic signal transmitter, the transfer function between signals received by said acoustic signal receiving means, the transmission from the white noise Digital filter processing is performed to remove the frequency band that is amplified and attenuated due to the acoustic characteristics of the installation space ascertained from the output of the function, and the expected frequency band of noise . When detecting a vehicle or the like, the received acoustic signal is subjected to digital filter processing under the same conditions as described above, and the acoustic signal transmitted from the noise is almost faithfully extracted.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a detection device for a vehicle or the like according to the present invention will be described below with reference to FIGS. 1 and 2 show the basic principle of the vehicle detection device according to the present invention. In FIG. 1, SP is a speaker as a sound source, and 1A, 1B, and 1C are arranged facing the speaker SP, respectively. The microphones SA, SB, and SC that are the acoustic receivers are acoustic signals that reach the microphones 1A, 1B, and 1C from the speaker SP, Ta is the arrival time that the acoustic signal SA reaches the microphone 1A from the speaker SP, and Tb is the speaker. The arrival time for the acoustic signal SB to reach the microphone 1B from the SP, and Tc is the arrival time for the acoustic signal SC to reach the microphone 1C from the speaker SP.
[0016]
As shown in FIG. 2, a plurality (at least three) of microphones 1A to 1C are installed so as to face the speaker SP. The acoustic signals SA to SC transmitted from the speaker SP are diffracted (turned around) by the vehicle MC to increase the transmission distance, and the difference in time Ta to Tc until the acoustic signals SA to SC reach the microphones 1A to 1C. The vehicle is detected by using that.
[0017]
When there is no object between the speaker and the microphone (when Ta≈Tc), the arrival time difference (Ta−Tb and Tc−Tb) until the acoustic signal reaches each microphone is measured in advance. deep. When the arrival time difference Ta−Tb or Tc−Tb changes and Ta ≠ Tc (the state shown in FIG. 2), it is determined that the object exists, and the amount of change of the object depends on the amount of change in Ta−Tb. The size is determined, and it is determined whether the existing object is the vehicle MC or any other object.
[0018]
Even if Ta−Tb or Tc−Tb changes, if Ta≈Tc (state in which no object is present), it is determined that the time difference has changed due to the temperature, and the arrival time difference Ta−Tb again. , And Tc−Tb are measured and set as a reference time difference from the next time.
[0019]
Mike 1A~1C via quantization as (analog → digital converter) means (A / D converter 4 (see FIG. 5), connected to the processing unit 10 (see FIG. 5). As processing unit 10 Thus, the arrival time difference until the acoustic signal reaches each microphone is measured by the cross-correlation function, and the presence or absence of the vehicle is determined.
[0020]
The cross-correlation function is a function that finds a location where two signal data are similar and determines how much time difference there is between the arrival times of the two signals. FIG. 3 shows an example of a cross-correlation function, which determines how much the signal B is delayed with respect to the signal A. Each waveform data of the signals A and B is expressed by the following function. That is, assuming that the waveform of length N starting from time 0 of signal A is A0 (n) and the waveform of length N starting from time k of signal B is B0 (n), signal A and signal B at time k. The cross-correlation function Crr is as follows.
[Expression 1]
[0021]
As a means to grasp the acoustic characteristics of the acoustic vehicle detector location, chirp signal in an environment where a vehicle or the like is not present (a signal frequency is gradually reduced or gradually increased) to radiate acoustically of which was detected by the microphone , together with obtaining the transfer function for the original signal, a frequency band close to the output of the transfer function 0 (dB): to understand the f [omega]. If the absolute value of the output (dB) of the transfer function is large, the reliability of the result of the cross-correlation function between the signals detected by each microphone becomes poor because the original signal is altered due to the acoustic characteristics of the frequency environment.
[0022]
A transfer function is one of the means for investigating the frequency characteristics of a system, and how much the power of each frequency component of the signal input to the system is amplified and attenuated by the system for each frequency. This is a signal processing function to check.
[0023]
If the sound signal is buried in the surrounding noise, it will be impossible to determine whether the sound signal has been received by the microphone, so the sound signal must be out of the frequency domain, such as car engine sound or human speech. I must. In addition, if the acoustic signal satisfies the following necessary conditions, the peak of the cross correlation function is remarkably output. That is, the necessary conditions are (1) the power change in a series of signals is irregular. (2) The frequency change is irregular in a series of signals. (3) Due to the acoustic characteristics of the surrounding environment, it does not change before reaching each microphone.
[0024]
Therefore, the signal originating frequency and power irregularly change a series of signals (a white noise, and uniform power distribution in all frequency bands observable frequency analysis.) To, the transfer function due to the acoustic characteristics of the installation space which is grasped by the output amplifier, and the attenuation frequency band (band output is other than a frequency band close to 0dB transfer function), for excluding the frequency range of ambient noise to be expected The digital filter processing is performed. A digital filter is a filter that performs signal processing for extracting only necessary frequency components from among frequency components constituting a signal by hardware or software.
[0025]
Then, by performing digital filter processing on the received acoustic signal under the same conditions as those described above , the acoustic signal transmitted from the noise can be extracted almost faithfully.
[0026]
FIG. 4 shows an operation flow of digital filter processing. When white noise is transmitted, in the filtering process, a frequency region near the transfer function 0 dB is extracted in step R1, and a frequency region of a surrounding disturbance signal is removed in step R2, and an acoustic signal is transmitted.
[0027]
FIG. 5 shows an object detection flow. An acoustic signal is input to the amplifier 2 which is an acoustic signal amplifying means by the acoustic signal transmitting means 5 in the arithmetic processing unit 10. An acoustic signal is generated from the speaker SP, which is an acoustic signal generating means, by the acoustic signal amplified by the amplifier 2, and this acoustic signal is input to the microphones 1A, 1B, and 1C.
[0028]
The acoustic signal received by the microphone is amplified by the amplifier 3 and input to the A / D converter 4 where it is quantized. The arithmetic processing unit 10 takes in the digital signal data quantized by the A / D converter 4 in step S1, performs the digital filter processing described above , performs a cross-correlation function calculation in step S2, and performs object processing in step S3. presence determining means 6 determines the size of the outline of the object by the time difference change amount present object determines whether the object to be treated. Next, the process proceeds to step S4, where the sound signal arrival times Ta and Tb are compared and calculated by means 8 for determining whether or not an object is present when the time difference changes. In step S5, the reference time difference (Ta-Tb, Tc−Tb) is measured.
[0029]
FIG. 6 shows an operation flow of vehicle detection. In step S10, an acoustic signal arrival time difference (reference time difference) is measured when no object is present between the speaker and the microphone, and then an acoustic signal is transmitted in step S11. The microphone receives the acoustic signal. The acoustic signal received by the microphone is input to the A / D converter, and it is determined in step S14 whether or not it has been input to the arithmetic processing unit 10 shown in FIG . If I is entered, for the received signal at step S15, it performs a digital filter process described above to remove the frequency range of the disturbance signal. If not input, it is determined in step S16 that there is a system failure. Next, it progresses to step S17, it is judged whether there is any change in the acoustic signal arrival time difference. If there is no change, the absence of an object is detected in step S18. If there is a change, the process proceeds to step S19 to determine whether or not the arrival time Ta ≠ Tc. If Ta ≠ Tc, the reference time difference is measured in step S20, and the process returns to step S11. If Ta ≠ Tc, the process proceeds to step S21, and it is determined from the amount of change in the time difference whether the object is about the size of the vehicle. If the object is not as large as the vehicle, the process proceeds to step S22, and an object (person, bicycle, etc.) other than the vehicle is detected. If the object is about the size of a vehicle, vehicle detection is performed in step S23.
[0030]
FIG. 7 shows an embodiment in which the detection device for a vehicle or the like of the present invention is applied to vehicle detection in the vicinity of the car gate. In FIG. 7, 20 is a car gate, 20T is a gate bar, 21 is a speaker arranged at the car gate, 22 is an arm catcher, 23 is an arc-shaped microphone mounting plate provided in the vicinity of the arm catcher 22, M1, M2, M3, M4, and M5 are microphones provided on the mounting plate 23 so as to face the speaker 21, respectively.
[0031]
As shown in FIG. 7, a speaker 21 is attached to the car gate body, and a plurality of microphones M1 to M5 are attached to the arm catcher 22 side. The vehicle in the vicinity of the car gate 21 can be detected by calculating the arrival time difference until the acoustic signal transmitted from the speaker reaches the microphones M1 to M5.
[0032]
The distance between the speaker 21 and the microphones M1 to M5 may all be equal as shown in FIG. If the distance is equal, the acoustic signal reaches all the microphones simultaneously at any temperature, so that there is no need for temperature correction and the processing is simplified. Among the microphones attached to the arm catcher 22 side, the microphone M3 located immediately below the gate bar is for detecting whether or not a vehicle is present directly below the gate bar 20T. Controls the gate bar 20T not to go down.
[0033]
FIG. 8 is a block diagram for gate control showing the operation of the above embodiment, in which 20A is signal processing and acoustic vehicle detection means, and 20B is action control means of the device to be controlled. The acoustic signal from the speaker 21 is directed to the microphones M1, M2, and M3. The acoustic signal of the microphone is amplified by the amplifier 24, and then input to the A / D converter 25 and quantized. The quantized data is signal-processed by means 20A, action-controlled by means 20B, and gate opening, ticketing operation, etc. are performed by the controlled device.
[0034]
That is, as shown in the operation flow of FIG. 9, an acoustic signal is transmitted in step S30, and based on this transmission signal, it is determined whether or not an object is present in step S31. In step S32, the object is an object to be detected. Judgment is made as to whether or not it is the size of an object. If the object is not large enough to be detected, the process proceeds to step S33, where it is determined that an object other than the object has been detected, and the process returns to step S30. If it is determined in step S32 that the object is about the size of the target, the process proceeds to step S34, where actions such as gate opening and ticketing operation of the device controlled by the acoustic detector are started. Thereafter, in step S35, it is determined whether or not the object has left the place. If the object has left, the action is terminated.
[0035]
【The invention's effect】
As described above, the detection device for a vehicle or the like according to the present invention includes an acoustic signal transmitting means including an acoustic transmitter that generates an acoustic signal, and an acoustic signal including at least three acoustic receivers that receive the acoustic signal. Receiving means, arrival time difference calculating means for obtaining each time difference between the time when the acoustic signal from the acoustic transmitter reaches the at least three acoustic receivers, and based on the arrival time difference, the acoustic transmitter and the By detecting an object that exists on the acoustic signal path with the acoustic receiver and performing digital filter processing under the same conditions on the transmitted acoustic signal and the received acoustic signal, Since the signal can be extracted almost faithfully, there is no need for burial work, etc., and there is no influence of environmental factors such as wind and thermocline (temperature inversion layer), and it is inexpensive and has high performance. It is possible to provide a detection apparatus.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic principle according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a basic principle according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing an example of a cross-correlation function waveform used in the present invention.
FIG. 4 is a flowchart of white noise processing.
FIG. 5 is an object detection flowchart according to an embodiment of the present invention.
FIG. 6 is an operation flowchart of vehicle detection according to the embodiment of the present invention.
FIG. 7 is an explanatory diagram of an embodiment in which the present invention is applied to a parking lot management apparatus.
FIG. 8 is an operation flowchart of the parking lot management apparatus of FIG.
FIG. 9 is an operation flowchart of the parking lot management apparatus of FIG. 7;
FIG. 10 is an explanatory diagram showing an example of a conventional vehicle detection method.
[Explanation of symbols]
1A, 1B, 1C Microphone 4 A / D converter
DESCRIPTION OF SYMBOLS 10 Arithmetic processing device 20 Car gate 20T Gate bar 21 Speaker 22 Gate catcher SP Speaker MC Vehicle

Claims (4)

音響信号を発生する音響発信器を含む音響信号発信手段と、前記音響信号を受信する少なくとも3つの音響受信器を含む音響信号受信手段と、前記音響発信器からの音響信号が前記少なくとも3つの音響受信器に到達する時間の各時間差を求める到達時間差演算手段、前記到達時間差に基づいて、前記音響信号発信手段と前記音響信号受信手段との間の音響信号経路上に存在する物体を検知する物体検知手段、及び、これ等各手段を制御するための演算処理装置とを備えて成る車両等の検出装置であって、
上記演算処理装置によって制御される上記の到達時間差演算手段によって、上記少なくとも3つの音響受信器によって受信される音響信号のうち2つの音響信号の到達時間差を相互相関関数により演算することにより、上記物体検知手段による上記音響信号経路上に存在する物体検知を可能と成し
上記音響信号発信手段によって発信される音響信号を生成するに当って、上記の演算処理装置が、設置空間の音響特性に起因する音響信号の周波数成分が増幅、減衰する周波数帯域を把握するために、車両等の物体が存在しない時の上記音響信号発信手段より発信されたチャープ信号と、上記音響信号受信手段によって受信された信号間の伝達関数を求めて、白色雑音より当該伝達関数の出力により把握された設置空間の音響特性に起因して増幅、減衰する周波数帯域と、予想される騒音の周波数帯域を除去するためのデジタルフイルタ処理を行うと共に、
上記物体の検知に当たって、上記の演算処理装置が、上記音響信号受信手段が受信した音響信号をA/Dコンバータによって量子化したデジタル信号を取り込んで、生成したデジタル音響信号に対して、上記と同条件のデジタルフイルタ処理を行うことを特徴とする車両等の検出装置。
An acoustic signal transmitting means including an acoustic transmitter for generating an acoustic signal; an acoustic signal receiving means including at least three acoustic receivers for receiving the acoustic signal; and an acoustic signal from the acoustic transmitter is the at least three acoustic signals. and the arrival time difference calculating means for determining a respective time difference between the time to reach the receiver, on the basis of the arrival time difference, detects an object existing on the acoustic signal path between the audio signal transmitting means and said acoustic signal receiving means A detection device for a vehicle or the like comprising an object detection means and an arithmetic processing device for controlling each of these means ,
By the arrival time difference calculating means controlled by said processing unit, among the acoustic signals received by said at least three acoustic receivers, by calculating the cross-correlation function of the arrival time difference between the two acoustic signals, said form allowing the detection of an object present on the acoustic signal path by the object detecting means,
In generating the acoustic signal transmitted by the acoustic signal transmitting means , the arithmetic processing unit is configured to grasp the frequency band in which the frequency component of the acoustic signal due to the acoustic characteristics of the installation space is amplified and attenuated. a chirp signal object such as a vehicle was originated from the acoustic signal transmitter of the absence, seeking a transfer function between signals received by said acoustic signal receiving means, the output of the transfer function from the white noise Performs digital filter processing to remove the frequency band that is amplified and attenuated due to the acoustic characteristics of the grasped installation space and the expected frequency band of noise,
In the detection of the object, the arithmetic processing unit takes in a digital signal obtained by quantizing the acoustic signal received by the acoustic signal receiving unit with an A / D converter , and the same processing as described above is performed on the generated digital acoustic signal . A detection device for a vehicle or the like, which performs digital filter processing of conditions .
前記音響信号受信手段により受信された音響信号を量子化したデジタル音響信号を取り込み、該量子化した信号を基に相互相関関数演算を行って時間差変化量を計算することにより、物体の大きさを判定する大きさ判定手段と、判定した物体の大きさから、存在する物体が処理対象物であるか否かを判定し、到達時間差の比較を行って基準時間差を測定する手段を備えていることを特徴とする請求項1に記載の車両等の検出装置。The acoustic signals received by the acoustic signal receiving means takes in the digital audio signal quantized by calculating a time difference variation by performing a cross-correlation function calculation based on said amount coca signal, the size of the object It is provided with a size determining means for determining, and a means for determining whether or not an existing object is a processing object from the determined size of the object, and comparing the arrival time difference and measuring the reference time difference. The detection apparatus of the vehicle etc. of Claim 1 characterized by these. 駐車場のカーゲートに、音響信号を発生する音響発信器を含む音響信号発信手段と、前記音響信号を受信する少なくとも3つの音響受信器を含む音響信号受信手段と、前記音響発信器からの音響信号が前記少なくとも3つの音響受信器に到達する時間の各時間差を求める到達時間差演算手段、前記到達時間差に基づいて、前記音響信号発信手段と前記音響信号受信手段との間の音響信号経路上に存在する物体を検知する物体検知手段、及び、これ等各手段を制御するための演算処理装置とを設け、前記音響信号が前記音響発信器から前記音響受信器に到達するまでの到達時間差を求めることにより、前記カーゲート近傍に存在する車両を検出する車両等の検出装置であって、
上記音響発信器と少くとも3つの前記音響受信器のうち、両端の受信器を除く少くとも1つを結ぶ仮想線が、通常ゲートが閉まった状態では車両の存在する可能性のないゲートバーの下で、且つ、ゲートバーと平行になるように配置され、上記演算処理装置によって制御される上記の到達時間差演算手段によって、上記少なくとも3つの音響受信器によって受信される音響信号のうち2つの音響信号の到達時間差を相互相関関数により演算することにより、上記物体検知手段による上記音響信号経路上に存在する物体検知を可能と成し、
上記音響信号発信手段によって発信される音響信号を生成するに当って、上記の演算処理装置が、設置空間の音響特性に起因する音響信号の周波数成分が増幅、減衰する周波数帯域を把握するために、車両等の物体が存在しない時の上記音響信号発信手段より発信されたチャープ信号と、上記音響信号受信手段によって受信された信号間の伝達関数を求めて、白色雑音より当該伝達関数の出力により把握された設置空間の音響特性に起因して増 幅、減衰する周波数帯域と、予想される騒音の周波数帯域を除去するためのデジタルフイルタ処理を行うと共に、
上記物体の検知に当たって、上記の演算処理装置が、上記音響信号受信手段が受信した音響信号をA/Dコンバータによって量子化したデジタル信号を取り込んで、生成したデジタル音響信号に対して、上記と同条件のデジタルフイルタ処理を行うことを特徴とする車両等の検出装置。
An acoustic signal transmitting means including an acoustic transmitter for generating an acoustic signal in a car gate of a parking lot, an acoustic signal receiving means including at least three acoustic receivers for receiving the acoustic signal, and an acoustic signal from the acoustic transmitter There the arrival time difference calculating means for determining a respective time difference between the time to reach said at least three acoustic receivers, on the basis of the arrival time difference, on the acoustic signal path between the acoustic signal receiving means and said acoustic signal transmitter An object detection means for detecting an existing object and an arithmetic processing device for controlling each of these means are provided, and an arrival time difference until the acoustic signal reaches the acoustic receiver from the acoustic transmitter is obtained. Thus, a detection device such as a vehicle for detecting a vehicle existing in the vicinity of the car gate,
An imaginary line connecting at least one of the acoustic transmitters and at least three of the acoustic receivers except for the receivers at both ends is below the gate bar where the vehicle is not likely to exist when the gate is normally closed. in, and, are arranged parallel to the gate bar, by the arrival time difference calculating means controlled by said processing unit, among the acoustic signals received by said at least three acoustic receivers, two acoustic signals of by calculating the cross-correlation function of the arrival time difference, forms allow detection of an object present on the acoustic signal path by the object detecting means,
In generating the acoustic signal transmitted by the acoustic signal transmitting means , the arithmetic processing unit is configured to grasp the frequency band in which the frequency component of the acoustic signal due to the acoustic characteristics of the installation space is amplified and attenuated. a chirp signal object such as a vehicle was originated from the acoustic signal transmitter of the absence, seeking a transfer function between signals received by said acoustic signal receiving means, the output of the transfer function from the white noise grasping been installation space of amplifier due to the acoustic characteristics, it performs a frequency band for attenuating the digital filter processing for removing a frequency band of the noise to be expected,
In the detection of the object, the arithmetic processing unit takes in a digital signal obtained by quantizing the acoustic signal received by the acoustic signal receiving unit with an A / D converter , and the same processing as described above is performed on the generated digital acoustic signal . A detection device for a vehicle or the like, which performs digital filter processing of conditions .
前記音響信号受信手段により受信された音響信号を量子化したデジタル音響信号を取り込み、該量子化した信号を基に相互相関関数演算を行って時間差変化量を計算することにより、物体の大きさを判定する大きさ判定手段と、判定した物体の大きさから、存在する物体が処理対象物であるか否かを判定し、到達時間差の比較を行って基準時間差を測定する手段を備えていることを特徴とする請求項3に記載の車両等の検出装置。The acoustic signals received by the acoustic signal receiving means takes in the digital audio signal quantized by calculating a time difference variation by performing a cross-correlation function calculation based on said amount coca signal, the size of the object It is provided with a size determining means for determining, and a means for determining whether or not an existing object is a processing object from the determined size of the object, and comparing the arrival time difference and measuring the reference time difference. The detection apparatus of the vehicle etc. of Claim 3 characterized by these.
JP2001230801A 2001-07-31 2001-07-31 Vehicle detection device Expired - Fee Related JP4057257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230801A JP4057257B2 (en) 2001-07-31 2001-07-31 Vehicle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230801A JP4057257B2 (en) 2001-07-31 2001-07-31 Vehicle detection device

Publications (2)

Publication Number Publication Date
JP2003043143A JP2003043143A (en) 2003-02-13
JP4057257B2 true JP4057257B2 (en) 2008-03-05

Family

ID=19062948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230801A Expired - Fee Related JP4057257B2 (en) 2001-07-31 2001-07-31 Vehicle detection device

Country Status (1)

Country Link
JP (1) JP4057257B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658267B (en) * 2013-11-15 2019-08-16 国民技术股份有限公司 A kind of vehicle state detection method and vehicle condition detection device
JP6097327B2 (en) 2015-04-03 2017-03-15 株式会社ソニー・インタラクティブエンタテインメント Portable terminal, acoustic distance measuring system, and acoustic distance measuring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104664A (en) * 1973-02-05 1974-10-03
JPS58190798U (en) * 1982-06-11 1983-12-19 石田通信機株式会社 Parking gate sensing device
JPH01112187A (en) * 1988-08-26 1989-04-28 Matsushita Electric Works Ltd Ultrasonic body detector
JPH06222130A (en) * 1993-01-26 1994-08-12 Matsushita Electric Works Ltd Method and device for measuring three-dimensional position
JP2940507B2 (en) * 1997-01-31 1999-08-25 日本電気株式会社 Ocean floor acoustic characteristics measuring method and measuring device
JPH11304906A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Sound-source estimation device and its recording medium with recorded program

Also Published As

Publication number Publication date
JP2003043143A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US8005231B2 (en) Ambient noise sound level compensation
US5867581A (en) Hearing aid
CN110211561A (en) The method and apparatus that road noise for Filled function is eliminated
Zhang et al. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
US10024712B2 (en) Acoustic presence detector
JP3340496B2 (en) Estimation method of transfer characteristics of active noise control system
US20020076059A1 (en) Apparatus and method for reducing noise
US20090003617A1 (en) Noise cancellation for buildings and/or structures
KR20210087329A (en) An Active Type of a System for Removing a Noise Generated in a Road or Street
JP2000338234A (en) Monitoring system
WO2007100976A2 (en) Method and apparatus for processing indicator audio signals in a vehicle cabin
JP4057257B2 (en) Vehicle detection device
JP3920226B2 (en) Resonance frequency detection method, resonance frequency selection method, and resonance frequency detection apparatus
JP2016185798A (en) Vehicle window closure forgetting prevention device, vehicle window closure forgetting prevention system, vehicle window closure forgetting prevention method and vehicle window closure forgetting prevention program
Choudhury et al. Review of emergency vehicle detection techniques by acoustic signals
GB2530374A (en) Device and method for sound-based environment detection
JP7445748B2 (en) Computer-aided noise compensation for ultrasonic sensor systems
JP3377167B2 (en) Public space loudspeaker method and apparatus
CN103557928B (en) Based on the sound detection equipment of laser light diffraction principle
CN114430516B (en) Control method and system based on proximity sensor
JPH07146988A (en) Body movement detecting device
KR20210087305A (en) An Active Type of a System for Removing a Noise Generated outside a Building
EP1002311B1 (en) Method and apparatus for attenuating sound
KR20210087324A (en) An Active Sound Generating Type of a System for Removing a Noise Based on Detecting a Noise Source
KR102331758B1 (en) Method for providing sound detection information, apparatus detecting sound around vehicle, and vehicle including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees