JPH06222130A - Method and device for measuring three-dimensional position - Google Patents

Method and device for measuring three-dimensional position

Info

Publication number
JPH06222130A
JPH06222130A JP1065293A JP1065293A JPH06222130A JP H06222130 A JPH06222130 A JP H06222130A JP 1065293 A JP1065293 A JP 1065293A JP 1065293 A JP1065293 A JP 1065293A JP H06222130 A JPH06222130 A JP H06222130A
Authority
JP
Japan
Prior art keywords
ultrasonic
source
distance
wave
wave receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1065293A
Other languages
Japanese (ja)
Inventor
Makio Asai
真生雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1065293A priority Critical patent/JPH06222130A/en
Publication of JPH06222130A publication Critical patent/JPH06222130A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To calculate the three-dimensional coordinates of an ultrasonic wave source without information about the transmission timing of the ultrasonic wave source. CONSTITUTION:Four receiving units 2a, 2b, 2c, 2d are disposed in such a way as not to locate on the same circumference, for receiving ultrasonic waves from an ultrasonic wave source 1. A path difference calculation means 4 sets the distance between either one of the receiving units (2a) and the ultrasonic wave source 1 as a reference distance, thereby calculating the path difference between the distance from each of the other wave receiving units 2b, 2c, 2d to the ultrasonic wave source 1 and the reference distance. A position computation means 5 handles the distance from each receiving unit 2a, 2b, 2c, 2d to the ultrasonic wave source 1 as the addition of the path difference and the reference distance and calculates the three-dimensional coordinates of the ultrasonic wave source and the reference distance according to four relational expressions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波源から送波され
る方向性を持たない超音波を受信することによって、規
定の座標空間内での超音波源の位置座標を測定する3次
元位置測定方法および3次元位置測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a three-dimensional apparatus for measuring the position coordinates of an ultrasonic wave source within a prescribed coordinate space by receiving a non-directional ultrasonic wave transmitted from the ultrasonic wave source. The present invention relates to a position measuring method and a three-dimensional position measuring device.

【0002】[0002]

【従来の技術】従来より、図4に示すように、異なる位
置に固定的に配置された3個の受波装置2a,2b,2
cを用いて、超音波源1から間欠的に送波されるパルス
状の超音波を受波することによって、超音波源1と各受
波装置2a,2b,2cとの距離を求め、求めた距離に
基づいて超音波源1の座標位置を決定するようにした3
次元位置測定装置が提案されている。超音波源1と各受
波装置2a,2b,2cとの距離を求める方法として
は、超音波源1から超音波を送波してから各受波装置2
a,2b,2cでその超音波を受波するまでの時間を求
める方法が一般的である。この方法では、超音波源1で
の超音波の送波タイミングを受信側でも知ることが必要
であるから、超音波信号処理手段3によって超音波源1
の送波タイミングを制御し、受波装置2a,2b,2c
で受波した受波信号を送波タイミングを基準にして処理
するようになっている。ここに、超音波信号処理手段3
によって超音波源1の送波タイミングを制御するため
に、図4に示すようにケーブル9を介して直接接続する
ほか、図5に示すようにワイヤレス送信部7とワイヤレ
ス受信部8とを設けることによって、光や電波を媒体と
するワイヤレス信号を介して送波タイミングを伝送する
ことも考えられている。受波装置2a,2b,2cで受
信され超音波信号処理手段3で増幅、波形整形などの処
理が施された受波信号は、距離算出手段6に入力されて
超音波源1と各受波装置2a,2b,2cとの距離が求
められる。さらに、この距離に基づいて位置演算手段5
では超音波源1の3次元の座標位置を求めるのである。
距離算出手段6は、音速を考慮することによって超音波
源1から各受波装置2a,2b,2cに超音波が到達す
るまでの時間を距離に換算する。
2. Description of the Related Art Conventionally, as shown in FIG. 4, three wave receiving devices 2a, 2b, 2 fixedly arranged at different positions.
By using c to receive pulsed ultrasonic waves that are intermittently transmitted from the ultrasonic source 1, the distance between the ultrasonic source 1 and each of the wave receiving devices 2a, 2b, 2c is obtained and obtained. The coordinate position of the ultrasonic source 1 is determined based on the distance 3
A dimensional position measuring device has been proposed. As a method of obtaining the distance between the ultrasonic wave source 1 and each of the wave receiving devices 2a, 2b, 2c, the ultrasonic wave is transmitted from the ultrasonic wave source 1 and then each of the wave receiving devices 2 is transmitted.
Generally, a, 2b, and 2c are used to determine the time until the ultrasonic wave is received. In this method, it is necessary to know the transmission timing of the ultrasonic wave in the ultrasonic source 1 even on the receiving side, so that the ultrasonic signal processing means 3 causes the ultrasonic source 1 to operate.
Of the wave receiving devices 2a, 2b, 2c
The received signal received at is processed on the basis of the transmission timing. Here, the ultrasonic signal processing means 3
In order to control the transmission timing of the ultrasonic source 1 by means of the above, a direct connection is made via a cable 9 as shown in FIG. 4, and a wireless transmitter 7 and a wireless receiver 8 are provided as shown in FIG. It is also considered that the transmission timing is transmitted via a wireless signal using light or radio waves as a medium. The received signals that have been received by the wave receiving devices 2a, 2b, 2c and have undergone processing such as amplification and waveform shaping by the ultrasonic signal processing means 3 are input to the distance calculation means 6 and received by the ultrasonic source 1 and each received wave. The distance to the devices 2a, 2b, 2c is determined. Further, the position calculation means 5 is based on this distance.
Then, the three-dimensional coordinate position of the ultrasonic source 1 is obtained.
The distance calculation means 6 converts the time required for the ultrasonic waves to reach each of the wave receiving devices 2a, 2b, 2c from the ultrasonic wave source 1 into a distance by considering the sound velocity.

【0003】一方、位置演算手段5は、以下の演算を行
うことによって超音波源1の座標位置を求める。いま、
図6に示すように、受波装置2aを3次元座標の原点に
配置し、他の受波装置2b,2cをそれぞれy軸上、x
軸上に配置し、各受波装置2a,2b,2cの3次元の
座標位置はそれぞれ(0,0,0)、(0,b,0)、
(c,0,0)であって、求めるべき超音波源1の座標
位置は(x0 ,y0 ,z0 )であるものとする。ここ
で、距離算出手段6により求めた超音波源1と各受波装
置2a,2b,2cとの距離が、それぞれLa,Lb,
Lcであったとする。
On the other hand, the position calculation means 5 obtains the coordinate position of the ultrasonic source 1 by performing the following calculation. Now
As shown in FIG. 6, the wave receiving device 2a is arranged at the origin of three-dimensional coordinates, and the other wave receiving devices 2b and 2c are respectively placed on the y-axis and x.
The three-dimensional coordinate positions of the wave receiving devices 2a, 2b, and 2c are arranged on the axis and are (0, 0, 0), (0, b, 0),
It is (c, 0, 0), and the coordinate position of the ultrasonic source 1 to be obtained is (x 0 , y 0 , z 0 ). Here, the distances between the ultrasonic wave source 1 and the respective wave receiving devices 2a, 2b, 2c obtained by the distance calculating means 6 are La, Lb, respectively.
It is assumed to be Lc.

【0004】上記条件のもとで超音波源1の座標位置
(x0 ,y0 ,z0 )に関する関係式を、各受波装置2
a,2b,2cの座標位置(0,0,0)、(0,b,
0)、(c,0,0)と、距離La,Lb,Lcとによ
って表すことを考える。すなわち、ピタゴラスの定理を
適用すれば、次の3個の関係式が得られる。 La2 −y0 2 =Lb2 −(b−y0 2 La2 −x0 2 =Lc2 −(c−x0 20 2 +y0 2 +z0 2 =La2 ここで、超音波源1が室内のような限定された空間に存
在し、z0 ≧0に規定することができるものとすると
き、超音波源1の座標位置(x0 ,y0 ,z0 )は、上
式をそれぞれ変形して以下のように求めることができる
のである。 x0 =(La2 −Lc2 +c2 )/2c y0 =(La2 −Lb2 +b2 )/2b z0 ={La2 −(x0 2 +y0 2 )}1/2 上述した例では、3個の受波装置2a,2b,2cの1
個を3次元の座標空間の原点、他の2個を座標軸上に配
置しているが、一般には2個によって1つの座標軸が規
定できるときに他の1個は座標軸上に配置できない場合
もある。たとえば、受波装置2aを原点、受波装置2b
をy軸上に規定したときに、受波装置2cの座標位置を
一般化した形で表せば(cx ,cy ,0)となる。ただ
し、z座標が0であるのは、座標変換によって受波装置
2cをxy平面上に位置させることができるからであ
る。この場合には以下の3個の関係式が得られる。 La2 −y0 2 =Lb2 −(b−y0 2 La2 −x0 2 =Lc2 −(cx −x0 2 −cy (c
y −2y0 ) x0 2 +y0 2 +z0 2 =La2 したがって、一般化した場合であっても3個の受波装置
2a,2b,2cで得た情報に超音波源1の送波タイミ
ングに関する情報を加えることによって3次元の座標位
置を求めることができる。
Under the above conditions, the relational expression relating to the coordinate position (x 0 , y 0 , z 0 ) of the ultrasonic wave source 1 is calculated by each wave receiving device 2
a, 2b, 2c coordinate position (0, 0, 0), (0, b,
0), (c, 0, 0) and the distances La, Lb, Lc. That is, if the Pythagorean theorem is applied, the following three relational expressions are obtained. La 2 −y 0 2 = Lb 2 − (b−y 0 ) 2 La 2 −x 0 2 = Lc 2 − (c−x 0 ) 2 x 0 2 + y 0 2 + z 0 2 = La 2 where, super Assuming that the sound source 1 exists in a limited space such as a room and can be defined as z 0 ≧ 0, the coordinate position (x 0 , y 0 , z 0 ) of the ultrasonic source 1 is Each of the above equations can be modified to obtain the following. x 0 = (La 2 −Lc 2 + c 2 ) / 2c y 0 = (La 2 −Lb 2 + b 2 ) / 2b z 0 = {La 2 − (x 0 2 + y 0 2 )} 1/2 The above example Then, one of the three wave receiving devices 2a, 2b, 2c
One is placed at the origin of the three-dimensional coordinate space, and the other two are placed on the coordinate axis. However, in general, when one coordinate axis can be defined by two, the other one may not be placed on the coordinate axis. . For example, the wave receiving device 2a is the origin, and the wave receiving device 2b is
Is defined on the y-axis, the coordinate position of the wave receiving device 2c can be expressed in a generalized form as (c x , c y , 0). However, the z coordinate is 0 because the wave receiving device 2c can be positioned on the xy plane by coordinate conversion. In this case, the following three relational expressions are obtained. La 2 -y 0 2 = Lb 2 - (b-y 0) 2 La 2 -x 0 2 = Lc 2 - (c x -x 0) 2 -c y (c
y −2y 0 ) x 0 2 + y 0 2 + z 0 2 = La 2 Therefore, even when generalized, the information obtained by the three wave receiving devices 2a, 2b, 2c is transmitted to the ultrasonic wave source 1 by the ultrasonic wave. A three-dimensional coordinate position can be obtained by adding information regarding timing.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した構
成では、超音波源1の送波タイミングを受信側で知るた
めに、有線ないし無線によって送波タイミングを超音波
信号処理手段3に入力することが必要であるから、超音
波源1を移動体に搭載して移動体の位置を測定する場合
などには、以下のような問題が生じることになる。
By the way, in the above-mentioned configuration, in order to know the transmission timing of the ultrasonic source 1 on the receiving side, the transmission timing is input to the ultrasonic signal processing means 3 by wire or wireless. Therefore, when the ultrasonic source 1 is mounted on a moving body to measure the position of the moving body, the following problems will occur.

【0006】すなわち、有線であるとすれば、移動体は
ケーブル9を引き回すことになり、ケーブル9の長さや
ケーブル9を引き回す場所によって移動体の移動範囲が
制約を受けるという問題が生じることになる。一方、ワ
イヤレス信号によって送波タイミングを伝送する場合に
は、ケーブル9のような制約は生じないものの、ワイヤ
レス信号の伝送を妨げる障害物が存在していたり、外乱
ノイズが存在していると送波タイミングを正確に伝送で
きないことがあり、この場合に座標位置を正確に算出す
ることができなくなるという問題が生じる。また、ワイ
ヤレス信号を用いる場合には、ワイヤレス信号の授受の
ために構成が複雑化するという問題があり、しかも、移
動体に超音波源1だけではなくワイヤレス送信部7を搭
載することになるから、移動体の小型化・軽量化を妨げ
るという問題もある。
That is, if it is wired, the moving body will circulate the cable 9, and there will be a problem that the moving range of the moving body is restricted by the length of the cable 9 and the place where the cable 9 is laid. . On the other hand, in the case of transmitting the transmission timing by a wireless signal, although there is no restriction such as the cable 9, the transmission is performed when there is an obstacle that obstructs the transmission of the wireless signal or disturbance noise exists. The timing may not be transmitted accurately, and in this case, there arises a problem that the coordinate position cannot be calculated accurately. Further, when a wireless signal is used, there is a problem that the configuration is complicated due to the transmission and reception of the wireless signal, and moreover, not only the ultrasonic wave source 1 but also the wireless transmission unit 7 is mounted on the moving body. However, there is also a problem of hindering the miniaturization and weight reduction of the mobile body.

【0007】本発明は上記問題点の解決を目的とするも
のであり、超音波源からの超音波の送波タイミングを受
信側に伝送することなく超音波源の座標位置を求めるこ
とができるようにした3次元位置測定方法および3次元
位置測定装置を提供しようとするものである。
An object of the present invention is to solve the above problems, and it is possible to obtain the coordinate position of an ultrasonic wave source without transmitting the transmission timing of the ultrasonic wave from the ultrasonic wave source to the receiving side. The three-dimensional position measuring method and the three-dimensional position measuring device are provided.

【0008】[0008]

【課題を解決するための手段】請求項1の発明の3次元
位置測定方法では、上記目的を達成するために、3次元
の座標位置が既知であって1つの円周上には位置しない
少なくとも4個の受波装置で超音波源より送波された方
向性を持たない超音波を受波し、いずれか1つの受波装
置と超音波源との距離を未知の基準距離とおいて他の受
波装置と超音波源との距離と基準距離との路程差を求め
た後、各受波装置の座標位置と路程差とに基づいて超音
波源の3次元の座標位置に関する関係式を基準距離を含
んだ形で4個以上求め、これらの関係式より基準距離お
よび超音波源の3次元の座標位置を求めることを特徴と
する。
According to the three-dimensional position measuring method of the invention of claim 1, in order to achieve the above object, at least the three-dimensional coordinate position is known and is not located on one circumference. The ultrasonic waves having no directivity transmitted from the ultrasonic source are received by the four receiving devices, and the distance between any one of the receiving devices and the ultrasonic source is set as an unknown reference distance, and the other After determining the distance difference between the distance between the wave receiving device and the ultrasonic wave source and the reference distance, the relational expression regarding the three-dimensional coordinate position of the ultrasonic wave source is used as a reference based on the coordinate position and the distance difference of each wave receiving device. It is characterized in that four or more are obtained in a form including the distance, and the reference distance and the three-dimensional coordinate position of the ultrasonic source are obtained from these relational expressions.

【0009】請求項2の発明の3次元位置測定装置で
は、上記目的を達成するために、方向性を持たない超音
波を送波する超音波源と、3次元の座標位置が既知であ
って1つの円周上には位置しないように配置され超音波
源からの超音波を受波する少なくとも4個の受波装置
と、いずれか1つの受波装置と超音波源との距離を未知
の基準距離とおいて他の受波装置と超音波源との距離と
基準距離との路程差を求める路程差算出手段と、各受波
装置の座標位置と路程差とに基づいて基準距離を含んだ
形で求めることができる超音波源の3次元の座標位置に
関する4個以上の関係式によって基準距離および超音波
源の3次元の座標位置を求める位置演算手段とを具備す
ることを特徴とする。
In order to achieve the above object, the three-dimensional position measuring apparatus of the second aspect of the present invention has an ultrasonic source for transmitting an ultrasonic wave having no directivity and a three-dimensional coordinate position is known. At least four wave receiving devices that are arranged so as not to be located on one circumference and receive the ultrasonic waves from the ultrasonic wave source, and the distance between any one of the wave receiving devices and the ultrasonic wave source is unknown. The reference distance includes a reference distance based on the coordinate position of each wave receiving device and the distance difference between the wave receiving device and the ultrasonic source, and a distance difference calculating means for calculating a road difference between the distance and the reference distance. It is characterized by further comprising position calculating means for determining the reference distance and the three-dimensional coordinate position of the ultrasonic source by means of four or more relational expressions relating to the three-dimensional coordinate position of the ultrasonic source which can be obtained in a form.

【0010】[0010]

【作用】本発明では、1つの円周上ではない少なくとも
4箇所に受波装置を配置して超音波源からの超音波を受
波するのであり、4個の受波装置のうちの1つと超音波
源との距離を未知の基準距離としておき、残りの3個の
受波装置と超音波源との間の距離と基準距離との路程差
を求めることによって、各受波装置と超音波源との距離
を、超音波源からの送波タイミングを用いずに基準距離
と路程差との和という形で表すのである。ここで、受波
装置を4個以上設けていることによって、超音波源の3
次元の座標位置に関して4個以上の関係式を設定するこ
とができるから、座標位置に関する3個の未知数と未知
の基準距離という4個の未知数について4個以上の関係
式から求めることができるのであって、結果的に超音波
源からの送波タイミングを用いることなく、超音波源の
座標位置を求めることができるのである。すなわち、送
波タイミングを知る必要がある従来例に比較すれば、移
動体に超音波源を搭載する際にはケーブルが不要である
ことから移動体の移動範囲の制約が少なくなり、またワ
イヤレス信号を用いる必要がないから障害物や外乱ノイ
ズの影響を受けにくく移動体の移動場所による制約が少
なくなるのである。しかも、ワイヤレス信号を送受する
手段が不要であって簡単な構成で実現できるのである。
According to the present invention, the wave receiving devices are arranged at least at four positions which are not on one circumference to receive the ultrasonic waves from the ultrasonic wave source, and one of the four wave receiving devices is used. The distance between the ultrasonic wave source and the ultrasonic wave source is set as an unknown reference distance, and the distances between the remaining three wave receiving devices and the ultrasonic wave source and the reference distance are calculated to obtain the respective wave receiving devices and the ultrasonic wave. The distance to the source is expressed in the form of the sum of the reference distance and the distance difference without using the transmission timing from the ultrasonic source. Here, by providing four or more wave receiving devices, the
Since four or more relational expressions can be set for the coordinate position of the dimension, it is possible to obtain from four or more relational expressions for four unknowns of three unknowns regarding the coordinate position and the unknown reference distance. As a result, the coordinate position of the ultrasonic wave source can be obtained without using the transmission timing from the ultrasonic wave source. That is, compared to the conventional example in which it is necessary to know the transmission timing, a cable is not required when the ultrasonic source is mounted on the moving body, so that the moving range of the moving body is less restricted, and the wireless signal is reduced. Since it is not necessary to use, it is less affected by obstacles and disturbance noise, and the restrictions on the moving place of the moving body are reduced. Moreover, it does not require a means for transmitting and receiving wireless signals and can be realized with a simple configuration.

【0011】さらに、装置としては従来構成に比較して
受波装置を追加し、かつ距離算出手段に代えて路程差算
出手段を設け、位置演算手段での処理を変更しているだ
けであるから、全体構成としても従来構成に比較してハ
ードウェアおよびソフトウェアのいずれについても複雑
になることがないのである。
Further, as compared with the conventional configuration, a wave receiving device is added as the device, and a distance difference calculating means is provided instead of the distance calculating means, and the processing in the position calculating means is only changed. As compared with the conventional configuration, the overall configuration does not become complicated in both hardware and software.

【0012】[0012]

【実施例】本実施例では、図1に示すように、4個の受
波装置2a,2b,2c,2dを設けている。ただし、
各受波装置2a,2b,2c,2dは一つの円周上に位
置しないように配置する。超音波信号処理手段3では、
各受波装置2a,2b,2c,2dで受波した受波信号
に対して雑音除去、増幅、波形整形などの所定の処理を
行う。超音波信号処理手段3により処理された受波信号
は、路程差算出手段4に入力され、超音波を最初に受波
した受波装置(たとえば2a)の受波時刻を基準として
他の受波装置(たとえば2b,2c,2d)での超音波
の受波時刻との時間差を求め、この時間差を距離に換算
する。このことは、受波装置2aと超音波源1との距離
を未知の基準距離としておき、他の各受波装置2b,2
c,2dと超音波源1との間の距離と基準距離との路程
差を求めることに相当する。たとえば、図2に示すよう
に、超音波原1から時刻t0 に超音波を送出した後、各
受波装置2b,2c,2dでは受波装置2aでの超音波
の受波時刻t1 に対してそれぞれ時間Tb,Tc,Td
だけ遅れて超音波を受波したとすれば、これらの時間T
b,Tc,Tdを用いて路程差を求めることができるの
である。このようにして、3個の受波装置2b,2c,
2dについて路程差を求めることにより、超音波源1の
3次元の座標位置に関して基準距離を含んだ形で4個の
関係式を得ることが可能になる。すなわち、3次元の座
標位置についての3個の未知数と未知の基準距離との合
計4個の未知数に対して4個の関係式が得られるから、
各未知数の値を求めることができるのであって、超音波
源1について3次元の座標位置を決定することができる
のである。このような演算は、位置演算手段5において
なされる。ここにおいて、路程差算出手段4および位置
演算手段5は、マイクロプロセッサと適当なソフトウェ
アとを用いることによって実現される。
EXAMPLE In this example, as shown in FIG. 1, four wave-receiving devices 2a, 2b, 2c and 2d are provided. However,
The wave receiving devices 2a, 2b, 2c, 2d are arranged so as not to be located on one circumference. In the ultrasonic signal processing means 3,
Predetermined processing such as noise removal, amplification, and waveform shaping is performed on the received signals received by the respective wave receiving devices 2a, 2b, 2c, 2d. The received signal processed by the ultrasonic signal processing means 3 is input to the path difference calculating means 4 and other received waves are set with the receiving time of the receiving device (for example, 2a) that first received the ultrasonic wave as a reference. The time difference from the ultrasonic wave reception time at the device (for example, 2b, 2c, 2d) is obtained, and this time difference is converted into a distance. This means that the distance between the wave receiving device 2a and the ultrasonic source 1 is set as an unknown reference distance, and the other wave receiving devices 2b, 2
This is equivalent to obtaining the path difference between the reference distance and the distance between the ultrasonic wave source 1 and c and 2d. For example, as shown in FIG. 2, after the ultrasonic wave is transmitted from the ultrasonic source 1 at time t 0 , each of the wave receiving devices 2b, 2c, and 2d receives the ultrasonic wave at the wave receiving device 2a at time t 1 . On the other hand, the times Tb, Tc, and Td, respectively
If ultrasonic waves are received with a delay of
It is possible to obtain the road difference by using b, Tc, and Td. In this way, the three wave receiving devices 2b, 2c,
By obtaining the path difference for 2d, it is possible to obtain four relational expressions including the reference distance with respect to the three-dimensional coordinate position of the ultrasonic source 1. That is, four relational expressions are obtained for a total of four unknowns of the three unknowns and the unknown reference distance for the three-dimensional coordinate position,
The value of each unknown can be obtained, and the three-dimensional coordinate position of the ultrasonic source 1 can be determined. Such a calculation is performed by the position calculation means 5. Here, the road difference calculation means 4 and the position calculation means 5 are realized by using a microprocessor and appropriate software.

【0013】以下に位置演算手段5における演算の原理
について説明する。ここで、図3に示すように、受波装
置2aを3次元座標の原点に配置し、受波装置2b,2
dをy軸上に配置し、受波装置2cをx軸上に配置する
ものとし、各受波装置2a,2b,2c,2dの3次元
の座標位置はそれぞれ(0,0,0)、(0,b,
0)、(c,0,0)、(0,d,0)であって、求め
るべき超音波源1の座標位置は(x0 ,y0 ,z0 )で
あるものとする。また、受波装置2aと超音波源1との
距離は未知であるが基準距離としてL0 とおき、路程差
算出手段4により求めた各受波装置2b,2c,2dと
超音波源1との間の距離と基準距離L0 との路程差はそ
れぞれDb,Dc,Ddであったとする。
The principle of calculation in the position calculating means 5 will be described below. Here, as shown in FIG. 3, the wave receiving device 2a is arranged at the origin of three-dimensional coordinates, and the wave receiving devices 2b, 2
It is assumed that d is arranged on the y-axis and the wave receiving device 2c is arranged on the x-axis, and the three-dimensional coordinate positions of the respective wave receiving devices 2a, 2b, 2c, 2d are (0, 0, 0), (0, b,
0), (c, 0, 0), (0, d, 0), and the coordinate position of the ultrasonic source 1 to be obtained is (x 0 , y 0 , z 0 ). Further, although the distance between the wave receiving device 2a and the ultrasonic wave source 1 is unknown, the reference distance is set to L 0 , and the wave receiving device 2b, 2c, 2d and the ultrasonic wave source 1 obtained by the path difference calculating means 4 are set. It is assumed that the distances between the distance between the distances and the reference distance L 0 are Db, Dc, and Dd, respectively.

【0014】この条件で、超音波源1の座標位置
(x0 ,y0 ,z0 )に関する関係式を、各受波装置2
a,2b,2c,2dの座標位置(0,0,0)、
(0,b,0)、(c,0,0)、(0,d,0)と、
路程差Db,Dc,Ddとによって表すことを考える。
この場合、各受波装置2a,2b,2c,2dと超音波
源1との距離は、それぞれL0 、(L0 +Db)、(L
0 +Dc)、(L0 +Dd)になるから、ピタゴラスの
定理を適用すれば、従来構成と同様にして次の4個の関
係式が得られる。 L0 2 −y0 2 =(L0 +Db)2 −(b−y0 20 2 −x0 2 =(L0 +Dc)2 −(c−x0 20 2 +y0 2 +z0 2 =L0 20 2 −y0 2 =(L0 +Dd)2 −(d−y0 2 超音波源1が室内のような限定された空間に存在すれば
0 ≧0に規定することができるから、超音波源1の座
標位置(x0 ,y0 ,z0 )は、上式をそれぞれ変形し
て未知数である基準距離L0 を含んだ形で以下のように
求めることができる。 x0 ={−Dc(Dc+2L0 )+c2 }/2c …(1) y0 ={−Db(Db+2L0 )+b2 }/2b …(2) y0 ={−Dd(Dd+2L0 )+d2 }/2d …(3) z0 ={L0 2 −(x0 2 +y0 2 )}1/2 …(4) このような形で4個の関係式を求めれば、(2)式と
(3)式とにより基準距離L0 を求めることができるか
ら、結果的に超音波源1の座標位置(x0 ,y0
0 )が決定されるのである。なお、上記説明では計算
を容易に行うことができる位置に受波装置2a,2b,
2c,2dを配置しているが、任意の位置の受波装置2
a,2b,2c,2dに対して適当な座標変換を施すこ
とによって、受波装置2aを原点、受波装置2bをy軸
上、受波装置2cをxy平面上、受波装置2dを任意の
位置とすることができるから、このようなモデルによっ
て一般化が可能である。その場合、受波装置2cの座標
位置を(cx ,cy ,0)、受波装置2dの座標位置を
(dx ,dy ,dz )として、以下の4個の関係式が得
られる。 L0 2 −y0 2 =(L0 +Db)2 −(b−y0 20 2 −x0 2 =(L0 +Dc)2 −(cx −x0 2
−cy (cy −2y0 ) x0 2 +y0 2 +z0 2 =L0 20 2 −y0 2 =(L0 +Dd)2 −(dy −y0 2
−dz (dz −2z0 )−dx (dx −2x0 ) これらの関係式においても未知数は4個であって、z0
以外の未知数の2次の項は消去されるから、超音波源1
の3次元の座標位置と基準距離とを求めることができる
のである。
Under these conditions, the relational expression relating to the coordinate position (x 0 , y 0 , z 0 ) of the ultrasonic wave source 1 is calculated by using each wave receiving device 2
a, 2b, 2c, 2d coordinate position (0, 0, 0),
(0, b, 0), (c, 0,0), (0, d, 0),
It is considered that it is represented by the road distance differences Db, Dc, and Dd.
In this case, the distances between the respective wave receiving devices 2a, 2b, 2c, 2d and the ultrasonic wave source 1 are L 0 , (L 0 + Db), (L
0 + Dc), (L 0 + Dd), so applying the Pythagorean theorem, the following four relational expressions can be obtained in the same manner as in the conventional configuration. L 0 2 −y 0 2 = (L 0 + Db) 2 − (b−y 0 ) 2 L 0 2 −x 0 2 = (L 0 + Dc) 2 − (c−x 0 ) 2 x 0 2 + y 0 2 + Z 0 2 = L 0 2 L 0 2 −y 0 2 = (L 0 + Dd) 2 − (d−y 0 ) 2 z 0 ≧ 0 if the ultrasonic source 1 exists in a limited space such as a room. Therefore, the coordinate position (x 0 , y 0 , z 0 ) of the ultrasonic source 1 is modified as follows by modifying the above equations to include the reference distance L 0 that is an unknown number. You can ask. x 0 = {- Dc (Dc + 2L 0) + c 2} / 2c ... (1) y 0 = {- Db (Db + 2L 0) + b 2} / 2b ... (2) y 0 = {- Dd (Dd + 2L 0) + d 2 } / 2d (3) z 0 = {L 0 2 − (x 0 2 + y 0 2 )} 1/2 (4) If four relational expressions are obtained in this manner, the following equation (2) is obtained. Since the reference distance L 0 can be obtained from the equation (3), the coordinate position (x 0 , y 0 ,
z 0 ) is determined. In the above description, the wave receiving devices 2a, 2b,
2c and 2d are arranged, but the wave receiving device 2 at an arbitrary position
By subjecting a, 2b, 2c, and 2d to appropriate coordinate conversion, the wave receiving device 2a is the origin, the wave receiving device 2b is on the y axis, the wave receiving device 2c is on the xy plane, and the wave receiving device 2d is arbitrary. Can be taken to be the position of, and can be generalized by such a model. In that case, the coordinate position of the reception device 2c (c x, c y, 0), the coordinate position of the reception apparatus 2d (d x, d y, d z) as, the following four relations obtained To be L 0 2 −y 0 2 = (L 0 + Db) 2 − (b−y 0 ) 2 L 0 2 −x 0 2 = (L 0 + Dc) 2 − (c x −x 0 ) 2
-C y (c y -2y 0) x 0 2 + y 0 2 + z 0 2 = L 0 2 L 0 2 -y 0 2 = (L 0 + Dd) 2 - (d y -y 0) 2
Unknown even in -d z (d z -2z 0) -d x (d x -2x 0) These relations is a four, z 0
Since the unknown second-order terms other than are deleted, the ultrasonic source 1
The three-dimensional coordinate position and the reference distance can be obtained.

【0015】なお、路程差を求める方法としては、時間
差以外に超音波源1からの超音波の位相差を利用するこ
とも可能であり、また4個の受波装置2a,2b,2
c,2dでは死角が形成されるような場合には、5個以
上の受波装置を設けるようにしてもよい。受波装置が5
個以上の場合であっても1つの円周上ではない4箇所に
配置されている4個の受波装置によって得た情報を用い
れば超音波源1の座標位置を決定することができる。
As a method of obtaining the difference in path length, it is possible to use the phase difference of the ultrasonic waves from the ultrasonic source 1 in addition to the time difference, and the four wave receiving devices 2a, 2b, 2 are used.
When a blind spot is formed in c and 2d, five or more wave receiving devices may be provided. The wave receiving device is 5
Even in the case of more than one, the coordinate position of the ultrasonic source 1 can be determined by using the information obtained by the four wave receiving devices arranged at four places not on one circumference.

【0016】[0016]

【発明の効果】本発明は上述のように、少なくとも4箇
所に受波装置を配置して超音波源からの超音波を受波す
るのであって、4個の受波装置のうちの1つと超音波源
との距離を未知の基準距離としておき、残りの3個の受
波装置と超音波源との間の距離と基準距離との路程差を
求めるので、各受波装置と超音波源との距離を、超音波
源からの送波タイミングを用いずに基準距離と路程差と
の和という形で表すことができる。ここで、受波装置を
4個以上設けていることによって、超音波源の3次元の
座標位置に関して4個以上の関係式を設定することがで
きるから、座標位置に関する3個の未知数と未知の基準
距離という4個の未知数について4個以上の関係式から
求めることができるのであって、結果的に超音波源から
の送波タイミングを用いることなく、超音波源の座標位
置を求めることができるという効果を奏するのである。
すなわち、送波タイミングを知る必要がある従来例に比
較すれば、移動体に超音波源を搭載する際にはケーブル
が不要であることから移動体の移動範囲の制約が少なく
なるという利点があり、またワイヤレス信号を用いる必
要がないから障害物や外乱ノイズの影響を受けにくく移
動体の移動場所による制約が少なくなるという利点があ
る。しかも、ワイヤレス信号を送受する手段が不要であ
るから構成も簡単になるのである。
As described above, according to the present invention, the wave receiving devices are arranged at at least four places to receive the ultrasonic waves from the ultrasonic source, and one of the four wave receiving devices is used. The distance between the ultrasonic wave source and the ultrasonic source is set as an unknown reference distance, and the path difference between the distance between the remaining three wave receiving devices and the ultrasonic wave source and the reference distance is calculated. Can be expressed in the form of the sum of the reference distance and the road distance difference without using the transmission timing from the ultrasonic source. Here, by providing four or more wave receiving devices, it is possible to set four or more relational expressions with respect to the three-dimensional coordinate position of the ultrasonic source. It is possible to obtain the reference distance by four or more relational expressions with respect to four unknowns. As a result, the coordinate position of the ultrasonic source can be obtained without using the transmission timing from the ultrasonic source. That is the effect.
That is, compared to the conventional example in which it is necessary to know the transmission timing, there is an advantage that the moving range of the moving body is less restricted because a cable is not required when the ultrasonic source is mounted on the moving body. Moreover, since there is no need to use a wireless signal, there is an advantage that it is less affected by obstacles and disturbance noise, and restrictions on the moving place of the moving body are reduced. Moreover, since the means for transmitting / receiving the wireless signal is unnecessary, the structure is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を示すブロック回路図である。FIG. 1 is a block circuit diagram showing an embodiment.

【図2】実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the embodiment.

【図3】実施例の原理説明図である。FIG. 3 is a diagram illustrating the principle of the embodiment.

【図4】従来例を示すブロック回路図である。FIG. 4 is a block circuit diagram showing a conventional example.

【図5】他の従来例を示すブロック回路図である。FIG. 5 is a block circuit diagram showing another conventional example.

【図6】従来例の原理説明図である。FIG. 6 is a diagram illustrating the principle of a conventional example.

【符号の説明】[Explanation of symbols]

1 超音波源 2a 受波装置 2b 受波装置 2c 受波装置 2d 受波装置 3 超音波信号処理手段 4 路程差算出手段 5 位置演算手段 1 Ultrasonic Source 2a Wave Receiving Device 2b Wave Receiving Device 2c Wave Receiving Device 2d Wave Receiving Device 3 Ultrasonic Signal Processing Means 4 Road Difference Calculation Means 5 Position Calculating Means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3次元の座標位置が既知であって1つの
円周上には位置しない少なくとも4個の受波装置で超音
波源より送波された方向性を持たない超音波を受波し、
いずれか1つの受波装置と超音波源との距離を未知の基
準距離とおいて他の受波装置と超音波源との距離と基準
距離との路程差を求めた後、各受波装置の座標位置と路
程差とに基づいて超音波源の3次元の座標位置に関する
関係式を基準距離を含んだ形で4個以上求め、これらの
関係式より基準距離および超音波源の3次元の座標位置
を求めることを特徴とする3次元位置測定方法。
1. A non-directional ultrasonic wave transmitted from an ultrasonic source is received by at least four wave receiving devices whose three-dimensional coordinate positions are known and which are not located on one circumference. Then
After setting the distance between any one of the wave receiving devices and the ultrasonic wave source as an unknown reference distance, and obtaining the path difference between the distance between the other wave receiving device and the ultrasonic wave source and the reference distance, Based on the coordinate position and the path difference, four or more relational expressions relating to the three-dimensional coordinate position of the ultrasonic source are obtained in a form including the reference distance, and from these relational expressions, the reference distance and the three-dimensional coordinate of the ultrasonic source A three-dimensional position measuring method characterized by obtaining a position.
【請求項2】 方向性を持たない超音波を送波する超音
波源と、3次元の座標位置が既知であって1つの円周上
には位置しないように配置され超音波源からの超音波を
受波する少なくとも4個の受波装置と、いずれか1つの
受波装置と超音波源との距離を未知の基準距離とおいて
他の受波装置と超音波源との距離と基準距離との路程差
を求める路程差算出手段と、各受波装置の座標位置と路
程差とに基づいて基準距離を含んだ形で求めることがで
きる超音波源の3次元の座標位置に関する4個以上の関
係式によって基準距離および超音波源の3次元の座標位
置を求める位置演算手段とを具備することを特徴とする
3次元位置測定装置。
2. An ultrasonic wave source for transmitting an ultrasonic wave having no directivity, and an ultrasonic wave source which is arranged such that its three-dimensional coordinate position is known and is not located on one circumference. At least four wave receiving devices that receive sound waves, and a distance between any one of the wave receiving devices and the ultrasonic source is set as an unknown reference distance, and a distance between the other wave receiving device and the ultrasonic source and a reference distance. 4 or more relating to the three-dimensional coordinate position of the ultrasonic wave source, which can be obtained in a form including the reference distance based on the coordinate position of each wave receiving device and the road distance difference. A three-dimensional position measuring device, comprising: a position calculating means for obtaining a reference distance and a three-dimensional coordinate position of the ultrasonic wave source by the relational expression.
JP1065293A 1993-01-26 1993-01-26 Method and device for measuring three-dimensional position Withdrawn JPH06222130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065293A JPH06222130A (en) 1993-01-26 1993-01-26 Method and device for measuring three-dimensional position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065293A JPH06222130A (en) 1993-01-26 1993-01-26 Method and device for measuring three-dimensional position

Publications (1)

Publication Number Publication Date
JPH06222130A true JPH06222130A (en) 1994-08-12

Family

ID=11756160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065293A Withdrawn JPH06222130A (en) 1993-01-26 1993-01-26 Method and device for measuring three-dimensional position

Country Status (1)

Country Link
JP (1) JPH06222130A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043143A (en) * 2001-07-31 2003-02-13 Amano Corp Vehicle detecting device
KR100609244B1 (en) * 2004-05-04 2006-08-08 김칠수 Apparatus and method for measuring the wave origination
WO2010038577A1 (en) * 2008-09-30 2010-04-08 三菱重工業株式会社 Method for identifying position, at which work is done inside of a space enclosed by faces, and working result management device
JP2013167559A (en) * 2012-02-16 2013-08-29 Mitsuru Sato Illumination device with localization mechanism, and localization system
JP2019196999A (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air-conditioning system, position estimation method, and program
CN114305495A (en) * 2022-01-07 2022-04-12 京东方科技集团股份有限公司 Ultrasonic imaging method based on ultrasonic transducer, ultrasonic transducer and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043143A (en) * 2001-07-31 2003-02-13 Amano Corp Vehicle detecting device
KR100609244B1 (en) * 2004-05-04 2006-08-08 김칠수 Apparatus and method for measuring the wave origination
WO2010038577A1 (en) * 2008-09-30 2010-04-08 三菱重工業株式会社 Method for identifying position, at which work is done inside of a space enclosed by faces, and working result management device
JP2010085280A (en) * 2008-09-30 2010-04-15 Mitsubishi Heavy Ind Ltd Method for locating working position in space surround by surface and work result management apparatus
CN101960325A (en) * 2008-09-30 2011-01-26 三菱重工业株式会社 Method for identifying position, at which work is done inside of a space enclosed by faces, and working result management device
US8630147B2 (en) 2008-09-30 2014-01-14 Mitsubishi Heavy Industries, Ltd. Method of determining position where work is done in space surrounded by surfaces and work result management device
JP2013167559A (en) * 2012-02-16 2013-08-29 Mitsuru Sato Illumination device with localization mechanism, and localization system
JP2019196999A (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air-conditioning system, position estimation method, and program
WO2019216027A1 (en) * 2018-05-10 2019-11-14 三菱重工サーマルシステムズ株式会社 Position estimation device, air conditioning system, position estimation method, and program
CN114305495A (en) * 2022-01-07 2022-04-12 京东方科技集团股份有限公司 Ultrasonic imaging method based on ultrasonic transducer, ultrasonic transducer and system
CN114305495B (en) * 2022-01-07 2024-01-12 京东方科技集团股份有限公司 Ultrasonic imaging method based on ultrasonic transducer, ultrasonic transducer and system

Similar Documents

Publication Publication Date Title
Martın et al. Estimating the 3D-position from time delay data of US-waves: experimental analysis and a new processing algorithm
JPH06222130A (en) Method and device for measuring three-dimensional position
CN112098943A (en) Positioning method of wearable device and intelligent device
JP4266669B2 (en) Bistatic orientation detection system and detection method
JPS59142486A (en) Position detecting method
JP3213143B2 (en) Radar equipment
JPH11231039A (en) Multi-user underwater positioning device
Nonsakhoo et al. Angle of arrival estimation by using stereo ultrasonic technique for local positioning system
CN112327859A (en) Automatic following method and device for vehicle and vehicle
JPH11248821A (en) Phased array type ultrasonic sensor
JP3583908B2 (en) Target measuring device
CN117200845B (en) Millimeter wave beam alignment method based on low-frequency signal position sensing
JP3296896B2 (en) Moving object position measurement device
JPS60107580A (en) Recognizing device for position of running robot
JPS63266376A (en) Acoustic wave positioning system
JP2765317B2 (en) Sonar device
JP2819062B2 (en) Radio wave reflection type buried object detection device
JP2969875B2 (en) Direction measurement device
Tsuchiya et al. Self-localization method using a single acoustic ranging sensor based on impulse response and Doppler effect
JPH07159546A (en) Thunder position locating device
JPH04322305A (en) Teaching device
JP2895249B2 (en) Acoustic tomography equipment
Gandhi et al. Distributed sensing for acoustic source localization in reverberant environments
JPH0527024A (en) Underground buried object search radar
JPH0713611U (en) Vehicle obstacle detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404