JP4054471B2 - Method for producing modified oil and fat and the modified oil and fat - Google Patents

Method for producing modified oil and fat and the modified oil and fat Download PDF

Info

Publication number
JP4054471B2
JP4054471B2 JP01166799A JP1166799A JP4054471B2 JP 4054471 B2 JP4054471 B2 JP 4054471B2 JP 01166799 A JP01166799 A JP 01166799A JP 1166799 A JP1166799 A JP 1166799A JP 4054471 B2 JP4054471 B2 JP 4054471B2
Authority
JP
Japan
Prior art keywords
oil
transesterification
fat
oils
fats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01166799A
Other languages
Japanese (ja)
Other versions
JP2000212590A (en
Inventor
巌 杉本
喜之 將野
由紀子 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oillio Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oillio Group Ltd filed Critical Nisshin Oillio Group Ltd
Priority to JP01166799A priority Critical patent/JP4054471B2/en
Publication of JP2000212590A publication Critical patent/JP2000212590A/en
Application granted granted Critical
Publication of JP4054471B2 publication Critical patent/JP4054471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Fats And Perfumes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エステル交換による油脂の改質方法に関し、加工適性が良好な改質油脂の製造方法、当該改質油脂を使用したマーガリン・ショートニング等の加工油脂、および、該改質油脂または/および該加工油脂を含む加工製品に関する。
【0002】
【従来の技術】
マーガリン・ショートニング(以下、M/Sと記載することがある)等の加工油脂は、硬質油脂と液体油脂を調合することにより、使用する温度で適度な可塑性を保つように調製されている。硬質油脂の原料としては、大豆油、コーン油、菜種油等を原料とした硬化油や、ラードやパーム系の油脂がよく用いられるが、植物硬化油については構成脂肪酸の鎖長の変化に乏しいことに起因する、また、ラード、パーム油については対称型トリグリセリドに起因する粗大結晶の生成があり、組織にザラツキを生じるだけでなく、硬質油脂によって形成される構造中に液体油を保持出来なくなり、環境の変化によって液体油が浸み出し易くなるという欠点がある。
【0003】
かかる欠点を克服するために、マーガリン・ショートニング等に適した油脂の製造法として、例えばパーム系油脂とラウリン系油脂を化学触媒によりランダムエステル交換する方法(特公昭58−53894号公報)が開示されている。開示の方法は、鎖長の異なるラウリン系油脂とランダムエステル交換することにより、パーム油の対称型トリグリセリドの構造が解消され、M/Sの加工に適する固化速度が得られ、また、保存中徐々に硬化するという性質がある程度改善される。しかし、逆に3飽和トリグリセリドの増加が避けられず、口溶けに難点が生じ、また、粗大結晶を完全に抑止するという効果までは得られていない。
【0004】
一方で、油脂のグリセリド骨格の1,3位に対して反応選択性のあるリパーゼを用いてエステル交換することにより、改質する方法(特開昭61−95098号公報)が開示されている。この方法に従えば、3飽和トリグリセリドの増加は抑制できるが、パーム油の持つ対称型トリグリセリドの構造は効果的に解消されず、経時的な品質変化、つまり、一定期間保存後品質が劣化する危険性があり、M/S等の原料油脂として十分な改質効果が得られない。
【0005】
【発明が解決しようとする課題】
かかる実情に鑑み、本発明では、エステル交換におけるランダム化率を調整することにより、従来のランダムエステル交換における欠点と、1,3位特異性のあるリパーゼによるエステル交換の欠点を同時に解決すること、即ち、展延性、クリーミング性、固化速度の改善によるM/S等の加工油脂の加工適性の向上、組織の経時的な劣化の抑止、焼菓子類等の加工製品における油脂のマイグレーションの抑止を目的とする。
【0006】
【発明が解決するための手段】
本発明は、ラウリン酸と炭素数16以上の飽和脂肪酸とを含有する油脂混合物をエステル交換するにあたり、ランダム化率を調整することにより、油脂の物性が改質されることを見出し、本発明を完成させた。すなわち、本発明はラウリン酸を4〜40%、炭素数16以上の飽和脂肪酸を20〜80%含有する油脂混合物を、エステル交換率が20〜73%、ランダム化率が5〜38%となるようにエステル交換することを特徴とする改質油脂の製造法、該改質油脂、該改質油脂を含む加工油脂、および、改質油脂または/および加工油脂を含む加工製品に関する。また、好ましくは油脂混合物のラウリン酸含量が4〜20%、好ましくは油脂混合物の炭素数16以上の飽和脂肪酸の含量が25〜70%であって、好ましくはエステル交換が位置選択性が低い酵素よってなされる。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。本発明は、ラウリン酸と炭素数16以上の飽和脂肪酸とを含有する油脂混合物をエステル交換するにあたり、ランダム化率を調整することにより物性が改質された油脂の製造法、該改質油脂、該改質油脂を含む加工油脂、および、改質油脂または/および加工油脂を含む加工製品に関する。
【0008】
ラウリン酸とは、炭素数12の飽和脂肪酸のことであり、ドデカ酸ともいう。C16以上の飽和脂肪酸とは、例えば、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等のことである。
【0009】
油脂混合物とは、1種または2種以上の油脂からなり、上記ラウリン酸と炭素数16以上の飽和脂肪酸とを含有するものであって、ラウリン酸含量が4〜40%、好ましくは4〜20%、より好ましくは4〜9%であり、炭素数16以上の飽和脂肪酸の含量が20〜80%、好ましくは25〜70%、より好ましくは30〜60%であるものをいう。
【0010】
ラウリン酸源の油脂としてはラウリン油脂、即ちパーム核油、ヤシ油、ババス油、ツクム油等、またその分別、硬化等して得られる油脂が使用できる。炭素数16以上の飽和脂肪酸源の油脂としては、パーム油、ラッカセイ油、綿実油、米糠油、鶏油、ラード、乳脂、牛脂等、またはその分別、硬化等して得られる油脂が使用できる。
【0011】
また、上記ラウリン酸及び炭素数16以上の飽和脂肪酸の含量を満たす範囲において、大豆油、菜種油、高オレイン酸菜種油、コーン油、紅花油、高オレイン酸紅花油、ヒマワリ油、高オレイン酸ヒマワリ油、オリーブ油、シソ油、エゴマ油、亜麻仁油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、クルミ油、椿油、茶実油、ボラージ油、小麦胚芽油、藻類油、魚油、卵油等の液体油、および、それらの硬化油が使用できる。硬化油は栄養学的見地から、トランス酸の少ないものが好ましい。
【0012】
エステル交換とは、2種またはそれ以上の油脂の間で行われる脂肪酸基質の交換反応をいう。この反応の触媒として、アルカリ金属やその水酸化物およびアルコラートのような化学触媒と、酵素触媒である微生物由来の酵素リパーゼがある。また、エステル交換には、脂肪酸配列をランダム化するランダムエステル交換、指向性を有するダイレクトエステル交換、トリグリセリドの位置選択性等を有する選択的エステル交換がある。
【0013】
化学触媒を使用したエステル交換の場合はランダムエステル交換となり、その脂肪酸配列はランダム化される。この反応を低温で一部結晶化を行いながら飽和脂肪酸トリグリセリドを析出させ、結晶化しない不飽和トリグリセリドとの2成分に指向させるとダイレクトエステル交換となる。この場合も脂肪酸配列はランダムである。化学触媒を使用した場合、ランダム化率は調整できない。いわゆる完全ランダムエステル交換となる。化学的触媒は、アルカリ金属やその水酸化物、アルコラートがあり、我が国ではカセイソーダとナトリウムメチラートのみ使用が許可されている。
【0014】
酵素触媒を使用したエステル交換にはランダムエステル交換および選択的エステル交換がある。選択的エステル交換には、トリグリセリドの位置(1,3位置)を選択する反応、脂肪酸の種類を選択する反応、部分グリセリド(モノ、ジグリセリド)を選択する反応とがある。本発明では位置選択性の低い酵素が使用されるが、位置選択性が低い酵素とは、位置選択性のない酵素、位置選択性の比較的低い酵素、位置選択性のない酵素と位置選択性の比較的低い酵素の混合したもの、および、これらと位置選択性を有する酵素を混合したもののいずれかである。詳しくは、1,3選択性係数が0.1〜1である酵素、好ましくは1,3選択係数0.2〜1、さらに好ましくは1,3選択係数が0.3〜1である酵素を使用することが好ましい。なお、1,3選択係数とは、1,3位の脂肪酸のエステル交換が100%に達したときに、2位置への1,3位の特定脂肪酸の導入率をランダムエステル交換が行われる場合を1として表現する。これらは酸性、中性、アルカリ性であって低分子から高分子量の状態のものを使用することができ、また、粉末状でも、公知方法により固定化された状態でも使用することができる。
【0015】
酵素触媒とは微生物由来の酵素リパーゼのことであり、これらのうち、位置選択性のない、または位置選択性の比較的低い酵素として本発明で使用される酵素を産生する微生物としては、Aandida SP.,Chromobacteriumu SP.,HumicoraSP.,Penicillium SP.,Cadida SP.,Chromobacterium SP.,CorynebactteriumSP.,Geotrichum SP.,pseudomnas SP.,Ryzopus SP.,Penicilliu SP.,Staphylococcus SP.,Alcaligenes SP.等がある。エステル交換反応に関し、生体への安全面等から化学触媒の使用よりも微生物由来の酵素リパーゼの使用が好ましい。
【0016】
本発明でランダム化率とは、エステル交換前の油脂混合物の2位置における特定の脂肪酸含量と全脂肪酸組成における特定の脂肪酸含量との差を100とし、エステル交換後の油脂の2位置の特定の脂肪酸酸含量がエステル交換前の2位置の特定の脂肪酸含量に比べ、どれだけ変化したかを100分率で表したものである。2位置の脂肪酸組成の測定は、油化学,29,587,(1980)に従って行われる。本発明におけるランダム化率は5〜75%、好ましくは10〜70%、より好ましくは15〜65%である。ランダム化率が5%より小さい、または75%より大きい時は、1,3選択性エステル交換または完全ランダムエステル交換の欠点を備えるので好ましくない。
【0017】
エステル交換率とは、反応開始前の油脂の特定トリグリセリド成分と完全にエステル交換がなされた後の特定トリグリセリド成分との差を100とし、任意のエステル交換油脂の特定トリグリセリド成分が、反応開始前と比較して変化した度合いを100分率で表したものであり、詳細には、特表平10−508497に記載される。具体的には下記の式によって算出される。
エステル交換率(%)=(Xt−XO)/(Xeq−XO)×100
X:トリグリセリド混合物の分子組成に依存する、測定可能な特性であって、エステル交換開始前の組成物と、完全にエステル交換がなされた後の組成物が、その両極端の値を有する特性
XO:エステル交換前のXの値
Xeq:完全にエステル交換がなされた後のXの値
Xt:エステル交換が測定されることになっている組成物のXの値
本発明による改質の効果を得るためには、エステル交換率は20%以上、好ましくは40%以上、さらに好ましくは60%以上である。
【0018】
ランダム化率とエステル交換率の数値の比が、0.05〜0.75、好ましくは0.10〜0.70、より好ましくは0.15〜0.65であることが好ましい。ランダム化率とエステル交換率の比が上記の範囲内では、安定的な改質効果が得られ好ましい。ランダム化率、エステル交換率は、エステル交換の時間やその他の条件、例えば温度、水分、PH、攪拌条件、および使用する触媒等によって調整することができる。特に、エステル交換の時間、使用する触媒の種類および量によって調整することが、操作性等に優れ好ましい。
【0019】
本発明の改質油脂とは、ラウリン酸と炭素数16以上の飽和脂肪酸とを含有する油脂混合物であって、ラウリン酸含量は4〜40重量%、好ましくは4〜20重量%、より好ましくは4〜9重量%であり、炭素数16以上の飽和脂肪酸の含量は20〜80重量%、好ましくは25〜70重量%、より好ましくは30〜60重量%である油脂混合物を、ランダム化率が5〜75%、好ましくは、10〜70%、より好ましくは15〜65%となる様にエステル交換を行うことにより製造される。本発明におけるエステル交換油脂の機能を確実に達成するためには、ランダム化率とエステル交換率の数値の比が、0.05〜0.75、好ましくは0.10〜0.70、より好ましくは0.15〜0.65である。本発明におけるエステル交換反応を行うためには、触媒を使用し、好ましくは酵素触媒を使用し、さらに好ましくは位置選択性が低い酵素を使用することが好ましい。本発明は、完全または部分エステル交換することによって達成することができ、具体的にはエステル交換率が20%以上、好ましくは40%以上、さらに好ましくは60%以上である。ランダム化率との数値の比は上記の範囲が好ましい。ここで、活性低下と共に位置選択性が変化する場合があるので使用上の注意が必要とされる。また、得られる改質油脂はトランス酸が少ないことが好ましく、具体的にはトランス酸含量が10重量%以下、好ましくは5重量%以下、更に好ましくは1重量%以下である。
【0020】
本発明により改質された油脂は、結晶がβ型転移し難くなりβ’の状態が維持されるため、ザラツキ原因となる粗大結晶が発生しにくくなり、クリーミング性、展延性の物性が改質される。また、従来からの欠点である、硬質油脂によって形成される構造中に液体油を保持出来なくなり環境の温度変化によって液体油が浸み出し易くなるという欠点等も解決される。その他、本発明により改質された油脂は固化速度が上昇し、M/S等の加工油脂の加工適性が向上する等の効果が得られる。
【0021】
本発明の改質油脂からなる加工油脂としては、マーガリン、調整マーガリン、ファッドスプレッド、ショートニング、粉末油脂、チョコレート、クリーム等、および、これらと同様なもの、例えばマーガリンタイプ等といわれるものを含むものである。このマーガリンタイプ等とは、製品の規格からはずれているが、同様の品質、または、同様の使用目的等と認められるものをいい、実際上同様なものであると認識され得る全てのものをいう。
【0022】
上記加工油脂の例として、マーガリンとは、食用油脂に水等を加えて乳化した後、急冷練り合わせをし、または急冷練り合わせをしないでつくられた可塑性のもの、または流動性のものであって、油脂含有率が80重量%以上のものをいい、調整マーガリンは油脂含有率が75重量%以上80重量%未満ものをいう。本発明の改質油脂は、マーガリンまたは調整マーガリンに含まれる油脂分のうち30重量%以上、好ましくは50%以上、さらに好ましくは75%以上含まれる。また、マーガリンに通常添加されるもの、例えばビタミン類、塩化ナトリウム、砂糖、食用タンパク、乳化剤、保存料、酸化防止剤、香料、着色剤、醗酵乳、その他食品添加剤等を添加することができる。ファッドスプレッドとは、食用油脂に水等を加えて乳化した後、急冷練り合わせをし、または急冷練り合わせをしないでつくられた可塑性のもの、または、食用油脂に水等を加えて乳化した後、果実または果実の加工品、チョコレート、ナッツ類のペースト等の風味原料を加えて急冷練り合わせをしてつくられた可塑性のものであって、風味原料の製品に占める重量の割合が油脂含量を下回るもの等であって、油脂含有率が35重量%以上75%未満のものをいう。本発明の改質油脂は、ファッドスプレッドに含まれる油脂分のうち30重量%以上、好ましくは50重量以上%、さらに好ましくは70重量%以上含まれる。また、ファッドスプレッドに通常添加することができるものを添加することができる。ショートニングとは、精製した動物油脂、植物油脂、食用精製加工油脂またはこれらの混合物を急冷して練り合わせをしてつくられた固状のものおよび乳化剤等を加えてつくられた流動状または半固状のものであって、可塑性、乳化性等の加工性を付与されたものをいう。本発明の改質油脂は、ショートニングに含まれる油脂分のうち35重量%以上、好ましくは50重量%以上、さらに好ましくは75重量%以上含まれる。また、ショートニングに通常添加することができるもの、例えば酸化防止剤、乳化剤、消泡剤、その他添加剤等を添加することができる。その他、粉末油脂、チョコレート、クリーム等には、求める品質に応じて、本発明の改質油脂を必要量配合することができる。
【0023】
ここで、本発明の改質油脂の機能を十分に引き出す使用形態の一つとしては、加工油脂の油脂原料として本発明改質油脂のみを使用することである。
【0024】
これらの改質油脂または/および加工油脂を使用して、例えば本発明品のマーガリン・ショートニングを原材料として製造された加工製品としては、焼菓子類、ケーキ、パン等があげられる。これらは、食感を損なうことなく保存中の油脂のマイグレーション(migration,移動、移行)を抑制する機能が強化される等の効果が得られる。
【0025】
【実施例】
以下に実施例を示すが、これは例示であって、本発明がこの実施例により何ら限定されるものではない。なお、特に断りのない限り、例中の部、%は何れも重量基準を意味する。
【0026】
下記に、ランダム化率の測定法、エステル交換率、結晶の評価法、固化速度の評価法、スプレッドの評価法、クリームの評価法、焼き菓子の評価法を示す。
[ランダム化率測定法]エステル交換前の油脂混合物の2位置におけるパルミチン酸含量と全脂肪酸組成におけるパルミチン酸含量との差を100とし、エステル交換後の油脂の2位置のパルミチン酸含量がエステル交換前の2位置のパルミチン酸含量に比べ、どれだけ変化したかを100分率で表した
[エステル交換率の測定法]炭素数44のトリグリセリド量+炭素数46のトリグリセリド量をXとし、段落番号0017記載の方法によりエステル交換率を測定した。
[結晶の評価法]調温処理による結晶評価は、JAOCS,Vol.66,no.5(May1989)に従い行った。
評価は、
β’= β : β’とβが同程度存在
β’> β : β’がβより多く存在
β’>>β : β’がほとんどである
[固化速度の評価法]固化速度は、70℃にて完全に融解させた油脂を5℃に急冷したときのSFCの経時変化を24時間後の値を100とした固化率(%)で表した。
[スプレッドの評価法]保存による硬さの変化、および保存後のスプレッド組織の“木目”の細かさ、均一性を評価した。スプレッドの硬さは、品温が10℃の状態で、JIS K2220に規定の円錐針入度計(NIHON KAIHEIKI社製、円錐針重量22.5g)を使用し、針入度を測定した。スプレッド組織の“木目”の細かさ、均一性は観察して評価した。
[クリームの評価法]保存後のクリームの口触り、舌触りを官能により評価した。
[焼き菓子の評価法]保存後の口溶け、食感を官能評価により評価し、保存後の焼き菓子の表面の状態を観察評価した。
【0027】
参考例1
パーム油70部とパーム核油分別オレイン30部との混合油脂(ラウリン酸12%、炭素数16以上の飽和脂肪酸36%)に、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase QL〕を混合油脂に対し1重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。1時間後、ろ過にてリパーゼを除去し、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表1に結果を示す。
【0028】
比較例1
参考例1と同じ混合油脂に対し、Alcaligenes属由来の固定化リパーゼ〔名糖産業(株)製Lipase QLC〕を2重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。4時間後、ろ過にてリパーゼを除去し、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表1に結果を示す。
【0029】
比較例2
参考例1と同じ混合油脂に対し、触媒としてナトリウムメトキシドを用いて常法に従ってランダムエステル交換を行い、エステル交換後、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表1に結果を示す。
【0030】
【表1】

Figure 0004054471
【0031】
表1より、調温による結晶性評価の結果、参考例1は結晶形がβ’に留まり、マーガリン・ショートニングの品質劣化に繋がる粗大結晶を生成し易いβ形への結晶転移が抑えられていた。固定化リパーゼを使用した比較例1は、実質的に比較例2の化学触媒のエステル交換と変わらず、β形への結晶転移が進んでいた。
【0032】
参考例2
パームステアリン50部とパーム核極度硬化油50部との混合油脂(ラウリン酸24%、炭素数16以上の飽和脂肪酸47%)に、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase QL〕を混合油脂に対し1重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。1時間後、ろ過にてリパーゼを除去し、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、固化速度の評価を行った。表2に結果を示す。
【0033】
比較例3
Mucor Miehei由来の固定化リパーゼ〔Novo社製 LIPOZYME〕をカラムに充填し、参考例2と同じ混合油脂を60℃、SV(空間速度)0.4(リットル/リトルカラム)の条件にて通液を行い、エステル交換反応を行った。エステル交換反応液を常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、固化速度の評価を行った。表2に結果を示す。
【0034】
【表2】
Figure 0004054471
【0035】
参考例2は経時的な固化率の上昇(固化速度)が速く、マーガリン・ショートニング調整時の冷却工程で速やかに固まり、調整後の物性変化が少ない利点が得られた。
【0036】
実施例
パーム油70部とパーム核油30部との混合油脂(ラウリン酸14%、炭素数16以上の飽和脂肪酸36%)に、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase PL〕を混合油脂に対し0.1重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。16時間後、ろ過にてリパーゼを除去し、常法に従って精製処理を行いエステル交換油得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、固化速度の評価を行った。表3に結果を示す。
【0037】
比較例4
Mucor Miehei由来の固定化リパーゼ〔Novo社製 LIPOZYME〕をカラムに充填し、実施例と同じ混合油脂を60℃、SV1.0の条件にて通液を行い、エステル交換反応を行った。エステル交換反応液を常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、固化速度の評価を行った。表3に結果を示す。
【0038】
【表3】
Figure 0004054471
【0039】
実施例は経時的な固化率の上昇(固化速度)が速く、マーガリン・ショートニング調整時の冷却工程で速やかに固まり、調整後の物性変化が少ない利点が得られた。
【0040】
実施例
パーム油65部とパームステアリン20部とヤシ油15部との混合油脂(ラウリン酸7%、炭素数16以上の飽和脂肪酸42%)に、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase QL〕を混合油脂に対し0.6重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。1時間後、ろ過にてリパーゼを除去、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶性の評価を行った。表4に結果を示す。
【0041】
比較例5
Mucor Miehei由来の固定化リパーゼ〔Novo社製 LIPOZYME〕をカラムに充填し、実施例と同じ混合油脂を60℃、SV1.3の条件にて通液を行い、エステル交換反応を行った。反応液を常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶性の評価を行った。表4に結果を示す。
【0042】
【表4】
Figure 0004054471
【0043】
調温による結晶性評価の結果、実施例は結晶形がβ’に留まり、マーガリン・ショートニングの品質劣化に繋がる粗大結晶を生成し易いβ形への結晶転移抑えられていた。
【0044】
実施例
パーム中融点部70部とヤシ硬化油30部との混合油脂(ラウリン酸15%、炭素数16以上の飽和脂肪酸41%)に、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase QL〕を混合油脂に対し0.3重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。1時間後、ろ過にてリパーゼを除去、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表5に結果を示す。
【0045】
比較例6
Mucor Miehei由来の固定化リパーゼ〔Novo社製 LIPOZYME〕をカラムに充填し、実施例と同じ混合油脂を60℃、SV2.0の条件にて通液を行い、エステル交換反応を行った。反応液を常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表5に結果を示す。
【0046】
【表5】
Figure 0004054471
【0047】
表5より、調温による結晶性評価の結果、実施例5は結晶形がβ’に留まり、マーガリン・ショートニングの品質劣化に繋がる粗大結晶を生成し易いβ形への結晶転移が抑えられていた。
【0048】
比較例7
実施例と同じ混合油脂に対し、触媒としてナトリウムメトキシドを用いて常法に従ってランダムエステル交換を行い、エステル交換後、常法に従って精製処理を行いエステル交換油を得た。その後、得られたエステル交換油のエステル交換率、ランダム化率の測定、および、結晶の評価を行った。表6に結果を示す。
【0049】
【表6】
Figure 0004054471
【0050】
比較例8
パームステアリン65部とヤシ油35部とを混合(ラウリン酸17%、炭素数16以上の飽和脂肪酸32%)し、Alcaligenes属由来のリパーゼ粉末〔名糖産業(株)製Lipase QL〕を混合油脂に対し1重量%添加して、十分に攪拌を行いながら60℃でエステル交換反応を行った。1時間後、ろ過にてリパーゼを除去し、常法に従って精製処理を行いエステル交換油を得た。当該エステル交換油90部に大豆油10部を混合した。
【0051】
比較例9
大豆硬化油(融点40℃)55部、パーム油30部と大豆油15部とを混合した。
【0052】
参考例2または比較例3を20部、大豆硬化油(融点34℃)20部、大豆油60部を油相とするスプレッド(油分70%)を常法に従って調製し、5℃12時間、20℃12時間の保存を8週間繰り返した。スプレッドの硬さの変化、および保存後のスプレッド組織の木目の評価を行った。表7に結果を示す。
【0053】
【表7】
Figure 0004054471
【0054】
参考例2使用のスプレッドは保存時の硬度変化がなく品質が一定で組織の木目が細かく、均一に保たれていたが、比較例3使用のスプレッドは硬度の変化が大きく組織の木目が粗くなっていて、全体的にザラついた印象であった。
【0055】
実施例または比較例4を20部、大豆硬化油(融点42℃)20部、大豆油60部を油相とするスプレッド(油分70%)を常法に従って調製し、5℃12時間、20℃12時間の保存を8週間繰り返した。スプレッドの硬さの変化、および保存後のスプレッド組織の木目の評価を行った。表8に結果を示す。
【0056】
【表8】
Figure 0004054471
【0057】
実施例使用のスプレッドは保存時の硬度変化がなく品質が一定で組織の木目が細かく、均一に保たれていたが、比較例4使用のスプレッドは硬度の変化が大きく組織の木目が粗くなっていて、全体的にザラついた印象であった。
【0058】
実施例または比較例6または比較例7を42部、全脂粉乳25部、砂糖15部、レシチン0.4部からなるファットクリームを常法に従って調製し、ビスケットにサンドした状態で袋に密封して室温で60日間放置保存した。その後、クリームの口溶け、舌触りの評価を行った。表9に結果を示す。
【0059】
【表9】
Figure 0004054471
【0060】
実施例のサンドクリームはエステル交換の原料油脂であるパーム中融点部のシャープな口溶けを維持したまま、油脂結晶の粗大化による食感のザラつきが抑制されていた。
【0061】
実施例、比較例5、8、9のそれぞれの加工油脂を用い、レシチン0.2%を含むショートニングを作成し、薄力粉100部、ショートニング35部、上白糖40部、全卵5部、食塩0.5部及び水18部からなる配合で常法によりビスケットを焼成した。ビスケットは袋に密封して室温で60日間放置保存した。その後、口溶け、食感の評価、および保存後の表面の状態を観察評価した。表10に結果を示す。
【0062】
【表10】
Figure 0004054471
【0063】
表10の結果より、本発明品は、マーガリン・ショートニングに使用することにより、油脂のマイグレーションに起因する焼菓子類の表面の白化現象を効果的に防止できる。
【0064】
【発明の効果】
本発明によれば、特殊な油脂配合をすることなく、エステル交換反応におけるランダム化率を調整することにより、結晶の粗大化や、液体油の浸み出しに関し、改質された改質油脂を得ることができ、また、該改質油脂はマーガリン・ショートニング等の原料として好適に使用することができ、加えて、これらを原料とする加工製品はマイグレーション等が改善される。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for modifying fats and oils by transesterification, a method for producing modified fats and oils having good processability, processed fats and oils such as margarine and shortening using the modified fats and oils, and / or The present invention relates to a processed product containing the processed oil.
[0002]
[Prior art]
  Processed fats and oils such as margarine shortening (hereinafter sometimes referred to as M / S) are prepared so as to maintain appropriate plasticity at the temperature to be used by blending hard fats and liquid fats. Hard oils such as hardened oils made from soybean oil, corn oil, rapeseed oil, and lard and palm oils are often used. However, for plant hardened oils, the chain length of constituent fatty acids is poor. In addition, for lard and palm oil, there is the formation of coarse crystals due to symmetric triglycerides, which not only causes roughness in the tissue, but also makes it impossible to hold liquid oil in the structure formed by hard fats and oils, There is a drawback that liquid oil is likely to ooze out due to environmental changes.
[0003]
  In order to overcome such drawbacks, as a method for producing fats and oils suitable for margarine shortening and the like, for example, a method of random transesterification of palm oil and lauric oil with a chemical catalyst (Japanese Patent Publication No. 58-53894) is disclosed. ing. In the disclosed method, the structure of the symmetrical triglyceride of palm oil is eliminated by random transesterification with lauric fats and oils having different chain lengths, a solidification rate suitable for processing of M / S is obtained, and gradually during storage. The property of being hardened is improved to some extent. However, on the contrary, an increase in trisaturated triglycerides is unavoidable, causing difficulty in melting in the mouth, and the effect of completely inhibiting coarse crystals has not been obtained.
[0004]
  On the other hand, a method of modifying by transesterification using a lipase having reaction selectivity with respect to the 1,3-position of the glyceride skeleton of fats and oils (JP-A 61-95098) is disclosed. According to this method, the increase in trisaturated triglycerides can be suppressed, but the structure of symmetric triglycerides possessed by palm oil is not effectively eliminated, and the quality changes over time, that is, the risk that the quality deteriorates after storage for a certain period of time. Therefore, a sufficient reforming effect cannot be obtained as a raw material fat such as M / S.
[0005]
[Problems to be solved by the invention]
  In view of such circumstances, in the present invention, by adjusting the randomization rate in the transesterification, simultaneously solving the disadvantages of the conventional random transesterification and the transesterification by the lipase having 1,3-position specificity, In other words, the purpose is to improve the processability of processed oils such as M / S by improving the spreadability, creaming properties, and solidification speed, to suppress the deterioration of the structure over time, and to prevent the migration of fats and oils in processed products such as baked goods And
[0006]
[Means for Solving the Invention]
  The present invention finds that the physical properties of fats and oils are modified by adjusting the randomization rate in the transesterification of the fat and oil mixture containing lauric acid and a saturated fatty acid having 16 or more carbon atoms. Completed. That is, the present invention provides an oil and fat mixture containing 4 to 40% lauric acid and 20 to 80% saturated fatty acid having 16 or more carbon atoms.20 to 73% transesterification rate,Randomization rate is 538The present invention relates to a method for producing modified fats and oils characterized by transesterification so that the ratio is%, the modified fats and oils, processed fats and oils containing the modified fats and oils, and processed products containing the modified fats and / or processed fats and oils. Also,Preferably, the lauric acid content of the oil / fat mixture is 4 to 20%, preferably the content of the saturated fatty acid having 16 or more carbon atoms in the oil / fat mixture is 25 to 70%, and the transesterification is preferably performed by an enzyme having low regioselectivity. The
[0007]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention is described in detail below. The present invention provides a method for producing fats and oils whose physical properties have been modified by adjusting the randomization rate in the transesterification of a fat and oil mixture containing lauric acid and a saturated fatty acid having 16 or more carbon atoms, the modified fats and oils, The present invention relates to a processed oil and fat containing the modified oil and a processed product containing the modified oil and / or processed oil and fat.
[0008]
  Lauric acid is a saturated fatty acid having 12 carbon atoms and is also referred to as dodecaic acid. C16 or higher saturated fatty acids are, for example, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid and the like.
[0009]
  The mixture of fats and oils is composed of one or more kinds of fats and oils and contains the above lauric acid and a saturated fatty acid having 16 or more carbon atoms, and the lauric acid content is 4 to 40%, preferably 4 to 20 %, More preferably 4 to 9%, and the content of saturated fatty acids having 16 or more carbon atoms is 20 to 80%, preferably 25 to 70%, more preferably 30 to 60%.
[0010]
  As the lauric acid source fats and oils, lauric fats and oils, that is, palm kernel oil, coconut oil, Babasu oil, Tsukumu oil, etc., and fats and oils obtained by fractionation, hardening, etc. can be used. As fats and oils of a saturated fatty acid source having 16 or more carbon atoms, palm oil, peanut oil, cottonseed oil, rice bran oil, chicken oil, lard, milk fat, beef tallow and the like, or fats and oils obtained by fractionation, hardening and the like can be used.
[0011]
  In addition, soybean oil, rapeseed oil, high oleic rapeseed oil, corn oil, safflower oil, high oleic safflower oil, sunflower oil, and high oleic sunflower oil as long as the content of lauric acid and saturated fatty acid having 16 or more carbon atoms is satisfied. , Olive oil, perilla oil, egoma oil, linseed oil, grape seed oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, walnut oil, coconut oil, tea seed oil, borage oil, wheat germ oil, algae oil, fish oil, egg oil, etc. Liquid oils and their hardened oils can be used. From the nutritional viewpoint, the hydrogenated oil is preferably one having less trans acid.
[0012]
  Transesterification refers to an exchange reaction of fatty acid substrates performed between two or more fats and oils. As a catalyst for this reaction, there are chemical catalysts such as alkali metals, their hydroxides and alcoholates, and enzyme-derived enzyme lipases which are enzyme catalysts. Transesterification includes random transesterification that randomizes fatty acid sequences, direct transesterification having directivity, and selective transesterification having triglyceride regioselectivity.
[0013]
  In the case of transesterification using a chemical catalyst, random transesterification occurs, and the fatty acid sequence is randomized. When this reaction is partly crystallized at a low temperature and saturated fatty acid triglyceride is precipitated and directed to two components of unsaturated triglyceride that does not crystallize, direct transesterification occurs. Again, the fatty acid sequence is random. When a chemical catalyst is used, the randomization rate cannot be adjusted. This is a so-called complete random transesterification. Chemical catalysts include alkali metals, their hydroxides and alcoholates, and only caustic soda and sodium methylate are allowed in Japan.
[0014]
  Transesterification using an enzyme catalyst includes random transesterification and selective transesterification. Selective transesterification includes a reaction for selecting the position of triglycerides (positions 1 and 3), a reaction for selecting the type of fatty acid, and a reaction for selecting partial glycerides (mono and diglycerides). In the present invention, an enzyme having low regioselectivity is used, and an enzyme having low regioselectivity is an enzyme having no regioselectivity, an enzyme having relatively low regioselectivity, an enzyme having regioselectivity and regioselectivity. Either a mixture of relatively low enzymes and a mixture of these with regioselective enzymes. Specifically, an enzyme having a 1,3 selectivity coefficient of 0.1 to 1, preferably an 1,3 selectivity coefficient of 0.2 to 1, more preferably an enzyme having a 1,3 selectivity coefficient of 0.3 to 1. It is preferable to use it. The 1,3 selectivity coefficient means that when the transesterification of the fatty acid at the 1st and 3rd positions reaches 100%, the rate of introduction of the specific fatty acid at the 1st and 3rd positions at the 2nd position is randomized. Is expressed as 1. These are acidic, neutral, and alkaline, and can be used in a state of low to high molecular weight, and can be used in a powder form or in a state immobilized by a known method.
[0015]
  The enzyme catalyst is an enzyme lipase derived from a microorganism, and among these microorganisms that produce the enzyme used in the present invention as an enzyme having no regioselectivity or relatively low regioselectivity, Aandida SP . , Chromobacteriumu SP., Humicora SP., Penicillium SP., Cadida SP., Chromobacterium SP., Corynebactterium SP., Geotrichum SP., Pseudomnas SP., Ryzopus SP., Penicilliu SP., Staphylococcus SP., Alcaligenes SP. Regarding the transesterification reaction, the use of a microbial enzyme lipase is preferable to the use of a chemical catalyst in terms of safety to the living body.
[0016]
  In the present invention, the randomization rate means that the difference between the specific fatty acid content at the two positions of the fat mixture before transesterification and the specific fatty acid content in the total fatty acid composition is 100, and the specific position at the two positions of the fat after transesterification It shows how much the fatty acid acid content has changed compared to the specific fatty acid content at the two positions before the transesterification in terms of 100 minutes. The measurement of the fatty acid composition at the two positions is performed according to Yuka Kagaku, 29, 587, (1980). The randomization rate in the present invention is 5 to 75%, preferably 10 to 70%, and more preferably 15 to 65%. When the randomization rate is less than 5% or more than 75%, it is not preferable because it has a disadvantage of 1,3-selective transesterification or complete random transesterification.
[0017]
  The transesterification rate means that the difference between the specific triglyceride component of the fat before starting the reaction and the specific triglyceride component after the complete transesterification is 100, and the specific triglyceride component of any transesterified fat is The degree of change in comparison is expressed as a percentage, and details are described in JP-T-10-508497. Specifically, it is calculated by the following formula.
Transesterification rate (%) = (Xt−XO) / (Xeq−XO) × 100
X: a measurable characteristic that depends on the molecular composition of the triglyceride mixture, and the composition before the start of transesterification and the composition after the complete transesterification have both extreme values
X0: X value before transesterification
Xeq: X value after complete transesterification
Xt: X value of the composition for which transesterification is to be measured
  In order to obtain the effect of the modification according to the present invention, the transesterification rate is 20% or more, preferably 40% or more, more preferably 60% or more.
[0018]
  It is preferable that the ratio between the randomization rate and the transesterification rate is 0.05 to 0.75, preferably 0.10 to 0.70, and more preferably 0.15 to 0.65. When the ratio of the randomization rate and the transesterification rate is within the above range, a stable reforming effect is obtained, which is preferable. The randomization rate and transesterification rate can be adjusted by the transesterification time and other conditions such as temperature, moisture, pH, stirring conditions, and the catalyst used. In particular, it is preferable to adjust the transesterification time and the kind and amount of the catalyst to be used because of excellent operability and the like.
[0019]
  The modified fat of the present invention is a fat and oil mixture containing lauric acid and a saturated fatty acid having 16 or more carbon atoms, and the lauric acid content is 4 to 40% by weight, preferably 4 to 20% by weight, more preferably An oil-and-fat mixture having a content of 4 to 9% by weight and a saturated fatty acid having 16 or more carbon atoms of 20 to 80% by weight, preferably 25 to 70% by weight, more preferably 30 to 60% by weight has a randomization rate. It is manufactured by performing transesterification so that it may become 5-75%, Preferably it is 10-70%, More preferably, it will be 15-65%. In order to reliably achieve the function of the transesterified oil and fat in the present invention, the ratio between the randomization rate and the value of the transesterification rate is 0.05 to 0.75, preferably 0.10 to 0.70, and more preferably. Is 0.15 to 0.65. In order to carry out the transesterification reaction in the present invention, it is preferable to use a catalyst, preferably an enzyme catalyst, more preferably an enzyme having low regioselectivity. The present invention can be achieved by complete or partial transesterification. Specifically, the transesterification rate is 20% or more, preferably 40% or more, more preferably 60% or more. The ratio of the numerical value to the randomization rate is preferably in the above range. Here, since the site selectivity may change with a decrease in activity, attention in use is required. Moreover, it is preferable that the obtained modified fat has less trans acid. Specifically, the trans acid content is 10% by weight or less, preferably 5% by weight or less, and more preferably 1% by weight or less.
[0020]
  Oils and fats modified according to the present invention are less likely to undergo β-type transition of crystals, and the β ′ state is maintained, so that coarse crystals that cause roughness are less likely to occur, and the properties of creaming and spreadability are improved. Is done. In addition, the conventional defect, such as the problem that the liquid oil cannot be held in the structure formed by the hard oil and fat, and the liquid oil easily oozes out due to the temperature change of the environment, is solved. In addition, the fats and oils modified according to the present invention have effects such as an increase in the solidification rate and an improvement in processability of processed oils and fats such as M / S.
[0021]
  Processed fats and oils comprising the modified fats and oils of the present invention include margarine, adjusted margarine, fad spread, shortening, powdered fats and oils, chocolate, cream and the like, and those similar to these, for example, the so-called margarine type. This margarine type, etc. means anything that deviates from the standard of the product, but is recognized as having the same quality or similar purpose of use, and can be recognized as being practically the same. .
[0022]
  As an example of the above-described processed fats and oils, margarine is a plastic one made by adding water or the like to edible fats and emulsifying and then rapidly kneading or without quenching kneading, or fluidity, The fat / oil content is 80% by weight or more, and the adjusted margarine is the oil / fat content is 75% by weight or more and less than 80% by weight. The modified fat of the present invention is contained in an amount of 30% by weight or more, preferably 50% or more, more preferably 75% or more, of the fat and oil contained in margarine or adjusted margarine. Moreover, what is normally added to margarine, for example, vitamins, sodium chloride, sugar, edible protein, emulsifier, preservative, antioxidant, fragrance, colorant, fermented milk, other food additives, etc. can be added. . A fat spread is a plastic product made by adding water or the like to edible oils and fats and then emulsifying and then rapidly quenching or without rapid kneading, or after emulsifying water and edible oils and fats, Or plastic products that are made by quenching and kneading by adding flavor ingredients such as processed fruit products, chocolate, nut paste, etc., and the proportion of the weight of the flavor ingredients in the product is less than the fat content, etc. In addition, the oil and fat content is 35% by weight or more and less than 75%. The modified fat of the present invention is contained in an amount of 30% by weight or more, preferably 50% by weight or more, and more preferably 70% by weight or more of the fat and oil contained in the fat spread. Moreover, what can be normally added to a fad spread can be added. Shortening is a solid or a solid or a solid that is made by rapidly cooling and kneading refined animal oil, vegetable oil, edible refined oil or mixture thereof, and emulsifier etc. It is a thing provided with processability, such as plasticity and emulsification. The modified fat of the present invention is contained in an amount of 35% by weight or more, preferably 50% by weight or more, and more preferably 75% by weight or more of the fat and oil contained in the shortening. Moreover, what can be normally added to shortening, for example, an antioxidant, an emulsifier, an antifoamer, other additives, etc. can be added. In addition, the powdered fats and oils, chocolate, cream, etc. can be blended with the required amount of the modified fats and oils of the present invention according to the quality required.
[0023]
  Here, as one of the usage forms which fully draws out the function of the modified fat of the present invention, only the modified fat of the present invention is used as a raw material for processed fats and oils.
[0024]
  Examples of processed products produced using these modified oils and / or processed oils and fats, for example, using the margarine shortening of the present invention as a raw material include baked confectionery, cakes, breads and the like. These have effects such as enhancement of the function of suppressing migration of fats and oils during storage without impairing the texture.
[0025]
【Example】
  Examples are shown below, but this is an exemplification, and the present invention is not limited to these examples. Unless otherwise specified, all parts and% in the examples are based on weight.
[0026]
  The measuring method of the randomization rate, the transesterification rate, the crystal evaluation method, the solidification rate evaluation method, the spread evaluation method, the cream evaluation method, and the baked confectionery evaluation method are shown below.
[Randomization rate measurement method] The difference between the palmitic acid content at the two positions of the fat mixture before transesterification and the palmitic acid content in the total fatty acid composition is 100, and the palmitic acid content at the two positions of the fat after transesterification is transesterification The percentage of change in palmitic acid content in the previous two positions was expressed as a percentage..
[Method for Measuring Transesterification Rate] The amount of triglyceride having 44 carbon atoms + the amount of triglyceride having 46 carbon atoms was defined as X, and the transesterification rate was measured by the method described in paragraph 0017.
[Crystal Evaluation Method] Crystal evaluation by temperature control is described in JAOCS, Vol. 66, no. 5 (May 1989).
  Evaluation,
β ′ = β: β ′ and β are present to the same extent
β ′> β: β ′ is more than β
β ′ >> β: β ′ is almost all
[Evaluation Method of Solidification Rate] The solidification rate is expressed as a solidification rate (%) with the change over time of SFC when oil and fat completely melted at 70 ° C. is rapidly cooled to 5 ° C., with the value after 24 hours being 100. did.
[Spread Evaluation Method] Changes in hardness due to storage, and the fineness and uniformity of the “grain” of the spread tissue after storage were evaluated. The hardness of the spread was measured by using a cone needle penetration meter (manufactured by NIHON KAIHEIKI, cone needle weight 22.5 g) specified in JIS K2220 in a state where the product temperature was 10 ° C. The fineness and uniformity of the “grain” of the spread structure was observed and evaluated.
[Evaluation method of cream] After storage, the feel and feel of the cream were evaluated by sensory evaluation.
[Evaluation method of baked confectionery] The melt and texture after storage were evaluated by sensory evaluation, and the surface state of the baked confectionery after storage was evaluated by observation.
[0027]
  referenceExample 1
  Lipase powder derived from the genus Alcaligenes (Lipase QL manufactured by Meikatsu Sangyo Co., Ltd.) mixed with 70 parts of palm oil and 30 parts of palm kernel oil fractionated olein (12% lauric acid, 36% saturated fatty acid 36%). ] Was added in an amount of 1% by weight to the mixed fat and oil, and the ester exchange reaction was carried out at 60 ° C. with sufficient stirring. After 1 hour, the lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 1 shows the results.
[0028]
  Comparative Example 1
  reference2% by weight of immobilized lipase derived from the genus Alcaligenes [Lipase QLC manufactured by Meisei Sangyo Co., Ltd.] was added to the same mixed fat as in Example 1, and a transesterification reaction was performed at 60 ° C. with sufficient stirring. . After 4 hours, the lipase was removed by filtration, and purified according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 1 shows the results.
[0029]
  Comparative Example 2
  referenceThe same mixed oil as in Example 1 was subjected to random transesterification according to a conventional method using sodium methoxide as a catalyst. After transesterification, purification treatment was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 1 shows the results.
[0030]
[Table 1]
Figure 0004054471
[0031]
  From Table 1, as a result of crystallinity evaluation by temperature control,referenceIn Example 1, the crystal form remained at β ′, and the crystal transition to β form, which tends to produce a coarse crystal that leads to quality deterioration of margarine shortening, was suppressed. Comparative Example 1 using immobilized lipase is substantiallyComparisonAs in the transesterification of the chemical catalyst of Example 2, the crystal transition to the β form was advanced.
[0032]
  referenceExample 2
  Lipase powder derived from the genus Alcaligenes (Lipase QL manufactured by Meikatsu Sangyo Co., Ltd.) in a mixed fat / oil (50% lauric acid, 47% saturated fatty acid having 16 or more carbon atoms) of 50 parts palm stearin and 50 parts palm kernel hardened oil ] Was added in an amount of 1% by weight to the mixed fat and oil, and the ester exchange reaction was carried out at 60 ° C. with sufficient stirring. After 1 hour, the lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of the randomization rate, and evaluation of the solidification rate were performed. Table 2 shows the results.
[0033]
  Comparative Example 3
  Immobilized lipase derived from Mucor Miehei (LIPOZYME manufactured by Novo) was packed in a column,referenceThe same mixed oil and fat as in Example 2 was passed through under the conditions of 60 ° C. and SV (space velocity) 0.4 (liter / little column) to conduct a transesterification reaction. The transesterification reaction solution was purified according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of the randomization rate, and evaluation of the solidification rate were performed. Table 2 shows the results.
[0034]
[Table 2]
Figure 0004054471
[0035]
  referenceIn Example 2, the solidification rate increased with time (solidification rate), and quickly solidified in the cooling step during margarine / shortening adjustment, and there was obtained an advantage that the physical property change after adjustment was small.
[0036]
  Example1
  Lipase powder derived from the genus Alcaligenes [Lipase PL manufactured by Meikatsu Sangyo Co., Ltd.] to a mixed fat (70% lauric acid, 36% saturated fatty acid having 16 or more carbon atoms) of 70 parts palm oil and 30 parts palm kernel oil 0.1% by weight was added to the mixed fat and oil, and the ester exchange reaction was performed at 60 ° C. with sufficient stirring. After 16 hours, the lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of the randomization rate, and evaluation of the solidification rate were performed. Table 3 shows the results.
[0037]
  Comparative Example 4
  An immobilized lipase derived from Mucor Miehei [LIPOZYME made by Novo] was packed in a column.1The same mixed oil and fat was passed through under the conditions of 60 ° C. and SV1.0 to conduct a transesterification reaction. The transesterification reaction solution was purified according to a conventional method to obtain a transesterified oil. Thereafter, the transesterification rate and randomization rate of the obtained transesterification oil were measured, and the solidification rate was evaluated. Table 3 shows the results.
[0038]
[Table 3]
Figure 0004054471
[0039]
  Example1Has a rapid increase in solidification rate (solidification rate) over time, and it quickly solidifies in the cooling process during margarine / shortening adjustment, and there is obtained an advantage that there is little change in physical properties after adjustment.
[0040]
  Example2
  A lipase powder derived from Alcaligenes genus (manufactured by Meika Sangyo Co., Ltd.) in a mixed fat (65% lauric acid, 42% saturated fatty acid having 16 or more carbon atoms) of 65 parts of palm oil, 20 parts of palm stearin and 15 parts of coconut oil Lipase QL] was added at 0.6% by weight to the mixed oil and fat, and the ester exchange reaction was carried out at 60 ° C. with sufficient stirring. After 1 hour, lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of the randomization rate, and evaluation of crystallinity were performed. Table 4 shows the results.
[0041]
  Comparative Example 5
  An immobilized lipase derived from Mucor Miehei [LIPOZYME made by Novo] was packed in a column.2The mixed fats and oils were passed through under the conditions of 60 ° C. and SV1.3 to conduct a transesterification reaction. The reaction solution was purified according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of the randomization rate, and evaluation of crystallinity were performed. Table 4 shows the results.
[0042]
[Table 4]
Figure 0004054471
[0043]
  Results of crystallinity evaluation by temperature control, examples2The crystal form remained at β ', and the crystal transition to the β form, which tends to produce coarse crystals that lead to deterioration in the quality of margarine shortening, was suppressed.
[0044]
  Example3
  Lipase powder derived from the genus Alcaligenes [Lipase QL manufactured by Meikatsu Sangyo Co., Ltd.] ] Was added in an amount of 0.3% by weight to the mixed fat and oil, and the ester exchange reaction was carried out at 60 ° C. with sufficient stirring. After 1 hour, lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 5 shows the results.
[0045]
  Comparative Example 6
  An immobilized lipase derived from Mucor Miehei [LIPOZYME made by Novo] was packed in a column.2The same mixed oil and fat was passed through under the conditions of 60 ° C. and SV2.0 to conduct a transesterification reaction. The reaction solution was purified according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 5 shows the results.
[0046]
[Table 5]
Figure 0004054471
[0047]
  From Table 5, as a result of the crystallinity evaluation by temperature control, the crystal form of Example 5 remained in β ′, and the crystal transition to the β form, which is likely to produce a coarse crystal that leads to quality deterioration of margarine shortening, was suppressed. .
[0048]
  Comparative Example 7
  Example2The same mixed oils and fats were subjected to random transesterification according to a conventional method using sodium methoxide as a catalyst. After transesterification, purification treatment was performed according to a conventional method to obtain a transesterified oil. Then, the transesterification rate of the obtained transesterification oil, the measurement of a randomization rate, and the evaluation of the crystal | crystallization were performed. Table 6 shows the results.
[0049]
[Table 6]
Figure 0004054471
[0050]
  Comparative Example 8
  65 parts of palm stearin and 35 parts of palm oil are mixed (17% lauric acid, 32% saturated fatty acid having 16 or more carbon atoms) and mixed with lipase powder derived from the genus Alcaligenes [Lipase QL manufactured by Meito Sangyo Co., Ltd.] The transesterification reaction was carried out at 60 ° C. while adding 1% by weight to the mixture with sufficient stirring. After 1 hour, the lipase was removed by filtration, and purification was performed according to a conventional method to obtain a transesterified oil. 10 parts of soybean oil were mixed with 90 parts of the transesterified oil.
[0051]
  Comparative Example 9
  55 parts of soybean hardened oil (melting point: 40 ° C.), 30 parts of palm oil and 15 parts of soybean oil were mixed.
[0052]
  referenceA spread (oil content: 70%) having 20 parts of Example 2 or Comparative Example 3, 20 parts of soybean hardened oil (melting point: 34 ° C.) and 60 parts of soybean oil as an oil phase was prepared in accordance with a conventional method. Storage for 12 hours was repeated for 8 weeks. Changes in spread hardness and grain evaluation of the spread organization after storage were performed. Table 7 shows the results.
[0053]
[Table 7]
Figure 0004054471
[0054]
  referenceThe spread used in Example 2 had no change in hardness during storage and the quality was constant and the texture of the texture was fine and kept uniform. However, the spread of Comparative Example 3 had a large change in hardness and the texture of grain was rough. The overall impression was rough.
[0055]
  Example1Alternatively, 20 parts of Comparative Example 4, 20 parts of soybean hardened oil (melting point: 42 ° C.), and 60 parts of soybean oil (oil content: 70%) are prepared according to a conventional method. This storage was repeated for 8 weeks. Changes in spread hardness and grain evaluation of the spread organization after storage were performed. Table 8 shows the results.
[0056]
[Table 8]
Figure 0004054471
[0057]
  Example1The spread of the use had no hardness change at the time of storage, the quality was constant and the texture of the texture was fine and kept uniform, but the spread of the use of Comparative Example 4 had a large change in hardness and the texture of the texture was rough, The overall impression was rough.
[0058]
  Example3Alternatively, a fat cream consisting of 42 parts of Comparative Example 6 or Comparative Example 7, 25 parts of whole milk powder, 15 parts of sugar, and 0.4 parts of lecithin is prepared according to a conventional method, sealed in a bag in a state of being sandwiched in biscuits and room temperature. And stored for 60 days. Thereafter, the cream was melted and the feel of the tongue was evaluated. Table 9 shows the results.
[0059]
[Table 9]
Figure 0004054471
[0060]
  Example3In the sand cream, the rough texture of the fat melting point was suppressed while maintaining the sharp melting of the melting point of the palm, which is the raw material oil for transesterification.
[0061]
  Example2Using each processed oil of Comparative Examples 5, 8 and 9, a shortening containing 0.2% lecithin was prepared, 100 parts of weak flour, 35 parts of shortening, 40 parts of white sucrose, 5 parts of whole egg, 0.5% of salt The biscuits were fired by a conventional method with a composition comprising 15 parts of water and 18 parts of water. The biscuit was sealed in a bag and stored at room temperature for 60 days. Thereafter, the mouth was melted, the texture was evaluated, and the surface condition after storage was observed and evaluated. Table 10 shows the results.
[0062]
[Table 10]
Figure 0004054471
[0063]
  From the results of Table 10, the product of the present invention can effectively prevent the whitening phenomenon of the surface of baked confectionery due to the migration of fats and oils by using it for margarine shortening.
[0064]
【The invention's effect】
  According to the present invention, by adjusting the randomization rate in the transesterification reaction without blending special fats and oils, the modified fats and oils can be improved with respect to crystal coarsening and liquid oil leaching. In addition, the modified fats and oils can be suitably used as raw materials for margarine and shortening, and in addition, processed products using these modified raw materials have improved migration and the like.

Claims (6)

ラウリン酸を4〜40%、炭素数16以上の飽和脂肪酸を20〜80%含有する油脂混合物を、エステル交換率が20〜73%、ランダム化率が5〜38%となるようにエステル交換することを特徴とする改質油脂の製造法。An oil and fat mixture containing 4 to 40% lauric acid and 20 to 80% saturated fatty acid having 16 or more carbon atoms is transesterified so that the transesterification rate is 20 to 73% and the randomization rate is 5 to 38 %. A method for producing a modified oil or fat characterized by the above. ラウリン酸含量が4〜20%である請求項1記載の改質油脂の製造法。  The method for producing a modified fat according to claim 1, wherein the content of lauric acid is 4 to 20%. 炭素数16以上の飽和脂肪酸の含量が25〜70%である請求項1または2記載の改質油脂の製造法。  The method for producing a modified fat according to claim 1 or 2, wherein the content of the saturated fatty acid having 16 or more carbon atoms is 25 to 70%. 請求項1〜のいずれか1項に記載の製造法により得られる改質油脂。The modified fats and oils obtained by the manufacturing method of any one of Claims 1-3 . 請求項の改質油脂を含む加工油脂。Processed fats and oils containing the modified fats and oils of Claim 4 . 請求項の改質油脂または/および請求項の加工油脂を含む加工製品。Processed products containing the modified oil or fat according to claim 4 and / or the processed oil or fat according to claim 5 .
JP01166799A 1999-01-20 1999-01-20 Method for producing modified oil and fat and the modified oil and fat Expired - Fee Related JP4054471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01166799A JP4054471B2 (en) 1999-01-20 1999-01-20 Method for producing modified oil and fat and the modified oil and fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01166799A JP4054471B2 (en) 1999-01-20 1999-01-20 Method for producing modified oil and fat and the modified oil and fat

Publications (2)

Publication Number Publication Date
JP2000212590A JP2000212590A (en) 2000-08-02
JP4054471B2 true JP4054471B2 (en) 2008-02-27

Family

ID=11784347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01166799A Expired - Fee Related JP4054471B2 (en) 1999-01-20 1999-01-20 Method for producing modified oil and fat and the modified oil and fat

Country Status (1)

Country Link
JP (1) JP4054471B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097419A (en) * 2005-09-30 2007-04-19 Snow Brand Milk Prod Co Ltd Creaming-property improver, and oil-and-fat composition
KR100822040B1 (en) 2006-11-29 2008-04-15 씨제이제일제당 (주) Trans fatty acid free fat for preparing a margarine oil produced by enzymatic interesterification and method for production of the same
JP5570113B2 (en) 2008-12-22 2014-08-13 日清オイリオグループ株式会社 Oil and fat and method for producing oil and fat
JP4894975B2 (en) 2009-04-16 2012-03-14 株式会社カネカ Plastic oil and fat modifier
EP2561765A4 (en) * 2010-04-22 2017-05-10 CJ CheilJedang Corporation Dry fractionation method for a transesterified oil and fat composition
WO2012063629A1 (en) * 2010-11-11 2012-05-18 日清オイリオグループ株式会社 Oil or fat composition, bakery food using oil or fat composition, and composite food using bakery food
JP5830582B2 (en) * 2014-06-24 2015-12-09 日清オイリオグループ株式会社 Fats and oils

Also Published As

Publication number Publication date
JP2000212590A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
KR101598646B1 (en) Oil-and-fat composition and plastic oil-and-fat composition
EP2194792B2 (en) Composition suitable for use in baking
CA2237177C (en) Edible fat spread
JP4895784B2 (en) Oil composition for solid roux
JP4493585B2 (en) Oil and fat composition for kneading baked confectionery with oily ingredients
JP5202187B2 (en) Oil composition for frozen desserts
EP3434109B1 (en) Plastic fat and roll-in fat composition using same
JP2010077244A (en) Hard stock and plastic oil-and-fat composition using the hard stock
JPH11510396A (en) Edible vegetable fat composition
JP4146431B2 (en) Oil composition for spread
JP2015202099A (en) composite confectionery fat composition
JP3791943B2 (en) Method for producing transesterified oil and fat
JPH10508497A (en) Method for producing fat mixture and plastic spread containing obtained fat mixture
JP4054471B2 (en) Method for producing modified oil and fat and the modified oil and fat
JP2020005628A (en) Oil and fat composition, oily food containing the oil and fat composition
JP4841136B2 (en) Plastic oil composition
JP6767160B2 (en) Oil and fat composition for complex confectionery
JP6002504B2 (en) Oil composition
JP6189016B2 (en) Plastic oil / fat composition containing improved creaming / fat
JPH11155483A (en) Oil and fat composition for fry
EP0797921B1 (en) Frying fat and oil
JP6679207B2 (en) Plastic fat composition
WO2021193972A1 (en) Oil or fat composition for confectionery
JP6022851B2 (en) Oil composition
JP2021170965A (en) Bloom retardant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees