JP4053563B2 - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
JP4053563B2
JP4053563B2 JP2005347533A JP2005347533A JP4053563B2 JP 4053563 B2 JP4053563 B2 JP 4053563B2 JP 2005347533 A JP2005347533 A JP 2005347533A JP 2005347533 A JP2005347533 A JP 2005347533A JP 4053563 B2 JP4053563 B2 JP 4053563B2
Authority
JP
Japan
Prior art keywords
shaft
impeller
fluid machine
fitting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005347533A
Other languages
Japanese (ja)
Other versions
JP2007154678A (en
Inventor
暁 川合
一也 太田
明 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2005347533A priority Critical patent/JP4053563B2/en
Priority to EP06024462A priority patent/EP1793124A2/en
Priority to US11/564,578 priority patent/US20070128044A1/en
Priority to CNB200610162904XA priority patent/CN100465457C/en
Publication of JP2007154678A publication Critical patent/JP2007154678A/en
Application granted granted Critical
Publication of JP4053563B2 publication Critical patent/JP4053563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/20Mounting rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、流体機械に関し、特に、シャフトとインペラとが締まりばめにより相互結合される流体機械に関する。   The present invention relates to a fluid machine, and more particularly to a fluid machine in which a shaft and an impeller are interconnected by an interference fit.

レーザ発振器で使用される送風機のような高速回転型の流体機械においては、シャフト(回転軸)にインペラを精度良く強固に取り付ける必要がある。そこで従来、例えば特許文献1に記載されるように、インペラをシャフトに焼きばめすることで、両者の高速回転中に生じ得る周方向への相対的変動を防止し、安定した高速回転を遂行できるようにしている。また、特許文献2に記載されるように、インペラに設けられる軸穴の一部分のみを、焼きばめによりシャフトに嵌合させる構成も知られている。特許文献2にはさらに、インペラを、そのガス入口側を上に向けて定盤に載せ、その状態で、インペラの軸穴のガス入口側に設けた嵌合部を加熱して拡径し、シャフトをインペラの上方から軸穴に所定位置まで挿入した時点で、加熱を解除して焼きばめを完了させる手法が記載されている。   In a high-speed rotating fluid machine such as a blower used in a laser oscillator, it is necessary to attach an impeller to a shaft (rotating shaft) with high accuracy and strength. Therefore, conventionally, as described in Patent Document 1, for example, the impeller is shrink-fitted on the shaft to prevent relative fluctuation in the circumferential direction that may occur during both high-speed rotations, and stable high-speed rotation is performed. I can do it. Further, as described in Patent Document 2, a configuration in which only a part of a shaft hole provided in an impeller is fitted to a shaft by shrink fitting is also known. In Patent Document 2, the impeller is further placed on the surface plate with the gas inlet side facing upward, and in that state, the fitting portion provided on the gas inlet side of the shaft hole of the impeller is heated to expand the diameter, A method is described in which when the shaft is inserted from above the impeller into the shaft hole to a predetermined position, the heating is canceled and the shrink fitting is completed.

特開平7−63193号公報(図2)JP-A-7-63193 (FIG. 2) 特開2004−60460号公報(図1、図2)JP 2004-60460 A (FIGS. 1 and 2)

従来の流体機械において、インペラをシャフトに焼きばめする構成では、一般に、インペラの収縮時にインペラとシャフトとが最初に係合した箇所が基準となって両者の相互固定位置が決まり、その後にインペラが完全に収縮してシャフトに強固に固定される。このとき、シャフト上でのインペラの固定位置(すなわち最初の係合箇所の位置)は、それぞれの加工精度のばらつき等に起因して、正確に予測することが一般に困難である。したがって、シャフト上でインペラを、予め定めた軸線方向位置に正確に位置決めして固定することが困難になり、結果として、流体機械の作動信頼性や性能に悪影響を及ぼすことが懸念される。   In a conventional fluid machine in which the impeller is shrink-fitted onto the shaft, generally, the position where the impeller and the shaft first engage with each other when the impeller contracts is determined as a reference, and then the impeller is fixed. Is completely contracted and firmly fixed to the shaft. At this time, it is generally difficult to accurately predict the fixing position of the impeller on the shaft (that is, the position of the first engagement portion) due to variations in processing accuracy. Therefore, it becomes difficult to accurately position and fix the impeller at a predetermined axial position on the shaft, and as a result, there is a concern that the operation reliability and performance of the fluid machine may be adversely affected.

例えば、インペラに隣接して軸シールや軸受が設置される構成では、シャフト上でのインペラの軸線方向位置が設定位置からずれていると、その影響で軸シールや軸受の軸線方向位置も設定位置からずれることになる。特に、軸受に位置ずれが生じると、シャフトの高速回転中に異常振動を発生し、軸受や流体機械本体に損傷を招ずる恐れもある。このような問題は、前述した特許文献1に記載されるような、インペラを軸穴の全体でシャフトに固定する構成だけでなく、前述した特許文献2に記載されるような、インペラを軸穴の一部分でシャフトに固定する構成においても、シャフト上でのインペラの固定位置(すなわち最初の係合箇所の位置)の特定が困難であるという理由から、同様に起こり得るものである。   For example, in a configuration in which a shaft seal or bearing is installed adjacent to the impeller, if the axial position of the impeller on the shaft deviates from the set position, the axial position of the shaft seal or bearing is also affected by the influence. It will deviate from. In particular, when a positional shift occurs in the bearing, abnormal vibration may occur during high-speed rotation of the shaft, which may cause damage to the bearing and the fluid machine body. Such a problem is not only the configuration in which the impeller is fixed to the shaft with the whole shaft hole as described in Patent Document 1 described above, but also the impeller as described in Patent Document 2 described above. Even in a configuration in which a part of the shaft is fixed to the shaft, the same may occur because it is difficult to specify the fixing position of the impeller on the shaft (that is, the position of the first engagement portion).

このような問題を解決するために、焼きばめ工程に際し、インペラが完全に収縮するまでの間、インペラとシャフトとをプレス機械等で拘持することにより、両者間の軸線方向への相対位置ずれを防止する方策が採られる場合がある。また、インペラの収縮完了までの時間を短縮する目的で、専用の冷却機構を用意する場合もある。しかし、これらプレス機械や冷却機構等の付帯設備は、流体機械の製造コストを増加させる要因となり得る。   In order to solve such a problem, in the shrink fitting process, the impeller and the shaft are held by a press machine or the like until the impeller is completely contracted, thereby the relative position in the axial direction between the two. Measures to prevent deviation may be taken. In addition, a dedicated cooling mechanism may be prepared for the purpose of shortening the time until the impeller contraction is completed. However, such incidental equipment such as a press machine and a cooling mechanism can increase the manufacturing cost of the fluid machine.

本発明の目的は、シャフトとインペラとが締まりばめにより相互結合される流体機械において、シャフトとインペラとを結合する際の両者間の軸線方向への相対位置ずれを、簡易な構成により確実に防止でき、以って、安全性及び作動信頼性に優れた安価でかつ高性能の流体機械を提供することにある。   An object of the present invention is to ensure relative displacement in the axial direction between a shaft and an impeller in a fluid machine in which the shaft and the impeller are mutually coupled by an interference fit, with a simple configuration. An object of the present invention is to provide a low-cost and high-performance fluid machine that can be prevented and that is excellent in safety and operational reliability.

上記目的を達成するために、請求項1に記載の発明は、シャフトと、シャフトが挿入される軸穴を有するインペラとを具備し、インペラがシャフトに熱変形の結果としての締まりばめにより結合される流体機械において、シャフトとインペラとの間に設けられ、シャフトの予め定めた位置にインペラを位置決めする位置決め部と、位置決め部に隣接して軸穴の中に設けられ、シャフトとインペラとの間に締まりばめを形成する嵌合部と、嵌合部に隣接して軸穴の中に設けられ、シャフトとインペラとの間に隙間を形成する遊挿部と、を具備することを特徴とする流体機械を提供する。 To achieve the above object, the invention described in claim 1 comprises a shaft and an impeller having a shaft hole into which the shaft is inserted, and the impeller is coupled to the shaft by an interference fit as a result of thermal deformation. In a fluid machine, a positioning portion that is provided between a shaft and an impeller, positions the impeller at a predetermined position of the shaft, and is provided in a shaft hole adjacent to the positioning portion. A fitting portion that forms an interference fit between the fitting portion and a loose insertion portion that is provided in the shaft hole adjacent to the fitting portion and forms a gap between the shaft and the impeller. A fluid machine is provided.

請求項2に記載の発明は、請求項1に記載の流体機械において、位置決め部が、シャフト及びインペラとは別体の部材を具備する流体機械を提供する。   The invention according to claim 2 provides the fluid machine according to claim 1, wherein the positioning portion includes a member separate from the shaft and the impeller.

請求項3に記載の発明は、請求項1又は2に記載の流体機械において、位置決め部が、シャフト及びインペラの少なくとも一方の一部分を具備する流体機械を提供する。   According to a third aspect of the present invention, there is provided the fluid machine according to the first or second aspect, wherein the positioning portion includes a part of at least one of a shaft and an impeller.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の流体機械において、嵌合部及び遊挿部が、シャフトの外径とインペラの軸穴の内径との少なくとも一方を、軸線方向に沿って変化させることにより形成される流体機械を提供する。   The invention according to claim 4 is the fluid machine according to any one of claims 1 to 3, wherein the fitting portion and the loose insertion portion are at least one of an outer diameter of the shaft and an inner diameter of the shaft hole of the impeller. Is provided along the axial direction.

請求項1に記載の発明によれば、焼きばめ及び冷やしばめの少なくとも一方の手法によってシャフトをインペラに固定する際に、位置決め部に隣接してインペラの軸穴内に嵌合部を設けたことにより、シャフト上でのインペラの固定位置(すなわち最初の係合箇所の位置)を容易かつ確実に特定して、嵌合部における締まりばめを達成することができる。そして、軸穴内に嵌合部に隣接して遊挿部を設けたことで、嵌合部における締まりばめ後のシャフトの膨張方向及びインペラの収縮方向を規定の方向に制御することができる。その結果、シャフトとインペラとを相互結合する際の両者間の軸線方向への相対位置ずれを、簡易な構成により確実に防止して、シャフト上でのインペラの軸線方向位置精度を向上させるとともに、インペラに隣接してシャフトに取り付けられる他部品の軸線方向位置精度も向上させることができる。したがって、安全性及び作動信頼性に優れた安価でかつ高性能の流体機械が提供される。   According to the first aspect of the present invention, when the shaft is fixed to the impeller by at least one of shrink fitting and cold fitting, the fitting portion is provided in the shaft hole of the impeller adjacent to the positioning portion. Thus, it is possible to easily and surely specify the fixing position of the impeller on the shaft (that is, the position of the first engagement portion) and achieve the interference fit in the fitting portion. Then, by providing the loose insertion portion adjacent to the fitting portion in the shaft hole, the expansion direction of the shaft and the contraction direction of the impeller after the interference fit in the fitting portion can be controlled to a prescribed direction. As a result, the relative positional shift in the axial direction between the shaft and the impeller when mutually coupled is reliably prevented with a simple configuration, and the axial positional accuracy of the impeller on the shaft is improved. The axial position accuracy of other parts attached to the shaft adjacent to the impeller can also be improved. Therefore, an inexpensive and high-performance fluid machine excellent in safety and operational reliability is provided.

請求項2に記載の発明によれば、インペラに隣接してシャフトに取り付けられる他部品を流用して位置決め部を構成できるので、加工工数及び部品点数を削減することができる。   According to the second aspect of the present invention, since the positioning part can be configured by using other parts attached to the shaft adjacent to the impeller, the number of processing steps and the number of parts can be reduced.

請求項3に記載の発明によれば、位置決め部による安定した位置決め機能を維持することができる。   According to invention of Claim 3, the stable positioning function by a positioning part can be maintained.

請求項4に記載の発明によれば、嵌合部及び遊挿部を極めて簡易に構成できる。   According to invention of Claim 4, a fitting part and a loose insertion part can be comprised very simply.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
図面を参照すると、図1は、本発明の一実施形態による流体機械10のシャフト12とインペラ14とを示す。図示実施形態による流体機械10は、遠心式送風機の構成を有するものであり、インペラ14の羽根構造及びハウジング(図示せず)の構造はいずれも公知のものを使用できるから、その説明を省略する。なお本発明は、遠心式送風機に限らず、他の様々な流体機械にも適用できる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.
Referring to the drawings, FIG. 1 shows a shaft 12 and an impeller 14 of a fluid machine 10 according to one embodiment of the present invention. The fluid machine 10 according to the illustrated embodiment has a configuration of a centrifugal blower, and since the blade structure of the impeller 14 and the structure of the housing (not shown) can both be known, the description thereof is omitted. . The present invention can be applied not only to the centrifugal blower but also to various other fluid machines.

流体機械10は、シャフト12と、シャフト12が挿入される軸穴16を有するインペラ14とを備え、インペラ14がシャフト12に締まりばめにより結合される構成を有する。流体機械10はさらに、シャフト12とインペラ14との間に設けられ、シャフト12の予め定めた位置にインペラ14を位置決めする位置決め部18と、位置決め部18に隣接して軸穴16の中に設けられ、シャフト12とインペラ14との間に締まりばめを形成する嵌合部20と、嵌合部20に隣接して軸穴16の中に設けられ、シャフト12とインペラ14との間に隙間を形成する遊挿部22とを備える。   The fluid machine 10 includes a shaft 12 and an impeller 14 having a shaft hole 16 into which the shaft 12 is inserted, and the impeller 14 is coupled to the shaft 12 by an interference fit. The fluid machine 10 is further provided between the shaft 12 and the impeller 14, a positioning portion 18 that positions the impeller 14 at a predetermined position of the shaft 12, and a shaft hole 16 adjacent to the positioning portion 18. A fitting portion 20 that forms an interference fit between the shaft 12 and the impeller 14 and a shaft hole 16 adjacent to the fitting portion 20, and a gap between the shaft 12 and the impeller 14. The loose insertion part 22 which forms is provided.

シャフト12は、シャフト12及びインペラ14の回転軸線Aに沿って階段状に外径を変化させて延びる段付円筒状の外周面12aを有し、その軸線方向所定位置にインペラ14が同心配置で固定される。インペラ14の軸穴16は、シャフト12及びインペラ14の回転軸線Aに沿って同一内径で延びる円筒状の内周面16aを有する。インペラ14を固定したシャフト12は、その軸線方向所定位置に取り付けた軸受24を介して、図示しないハウジングに回転可能に支持される。インペラ14と軸受24との間には、軸シール26が、シャフト12の軸線方向所定位置に固定的に設置される。   The shaft 12 has a stepped cylindrical outer peripheral surface 12a extending in a stepwise manner along the rotational axis A of the shaft 12 and the impeller 14, and the impeller 14 is concentrically arranged at a predetermined position in the axial direction. Fixed. The shaft hole 16 of the impeller 14 has a cylindrical inner peripheral surface 16 a that extends with the same inner diameter along the rotational axis A of the shaft 12 and the impeller 14. The shaft 12 to which the impeller 14 is fixed is rotatably supported by a housing (not shown) via a bearing 24 attached at a predetermined position in the axial direction. A shaft seal 26 is fixedly installed at a predetermined position in the axial direction of the shaft 12 between the impeller 14 and the bearing 24.

シャフト12の外周面12aは、軸受24及び軸シール26が設置される円筒状の大径部分28と、大径部分28に軸線方向へ隣接して配置され、回転軸線Aに略直交する第1環状肩面12bを介して僅かに縮径した円筒状の中径部分30と、中径部分30に軸線方向へ隣接して配置され、回転軸線Aに略直交する第2環状肩面12cを介して僅かに縮径した円筒状の小径部分32とを含む。軸シール26は、シャフト12の大径部分28に嵌合する円筒状の基部34を有し、基部34が、その軸線方向一端(図で上端)で、シャフト12の第1環状肩面12bに整合して配置されるとともに、その軸線方向他端(図で下端)で軸受24に隣接して配置される。インペラ14は、軸穴16の内周面16aの、軸線方向一端(図で下端)から所定長さに渡る第1領域36で、シャフト12の中径部分30に固定される。インペラ14の軸穴内周面16aの残りの領域(第2領域)38は、シャフト12の小径部分32に非接触に配置される。   The outer peripheral surface 12a of the shaft 12 is a cylindrical large-diameter portion 28 on which the bearing 24 and the shaft seal 26 are installed, and is disposed adjacent to the large-diameter portion 28 in the axial direction and is substantially perpendicular to the rotation axis A. A cylindrical middle diameter portion 30 slightly reduced in diameter via the annular shoulder surface 12b, and a second annular shoulder surface 12c disposed adjacent to the middle diameter portion 30 in the axial direction and substantially perpendicular to the rotation axis A. And a small cylindrical portion 32 having a slightly reduced diameter. The shaft seal 26 has a cylindrical base portion 34 that fits into the large-diameter portion 28 of the shaft 12, and the base portion 34 is at one end in the axial direction (upper end in the figure) on the first annular shoulder surface 12 b of the shaft 12. It arrange | positions in alignment and is arrange | positioned adjacent to the bearing 24 in the axial direction other end (lower end in a figure). The impeller 14 is fixed to the medium-diameter portion 30 of the shaft 12 in a first region 36 extending from a first axial end (lower end in the drawing) to a predetermined length of the inner peripheral surface 16 a of the shaft hole 16. The remaining region (second region) 38 of the inner peripheral surface 16 a of the shaft hole of the impeller 14 is disposed in a non-contact manner with the small diameter portion 32 of the shaft 12.

図示実施形態では、位置決め部18は、シャフト12の第1環状肩面12bと、シャフト12及びインペラ14のいずれとも別体の部材である軸シール26の基部34とを含んで構成される。インペラ14は、軸穴16の軸線方向一端(図で下端)から、シャフト12の小径部分32及び中径部分30を順次受容して、軸穴16の軸線方向一端の開口に隣接する軸線方向端面の環状領域14aで、シャフト12の第1環状肩面12bと軸シール26の基部34の軸線方向一端面(図で上端面)とに当接される。その状態で、インペラ14は、シャフト12上の軸線方向所定位置に正確に位置決めされる。   In the illustrated embodiment, the positioning portion 18 includes a first annular shoulder surface 12 b of the shaft 12 and a base portion 34 of a shaft seal 26 that is a separate member from the shaft 12 and the impeller 14. The impeller 14 sequentially receives the small-diameter portion 32 and the medium-diameter portion 30 of the shaft 12 from one axial end (the lower end in the drawing) of the shaft hole 16, and is adjacent to the opening at one axial end of the shaft hole 16. In the annular region 14a, the first annular shoulder surface 12b of the shaft 12 is brought into contact with one axial end surface (upper end surface in the drawing) of the base portion 34 of the shaft seal 26. In this state, the impeller 14 is accurately positioned at a predetermined position in the axial direction on the shaft 12.

また、図示実施形態では、嵌合部20は、シャフト12の外周面12aの中径部分30と、軸穴16の内周面16aの第1領域36との協働により構成される。嵌合部20における締まりばめ構造は、インペラ14を加熱してシャフト12に取り付ける「焼きばめ」と、シャフト12を冷却してインペラ14に取り付ける「冷やしばめ」との、少なくとも一方の手法(すなわち併用も含む)によって確保することができる。シャフト12の中径部分30の外径と軸穴16の第1領域36の内径とは、所望強度の締まりばめ構造を達成するに十分な締め代を確保するように設定される。また、シャフト12の中径部分30の軸線方向寸法は、シャフト12に対するインペラ14の軸線の傾きを排除するに十分な大きさに設定される。さらに、図示実施形態では、遊挿部22は、シャフト12の外周面12aの小径部分32と、軸穴16の内周面16aの第2領域38との協働により構成される。   In the illustrated embodiment, the fitting portion 20 is configured by the cooperation of the medium diameter portion 30 of the outer peripheral surface 12 a of the shaft 12 and the first region 36 of the inner peripheral surface 16 a of the shaft hole 16. The interference fit structure in the fitting portion 20 is at least one of “shrink fit” in which the impeller 14 is heated and attached to the shaft 12 and “cooled fit” in which the shaft 12 is cooled and attached to the impeller 14. (That is, including the combined use). The outer diameter of the medium-diameter portion 30 of the shaft 12 and the inner diameter of the first region 36 of the shaft hole 16 are set so as to ensure a sufficient allowance for achieving an interference fit structure with a desired strength. The axial dimension of the medium diameter portion 30 of the shaft 12 is set to a size sufficient to eliminate the inclination of the axis of the impeller 14 with respect to the shaft 12. Further, in the illustrated embodiment, the loose insertion portion 22 is configured by the cooperation of the small diameter portion 32 of the outer peripheral surface 12 a of the shaft 12 and the second region 38 of the inner peripheral surface 16 a of the shaft hole 16.

上記構成を有する流体機械10では、焼きばめ及び冷やしばめの少なくとも一方の手法によってシャフト12をインペラ14に固定する際に、まず、シャフト12の小径部分32及び中径部分30を順次、インペラ14の軸穴16に挿入して、位置決め部18(シャフト12の第1環状肩面12b及び軸シール26の基部34)にインペラ14の軸線方向端面の環状領域14aを当接させることで、インペラ14をシャフト12上の軸線方向所定位置に正確に位置決めすることができる。その状態で放置すれば、焼きばめの場合には加熱したインペラ14が収縮し、また冷やしばめの場合には冷却したシャフト12が膨張して、嵌合部20(シャフト12の中径部分30及び軸穴16の第1領域36)においてシャフト12とインペラ14とが最初に係合する。このとき、インペラ14の自重又は軽度の外力により、インペラ14の環状領域14aが位置決め部18に当接した状態を簡単に維持することができるので、インペラ14をシャフト12上の軸線方向所定位置に位置決めした状態で、シャフト12とインペラ14とが嵌合部20の任意箇所において最初に係合することになる。   In the fluid machine 10 having the above-described configuration, when the shaft 12 is fixed to the impeller 14 by at least one of shrink fitting and cold fitting, first, the small diameter portion 32 and the medium diameter portion 30 of the shaft 12 are sequentially moved to the impeller. 14 is inserted into the shaft hole 16 and the annular region 14a on the end surface in the axial direction of the impeller 14 is brought into contact with the positioning portion 18 (the first annular shoulder surface 12b of the shaft 12 and the base portion 34 of the shaft seal 26). 14 can be accurately positioned at a predetermined position in the axial direction on the shaft 12. If left in that state, the heated impeller 14 contracts in the case of shrink fitting, and the cooled shaft 12 expands in the case of cold fitting, and the fitting portion 20 (the inner diameter portion of the shaft 12). 30 and the first region 36) of the shaft hole 16) the shaft 12 and the impeller 14 are initially engaged. At this time, the state in which the annular region 14a of the impeller 14 abuts against the positioning portion 18 can be easily maintained by the weight of the impeller 14 or a slight external force, so that the impeller 14 is placed at a predetermined axial position on the shaft 12. In the positioned state, the shaft 12 and the impeller 14 are first engaged at an arbitrary position of the fitting portion 20.

続いて、相互接触したシャフト12とインペラ14とが熱交換することで、シャフト12の膨張とインペラ14の収縮とが実質的に同時進行して、嵌合部20における締まりばめが完了する。その後に生じるシャフト12の膨張とインペラ14の収縮とは、図1に矢印で示すように互いに逆方向へ進行するが、そのような逆方向への両者の熱変形は、遊挿部22(シャフト12の小径部分32及び軸穴16の第2領域38)の存在により円滑に行われる。そして、シャフト12及びインペラ14の双方の熱変形が終了した時点で、シャフト12へのインペラ14の取付作業が完了する。このようにしてシャフト12に取り付けられたインペラ14は、軸線方向への位置精度が極めて高いものとなる。   Subsequently, the shaft 12 and the impeller 14 in contact with each other exchange heat, so that the expansion of the shaft 12 and the contraction of the impeller 14 proceed substantially simultaneously, and the interference fit in the fitting portion 20 is completed. The subsequent expansion of the shaft 12 and the contraction of the impeller 14 proceed in opposite directions as indicated by arrows in FIG. 1, and the thermal deformation of both in the opposite direction is caused by the loose insertion portion 22 (shaft This is performed smoothly due to the presence of the 12 small diameter portions 32 and the second region 38 of the shaft hole 16. Then, when the thermal deformation of both the shaft 12 and the impeller 14 is completed, the mounting operation of the impeller 14 to the shaft 12 is completed. Thus, the impeller 14 attached to the shaft 12 has extremely high positional accuracy in the axial direction.

このように、流体機械10においては、焼きばめ及び冷やしばめの少なくとも一方の手法によってシャフト12をインペラ14に固定する際に、位置決め部18に隣接して軸穴16内に嵌合部20を設けたことにより、シャフト12上でのインペラ14の固定位置(すなわち最初の係合箇所の位置)を容易かつ確実に特定して、嵌合部20における締まりばめを達成することができる。そして、軸穴16内に嵌合部20に隣接して遊挿部22を設けたことで、締まりばめ後のシャフト12の膨張方向及びインペラ14の収縮方向を規定の方向に制御することができる。その結果、シャフト12とインペラ14とを相互結合する際の両者間の軸線方向への相対位置ずれを、簡易な構成により確実に防止して、シャフト12上でのインペラ14の軸線方向位置精度を向上させるとともに、シャフト12に取り付けられる軸受24や軸シール26等の他部品の軸線方向位置精度も向上させることができる。したがって流体機械10は、安全性及び作動信頼性に優れた安価でかつ高性能のものとなる。   As described above, in the fluid machine 10, when the shaft 12 is fixed to the impeller 14 by at least one of shrink fitting and cooling fitting, the fitting portion 20 is placed in the shaft hole 16 adjacent to the positioning portion 18. By providing the above, it is possible to easily and surely specify the fixing position of the impeller 14 on the shaft 12 (that is, the position of the first engagement portion) and achieve the interference fit in the fitting portion 20. Then, by providing the loose insertion portion 22 adjacent to the fitting portion 20 in the shaft hole 16, the expansion direction of the shaft 12 and the contraction direction of the impeller 14 after the interference fit can be controlled to a prescribed direction. it can. As a result, the relative positional displacement between the shaft 12 and the impeller 14 in the axial direction when the shaft 12 and the impeller 14 are mutually coupled can be reliably prevented with a simple configuration, and the axial position accuracy of the impeller 14 on the shaft 12 can be improved. In addition to the improvement, the axial position accuracy of other components such as the bearing 24 and the shaft seal 26 attached to the shaft 12 can also be improved. Therefore, the fluid machine 10 is inexpensive and has high performance with excellent safety and operational reliability.

なお、シャフト12とインペラ14との締まりばめを、焼きばめ及び冷やしばめの少なくとも一方の手法によって確保する上記構成では、シャフト12とインペラ14とが、互いに熱収縮率の異なる材料から作製されることが、締まりばめ作用を促進する観点で有利である。   In the above-described configuration in which the interference fit between the shaft 12 and the impeller 14 is ensured by at least one of shrink fitting and cold fitting, the shaft 12 and the impeller 14 are made of materials having different thermal shrinkage rates. This is advantageous in terms of promoting an interference fit effect.

上記した流体機械10において、位置決め部18は、軸シール26の基部34(すなわちシャフト12及びインペラ14とは別体の部材)と、シャフト12の第1環状肩面12b(すなわちシャフト12の一部分)との、いずれか一方のみによって構成することもできる。インペラ14に隣接してシャフト12に取り付けられる軸シール26等の他部品を流用して位置決め部18を構成すれば、加工工数及び部品点数を削減することができる。他方、シャフト12及びインペラ14の少なくとも一方の一部分によって位置決め部18を構成すれば、安定した位置決め機能を維持することができる。   In the fluid machine 10 described above, the positioning portion 18 includes the base portion 34 of the shaft seal 26 (that is, a member separate from the shaft 12 and the impeller 14) and the first annular shoulder surface 12b of the shaft 12 (that is, a part of the shaft 12). It is also possible to configure with only one of these. If the positioning part 18 is configured by diverting other parts such as the shaft seal 26 attached to the shaft 12 adjacent to the impeller 14, the number of processing steps and the number of parts can be reduced. On the other hand, if the positioning part 18 is comprised by at least one part of the shaft 12 and the impeller 14, the stable positioning function can be maintained.

また、嵌合部20及び遊挿部22は、シャフト12の外周面12aの径寸法とインペラ14の軸穴16の内周面16aの径寸法との少なくとも一方を、軸線方向に沿って変化させることにより形成することができる。このような構成によれば、嵌合部20及び遊挿部22を極めて簡易に構成できる。以下、図2〜図5を参照して、上記した流体機械10の各種変形例を説明する。なお、図2〜図5では、図1の流体機械10に対応する構成要素に共通の参照符号を付して、重複説明を省略する。   Moreover, the fitting part 20 and the loose insertion part 22 change at least one of the radial dimension of the outer peripheral surface 12a of the shaft 12 and the radial dimension of the inner peripheral surface 16a of the shaft hole 16 of the impeller 14 along the axial direction. Can be formed. According to such a structure, the fitting part 20 and the loose insertion part 22 can be comprised very simply. Hereinafter, various modified examples of the fluid machine 10 will be described with reference to FIGS. 2 to 5, components corresponding to the fluid machine 10 of FIG. 1 are denoted by common reference numerals, and redundant description is omitted.

図2に示す変形例では、シャフト12の外周面12aに、前述した中径部分30に代えて、第1環状肩面12bから小径部分32に至る間で外径寸法を漸減させるテーパ部分40を設けている。テーパ部分40は、第1環状肩面12bに隣接する部位で、インペラ14の軸穴16の、位置決め部18側の開口端に隣接する前述した第1領域36の末端部分36aに締まりばめ状態で係合して、嵌合部20を構成する。この構成では、嵌合部20における締まりばめの締め代を十分に確保することで、所要強度の嵌合を達成できるとともに、位置決め部18(シャフト12の第1環状肩面12b及び軸シール26の基部34)の作用により、シャフト12に対するインペラ14の軸線の傾きを排除できる。このような構成によっても、図1に示す流体機械10と同等の作用効果が奏される。   In the modification shown in FIG. 2, a tapered portion 40 that gradually reduces the outer diameter dimension from the first annular shoulder surface 12 b to the small diameter portion 32 is provided on the outer peripheral surface 12 a of the shaft 12 instead of the above-described medium diameter portion 30. Provided. The tapered portion 40 is a portion that is adjacent to the first annular shoulder surface 12b and is an interference fit state with the end portion 36a of the first region 36 adjacent to the opening end of the shaft hole 16 of the impeller 14 adjacent to the positioning portion 18 side. Are engaged to form the fitting portion 20. In this configuration, it is possible to achieve the required strength of fitting by sufficiently securing the interference of the interference fit in the fitting portion 20, and the positioning portion 18 (the first annular shoulder surface 12b of the shaft 12 and the shaft seal 26). The inclination of the axis of the impeller 14 with respect to the shaft 12 can be eliminated by the action of the base 34). Even with such a configuration, the same effects as the fluid machine 10 shown in FIG. 1 can be obtained.

図3に示す変形例では、シャフト12の外周面12aから、前述した中径部分30及び第2環状肩面12cを省略して、大径部分28と小径部分32とが第1環状肩面12bを介して隣接する形状にする一方、インペラ14の軸穴16の内周面16aを、小径の円筒面からなる前述した第1領域36と、第1領域36よりも大径の円筒面からなる前述した第2領域38とを含む、段付円筒状に形成している。インペラ14の軸穴16の第1領域36は、シャフト12の小径部分32の、第1環状肩面12bに隣接する基端領域42に締まりばめ状態で係合して、嵌合部20を構成する。この構成では、嵌合部20における締まりばめの締め代及び軸線方向長さを十分に確保することで、所要強度の嵌合を達成できるとともに、シャフト12に対するインペラ14の軸線の傾きを排除できる。このような構成によっても、図1に示す流体機械10と同等の作用効果が奏される。   In the modification shown in FIG. 3, the medium diameter portion 30 and the second annular shoulder surface 12c described above are omitted from the outer peripheral surface 12a of the shaft 12, and the large diameter portion 28 and the small diameter portion 32 are replaced by the first annular shoulder surface 12b. The inner peripheral surface 16a of the shaft hole 16 of the impeller 14 is composed of the first region 36 that is a small-diameter cylindrical surface and a cylindrical surface that is larger in diameter than the first region 36. It is formed in a stepped cylindrical shape including the second region 38 described above. The first region 36 of the shaft hole 16 of the impeller 14 is engaged with the proximal end region 42 of the small-diameter portion 32 of the shaft 12 adjacent to the first annular shoulder surface 12b in a tight-fitting state, and the fitting portion 20 is engaged. Constitute. In this configuration, it is possible to achieve the required strength of fitting by sufficiently securing the interference of the interference fit in the fitting portion 20 and the axial length, and to eliminate the inclination of the axis of the impeller 14 with respect to the shaft 12. . Even with such a configuration, the same effects as the fluid machine 10 shown in FIG. 1 can be obtained.

図4に示す変形例では、シャフト12の外周面12aを、図3の構成と同様に大径部分28と小径部分32とが第1環状肩面12bを介して隣接する形状にする一方、インペラ14の軸穴16の内周面16aに、大径の円筒面からなる前述した第2領域38と、第2領域38から位置決め部18側の開口端に至る間で内径寸法を漸減させるテーパ領域44とを設けている。軸穴16のテーパ領域44は、位置決め部18側の開口端に隣接する部位で、シャフト12の小径部分32の、第1環状肩面12bに隣接する末端部分32aに締まりばめ状態で係合して、嵌合部20を構成する。この構成では、嵌合部20における締まりばめの締め代を十分に確保することで、所要強度の嵌合を達成できるとともに、位置決め部18(シャフト12の第1環状肩面12b及び軸シール26の基部34)の作用により、シャフト12に対するインペラ14の軸線の傾きを排除できる。このような構成によっても、図1に示す流体機械10と同等の作用効果が奏される。   In the modification shown in FIG. 4, the outer peripheral surface 12a of the shaft 12 is shaped so that the large-diameter portion 28 and the small-diameter portion 32 are adjacent to each other via the first annular shoulder surface 12b, as in the configuration of FIG. 14 on the inner peripheral surface 16a of the fourteen shaft holes 16, and a tapered region for gradually reducing the inner diameter between the second region 38 having a large diameter cylindrical surface and the second region 38 to the opening end on the positioning portion 18 side. 44. The tapered region 44 of the shaft hole 16 is a portion adjacent to the opening end on the positioning portion 18 side, and is engaged with the end portion 32a of the small diameter portion 32 of the shaft 12 adjacent to the first annular shoulder surface 12b in an interference fit state. And the fitting part 20 is comprised. In this configuration, it is possible to achieve the required strength of fitting by sufficiently securing the interference of the interference fit in the fitting portion 20, and the positioning portion 18 (the first annular shoulder surface 12b of the shaft 12 and the shaft seal 26). The inclination of the axis of the impeller 14 with respect to the shaft 12 can be eliminated by the action of the base 34). Even with such a configuration, the same effects as the fluid machine 10 shown in FIG. 1 can be obtained.

図5に示す変形例では、軸シール26を併用する前述した位置決め部18に代えて、インペラ14の軸穴16の内部に、シャフト12及びインペラ14の双方の一部分からなる位置決め部46を採用している。具体的には、シャフト12の外周面12aを、大径部分28と小径部分32とが第1環状肩面12bを介して隣接する形状にするとともに、大径部分28を軸シール26の基部34から突出するように延長してインペラ14の軸穴16に挿入する構成としている。他方、インペラ14の軸穴16の内周面16aを、軸シール26側の開口端に隣接する大径の第1領域36と、反対側の開口端に隣接する大径の第2領域38と、第1領域36及び第2領域38の間に位置する小径の第3領域48とを含む、段付円筒状に形成している。インペラ14の軸穴16の第1領域36と第3領域48との間には、軸線Aに略直交する環状肩面16bが形成される。インペラ14の軸穴16の環状肩面16bは、シャフト12の第1環状肩面12bと協働して、位置決め部46を構成する。また、インペラ14の軸穴16の第3領域48は、シャフト12の小径部分32の、第1環状肩面12bに隣接する基端領域50に締まりばめ状態で係合して、嵌合部20を構成する。   In the modification shown in FIG. 5, a positioning portion 46 composed of a part of both the shaft 12 and the impeller 14 is employed in the shaft hole 16 of the impeller 14 instead of the positioning portion 18 described above that also uses the shaft seal 26. ing. Specifically, the outer peripheral surface 12a of the shaft 12 is shaped so that the large-diameter portion 28 and the small-diameter portion 32 are adjacent to each other via the first annular shoulder surface 12b, and the large-diameter portion 28 is made the base 34 of the shaft seal 26. It extends so as to project from the shaft hole 16 and is inserted into the shaft hole 16 of the impeller 14. On the other hand, the inner peripheral surface 16a of the shaft hole 16 of the impeller 14 has a large-diameter first region 36 adjacent to the opening end on the shaft seal 26 side, and a large-diameter second region 38 adjacent to the opening end on the opposite side. The third region 48 having a small diameter located between the first region 36 and the second region 38 is formed in a stepped cylindrical shape. Between the first region 36 and the third region 48 of the shaft hole 16 of the impeller 14, an annular shoulder surface 16b substantially orthogonal to the axis A is formed. The annular shoulder surface 16 b of the shaft hole 16 of the impeller 14 constitutes a positioning portion 46 in cooperation with the first annular shoulder surface 12 b of the shaft 12. Further, the third region 48 of the shaft hole 16 of the impeller 14 is engaged with the proximal end region 50 of the small diameter portion 32 of the shaft 12 adjacent to the first annular shoulder surface 12b in an interference fit state. 20 is configured.

上記構成では、焼きばめ及び冷やしばめの少なくとも一方の手法によってシャフト12をインペラ14に固定する際に、まず、シャフト12の小径部分32及び大径部分28を順次、インペラ14の軸穴16に挿入して、シャフト12の第1環状肩面12bとインペラ14の軸穴16の環状肩面16bとを相互に当接させることで、位置決め部46の作用によりインペラ14をシャフト12上の軸線方向所定位置に正確に位置決めすることができる。その状態で、嵌合部20(シャフト12の小径部分32の基端領域50及び軸穴16の第3領域48)において締まりばめを完了させることで、インペラ14を、シャフト12上の軸線方向所定位置に正確に位置決めした状態で、シャフト12に取り付けることができる。なお、嵌合部20において相互接触したシャフト12とインペラ14とが熱交換する間の両者の熱変形は、図5に矢印で示す方向へ進行することになる。この構成においても、軸穴16内に位置決め部46と嵌合部20とを互いに隣接して設けたことにより、シャフト12上でのインペラ14の固定位置(すなわち最初の係合箇所の位置)を容易かつ確実に特定して、嵌合部20における締まりばめを達成することができる。その結果、図1に示す流体機械10と同等の作用効果が奏される。   In the above configuration, when the shaft 12 is fixed to the impeller 14 by at least one method of shrink fitting and cold fitting, first, the small diameter portion 32 and the large diameter portion 28 of the shaft 12 are sequentially arranged in the shaft hole 16 of the impeller 14. And the first annular shoulder surface 12b of the shaft 12 and the annular shoulder surface 16b of the shaft hole 16 of the impeller 14 are brought into contact with each other, whereby the impeller 14 is moved to the axial line on the shaft 12 by the action of the positioning portion 46. The direction can be accurately positioned at a predetermined position. In this state, the interference fit is completed in the fitting portion 20 (the base region 50 of the small diameter portion 32 of the shaft 12 and the third region 48 of the shaft hole 16), whereby the impeller 14 is moved in the axial direction on the shaft 12. It can be attached to the shaft 12 in a state of being accurately positioned at a predetermined position. In addition, during the heat exchange between the shaft 12 and the impeller 14 that are in mutual contact with each other in the fitting portion 20, the thermal deformation of both proceeds in the direction indicated by the arrow in FIG. Also in this configuration, the positioning portion 46 and the fitting portion 20 are provided adjacent to each other in the shaft hole 16, so that the fixing position of the impeller 14 on the shaft 12 (that is, the position of the first engagement portion) is determined. The interference fit at the fitting portion 20 can be achieved with ease and certainty. As a result, the same effects as the fluid machine 10 shown in FIG.

本発明の一実施形態による流体機械のシャフトとインペラとを示す断面図である。It is sectional drawing which shows the shaft and impeller of the fluid machine by one Embodiment of this invention. 図1の流体機械の変形例を示す断面図である。It is sectional drawing which shows the modification of the fluid machine of FIG. 図1の流体機械の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the fluid machine of FIG. 図1の流体機械のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the fluid machine of FIG. 図1の流体機械のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the fluid machine of FIG.

符号の説明Explanation of symbols

10 流体機械
12 シャフト
12a 外周面
12b 第1環状肩面
12c 第2環状肩面
14 インペラ
16 軸穴
16a 内周面
18、46 位置決め部
20 嵌合部
22 遊挿部
24 軸受
26 軸シール
28 大径部分
30 中径部分
32 小径部分
34 基部
36 第1領域
38 第2領域
40 テーパ部分
42、50 基端領域
44 テーパ領域
48 第3領域
DESCRIPTION OF SYMBOLS 10 Fluid machine 12 Shaft 12a Outer peripheral surface 12b 1st cyclic | annular shoulder surface 12c 2nd cyclic | annular shoulder surface 14 Impeller 16 Shaft hole 16a Inner peripheral surface 18, 46 Positioning part 20 Fitting part 22 Free insertion part 24 Bearing 26 Shaft seal 28 Large diameter Portion 30 Medium diameter portion 32 Small diameter portion 34 Base portion 36 First region 38 Second region 40 Tapered portion 42, 50 Base end region 44 Tapered region 48 Third region

Claims (4)

シャフトと、該シャフトが挿入される軸穴を有するインペラとを具備し、該インペラが該シャフトに熱変形の結果としての締まりばめにより結合される流体機械において、
前記シャフトと前記インペラとの間に設けられ、該シャフトの予め定めた位置に該インペラを位置決めする位置決め部と、
前記位置決め部に隣接して前記軸穴の中に設けられ、前記シャフトと前記インペラとの間に前記締まりばめを形成する嵌合部と、
前記嵌合部に隣接して前記軸穴の中に設けられ、前記シャフトと前記インペラとの間に隙間を形成する遊挿部と、
を具備することを特徴とする流体機械。
In a fluid machine comprising a shaft and an impeller having a shaft hole into which the shaft is inserted, wherein the impeller is coupled to the shaft by an interference fit as a result of thermal deformation ;
A positioning portion that is provided between the shaft and the impeller and positions the impeller at a predetermined position of the shaft;
A fitting portion provided in the shaft hole adjacent to the positioning portion, and forming the interference fit between the shaft and the impeller;
A loose insertion portion that is provided in the shaft hole adjacent to the fitting portion and forms a gap between the shaft and the impeller;
A fluid machine comprising:
前記位置決め部が、前記シャフト及び前記インペラとは別体の部材を具備する、請求項1に記載の流体機械。   The fluid machine according to claim 1, wherein the positioning portion includes a member separate from the shaft and the impeller. 前記位置決め部が、前記シャフト及び前記インペラの少なくとも一方の一部分を具備する、請求項1又は2に記載の流体機械。   The fluid machine according to claim 1, wherein the positioning portion includes a part of at least one of the shaft and the impeller. 前記嵌合部及び前記遊挿部が、前記シャフトの外径と前記インペラの前記軸穴の内径との少なくとも一方を、軸線方向に沿って変化させることにより形成される、請求項1〜3のいずれか1項に記載の流体機械。   The fitting portion and the loose insertion portion are formed by changing at least one of an outer diameter of the shaft and an inner diameter of the shaft hole of the impeller along an axial direction. The fluid machine according to any one of the above.
JP2005347533A 2005-12-01 2005-12-01 Fluid machinery Expired - Fee Related JP4053563B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005347533A JP4053563B2 (en) 2005-12-01 2005-12-01 Fluid machinery
EP06024462A EP1793124A2 (en) 2005-12-01 2006-11-24 Structure for joining impeller to rotatable shaft
US11/564,578 US20070128044A1 (en) 2005-12-01 2006-11-29 Fluid machine
CNB200610162904XA CN100465457C (en) 2005-12-01 2006-11-29 Fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347533A JP4053563B2 (en) 2005-12-01 2005-12-01 Fluid machinery

Publications (2)

Publication Number Publication Date
JP2007154678A JP2007154678A (en) 2007-06-21
JP4053563B2 true JP4053563B2 (en) 2008-02-27

Family

ID=37490911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347533A Expired - Fee Related JP4053563B2 (en) 2005-12-01 2005-12-01 Fluid machinery

Country Status (4)

Country Link
US (1) US20070128044A1 (en)
EP (1) EP1793124A2 (en)
JP (1) JP4053563B2 (en)
CN (1) CN100465457C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127390A (en) * 2008-11-27 2010-06-10 Honda Motor Co Ltd Engine assembling method
EP2208882A1 (en) 2009-01-14 2010-07-21 Continental Automotive GmbH Fluid injector and fluid injector assembly
JP5449117B2 (en) * 2010-12-08 2014-03-19 三菱重工業株式会社 Rotating machine
GB2487921B (en) * 2011-02-08 2013-06-12 Dyson Technology Ltd Rotor for a turbomachine
JP6159418B2 (en) * 2013-12-11 2017-07-05 三菱重工業株式会社 Rotating body and method for manufacturing the rotating body
DE102014213641A1 (en) * 2014-01-17 2015-08-06 Borgwarner Inc. Method for connecting a compressor wheel with a shaft of a charging device
KR102233312B1 (en) * 2014-06-05 2021-03-29 삼성전자주식회사 Motor Assembly
WO2015186896A1 (en) * 2014-06-05 2015-12-10 삼성전자주식회사 Motor assembly
CN107588040A (en) * 2017-09-28 2018-01-16 镇江三联泵业机械成套设备有限公司 The attachment structure of impeller and motor shaft
JP2018194004A (en) * 2018-08-29 2018-12-06 日立アプライアンス株式会社 Electric air blower and vacuum cleaner
CN113107868B (en) * 2021-05-19 2022-12-09 潍坊科技学院 Composite material low-inertia centrifugal compressor impeller and matching installation device thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375926A (en) * 1981-07-27 1983-03-08 Allis-Chalmers Corporation Device for removing components from shafts
JP3129587B2 (en) * 1993-08-23 2001-01-31 石川島播磨重工業株式会社 Centrifugal low-temperature compressor impeller mounting structure
JP2004060460A (en) * 2002-07-25 2004-02-26 Mitsubishi Heavy Ind Ltd Impeller for compressor, and method of mounting impeller
GB2392477A (en) * 2002-08-24 2004-03-03 Alstom Turbocharger
GB0224721D0 (en) * 2002-10-24 2002-12-04 Holset Engineering Co Compressor wheel assembly
GB0224723D0 (en) * 2002-10-24 2002-12-04 Holset Engineering Co Compressor wheel assembly
GB0224726D0 (en) * 2002-10-24 2002-12-04 Holset Engineering Co Compressor wheel assembly

Also Published As

Publication number Publication date
EP1793124A2 (en) 2007-06-06
CN1975173A (en) 2007-06-06
US20070128044A1 (en) 2007-06-07
CN100465457C (en) 2009-03-04
JP2007154678A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4053563B2 (en) Fluid machinery
JP4703565B2 (en) Bearing support structure of turbo molecular pump
JP5208921B2 (en) Rotary bearing, rotary table device, table diameter determination method
JP5047130B2 (en) Turbine casing support structure
JP5606358B2 (en) Impeller, rotor provided with the same, and method for manufacturing impeller
JP2010007678A (en) Cylindrical roller bearing
JP2002228013A (en) Acc type labyrinth seal
JP6452010B2 (en) Bearing device and rotating machine
WO2019031050A1 (en) Motor and motor manufacturing method
JP2009085256A (en) Seal device for rotary fluid machine
JP2009293403A (en) Air compressor
JP2021085436A (en) Rotary driving device
JP2007244048A (en) Pneumatic bearing motor
CN102889305A (en) Assembling members using bearings to assemble rotating shaft in housing
JP4529129B2 (en) Hydrostatic air bearing spindle
JP6944866B2 (en) Bearing equipment and rotating machinery
JP5081856B2 (en) Foil-type gas bearing heat treatment apparatus and heat treatment method therefor
JP2024049507A (en) Blower and centrifugal fan
JP5822736B2 (en) Centering device and rotor manufacturing method
JP5862411B2 (en) Magnetic bearing spindle device
JP2006326643A (en) Mechanism and method for alignment positioning
CN101509517A (en) Bearing structure
JP2006077881A (en) Creep preventing rolling bearing and creep preventing rolling bearing device
JP3073407B2 (en) Self-centering type damper bearing
JP2015080305A (en) Electric motor

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees