JP4053397B2 - Oil changer for refrigeration cycle - Google Patents

Oil changer for refrigeration cycle Download PDF

Info

Publication number
JP4053397B2
JP4053397B2 JP2002291507A JP2002291507A JP4053397B2 JP 4053397 B2 JP4053397 B2 JP 4053397B2 JP 2002291507 A JP2002291507 A JP 2002291507A JP 2002291507 A JP2002291507 A JP 2002291507A JP 4053397 B2 JP4053397 B2 JP 4053397B2
Authority
JP
Japan
Prior art keywords
oil
refrigeration cycle
compressor
changer
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002291507A
Other languages
Japanese (ja)
Other versions
JP2004125309A (en
Inventor
哲也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002291507A priority Critical patent/JP4053397B2/en
Publication of JP2004125309A publication Critical patent/JP2004125309A/en
Application granted granted Critical
Publication of JP4053397B2 publication Critical patent/JP4053397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍装置や空調機等の冷凍サイクルにおける油交換装置に関するものである。
【0002】
【従来の技術】
冷凍サイクルは周知のように、圧縮機と、圧縮機から吐出された冷媒を液化する凝縮器と、液化した冷媒を膨張させる膨張弁と、膨張した冷媒をガス化する蒸発器と、蒸発器からの冷媒を導入すると共に、圧縮機の吸い込み側に接続された気液分離器とを冷媒配管によって順次結合して構成されている。
冷凍サイクル内に封入された冷媒は、圧縮機で圧縮され、高温高圧のガスとして吐出されるが、その際、圧縮機内の油の一部が冷媒に混じって吐出される。
吐出された冷媒は、凝縮器で空気と熱交換して液化し、油は液化した冷媒に溶け込んで移動する。冷媒と油は、冷媒配管を経て膨張弁で膨張し、蒸発器で空気と熱交換してガス化するが、その際、油は冷媒と分離する。ガス化した冷媒は、気液分離器を通って圧縮機に戻る。一方、油はガス冷媒の流れと共に霧状となって移動したり、冷媒配管の内壁に付着しながら内壁を流れるように移動し、気液分離器に入る。
【0003】
気液分離器では、油は底部に溜められ、所定量の油が溜まると、気液分離器のU字状の流出管に設けられた油戻し用の穴から吸い込まれて圧縮機に戻る。
また、冷凍サイクル内は、冷凍サイクル製造時に混入した異物や水分、更に圧縮機から吐出される金属粉等で汚染されており、既設配管や既設機器を使っている場合には汚染の程度が大きい。冷凍サイクルの運転を継続すると、これら異物等が循環して圧縮機に戻り、圧縮機を汚染する。高温環境下では異物等がスラッジとなり、その堆積によって詰まりや圧縮機の潤滑不良を生ずるなど冷凍サイクルの円滑な運転を阻害する要因となる。従って、冷凍サイクルの試運転後、定期的、例えば1日後、1ヵ月後、1年後に油の交換が行なわれている。
【0004】
冷凍サイクル内の油の交換は、次のような手順で行なわれる。
(1)冷媒の回収
まず、冷凍サイクルの運転を停止し、圧縮機内及びそれに通じる冷媒回路内の冷媒を回収する。
(2)排油
汚れた油を排出する。これは圧縮機内部に残圧を残し、圧縮機サービスポート(給排油口)から油を排出することにより行なう。
(3)給油
新しい油を供給する。圧縮機サービスポートに油を圧送するか、あるいは別の給油栓や圧縮機の吸い込み側のサービスポートから給油する。
(4)真空引き
作業時に冷凍サイクルや油に侵入した空気や水分を排出する。冷凍サイクルの所定のサービスポートを利用して行なう。(例えば、特許文献1参照)
【0005】
【特許文献1】
特開2001−124447号公報(段落0004)
【0006】
【発明が解決しようとする課題】
従来の冷凍サイクルにおける油交換は、上述のような手法であったため、煩雑で、作業完了までに多大の時間と労力を費やしていた。また、その間冷凍サイクルの運転を停止しなければならず、冷却機能がなくなるという問題点があった。
また、油の交換は圧縮機内のみであり、蒸発器や冷媒配管内に滞留している油は交換することができなかった。そのため冷凍サイクル内の油をすべて交換することは不可能であり、複数回の油交換を実施することが最善策であった。
加えて、冷媒回収の際に回収しきれない冷媒が大気中に放出されるため、地球環境保護の観点からも看過できない問題であった。
【0007】
この発明は、上記のような問題点に対処するためになされたもので、冷凍サイクルを運転しながら自動で油交換を行なうことができ、所定時間稼動させることで冷凍サイクル内の全ての油の交換が可能になると共に、大気中に放出される冷媒を最小化できる冷凍サイクル用油交換装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る冷凍サイクル用油交換装置は、圧縮機と、その吸い込み側に接続された気液分離器とを含む冷凍サイクル中を循環する油の交換装置において、上記気液分離器の油回収口に油回収弁を介して接続された油回収容器及び交換用の油を封入し、上記圧縮機の給排油口または吸い込み側に給油弁を介して接続された給油容器並びに上記油回収容器と給油容器に連通し、上記油回収容器の内圧を上記気液分離器の内圧より低くすると共に、上記給油容器の内圧を上記圧縮機の内圧より高くするポンプを備えたものである。
【0009】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による油交換装置を冷凍サイクルに接続した状態を示す概略図である。
この図において、冷凍サイクルは符号1で示され、圧縮機2と、凝縮器3と、膨張弁4と、蒸発器5と、圧縮機の吸い込み側に接続された気液分離器6とを順次冷媒配管7によって接続して構成されている。圧縮機2には潤滑油2Aを給排油するための圧縮機サービスポート2Bが底部に設けられており、また、気液分離器6には蒸発器5からのガス冷媒を導入する流入管6A及び気液分離器内で液冷媒と分離されたガス冷媒のみを圧縮機2に戻すためのU字状の流出管6B並びに底部に位置する油回収口6Cが設けられている。
一方、冷凍サイクル用油交換装置10は、油回収容器11と、その入口管11Aに設けられた油回収弁12と、給油容器13と、その出口管13Bに設けられた給油弁14と、油回収容器11の出口管11Bと給油容器13の入口管13Aとの間に接続されて油回収容器11及び給油容器13に連通するポンプ15とから構成されている。
【0010】
次に、この実施の形態の動作について説明する。冷凍サイクル1の動作は従来技術で述べた通りであるため省略し、油交換装置10の動作について説明する。
油交換装置10は、冷凍サイクル1に接続する前に油回収容器11内を空にし、給油容器13内に交換する油13Cを封入し、全体を真空引きしておく。
続いて、油交換装置10を油交換したい冷凍サイクル1に接続する。接続の手順は、油回収弁12を気液分離器6の油回収口6Cに接続し、給油弁14を圧縮機2の圧縮機サービスポート2Bに接続する。なお、給油弁14は圧縮機2に油を給油できれば、圧縮機2の吸い込み側、即ち圧縮機2と気液分離器6間の冷媒配管7の途中に接続してもよい。次に、油回収弁12及び給油弁14を開き、ポンプ15を運転する。ポンプ15により、気液分離器6内の圧力P1と圧縮機2内の圧力P2と油回収容器11内の圧力P3と給油容器13内の圧力P4との関係を次のようにする。
P4>P2、 P1>P3
この圧力関係により、冷凍サイクル1を循環する汚染された油は、気液分離器6で分離され、油回収口6Cを通じて油回収容器11に溜められる。
一方、給油容器13内の新しい油は、圧縮機サービスポート2Bを通じて圧縮機2に給油され、油の交換が行なわれる。油交換作業が終わると、油回収弁12及び給油弁14を閉じポンプ15を停止すると共に、油交換装置10を冷凍サイクル1から切り離し、油交換を完了する。その後、油交換装置10内の冷媒を回収し油交換装置10内の油の排出を行なう。
【0011】
このようにすると、冷凍サイクルを循環してくる油が汚れている場合でも、圧縮機2内の油が汚染されるのを防止することができる。また、圧縮機2内がすでに汚染されている場合でも、順次新油が供給されて汚染された油と入れ替わっていくことになる。従って、冷凍サイクル1を運転しながら自動で油交換を行なうことができる。また、所定時間油交換装置を稼動させれば、圧縮機2内のみならず、冷凍サイクル1内のすべての油を交換することができる。また、油交換作業後は油交換装置が冷凍サイクルから切り離されているため、余裕を持って(現地であわてて作業することなく)油交換装置10内の冷媒を回収することができる結果、無駄なく確実に冷媒回収を行なうことができ、大気中に放出される冷媒も最小化できる。
【0012】
また、図2は、この実施の形態の異なる実施例を示す概略図である。
この図において、図1と同一または相当部分には同一符号を付して説明を省略する。図1と異なる点は、圧縮機2にその油量を検知する油量検知器2Cを設けた点である。油量検知器2Cは、油面をレベルセンサで検出するもの、直接油面を画像処理するものなどが知られている。また、圧縮機2の質量変化を検出するものでもよい。油量検知器2Cにより圧縮機2の油量を検知し、必要な量だけ給油するよう給油弁14を開閉する。
このようにすると、圧縮機2内の油量を調整しながら油交換が自動で行なえるため、信頼性の高い油交換作業を行なうことができ、油交換作業中に圧縮機2の油量が過不足になり不具合に至るような事態を未然に防止することができる。
【0013】
また、油回収容器11及び給油容器13の一方または双方に、油量を検知する油量検知器(図示せず)を設けてもよい。このようにすれば、油回収容器11がオーバーフローする前に油交換装置10を停止させ、オーバーフローを未然に防止することができると共に、給油容器13の油が不足する前に油交換装置10を停止させ、油不足になるのを未然に防止することができる。
従って、油交換装置の信頼性を向上させることができる。
【0014】
また、油回収容器11の入口管11A、出口管11B及び給油容器13の入口管13A、出口管13Bにそれぞれ閉止弁(図示せず)を設け、油交換装置10から切り離して交換できるようにしてもよい。
このようにすると、連続的に油交換作業が行なえるので、油交換量が多い場合でも、連続して油交換を行なうことができる。
【0015】
また、油回収容器11及び給油容器13の一方または双方にヒータ等の加熱手段(図示せず)を設けてもよい。
このようにすると、油交換装置10内に冷媒が寝込む(溜まり込む)ことを防止できるので、油だけを交換することができる信頼性の高い作業が行なえる。
【0016】
【発明の効果】
この発明に係る冷凍サイクル用油交換装置は、圧縮機と、その吸い込み側に接続された気液分離器とを含む冷凍サイクル中を循環する油の交換装置において、上記気液分離器の油回収口に油回収弁を介して接続された油回収容器及び交換用の油を封入し、上記圧縮機の給排油口または吸い込み側に給油弁を介して接続された給油容器並びに上記油回収容器と給油容器に連通し、上記油回収容器の内圧を上記気液分離器の内圧より低くすると共に、上記給油容器の内圧を上記圧縮機の内圧より高くするポンプを備えたものであるため、冷凍サイクルを運転しながら自動で油交換を行なうことができる他、所定時間油交換装置を稼動させれば、圧縮機内のみならず、冷凍サイクル内のすべての油を交換することができる。
また、油交換作業後は油交換装置が冷凍サイクルから切り離されているため、余裕を持って(現地であわてて作業することなく)油交換装置10内の冷媒を回収することができる結果、無駄なく確実に冷媒回収を行なうことができ、大気中に放出される冷媒も最小化できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による油交換装置を冷凍サイクルに接続した状態を示す概略図である。
【図2】 この発明の実施の形態1の異なる実施例を示す概略図である。
【符号の説明】
1 冷凍サイクル、 2 圧縮機、 2B 圧縮機サービスポート、6 気液分離器、 6C 油回収口、 10 油交換装置、
11 油回収容器、 12 油回収弁、 13 給油容器、
14 給油弁、 15 ポンプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil changer in a refrigeration cycle such as a refrigeration apparatus or an air conditioner.
[0002]
[Prior art]
As is well known, the refrigeration cycle includes a compressor, a condenser that liquefies refrigerant discharged from the compressor, an expansion valve that expands the liquefied refrigerant, an evaporator that gasifies the expanded refrigerant, and an evaporator. The refrigerant is introduced, and a gas-liquid separator connected to the suction side of the compressor is sequentially coupled by a refrigerant pipe.
The refrigerant sealed in the refrigeration cycle is compressed by the compressor and discharged as a high-temperature and high-pressure gas. At this time, a part of the oil in the compressor is discharged mixed with the refrigerant.
The discharged refrigerant is liquefied by exchanging heat with air in the condenser, and the oil is dissolved in the liquefied refrigerant and moves. The refrigerant and the oil are expanded by the expansion valve through the refrigerant pipe, and are gasified by exchanging heat with the air by the evaporator. At that time, the oil is separated from the refrigerant. The gasified refrigerant returns to the compressor through the gas-liquid separator. On the other hand, the oil moves in a mist state along with the flow of the gas refrigerant, or moves so as to flow through the inner wall while adhering to the inner wall of the refrigerant pipe, and enters the gas-liquid separator.
[0003]
In the gas-liquid separator, the oil is accumulated at the bottom, and when a predetermined amount of oil is accumulated, the oil is sucked from the oil return hole provided in the U-shaped outflow pipe of the gas-liquid separator and returns to the compressor.
Also, the inside of the refrigeration cycle is contaminated with foreign matter and moisture mixed during refrigeration cycle manufacture, and metal powder discharged from the compressor, and the degree of contamination is large when existing piping and existing equipment are used. . When the operation of the refrigeration cycle is continued, these foreign substances and the like circulate and return to the compressor to contaminate the compressor. In a high temperature environment, foreign matter or the like becomes sludge, and the accumulation thereof causes clogging or poor lubrication of the compressor, which becomes a factor that hinders the smooth operation of the refrigeration cycle. Therefore, after trial operation of the refrigeration cycle, the oil is changed regularly, for example, one day later, one month later, and one year later.
[0004]
The oil in the refrigeration cycle is exchanged according to the following procedure.
(1) Recovery of refrigerant First, the operation of the refrigeration cycle is stopped, and the refrigerant in the compressor and the refrigerant circuit connected to the compressor is recovered.
(2) Oil drainage Drain the dirty oil. This is done by leaving residual pressure inside the compressor and discharging the oil from the compressor service port (supply / discharge oil port).
(3) Refueling Supply new oil. Oil is pumped to the compressor service port, or is supplied from another oil plug or the service port on the suction side of the compressor.
(4) Drain air and moisture that have entered the refrigeration cycle and oil during vacuuming. This is performed using a predetermined service port of the refrigeration cycle. (For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP 2001-124447 A (paragraph 0004)
[0006]
[Problems to be solved by the invention]
Since the oil exchange in the conventional refrigeration cycle is the method as described above, it is cumbersome and a great deal of time and labor has been spent until the work is completed. Further, during that time, the operation of the refrigeration cycle has to be stopped, and the cooling function is lost.
Moreover, the oil was exchanged only in the compressor, and the oil staying in the evaporator and the refrigerant pipe could not be exchanged. For this reason, it is impossible to change all the oil in the refrigeration cycle, and it was best to carry out multiple oil changes.
In addition, since the refrigerant that cannot be recovered during the recovery of the refrigerant is released into the atmosphere, it is a problem that cannot be overlooked from the viewpoint of protecting the global environment.
[0007]
The present invention has been made in order to cope with the above-described problems, and can automatically change the oil while operating the refrigeration cycle. By operating for a predetermined time, all the oil in the refrigeration cycle can be changed. An object of the present invention is to provide an oil changer for a refrigeration cycle that can be exchanged and that can minimize the refrigerant released into the atmosphere.
[0008]
[Means for Solving the Problems]
An oil changer for a refrigeration cycle according to the present invention is an oil changer that circulates in a refrigeration cycle that includes a compressor and a gas-liquid separator connected to the suction side thereof. An oil recovery container connected to the opening via an oil recovery valve and replacement oil are sealed, and an oil supply container connected to the supply / discharge oil outlet or suction side of the compressor via an oil supply valve and the oil recovery container And a pump for making the internal pressure of the oil recovery container lower than the internal pressure of the gas-liquid separator and making the internal pressure of the oil supply container higher than the internal pressure of the compressor.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a state in which the oil changer according to Embodiment 1 is connected to a refrigeration cycle.
In this figure, the refrigeration cycle is indicated by reference numeral 1, and a compressor 2, a condenser 3, an expansion valve 4, an evaporator 5, and a gas-liquid separator 6 connected to the suction side of the compressor are sequentially provided. The refrigerant pipe 7 is connected and configured. The compressor 2 is provided with a compressor service port 2B for supplying and discharging the lubricating oil 2A at the bottom, and the gas-liquid separator 6 has an inflow pipe 6A for introducing the gas refrigerant from the evaporator 5. A U-shaped outflow pipe 6B for returning only the gas refrigerant separated from the liquid refrigerant in the gas-liquid separator to the compressor 2 and an oil recovery port 6C located at the bottom are provided.
On the other hand, the refrigeration cycle oil changer 10 includes an oil recovery container 11, an oil recovery valve 12 provided in the inlet pipe 11A, an oil supply container 13, an oil supply valve 14 provided in the outlet pipe 13B, and an oil The pump 15 is connected between the outlet pipe 11 </ b> B of the recovery container 11 and the inlet pipe 13 </ b> A of the oil supply container 13 and communicates with the oil recovery container 11 and the oil supply container 13.
[0010]
Next, the operation of this embodiment will be described. Since the operation of the refrigeration cycle 1 is as described in the prior art, it will be omitted and the operation of the oil changer 10 will be described.
The oil changer 10 evacuates the oil recovery container 11 before connecting to the refrigeration cycle 1, encloses the oil 13 </ b> C to be replaced in the oil supply container 13, and vacuums the whole.
Subsequently, the oil changer 10 is connected to the refrigeration cycle 1 where the oil change is desired. In the connection procedure, the oil recovery valve 12 is connected to the oil recovery port 6C of the gas-liquid separator 6, and the oil supply valve 14 is connected to the compressor service port 2B of the compressor 2. The oil supply valve 14 may be connected to the suction side of the compressor 2, that is, in the middle of the refrigerant pipe 7 between the compressor 2 and the gas-liquid separator 6 as long as the oil can be supplied to the compressor 2. Next, the oil recovery valve 12 and the oil supply valve 14 are opened, and the pump 15 is operated. The relationship between the pressure P1 in the gas-liquid separator 6, the pressure P2 in the compressor 2, the pressure P3 in the oil recovery container 11, and the pressure P4 in the oil supply container 13 is as follows.
P4> P2, P1> P3
Due to this pressure relationship, the contaminated oil circulating in the refrigeration cycle 1 is separated by the gas-liquid separator 6 and stored in the oil recovery container 11 through the oil recovery port 6C.
On the other hand, new oil in the oil supply container 13 is supplied to the compressor 2 through the compressor service port 2B, and the oil is exchanged. When the oil change operation is completed, the oil recovery valve 12 and the oil supply valve 14 are closed and the pump 15 is stopped, and the oil changer 10 is disconnected from the refrigeration cycle 1 to complete the oil change. Thereafter, the refrigerant in the oil changer 10 is recovered and the oil in the oil changer 10 is discharged.
[0011]
In this way, it is possible to prevent the oil in the compressor 2 from being contaminated even when the oil circulating through the refrigeration cycle is dirty. Further, even when the inside of the compressor 2 is already contaminated, new oil is sequentially supplied to replace the contaminated oil. Therefore, the oil can be changed automatically while operating the refrigeration cycle 1. If the oil changer is operated for a predetermined time, not only the compressor 2 but also all the oil in the refrigeration cycle 1 can be changed. In addition, since the oil changer is disconnected from the refrigeration cycle after the oil change operation, the refrigerant in the oil changer 10 can be recovered with a margin (without working on-site). Therefore, the refrigerant can be reliably recovered and the refrigerant released into the atmosphere can be minimized.
[0012]
FIG. 2 is a schematic diagram showing another example of this embodiment.
In this figure, the same or corresponding parts as in FIG. The difference from FIG. 1 is that the compressor 2 is provided with an oil amount detector 2C for detecting the oil amount. As the oil amount detector 2C, one that detects the oil level with a level sensor, one that directly processes the oil level, and the like are known. Moreover, what detects the mass change of the compressor 2 may be used. The oil amount detector 2C detects the amount of oil in the compressor 2 and opens and closes the oil supply valve 14 to supply the required amount of oil.
In this way, the oil change can be performed automatically while adjusting the oil amount in the compressor 2, so that a highly reliable oil change operation can be performed, and the oil amount of the compressor 2 can be reduced during the oil change operation. It is possible to prevent a situation in which an excess or deficiency leads to a malfunction.
[0013]
Further, an oil amount detector (not shown) for detecting the oil amount may be provided in one or both of the oil recovery container 11 and the oil supply container 13. In this way, the oil changer 10 can be stopped before the oil recovery container 11 overflows, and the overflow can be prevented in advance, and the oil changer 10 is stopped before the oil in the oil supply container 13 runs short. It is possible to prevent oil shortage.
Therefore, the reliability of the oil changer can be improved.
[0014]
Further, the inlet pipe 11A and the outlet pipe 11B of the oil recovery container 11 and the inlet pipe 13A and the outlet pipe 13B of the oil supply container 13 are respectively provided with shut valves (not shown) so that they can be separated from the oil changer 10 and replaced. Also good.
In this way, since the oil change operation can be performed continuously, the oil can be continuously changed even when the amount of oil change is large.
[0015]
Moreover, you may provide heating means (not shown), such as a heater, in one or both of the oil collection container 11 and the oil supply container 13.
If it does in this way, since it can prevent that a refrigerant | coolant stagnates (stagnates) in the oil exchange apparatus 10, the reliable operation | work which can replace only oil can be performed.
[0016]
【The invention's effect】
An oil changer for a refrigeration cycle according to the present invention is an oil changer that circulates in a refrigeration cycle that includes a compressor and a gas-liquid separator connected to the suction side thereof. An oil recovery container connected to the opening via an oil recovery valve and replacement oil are sealed, and an oil supply container connected to the supply / discharge oil outlet or suction side of the compressor via an oil supply valve and the oil recovery container And a pump that makes the internal pressure of the oil recovery container lower than the internal pressure of the gas-liquid separator and the internal pressure of the oil supply container higher than the internal pressure of the compressor. Oil can be changed automatically while operating the cycle, and if the oil changer is operated for a predetermined time, not only the compressor but also all the oil in the refrigeration cycle can be changed.
In addition, since the oil changer is disconnected from the refrigeration cycle after the oil change operation, the refrigerant in the oil changer 10 can be recovered with a margin (without working on-site). Therefore, the refrigerant can be reliably recovered and the refrigerant released into the atmosphere can be minimized.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a state where an oil changer according to Embodiment 1 of the present invention is connected to a refrigeration cycle.
FIG. 2 is a schematic diagram showing a different example of the first embodiment of the present invention.
[Explanation of symbols]
1 refrigeration cycle, 2 compressor, 2B compressor service port, 6 gas-liquid separator, 6C oil recovery port, 10 oil changer,
11 Oil recovery container, 12 Oil recovery valve, 13 Oil supply container,
14 Refueling valve, 15 Pump.

Claims (5)

圧縮機と、その吸い込み側に接続された気液分離器とを含む冷凍サイクル中を循環する油の交換装置において、上記気液分離器の油回収口に油回収弁を介して接続された油回収容器及び交換用の油を封入し、上記圧縮機の給排油口または吸い込み側に給油弁を介して接続された給油容器並びに上記油回収容器と給油容器に連通し、上記油回収容器の内圧を上記気液分離器の内圧より低くすると共に、上記給油容器の内圧を上記圧縮機の内圧より高くするポンプを備えた冷凍サイクル用油交換装置。In an oil changer that circulates in a refrigeration cycle including a compressor and a gas-liquid separator connected to the suction side, oil connected to an oil recovery port of the gas-liquid separator via an oil recovery valve A recovery container and replacement oil are sealed, and the oil recovery container connected to the supply / discharge oil outlet or suction side of the compressor via an oil supply valve and the oil recovery container and the oil supply container are connected to each other. An oil changer for a refrigeration cycle comprising a pump that lowers the internal pressure of the gas-liquid separator below the internal pressure of the gas-liquid separator and increases the internal pressure of the oil supply container above the internal pressure of the compressor. 上記圧縮機にその油量を検知する油量検知器を設けたことを特徴とする請求項1記載の冷凍サイクル用油交換装置。2. The oil changer for a refrigeration cycle according to claim 1, wherein an oil amount detector for detecting the oil amount is provided in the compressor. 上記油回収容器及び上記給油容器の一方または双方に、油量を検知する油量検知器を設けたことを特徴とする請求項1または請求項2記載の冷凍サイクル用油交換装置。The oil changer for a refrigeration cycle according to claim 1 or 2, wherein an oil amount detector for detecting an oil amount is provided in one or both of the oil recovery container and the oil supply container. 上記油回収容器及び上記給油容器の出入口にそれぞれ閉止弁を設けたことを特徴とする請求項1〜請求項3のいずれか1項記載の冷凍サイクル用油交換装置。The oil changer for a refrigeration cycle according to any one of claims 1 to 3, wherein a shut-off valve is provided at each of the oil recovery container and the oil supply container. 上記油回収容器及び上記給油容器の一方または双方に、加熱手段を設けたことを特徴とする請求項1〜請求項4のいずれか1項記載の冷凍サイクル用油交換装置。The oil changer for a refrigeration cycle according to any one of claims 1 to 4, wherein heating means is provided in one or both of the oil recovery container and the oil supply container.
JP2002291507A 2002-10-03 2002-10-03 Oil changer for refrigeration cycle Expired - Lifetime JP4053397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291507A JP4053397B2 (en) 2002-10-03 2002-10-03 Oil changer for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291507A JP4053397B2 (en) 2002-10-03 2002-10-03 Oil changer for refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2004125309A JP2004125309A (en) 2004-04-22
JP4053397B2 true JP4053397B2 (en) 2008-02-27

Family

ID=32283087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291507A Expired - Lifetime JP4053397B2 (en) 2002-10-03 2002-10-03 Oil changer for refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4053397B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492359B2 (en) * 2011-03-08 2014-05-14 三菱電機ビルテクノサービス株式会社 Oil replenishment device for refrigeration air conditioners
JP6565897B2 (en) * 2016-12-27 2019-08-28 ダイキン工業株式会社 Liquid level state discriminating apparatus, refrigeration apparatus equipped with the same, and liquid level state discriminating program
JP2019190820A (en) * 2019-05-31 2019-10-31 ダイキン工業株式会社 Liquid surface state determination device, freezing device including the same and liquid surface state determination program

Also Published As

Publication number Publication date
JP2004125309A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
EP1120611A1 (en) Refrigerating device
EP2667120B1 (en) Refrigeration cycle apparatus
JP4053397B2 (en) Oil changer for refrigeration cycle
CN113203228B (en) Refrigerant adjusting device, refrigerant recovery equipment and control method of refrigerant recovery equipment
EP3627077A1 (en) Refrigerant recovery apparatus
JP4052478B2 (en) Refrigerator oil separation and recovery system and cleaning method for air conditioning system
US7296436B2 (en) Cryorefrigerator contaminant removal
JPH10253203A (en) Refrigerant recovering method
CN101469925A (en) Optimal method for set refrigerant tubing and cleaning apparatus for implementing the same
JP3574935B2 (en) Refrigeration cycle retrofit device and retrofit method
AU2007225990B2 (en) Method for the recovery of refrigeration oil
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller
JP2010230260A (en) Air conditioner
JPH10197107A (en) Method of recovering refrigerant in heat exchanger and method of re-supplying refrigerant
JP5492359B2 (en) Oil replenishment device for refrigeration air conditioners
JP2004324949A (en) Refrigerant circuit and refrigerating machine comprising the same
KR100365902B1 (en) Apparatus for supplying refrigerant use of leakage test in refrigerant supply system
JP3539012B2 (en) Oil sampler, refrigerator and oil sample method
KR100409182B1 (en) a cooling matter withdrawal and regeneration circuit for an air-conditioner cooling matter withdrawal and regeneration and filling up machine
CN209944824U (en) Refrigeration oil recovery device and air conditioning unit
JP2799514B2 (en) Oil recovery device for hermetic turbo refrigerator
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP2001263871A (en) Refrigerating unit
JP2004223335A (en) Pipe washing method, pipe washing apparatus, and controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term