JP4052875B2 - Ultrasonic detector - Google Patents

Ultrasonic detector Download PDF

Info

Publication number
JP4052875B2
JP4052875B2 JP2002144767A JP2002144767A JP4052875B2 JP 4052875 B2 JP4052875 B2 JP 4052875B2 JP 2002144767 A JP2002144767 A JP 2002144767A JP 2002144767 A JP2002144767 A JP 2002144767A JP 4052875 B2 JP4052875 B2 JP 4052875B2
Authority
JP
Japan
Prior art keywords
adjustment
signal value
sensitivity
magnification
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002144767A
Other languages
Japanese (ja)
Other versions
JP2003337064A (en
Inventor
守 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2002144767A priority Critical patent/JP4052875B2/en
Publication of JP2003337064A publication Critical patent/JP2003337064A/en
Application granted granted Critical
Publication of JP4052875B2 publication Critical patent/JP4052875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配管系での流体漏れに伴い発生する音響としての超音波や、軸受の磨耗などの機械不良に伴い発生する機械的な振動としての超音波を検出して、それら流体漏れや機械不良を探知するなどに用いる超音波検出装置に関し、
詳しくは、超音波を検出して、その検出超音波の強さに応じた信号値の電気信号を発生する検出手段と、この発生電気信号の信号値を指定の調整倍率で増減した調整信号値を有する電気信号を生成する感度調整手段とを備える超音波検出装置に関する。
【0002】
【従来の技術】
この種の超音波検出装置では、一般に感度調整やレンジ調整と称される操作として、感度調整手段に対し指定する調整倍率を変更することで、検出超音波に対する前記調整信号値が感度調整手段の生成電気信号を扱う信号処理手段の入力許容範囲内に収まるようにし、これにより、検出対象の超音波が大きなものである場合、及び、微小なものである場合のいずれにも、検出超音波の強さを示す生成電気信号を流体漏れの探知や機械不良の探知などの種々の目的において信号処理手段が適切に扱えるようにする。
【0003】
ところで従来、この調整倍率の変更操作については、装置の起動時にリセット動作として感度調整手段に対し最大の調整倍率を指定し、その後、検出超音波に対する前記調整信号値が入力許容範囲の上限値を上回ることが検出されたとき、その検出超音波に対する調整信号値が入力許容範囲の上限値を下回る状態になるまで、感度調整手段に対して指定する調整倍率を所定差分だけ小さくする調整操作を繰り返し自動的に実行する装置が提案されている(特開平1−244328号参照)。
【0004】
【発明が解決しようとする課題】
しかし、この従来装置では、検出対象の超音波がかなり大きなもので、感度調整手段において指定の調整倍率で増減した調整信号値が入力許容範囲の上限値を大きく上回るものである場合、その調整信号値が上限値を上回るか否かの判定と、その判定結果に対する動作として指定調整倍率を所定差分だけ小さくすることとを多数回にわたり交互に繰り返す必要があり、この為、この繰り返し操作をマイクロプロセッサなどを用いて行なうにしても、その時の大きな検出超音波に対する調整信号値が入力許容範囲の上限値を下回る状態になるまでに比較的長い時間を要し、この点において装置の使用性が未だ低い問題があった。
【0005】
この実情に鑑み、本発明の主たる課題は、合理的な装置構成を採ることにより上記問題を効果的に解消する点にある。
【0006】
【課題を解決するための手段】
超音波検出装置において、超音波を検出して、その検出超音波の強さに応じた信号値の電気信号を発生する検出手段と、
この発生電気信号の信号値を指定の調整倍率で増減した調整信号値を有する電気信号を生成する感度調整手段とを備える構成において、
処理指令が付与されたとき、前記調整倍率について、その時の検出超音波に対する前記調整信号値が前記感度調整手段の生成電気信号を扱う信号処理手段の入力許容範囲内における目標信号値となる適正調整倍率を算出するとともに、
その算出した適正調整倍率を前記感度調整手段に指定する、又は、算出した適正調整倍率を表示する制御手段を設けてもよい。
【0007】
つまり、この構成によれば、検出超音波に対する調整信号値が信号処理手段の入力許容範囲内における目標信号値となる適正調整倍率(すなわち、検出超音波の強さを示す生成電気信号を信号処理手段が適切に扱えるようにする感度調整手段での信号値増減調整の調整倍率)を算出により短絡的に得て、その算出した適正調整倍率を感度調整手段に指定する又は表示するから、先述の従来装置の如く感度調整手段において指定の調整倍率で増減した調整信号値が入力許容範囲の上限値を上回るか否かの判定と、その判定結果に対する動作として指定調整倍率を所定差分だけ小さくすることとを交互に繰り返す方式を採るに比べ、算出した適正調整倍率を制御手段により感度調整手段に自動指定する場合では、処理指令の付与に対し、調整信号値が入力許容範囲内における上記目標信号値ないしその近傍値となる適正な状態への移行をほぼ一定の短い時間で自動的かつ一気に済ませることができる。
【0008】
また、算出した適正調整倍率の表示のみを行なう場合にしても、算出により迅速に表示された適正調整倍率にしたがって、感度調整手段に対しその適正調整倍率を人為的に指定することにより、調整信号値が入力許容範囲内における上記目標信号値ないしその近傍値となる適正な状態への移行を短時間で一気に済ませることができ、これらの点で装置の使用性を効果的に高めることができる。
【0009】
また、超音波を検出して、その検出超音波の強さに応じた信号値の電気信号を発生する検出手段と、
この発生電気信号の信号値を指定の調整倍率で増減した調整信号値を有する電気信号を生成する感度調整手段とを備える構成において、
処理指令が付与されたとき、前記調整倍率について、その時の検出超音波に対する前記調整信号値が前記感度調整手段の生成電気信号を扱う信号処理手段の入力許容範囲内における目標信号値となる適正調整倍率を算出するとともに、
その算出した適正調整倍率を前記感度調整手段に指定し、且つ、算出した適正調整倍率を表示する制御手段を設けてもよい
なお、上記構成の実施において、目標信号値は信号処理手段における入力許容範囲の中心値ないし中心近傍値にするのが望ましく、また、適正調整倍率の算出には種々の算出方式及び種々の算出式を採用できる。
【0010】
上記構成の実施において、感度調整手段の生成電気信号を扱う信号処理手段は、その生成電気信号が有する調整信号値(具体的には電圧値や電流値あるいはデジタル信号が示す数値)を視覚的に表示するものや聴覚的に表示するもの、あるいは、感度調整手段の生成電気信号に加工を施した信号を連係機器に対して出力するものなど、どのような形態で生成電気信号を扱うものであってもよい。
【0011】
検出対象の超音波は、音響としての超音波(すなわち、20kHz以上の音波)あるいは機械的な振動としての超音波(すなわち、20kHz以上の機械的振動)のいずれであってもよく、また、その検出の目的も流体漏洩の探知や機械不良の探知を初め、どのようなものであってもよい。
また、前記処理指令を指令操作具に対する人為操作により前記制御手段に付与する構成にしてもよい。
つまり、この構成によれば、装置の使用者が必要と認めるとき随時に、適正調整倍率の算出と、それに続いての感度調整手段に対する適正調整倍率の指定ないし適正調整倍率の表示を制御手段に実行させることができ、この点で装置の使用性を一層高めることができる。
なお、上記構成の実施において、装置の起動スイッチを装置の起動操作とは異なる特定の操作形態で操作することにより前記処理指令が制御手段に付与される構成にして、起動スイッチを上記指令操作具に兼用する形態にすれば、1つの操作具に対する人為操作により装置の起動操作と前記処理指令の付与操作とを選択的に容易に行なうことができ、この点で、装置の使用性をさらに高めることができる。
また、前記調整信号値が前記入力許容範囲の上限値よりも大きくなったとき、又は、前記調整信号値が前記入力許容範囲の下限値よりも小さくなったとき、前記処理指令を前記制御手段に付与する構成にしてもよい。
つまり、この構成によれば、検出超音波に対する調整信号値が信号処理手段における入力許容範囲の上限値よりも大きくなったときや、その調整信号値が信号処理手段における入力許容範囲の下限値よりも小さくなったとき、制御手段による適正調整倍率の算出と、それに続いての感度調整手段に対する適正調整倍率の指定ないし適正調整倍率の表示が自動的に実行され、この点で使用性の一層高い装置になる。
〔1〕請求項1に係る発明は超音波検出装置に係り、その特徴は、
超音波を検出して、その検出超音波の強さに応じた信号値の電気信号を発生する検出手段と、
この発生電気信号の信号値を指定の調整倍率で増減した調整信号値を有する電気信号を生成する感度調整手段とを備える超音波検出装置であって、
処理指令が付与されたとき、前記調整倍率について、その時の検出超音波に対する前記調整信号値が前記感度調整手段の生成電気信号を扱う信号処理手段の入力許容範囲内における目標信号値となる適正調整倍率を算出するとともに、
その算出した適正調整倍率を前記感度調整手段に指定する感度レベル最適化処理を実行し、且つ、算出した適正調整倍率を表示する制御手段を設け、
前記制御手段には、指令操作具に対する人為操作を前記処理指令として前記感度レベル最適化処理を実行する人為指令形態の感度レベル最適化機能と、
前記調整信号値が前記入力許容範囲を逸脱したとき、その逸脱の検知を前記処理指令として前記感度レベル最適化処理を実行する自動の感度レベル最適化機能とを備えさせてある点にある。
【0012】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段を、処理指令の付与時における前記調整信号値と、処理指令の付与時において前記感度調整手段に指定されている前記調整倍率と、前記目標信号値とに基づいて前記適正調整倍率を算出する構成にしてある点にある。
【0013】
つまり、感度調整手段の生成電気信号は検出手段が発生する電気信号に比べ加工が進んだ信号であるから、一般に感度調整手段の生成電気信号が有する信号値(すなわち、前記調整信号値)は検出手段が発生する電気信号の信号値に比べ抽出が容易であり、このことから、調整信号値と感度調整手段に指定されている調整倍率と目標信号値とに基づいて適正調整倍率を算出する上記構成であれば、検出手段が発生する電気信号の信号値と目標信号値とに基づいて適正調整倍率を算出する方式を採るに比べ、装置の設計・製作を容易にすることができる。
【0014】
〔3〕請求項3に係る発明は、請求項2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段を、次の(イ)式
Gx=Ga―Da+Ds ………(イ)
ここで、Gx:処理指令付与時の検出超音波に対する前記調整信号値を前記目標信号値にするのに必要な前記感度調整手段での利得[dB]
Ga:前記感度調整手段において処理指令付与時における指定の調整倍率で得られる利得[dB]
Da:前記調整信号値のデシベル換算値[dB]
Ds:前記目標信号値のデシベル換算値[dB]
に基づいて、前記適正調整倍率を算出する構成にしてある点にある。
【0015】
つまり、この構成では、適正調整倍率を上記(イ)式に基づき感度調整手段での利得Gx[dB]の形で算出(すなわち、処理指令付与時の検出超音波に対する調整信号値を目標信号値にするのに必要な感度調整手段での利得の形で算出)するが、上記(イ)式に基づく算出であれば、右辺における3つの対数値Ga,Da,Dsの加減演算をもって簡単に適正調整倍率を感度調整手段での利得Gxの形で算出することができ、この点で装置の設計・製作を一層容易にすることができる。
【0016】
なお、感度調整手段での調整倍率と利得とは対応関係があるから、その対応関係を照合する算出形態を採れば、上記(イ)で算出した利得Gx(言わば、適正利得)に対応する調整倍率(すなわち、適正調整倍率)は容易に求めることができる。
【0017】
請求項3に係る発明の実施において、感度調整手段に対し指定可能な調整倍率を不連続な複数の調整倍率に限る形態を採る場合、上記(イ)式に基づき算出した適正利得Gxに対応する調整倍率が指定可能な調整倍率から外れたものになる場合が生じるが、このような場合には、上記(イ)式に基づき算出した適正利得Gxに対応する調整倍率に最も近い指定可能調整倍率を適正調整倍率として採用するようにすればよい。
【0018】
また、請求項3に係る発明の実施にあたっては、上記(イ)式に基づき算出した適正利得Gxに対応する調整倍率(ないし、それに最も近い指定可能調整倍率)を適正調整倍率として感度調整手段に指定することに対し、その指定後における調整信号値が目標信号値の設定範囲内に収まったか否かを検出するようにし、そして、その設定範囲内に収まっていないことが検出されたときには、その状態で再度、上記(イ)式に基づく適正調整倍率(適正利得Gx)の算出を行なうようにしてもよい。
【0019】
〔4〕請求項4に係る発明は、請求項1〜3のいずれか1項に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記処理指令を指令操作具に対する人為操作により前記制御手段に付与する構成にしてある点にある。
【0020】
つまり、この構成によれば、装置の使用者が必要と認めるとき随時に、適正調整倍率の算出と、それに続いての感度調整手段に対する適正調整倍率の指定ないし適正調整倍率の表示を制御手段に実行させることができ、この点で装置の使用性を一層高めることができる。
【0021】
なお、請求項4に係る発明の実施において、装置の起動スイッチを装置の起動操作とは異なる特定の操作形態で操作することにより前記処理指令が制御手段に付与される構成にして、起動スイッチを上記指令操作具に兼用する形態にすれば、1つの操作具に対する人為操作により装置の起動操作と前記処理指令の付与操作とを選択的に容易に行なうことができ、この点で、装置の使用性をさらに高めることができる。
【0022】
〔5〕請求項5に係る発明は、請求項1〜4のいずれか1項に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記調整信号値が前記入力許容範囲の上限値よりも大きくなったとき、又は、前記調整信号値が前記入力許容範囲の下限値よりも小さくなったとき、前記処理指令を前記制御手段に付与する構成にしてある点にある。
【0023】
つまり、この構成によれば、検出超音波に対する調整信号値が信号処理手段における入力許容範囲の上限値よりも大きくなったときや、その調整信号値が信号処理手段における入力許容範囲の下限値よりも小さくなったとき、制御手段による適正調整倍率の算出と、それに続いての感度調整手段に対する適正調整倍率の指定ないし適正調整倍率の表示が自動的に実行され、この点で使用性の一層高い装置になる。
【0024】
【発明の実施の形態】
図1,図2はガン形状を採用した携帯型の超音波式漏洩検出装置を示し、この漏洩検出装置1の先端部には、配管系における流体漏洩箇所で発生する音響としての超音波Uを検出する指向性マイクロホン2及び光ビーム照射光源3を配置し、後端部には、検出した超音波Uの強さ(本例では検出超音波Uの音圧レベル)をデジタル表示4aとバーグラフ表示4bとにより表示するとともに、各時点の感度レベルSをデジタル表示4cで表示するディスプレイ4、並びに、各種のキー5を配置してある。
【0025】
また、この漏洩検出装置1には、検出した超音波Uの強さを、それに応じた音量の可聴音で表現して装置の使用者に認知させるイヤホン6を装備してある。
【0026】
マイクロホン2は、図3に示す如く複数個をそれらの指向範囲Eに共通の重なり部分EEが生じる状態に装置前面視で正多角形K(本例では正六角形)の頂点位置に分散配置し、また、光ビーム照射光源3はマイクロホン指向範囲Eの共通重なり部分EEに対して光ビームを照射する状態に装置前面視で上記正多角形Kの重心位置に配置してある。
【0027】
つまり、この漏洩検出装置1では、図4に示す如く装置先端を探知対象の配管の側に向けた状態でその先端向きを配管の延設方向へ徐々に変化させてマイクロホン2の指向方向を変化させながら、イヤホン6の出力可聴音、及び、ディスプレイ4上のデジタル表示4aとバーグラフ表示4bとに基づき漏洩箇所を探知するが、この際、上記光ビーム照射光源3から照射する光ビームの照射ポイントPが各時点の探知対象箇所に合致するようにしてあり、これにより、その照射ポイントPの目視により装置の使用者は各時点の探知対象箇所を逐次明確に把握することができる。
【0028】
なお、7は先端に小開口を形成した円錐状のキャップであり、漏洩箇所と思われる箇所を探知したときには、必要に応じ、このキャップ7を装置1の先端部に装着して複数のマイクロホン2の全体としての指向性を強くした状態で、漏洩箇所をより詳細に確認する。
【0029】
図5は、この漏洩検出装置1の検出回路を示し、マイクロホン2は、感度調整手段8とミキシング手段9と検波手段10とフィルタ手段11と整流手段12との直列接続回路を介して、マイクロコンピュータからなる中央処理装置13に接続し、また、イヤホン6は音量調整手段14を介して上記直列接続回路におけるフィルタ手段11と整流手段12との間の部分に接続してある。
【0030】
検出手段としてのマイクロホン2は、超音波Uを検出して、その検出超音波Uの強さ(本例では音圧)に応じた信号値(本例では電圧値)の電気信号Zを発生し、感度調整手段8は、マイクロホン発生電気信号Zの信号値を指定の調整倍率αで増減した調整信号値を有する電気信号Z′を生成する。
【0031】
また、ミキシング手段9、検波手段10、フィルタ手段11は、感度調整手段8の生成電気信号Z′に対し、局部発振回路15において発生させた近似周波数の電気信号Zfを重ねることで、いわゆるヘテロダイン方式により、感度調整手段8の生成電気信号Z′を可聴周波数域の電気信号Z″に変換し、そして、不要な周波数成分を除去した状態で、この可聴周波数域の電気信号Z″のみを取り出す。
【0032】
フィルタ手段11から送出される可聴周波数域の電気信号Z″は整流手段12で全波整流されて中央処理装置13に入力され、中央処理装置13は、この入力電気信号Z″の信号値v(すなわち、感度調整手段8において指定の調整倍率αで増減した調整信号値に相当する信号値)を所定の換算値にしてデジタル表示4a及びバーグラフ表示4bによりディスプレイ4上に表示する。
【0033】
具体的には、中央処理装置13は、デジタル表示値DA[dB]を次の(ロ)式
DA=Da+G(S) ………(ロ)
ここで、Da=20・log(v/vo)
vo:基準の定数
G(S):その時の感度レベルSにより決まる値
により算出して、その算出したデジタル表示値DAをデジタル表示4aによりディスプレイ4上に表示する。
【0034】
また、計12個の単位バーのうち何個の単位バーを棒グラフ状に積み重ね表示するかによって入力信号値vの大きさ表示するバーグラフ表示4bにおいて、単位バーの表示個数nを次の(ハ)式
n=〔13/(A−B)〕×〔Da−B〕 ………(ハ)
ここで、Da=20・log(v/vo)
vo:基準の定数
A,Bは夫々、定数
により算出し、その算出した個数nの単位バーを積み重ね表示する。
【0035】
中央処理装置13には、ディスプレイ4の他、光ビーム照射光源3、前記の各種キー5a〜5f、引き金形態の起動スイッチ16、記憶手段17を接続してあり、中央処理装置13は、使用者によるキー5の操作及び起動スイッチ16の操作に対して次の処理を行なう。
【0036】
電源OFF状態において起動スイッチ16を一度だけ引き操作すると、中央処理装置13は電源をONにして装置を検出作動状態にし、一方、装置が検出作動状態にあるときに起動スイッチ16の引き操作を所定時間(例えば1秒)内に二度行うと、中央処理装置13は電源をOFFにする。
【0037】
また、「光源」キー5aを操作すると、中央処理装置13は光ビーム照射光源3をON状態とOFF状態とに交互に切り換え、「メモリ」キー5bを操作すると、中央処理装置13はその時の検出データを記憶手段17に保存する。
【0038】
そしてまた、「UP」キー5cを操作すると、中央処理装置13は感度レベルSの上昇側への変更操作として、感度調整手段8に対し指定する調整倍率αを一段階ずつ大きくし、「DOWN」キー5dを操作すると、中央処理装置13は感度レベルSの低下側への変更操作として、感度調整手段8に対し指定する調整倍率αを一段階ずつ小さくする。
【0039】
感度調整手段8は、増幅器18aと帯域フィルタ19aと減衰器20aを直列接続した第1調整部8Aと、同じく増幅器18bと帯域フィルタ19bと減衰器20bを直列接続した第2調整部8Bと、同じく増幅器18cと帯域フィルタ19cと減衰器20cを直列接続した第3調整部8Cとを直列に接続して構成してあり、中央処理装置13は、感度調整手段8に対する調整倍率αの指定操作として、各調整部8A〜8Cにおける減衰器20a〜20cの減衰率をそれら減衰器20a〜20cに対する制御信号cにより多段階に変更することで、感度調整手段8における調整倍率αを段階的に変更して、百段階の感度レベルS1〜S100を選択的に現出する。
【0040】
また、この漏洩検出装置1では、感度レベルSを一段階ずつ変更したときに感度調整手段8での信号値調整において得られる利得G[dB]がほぼ一定の差分ΔG[dB]ずつ変化するように、各感度レベルS1〜S100における調整倍率αを設定してある。
【0041】
「UP」キー5c及び「DOWN」キー5dによる一段階ずつの感度レベルSの変更に加え、この漏洩検出装置1には、人為指令形態の感度レベル最適化機能と自動の感度レベル最適化機能とを備えさせてあり、人為指令形態の感度レベル最適化機能については、装置が検出作動状態にあるときに起動スイッチ16を引き操作すると、その操作が電源OFF操作(すなわち、起動スイッチ16の引き操作を所定時間内に二度行う操作)でない場合に、その操作を処理指令として中央処理装置13は感度レベル最適化処理を実行する。
【0042】
また、自動の感度レベル最適化機能については、中央処理装置13の入力信号値vが、ディスプレイ4とともに信号処理手段を構成する中央処理装置13の入力許容範囲Rを逸脱したとき(すなわち、入力許容範囲Rの上限値よりも大きくなったとき、及び、入力許容範囲Rの下限値よりも小さくなったとき)、その逸脱の検知を処理指令として、中央処理装置13は人為指令形態の感度レベル最適化機能の場合と同じ感度レベル最適化処理を実行する。
【0043】
すなわち、中央処理装置13は、この感度レベル最適化処理を実行する制御手段として、上記の処理指令が付与されたとき、その時の検出超音波Uに対する入力信号値v(前記調整信号値に相当の信号値)が上記入力許容範囲R内における目標信号値vs(本例では設定範囲の値)となる適正調整倍率αsを算出し、その算出した適正調整倍率αsを前記制御信号cにより感度調整手段8に対して指定する。
【0044】
具体的には、中央処理装置13は、次の(イ)式
Gx=Ga―Da+Ds ………(イ)
ここで、Gx:処理指令付与時の検出超音波Uに対する入力信号値v(調整信号値)を目標信号値vsにするのに必要な感度調整手段8での利得[dB]
Ga:感度調整手段8において処理指令付与時における指定の調整倍率αで得られる利得[dB]
Da:入力信号値v(調整信号値)のデシベル換算値[dB]
(Da=20・log(v/vo),vo:基準の定数)
Ds:目標信号値vsのデシベル換算値[dB]
(Ds=20・log(vs/vo),vo:基準の定数)
に基づいて、前記の適正調整倍率αsを感度調整手段8での利得Gx[dB]の形で算出する。
【0045】
そして、次の(イ′)式
Ss=Gx/ΔG ………(イ′)
ここで、Ssは小数点以下を切り捨てた整数値
に基づき、上記の算出利得Gx(言わば、適正利得)に対応する適正感度レベルSsを算出し、この算出した適正感度レベルSsに対応する調整倍率αを適正調整倍率αsとして、感度調整手段8に対する指定調整倍率αを現行の指定調整倍率αから上記の算出適正感度レベルSsに対応する調整倍率αsへ自動的に変更する。
【0046】
また、中央処理装置13は、この調整倍率αの指定変更を行なった後における入力信号値vが目標信号値vsの設定範囲Rs(前記入力許容範囲Rに包含される範囲)内に収まっているか否かを検出し、そして、その設定範囲Rs内に収まっていないことが検出されたときには、上記(イ)式及び(イ′)式に基づく調整倍率αの自動指定変更を再度実行する。
【0047】
つまり、この漏洩検出装置1では、上記した感度レベル最適化処理により、中央処理装置13の入力信号値v(調整信号値)が入力許容範囲R内における目標信号値vs(ないしその近傍値)となる適正な状態への移行を各回ほぼ一定の短い時間で自動的かつ一気に済ませられるようにしてある。
【0048】
そして、ディスプレイ4においてデジタル表示4aされる各時点のデジタル表示値DAと、同じくディスプレイ4においてデジタル表示4cされる各時点の感度レベルS(換言すれば、各時点の指定調整倍率α)とに基づいて、各時点における検出超音波Uの強さを同一基準下での相互比較の可能な状態で的確に把握できるようにしてある。
【0049】
なお、本例の漏洩検出装置1では、目標信号値vsとして入力許容範囲Rの中心値を設定してあり、中央処理装置13の入力信号値vが目標信号値vsの設定範囲Rs内にあるとき、バーグラフ表示4bにおける単位バーの表示個数nが計12個中の6個ないし7個になるようにしてある。
【0050】
〔別の実施形態〕
次に別実施形態を列記する。
【0051】
前述の実施形態では、処理指令の付与時における調整信号値vと、処理指令の付与時において感度調整手段8に指定されている調整倍率αと、目標信号値vsとに基づいて適正調整倍率αsを算出する例を示したが、この算出形態に限らず、請求項1に係る発明の実施において適正調整倍率αsの算出には、種々の算出形態を採用することができ、場合によっては、検出手段2が発生する電気信号Zの信号値と目標信号値vsとに基づき、目標信号値vsを発生電気信号Zの信号値で除する形態で、適正調整倍率αsを算出するようにしてもよい。
【0052】
また、請求項2に係る発明の実施において、処理指令の付与時における調整信号値vと、処理指令の付与時において感度調整手段8に指定されている調整倍率αと、目標信号値vsとに基づき適正調整倍率αsを算出するのに、その具体的な算出式は前記した(イ)式に限られるものではなく、他の算出式を採用するようにしてもよい。
【0053】
前述の実施形態では、音響としての超音波Uを検出する例を示したが、本発明は、接触式の検出手段により機械的な振動としての超音波を検出する場合にも適用でき、また、その検出目的も流体漏洩の探知や機械不良の探知を初め、どのようなものであってもよい。
【図面の簡単な説明】
【図1】漏洩検出装置の斜視図
【図2】装置背面部分の拡大図
【図3】装置前面部分の拡大図及び指向範囲を示す図
【図4】装置使用状態を示す斜視図
【図5】検出回路を示すブロック図
【符号の説明】
2 検出手段
4,13 表示手段
8 感度調整手段
13 制御手段
16 指令操作具
α 調整倍率
αs 適正調整倍率
R 入力許容範囲
U 超音波
v 調整信号値
vs 目標信号値
Z 発生電気信号
Z′ 生成電気信号
[0001]
BACKGROUND OF THE INVENTION
The present invention detects ultrasonic waves as sound generated due to fluid leakage in a piping system, and ultrasonic waves as mechanical vibration generated due to mechanical failure such as wear of a bearing, and detects such fluid leakage or machine Regarding the ultrasonic detection device used for detecting defects, etc.
Specifically, detection means for detecting an ultrasonic wave and generating an electric signal having a signal value corresponding to the intensity of the detected ultrasonic wave, and an adjustment signal value obtained by increasing or decreasing the signal value of the generated electric signal by a specified adjustment magnification It is related with the ultrasonic detection apparatus provided with the sensitivity adjustment means which produces | generates the electrical signal which has.
[0002]
[Prior art]
In this type of ultrasonic detection apparatus, as an operation generally referred to as sensitivity adjustment or range adjustment, the adjustment signal value for the detected ultrasonic wave is changed by the sensitivity adjustment means by changing the adjustment magnification designated for the sensitivity adjustment means. It is made to be within the input allowable range of the signal processing means that handles the generated electric signal, and thereby, the detection ultrasonic wave is detected in both cases where the ultrasonic wave to be detected is large and small. The generated electric signal indicating the strength is appropriately handled by the signal processing means for various purposes such as detection of fluid leakage and detection of mechanical failure.
[0003]
Conventionally, with regard to this adjustment magnification changing operation, the maximum adjustment magnification is designated for the sensitivity adjustment means as a reset operation when the apparatus is started, and then the adjustment signal value for the detected ultrasonic wave is set to the upper limit value of the input allowable range. When an increase is detected, the adjustment operation for decreasing the adjustment magnification specified for the sensitivity adjustment means by a predetermined difference is repeated until the adjustment signal value for the detected ultrasonic wave falls below the upper limit of the input allowable range. An apparatus that automatically executes the system has been proposed (see JP-A-1-244328).
[0004]
[Problems to be solved by the invention]
However, in this conventional apparatus, when the ultrasonic wave to be detected is considerably large and the adjustment signal value increased or decreased by the designated adjustment magnification in the sensitivity adjustment means is significantly higher than the upper limit value of the input allowable range, the adjustment signal It is necessary to repeatedly determine whether the value exceeds the upper limit value and to reduce the designated adjustment magnification by a predetermined difference as an operation for the determination result. However, it takes a relatively long time for the adjustment signal value for the large detected ultrasound at that time to fall below the upper limit of the input allowable range. There was a low problem.
[0005]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational device configuration.
[0006]
[Means for Solving the Problems]
  In the ultrasonic detector,Detecting means for detecting an ultrasonic wave and generating an electric signal having a signal value corresponding to the intensity of the detected ultrasonic wave;
  In a configuration comprising sensitivity adjustment means for generating an electric signal having an adjustment signal value obtained by increasing or decreasing the signal value of the generated electric signal by a specified adjustment magnification,
  When a processing command is given, for the adjustment magnification, the adjustment signal value with respect to the detected ultrasonic wave at that time is appropriately adjusted to be a target signal value within the input allowable range of the signal processing means that handles the electric signal generated by the sensitivity adjustment means While calculating the magnification,
  Provide the control means for designating the calculated appropriate adjustment magnification to the sensitivity adjustment means or displaying the calculated appropriate adjustment magnification.Also good.
[0007]
That is, according to this configuration, an appropriate adjustment magnification (that is, a generated electric signal indicating the intensity of the detected ultrasonic wave is signal-processed) at which the adjustment signal value for the detected ultrasonic wave becomes the target signal value within the input allowable range of the signal processing unit The adjustment factor of the signal value increase / decrease adjustment in the sensitivity adjustment means that enables the means to be appropriately handled is obtained in a short-circuited manner by calculation, and the calculated appropriate adjustment magnification is designated or displayed on the sensitivity adjustment means. As in the conventional device, in the sensitivity adjustment means, it is determined whether or not the adjustment signal value increased or decreased by the specified adjustment magnification exceeds the upper limit value of the input allowable range, and the specified adjustment magnification is reduced by a predetermined difference as an operation for the determination result. In the case where the calculated appropriate adjustment magnification is automatically designated by the control means to the sensitivity adjustment means, the adjustment signal for the processing command is given. There can be finished the transition to the appropriate state to be the target signal value to neighboring values thereof within the allowable input range automatically and once at a substantially constant short time.
[0008]
Even when only displaying the calculated appropriate adjustment magnification, the adjustment signal can be obtained by manually specifying the appropriate adjustment magnification to the sensitivity adjustment means according to the appropriate adjustment magnification displayed quickly by the calculation. Transition to an appropriate state in which the value is within the input allowable range and the value close to the target signal value can be completed in a short time, and the usability of the apparatus can be effectively enhanced in these respects.
[0009]
  Also,Detecting means for detecting an ultrasonic wave and generating an electric signal having a signal value corresponding to the intensity of the detected ultrasonic wave;
  In a configuration comprising sensitivity adjustment means for generating an electric signal having an adjustment signal value obtained by increasing or decreasing the signal value of the generated electric signal by a specified adjustment magnification,
  When a processing command is given, for the adjustment magnification, the adjustment signal value with respect to the detected ultrasonic wave at that time is appropriately adjusted to be a target signal value within the input allowable range of the signal processing means that handles the electric signal generated by the sensitivity adjustment means While calculating the magnification,
  Control means for designating the calculated appropriate adjustment magnification to the sensitivity adjustment means and displaying the calculated appropriate adjustment magnification is provided.Good.
  In addition,The above configurationIn the implementation, it is desirable that the target signal value is the center value or the center vicinity value of the input allowable range in the signal processing means, and various calculation methods and various calculation formulas can be adopted for calculating the appropriate adjustment magnification.
[0010]
  The above configurationIn the implementation, the signal processing means that handles the generated electric signal of the sensitivity adjusting means visually displays the adjustment signal value (specifically, the voltage value, the current value, or the numerical value indicated by the digital signal) of the generated electric signal. Regardless of what form the generated electrical signal is handled, such as what is output audibly, what is displayed audibly, or the processed electrical signal generated by the sensitivity adjustment means is output to the linkage device Good.
[0011]
  The ultrasonic wave to be detected may be either an ultrasonic wave as an acoustic wave (that is, a sound wave of 20 kHz or higher) or an ultrasonic wave as a mechanical vibration (that is, a mechanical vibration of 20 kHz or higher). The purpose of detection may be anything including detection of fluid leakage and detection of mechanical failure.
  The processing command may be applied to the control means by an artificial operation on the command operating tool.
  In other words, according to this configuration, when it is deemed necessary by the user of the apparatus, calculation of the appropriate adjustment magnification, and subsequent designation of the appropriate adjustment magnification for the sensitivity adjustment means or display of the appropriate adjustment magnification for the control means. In this respect, the usability of the apparatus can be further enhanced.
  In the implementation of the above configuration, the processing command is given to the control means by operating the start switch of the device in a specific operation mode different from the start operation of the device, and the start switch is set to the command operating tool. If the configuration is also used, the activation operation of the apparatus and the operation to give the processing command can be easily and selectively performed by manual operation with respect to one operation tool. In this respect, the usability of the apparatus is further enhanced. be able to.
  Further, when the adjustment signal value becomes larger than the upper limit value of the input allowable range, or when the adjustment signal value becomes smaller than the lower limit value of the input allowable range, the processing command is sent to the control means. You may make it the structure to provide.
  That is, according to this configuration, when the adjustment signal value for the detected ultrasonic wave becomes larger than the upper limit value of the input allowable range in the signal processing unit, or the adjustment signal value is lower than the lower limit value of the input allowable range in the signal processing unit. When it becomes smaller, the calculation of the appropriate adjustment magnification by the control means and the subsequent designation of the appropriate adjustment magnification for the sensitivity adjustment means or the display of the appropriate adjustment magnification are automatically executed. Become a device.
  [1] The invention according to claim 1 relates to an ultrasonic detector, and its features are:
  Detecting means for detecting an ultrasonic wave and generating an electric signal having a signal value corresponding to the intensity of the detected ultrasonic wave;
  An ultrasonic detection apparatus comprising a sensitivity adjustment unit that generates an electric signal having an adjustment signal value obtained by increasing or decreasing the signal value of the generated electric signal by a specified adjustment magnification,
  When a processing command is given, for the adjustment magnification, the adjustment signal value with respect to the detected ultrasonic wave at that time is appropriately adjusted to be a target signal value within the input allowable range of the signal processing means that handles the electric signal generated by the sensitivity adjustment means While calculating the magnification,
  A control means for performing sensitivity level optimization processing for designating the calculated appropriate adjustment magnification to the sensitivity adjustment means, and displaying the calculated appropriate adjustment magnification;
  In the control means, a sensitivity level optimization function of an artificial command form for executing the sensitivity level optimization processing using the manual operation on the command operation tool as the processing command, and
  When the adjustment signal value deviates from the allowable input range, an automatic sensitivity level optimizing function is provided for executing the sensitivity level optimizing process using detection of the deviation as the processing command.
[0012]
[2] The invention according to claim 2 specifies a preferred embodiment for carrying out the invention according to claim 1, and its features are as follows:
The control means determines the appropriate adjustment magnification based on the adjustment signal value at the time of giving the processing command, the adjustment magnification specified by the sensitivity adjustment means at the time of giving the processing command, and the target signal value. The point is that it is configured to calculate.
[0013]
That is, since the electric signal generated by the sensitivity adjusting unit is a signal that has been processed more than the electric signal generated by the detecting unit, the signal value (that is, the adjustment signal value) of the electric signal generated by the sensitivity adjusting unit is generally detected. Extraction is easier than the signal value of the electrical signal generated by the means, and from this, the appropriate adjustment magnification is calculated based on the adjustment signal value, the adjustment magnification specified in the sensitivity adjustment means, and the target signal value. If it is a structure, compared with the system which calculates a suitable adjustment magnification based on the signal value and target signal value of the electric signal which a detection means generate | occur | produces, design and manufacture of an apparatus can be made easy.
[0014]
[3] The invention according to claim 3 specifies a preferred embodiment for carrying out the invention according to claim 2, and its features are:
The control means is expressed by the following formula (A)
Gx = Ga-Da + Ds (...)
Here, Gx: gain [dB] in the sensitivity adjustment means necessary to set the adjustment signal value for the detected ultrasonic wave when the processing command is given to the target signal value
Ga: Gain [dB] obtained at the specified adjustment magnification when the processing command is given in the sensitivity adjustment means
Da: Decibel conversion value [dB] of the adjustment signal value
Ds: Decibel conversion value [dB] of the target signal value
The appropriate adjustment magnification is calculated based on the above.
[0015]
That is, in this configuration, the appropriate adjustment magnification is calculated in the form of the gain Gx [dB] in the sensitivity adjustment means based on the above equation (A) (that is, the adjustment signal value for the detected ultrasonic wave when the processing command is given is the target signal value. (Calculated in the form of gain in the sensitivity adjustment means necessary to achieve the above), but if the calculation is based on the above equation (b), it is simply appropriate by adding and subtracting the three logarithmic values Ga, Da, and Ds on the right side. The adjustment magnification can be calculated in the form of the gain Gx in the sensitivity adjustment means, and in this respect, the device can be designed and manufactured more easily.
[0016]
Since the adjustment magnification and the gain in the sensitivity adjustment means have a correspondence relationship, if a calculation form for collating the correspondence relationship is adopted, the adjustment corresponding to the gain Gx (in other words, the appropriate gain) calculated in the above (a). The magnification (that is, the appropriate adjustment magnification) can be easily obtained.
[0017]
In the implementation of the invention according to claim 3, when adopting a form in which the adjustment magnification that can be specified to the sensitivity adjustment means is limited to a plurality of discontinuous adjustment magnifications, it corresponds to the appropriate gain Gx calculated based on the above equation (a). In some cases, the adjustment magnification may deviate from the specifiable adjustment magnification. In such a case, the specifiable adjustment magnification closest to the adjustment magnification corresponding to the appropriate gain Gx calculated based on the above equation (A). May be adopted as an appropriate adjustment magnification.
[0018]
In carrying out the invention according to claim 3, the sensitivity adjustment means uses the adjustment magnification corresponding to the appropriate gain Gx calculated based on the above equation (a) (or the nearest adjustable adjustment magnification) as the appropriate adjustment magnification. In response to the designation, it is detected whether or not the adjustment signal value after the designation is within the set range of the target signal value, and when it is detected that the adjustment signal value is not within the set range, In this state, the appropriate adjustment magnification (appropriate gain Gx) may be calculated again based on the above equation (A).
[0019]
[4] The invention according to claim 4 specifies an embodiment suitable for carrying out the invention according to any one of claims 1 to 3, and the features thereof are as follows:
The processing command is provided to the control means by an artificial operation on the command operating tool.
[0020]
In other words, according to this configuration, when it is deemed necessary by the user of the apparatus, calculation of the appropriate adjustment magnification, and subsequent designation of the appropriate adjustment magnification for the sensitivity adjustment means or display of the appropriate adjustment magnification for the control means. In this respect, the usability of the apparatus can be further enhanced.
[0021]
In the embodiment of the invention according to claim 4, the processing command is given to the control means by operating the start switch of the device in a specific operation form different from the start operation of the device, and the start switch is If the mode is also used as the command operating tool, the start-up operation of the apparatus and the operation to give the processing command can be easily and selectively performed by manual operation with respect to one operating tool. The sex can be further enhanced.
[0022]
[5] The invention according to claim 5 specifies an embodiment suitable for carrying out the invention according to any one of claims 1 to 4, and the characteristics thereof are as follows:
When the adjustment signal value becomes larger than the upper limit value of the input allowable range, or when the adjustment signal value becomes smaller than the lower limit value of the input allowable range, the processing command is given to the control means. It is in the point which is made into a structure.
[0023]
That is, according to this configuration, when the adjustment signal value for the detected ultrasonic wave becomes larger than the upper limit value of the input allowable range in the signal processing unit, or the adjustment signal value is lower than the lower limit value of the input allowable range in the signal processing unit. When it becomes smaller, the calculation of the appropriate adjustment magnification by the control means and the subsequent designation of the appropriate adjustment magnification for the sensitivity adjustment means or the display of the appropriate adjustment magnification are automatically executed. Become a device.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a portable ultrasonic leak detection device adopting a gun shape, and an ultrasonic wave U as sound generated at a fluid leak point in a piping system is applied to the tip of the leak detection device 1. The directional microphone 2 to be detected and the light beam irradiation light source 3 are arranged, and the intensity of the detected ultrasonic wave U (in this example, the sound pressure level of the detected ultrasonic wave U) is digitally displayed on the rear end portion and a bar graph. In addition to the display 4b, a display 4 for displaying the sensitivity level S at each time point as a digital display 4c and various keys 5 are arranged.
[0025]
In addition, the leak detection apparatus 1 is equipped with an earphone 6 that expresses the intensity of the detected ultrasonic wave U with an audible sound having a volume corresponding thereto and allows the user of the apparatus to recognize it.
[0026]
As shown in FIG. 3, the microphones 2 are arranged in a distributed manner at the apex positions of the regular polygon K (regular hexagon in this example) in a state where the overlapping portion EE common to the directivity range E is generated as shown in FIG. In addition, the light beam irradiation light source 3 is disposed at the center of gravity of the regular polygon K in a front view of the apparatus so as to irradiate the common overlapping portion EE of the microphone directing range E with the light beam.
[0027]
That is, in this leak detection device 1, the direction of the tip of the microphone 2 is changed by gradually changing the direction of the tip in the direction in which the pipe extends in the state where the tip of the device is directed toward the pipe to be detected as shown in FIG. In this case, the leakage location is detected based on the audible sound output from the earphone 6 and the digital display 4 a and the bar graph display 4 b on the display 4. At this time, the irradiation of the light beam emitted from the light beam irradiation light source 3 is performed. The point P matches the detection target location at each time point, so that the user of the apparatus can clearly grasp the detection target location at each time point by visually observing the irradiation point P.
[0028]
Reference numeral 7 denotes a conical cap having a small opening formed at the tip. When a portion that seems to be a leaked portion is detected, the cap 7 is attached to the tip of the apparatus 1 as necessary, and a plurality of microphones 2 are attached. In a state where the directivity as a whole is strengthened, the leakage location is confirmed in more detail.
[0029]
FIG. 5 shows a detection circuit of the leak detection apparatus 1, and the microphone 2 is connected to a microcomputer via a series connection circuit of sensitivity adjustment means 8, mixing means 9, detection means 10, filter means 11 and rectification means 12. The earphone 6 is connected to a portion between the filter means 11 and the rectifying means 12 in the series connection circuit via a volume adjusting means 14.
[0030]
The microphone 2 as the detecting means detects the ultrasonic wave U and generates an electric signal Z having a signal value (voltage value in this example) corresponding to the intensity of the detected ultrasonic wave U (sound pressure in this example). The sensitivity adjustment means 8 generates an electric signal Z ′ having an adjustment signal value obtained by increasing or decreasing the signal value of the microphone-generated electric signal Z by a specified adjustment magnification α.
[0031]
Further, the mixing means 9, the detection means 10, and the filter means 11 superimpose the electric signal Zf of the approximate frequency generated in the local oscillation circuit 15 on the electric signal Z ′ generated by the sensitivity adjustment means 8, so-called heterodyne system. Thus, the electric signal Z ′ generated by the sensitivity adjusting means 8 is converted into an electric signal Z ″ in the audible frequency range, and only the electric signal Z ″ in the audible frequency range is taken out with unnecessary frequency components removed.
[0032]
The electric signal Z ″ in the audible frequency range sent from the filter means 11 is full-wave rectified by the rectifying means 12 and inputted to the central processing unit 13, and the central processing unit 13 receives the signal value v ( That is, the sensitivity adjustment means 8 displays a signal value corresponding to an adjustment signal value increased or decreased by a specified adjustment magnification α on the display 4 by a digital display 4a and a bar graph display 4b.
[0033]
Specifically, the central processing unit 13 sets the digital display value DA [dB] to the following equation (b):
DA = Da + G (S) (b)
Here, Da = 20 · log (v / vo)
vo: Standard constant
G (S): Value determined by the sensitivity level S at that time
And the calculated digital display value DA is displayed on the display 4 by the digital display 4a.
[0034]
Further, in the bar graph display 4b that displays the magnitude of the input signal value v depending on how many of the 12 unit bars are stacked and displayed in a bar graph shape, the display number n of the unit bars is set to the following (ha )formula
n = [13 / (A−B)] × [Da−B] (......)
Here, Da = 20 · log (v / vo)
vo: Standard constant
A and B are constants
And the calculated number n of unit bars are stacked and displayed.
[0035]
In addition to the display 4, the central processing unit 13 is connected to the light beam irradiation light source 3, the various keys 5 a to 5 f, the trigger-type activation switch 16, and the storage unit 17. The following processing is performed for the operation of the key 5 and the operation of the start switch 16 by.
[0036]
When the start switch 16 is pulled only once in the power OFF state, the central processing unit 13 turns on the power to place the device in the detection operation state. On the other hand, when the device is in the detection operation state, If it is performed twice within a time (for example, 1 second), the central processing unit 13 turns off the power.
[0037]
When the “light source” key 5a is operated, the central processing unit 13 alternately switches the light beam irradiation light source 3 between the ON state and the OFF state. When the “memory” key 5b is operated, the central processing unit 13 detects the current state. Data is stored in the storage means 17.
[0038]
When the “UP” key 5c is operated, the central processing unit 13 increases the adjustment magnification α designated to the sensitivity adjustment means 8 step by step as a change operation to increase the sensitivity level S by “DOWN”. When the key 5d is operated, the central processing unit 13 decreases the adjustment magnification α designated to the sensitivity adjusting means 8 by one step as an operation for changing the sensitivity level S to the lower side.
[0039]
The sensitivity adjustment means 8 includes a first adjustment unit 8A in which an amplifier 18a, a bandpass filter 19a, and an attenuator 20a are connected in series, a second adjustment unit 8B in which an amplifier 18b, a bandpass filter 19b, and an attenuator 20b are connected in series. An amplifier 18c, a bandpass filter 19c, and a third adjuster 8C in which an attenuator 20c are connected in series are connected in series, and the central processing unit 13 performs an operation for specifying the adjustment magnification α for the sensitivity adjustment means 8 as follows: By changing the attenuation rate of the attenuators 20a to 20c in each of the adjustment units 8A to 8C in multiple stages by the control signal c for the attenuators 20a to 20c, the adjustment magnification α in the sensitivity adjustment means 8 is changed in stages. , Hundreds of sensitivity levels S1 to S100 are selectively displayed.
[0040]
Further, in this leak detection apparatus 1, when the sensitivity level S is changed step by step, the gain G [dB] obtained in the signal value adjustment by the sensitivity adjustment means 8 changes by a substantially constant difference ΔG [dB]. In addition, the adjustment magnification α for each sensitivity level S1 to S100 is set.
[0041]
In addition to changing the sensitivity level S by one step by the “UP” key 5c and “DOWN” key 5d, the leak detection device 1 includes a sensitivity level optimization function of an artificial command form and an automatic sensitivity level optimization function. With regard to the sensitivity level optimization function of the human-command form, when the start switch 16 is pulled when the device is in the detection operation state, the operation is turned off (that is, the start switch 16 is pulled). If the operation is not performed twice within a predetermined time), the central processing unit 13 executes the sensitivity level optimization process using the operation as a processing command.
[0042]
As for the automatic sensitivity level optimizing function, when the input signal value v of the central processing unit 13 deviates from the input allowable range R of the central processing unit 13 constituting the signal processing means together with the display 4 (that is, the input allowable value). When the value exceeds the upper limit value of the range R and when the value becomes smaller than the lower limit value of the input allowable range R), the central processing unit 13 uses the detection of the deviation as a processing command, and the sensitivity level of the human command form is optimum. The same sensitivity level optimization process as that of the optimization function is executed.
[0043]
That is, when the above processing command is given as the control means for executing this sensitivity level optimization process, the central processing unit 13 receives the input signal value v (corresponding to the adjustment signal value) for the detected ultrasonic wave U at that time. (Signal value) is calculated as a proper adjustment magnification αs at which the target signal value vs (in the present example, the value of the set range) within the input allowable range R, and the calculated appropriate adjustment magnification αs is adjusted by the control signal c. 8 is specified.
[0044]
Specifically, the central processing unit 13 uses the following formula (A)
Gx = Ga-Da + Ds (...)
Here, Gx: gain [dB] in the sensitivity adjusting means 8 necessary for setting the input signal value v (adjustment signal value) for the detected ultrasonic wave U when the processing command is given to the target signal value vs.
Ga: Gain [dB] obtained at the specified adjustment magnification α when the processing command is given in the sensitivity adjusting means 8
Da: Decibel conversion value [dB] of input signal value v (adjustment signal value)
(Da = 20 · log (v / vo), vo: standard constant)
Ds: Decibel conversion value [dB] of the target signal value vs.
(Ds = 20 · log (vs / vo), vo: standard constant)
Based on the above, the appropriate adjustment magnification αs is calculated in the form of gain Gx [dB] in the sensitivity adjustment means 8.
[0045]
And the following (I ′) formula
Ss = Gx / ΔG (b)
Where Ss is an integer value rounded down
Based on the above, the appropriate sensitivity level Ss corresponding to the calculated gain Gx (ie, the appropriate gain) is calculated, and the adjustment magnification α corresponding to the calculated appropriate sensitivity level Ss is set as the appropriate adjustment magnification αs. The designated adjustment magnification α is automatically changed from the current designated adjustment magnification α to the adjustment magnification αs corresponding to the calculated appropriate sensitivity level Ss.
[0046]
In addition, the central processing unit 13 determines that the input signal value v after the designation change of the adjustment magnification α is within the set range Rs of the target signal value vs (the range included in the input allowable range R). If it is detected that it is not within the set range Rs, the automatic designation change of the adjustment magnification α based on the equations (A) and (A ') is executed again.
[0047]
That is, in this leak detection apparatus 1, the input signal value v (adjustment signal value) of the central processing unit 13 is set to the target signal value vs (or a value close thereto) within the input allowable range R by the sensitivity level optimization process described above. The transition to an appropriate state can be completed automatically and at once in a substantially constant short time each time.
[0048]
Then, based on the digital display value DA at each time point displayed on the digital display 4a on the display 4 and the sensitivity level S at each time point displayed on the display 4 in the same manner (in other words, the designated adjustment magnification α at each time point). Thus, the intensity of the detected ultrasonic wave U at each time point can be accurately grasped in a state where mutual comparison is possible under the same standard.
[0049]
In the leak detection device 1 of this example, the center value of the input allowable range R is set as the target signal value vs, and the input signal value v of the central processing unit 13 is within the setting range Rs of the target signal value vs. At this time, the number n of unit bars displayed in the bar graph display 4b is set to be 6 to 7 out of 12.
[0050]
[Another embodiment]
Next, another embodiment will be listed.
[0051]
In the above-described embodiment, the appropriate adjustment magnification αs based on the adjustment signal value v when the processing command is given, the adjustment magnification α designated in the sensitivity adjustment means 8 when the processing command is given, and the target signal value vs. However, the present invention is not limited to this calculation mode, and various calculation modes can be used for calculating the appropriate adjustment magnification αs in the implementation of the invention according to claim 1, and in some cases, detection is performed. Based on the signal value of the electrical signal Z generated by the means 2 and the target signal value vs, the appropriate adjustment magnification αs may be calculated in a form in which the target signal value vs is divided by the signal value of the generated electrical signal Z. .
[0052]
In the implementation of the invention according to claim 2, the adjustment signal value v when the processing command is given, the adjustment magnification α designated in the sensitivity adjustment means 8 when the processing command is given, and the target signal value vs. The specific calculation formula for calculating the appropriate adjustment magnification αs is not limited to the above-described formula (A), and other calculation formulas may be adopted.
[0053]
In the above-described embodiment, an example of detecting the ultrasonic wave U as sound has been shown. However, the present invention can be applied to a case where ultrasonic waves as mechanical vibration are detected by a contact-type detection unit, The detection purpose may be anything including detection of fluid leakage and detection of mechanical failure.
[Brief description of the drawings]
FIG. 1 is a perspective view of a leak detection device.
FIG. 2 is an enlarged view of the rear part of the apparatus.
FIG. 3 is an enlarged view of a front portion of the apparatus and a diagram showing a directivity range
FIG. 4 is a perspective view showing a state in which the apparatus is used.
FIG. 5 is a block diagram illustrating a detection circuit.
[Explanation of symbols]
2 detection means
4,13 Display means
8 Sensitivity adjustment means
13 Control means
16 Command operation tool
α Adjustment magnification
αs appropriate adjustment magnification
R input tolerance
U ultrasound
v Adjustment signal value
vs Target signal value
Z generated electrical signal
Z 'generated electrical signal

Claims (3)

超音波を検出して、その検出超音波の強さに応じた信号値の電気信号を発生する検出手段と、
この発生電気信号の信号値を指定の調整倍率で増減した調整信号値を有する電気信号を生成する感度調整手段とを備える超音波検出装置であって、
処理指令が付与されたとき、前記調整倍率について、その時の検出超音波に対する前記調整信号値が前記感度調整手段の生成電気信号を扱う信号処理手段の入力許容範囲内における目標信号値となる適正調整倍率を算出するとともに、
その算出した適正調整倍率を前記感度調整手段に指定する感度レベル最適化処理を実行し、且つ、算出した適正調整倍率を表示する制御手段を設け、
前記制御手段には、指令操作具に対する人為操作を前記処理指令として前記感度レベル最適化処理を実行する人為指令形態の感度レベル最適化機能と、
前記調整信号値が前記入力許容範囲を逸脱したとき、その逸脱の検知を前記処理指令として前記感度レベル最適化処理を実行する自動の感度レベル最適化機能とを備えさせてある超音波検出装置。
Detecting means for detecting an ultrasonic wave and generating an electric signal having a signal value corresponding to the intensity of the detected ultrasonic wave;
An ultrasonic detection apparatus comprising a sensitivity adjustment unit that generates an electric signal having an adjustment signal value obtained by increasing or decreasing the signal value of the generated electric signal by a specified adjustment magnification,
When a processing command is given, for the adjustment magnification, the adjustment signal value with respect to the detected ultrasonic wave at that time is appropriately adjusted to be a target signal value within the input allowable range of the signal processing means that handles the electric signal generated by the sensitivity adjustment means While calculating the magnification,
Run the sensitivity level optimization process of designating the proper adjustment magnification factor that the calculated said sensitivity adjusting means, and, setting the control means for displaying the proper adjustment magnification factor calculated,
In the control means, a sensitivity level optimization function of an artificial command form for executing the sensitivity level optimization processing using the manual operation on the command operation tool as the processing command, and
An ultrasonic detection apparatus comprising: an automatic sensitivity level optimization function that executes the sensitivity level optimization process using detection of the deviation as the processing command when the adjustment signal value deviates from the input allowable range .
前記制御手段を、処理指令の付与時における前記調整信号値と、処理指令の付与時において前記感度調整手段に指定されている前記調整倍率と、前記目標信号値とに基づいて前記適正調整倍率を算出する構成にしてある請求項1記載の超音波検出装置。  The control means determines the appropriate adjustment magnification based on the adjustment signal value at the time of giving the processing command, the adjustment magnification specified by the sensitivity adjustment means at the time of giving the processing command, and the target signal value. The ultrasonic detection apparatus according to claim 1, which is configured to calculate. 前記制御手段を、次の(イ)式
Gx=Ga―Da+Ds ………(イ)
ここで、Gx:処理指令付与時の検出超音波に対する前記調整信号値を前記目標信号値にするのに必要な前記感度調整手段での利得[dB]
Ga:前記感度調整手段において処理指令付与時における指定の調整倍率で得られる利得[dB]
Da:前記調整信号値のデシベル換算値[dB]
Ds:前記目標信号値のデシベル換算値[dB]
に基づいて、前記適正調整倍率を算出する構成にしてある請求項2記載の超音波検出装置。
The control means is expressed by the following equation (b): Gx = Ga−Da + Ds (b)
Here, Gx: gain [dB] in the sensitivity adjustment means necessary to set the adjustment signal value for the detected ultrasonic wave when the processing command is given to the target signal value
Ga: Gain [dB] obtained at the specified adjustment magnification when the processing command is given in the sensitivity adjustment means
Da: Decibel conversion value [dB] of the adjustment signal value
Ds: Decibel conversion value [dB] of the target signal value
The ultrasonic detection apparatus according to claim 2, wherein the appropriate adjustment magnification is calculated based on the above.
JP2002144767A 2002-05-20 2002-05-20 Ultrasonic detector Expired - Fee Related JP4052875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144767A JP4052875B2 (en) 2002-05-20 2002-05-20 Ultrasonic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144767A JP4052875B2 (en) 2002-05-20 2002-05-20 Ultrasonic detector

Publications (2)

Publication Number Publication Date
JP2003337064A JP2003337064A (en) 2003-11-28
JP4052875B2 true JP4052875B2 (en) 2008-02-27

Family

ID=29704347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144767A Expired - Fee Related JP4052875B2 (en) 2002-05-20 2002-05-20 Ultrasonic detector

Country Status (1)

Country Link
JP (1) JP4052875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522226B (en) * 2001-02-20 2003-03-01 Tlv Co Ltd Portable leak detector
CN1333243C (en) * 2004-06-15 2007-08-22 东北师范大学 Dynamic measuring system with four sensors for acoustic field spacial distribution of acho signals of bat

Also Published As

Publication number Publication date
JP2003337064A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
CN104798301B (en) audio loudness control system
US20020032439A1 (en) Electrosurgical apparatus with stable coagulation
JP4816417B2 (en) Masking apparatus and masking system
JP2002536930A (en) Adaptive dynamic range optimizing sound processor
CN101997498A (en) Volume adjusting method and device
JP2010534030A (en) Acoustic processing using auditory scene analysis and spectral distortion
JP4052875B2 (en) Ultrasonic detector
EP2259605A1 (en) Hearing aid
JP4312103B2 (en) Sound equipment
US20210076134A1 (en) Method for operating a hearing device, and hearing device
EP3863308B1 (en) Volume adjustment device and volume adjustment method
US7843337B2 (en) Hearing aid
US8798296B2 (en) Method for operating a hearing device as well as a hearing device
JP7060905B1 (en) Sound collection system, sound collection method and program
CA2257461C (en) Hearing aid with improved percentile estimator
JPH05206772A (en) Loudness controller
JP5070960B2 (en) Sound collector
JP2008224816A (en) Karaoke device
JP2837639B2 (en) Remote controller
JP3901648B2 (en) Dip filter frequency characteristics determination method
JP5531988B2 (en) Volume control device, volume control method, and volume control program
JPH10308999A (en) Sound level balancing instruction device
JPH03237899A (en) Howling suppression device
RU2345477C1 (en) Automatic signal gain control method
JP2837640B2 (en) hearing aid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees