JP4052484B1 - Fluid container with airless pump - Google Patents

Fluid container with airless pump Download PDF

Info

Publication number
JP4052484B1
JP4052484B1 JP2007223475A JP2007223475A JP4052484B1 JP 4052484 B1 JP4052484 B1 JP 4052484B1 JP 2007223475 A JP2007223475 A JP 2007223475A JP 2007223475 A JP2007223475 A JP 2007223475A JP 4052484 B1 JP4052484 B1 JP 4052484B1
Authority
JP
Japan
Prior art keywords
container
airless pump
inner container
fluid container
bellows structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007223475A
Other languages
Japanese (ja)
Other versions
JP2009057055A (en
Inventor
賢二 日角
Original Assignee
有限会社 M&Kケネス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39181804&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4052484(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 有限会社 M&Kケネス filed Critical 有限会社 M&Kケネス
Priority to JP2007223475A priority Critical patent/JP4052484B1/en
Application granted granted Critical
Publication of JP4052484B1 publication Critical patent/JP4052484B1/en
Publication of JP2009057055A publication Critical patent/JP2009057055A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/02Membranes or pistons acting on the contents inside the container, e.g. follower pistons
    • B05B11/026Membranes separating the content remaining in the container from the atmospheric air to compensate underpressure inside the container

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

【課題】エアレスポンプ付流体容器において、内容物を略完全に吐出するために、内側容器の側面を蛇腹形状とするが、該蛇腹形状の収縮に際しては、コイルバネを用いず、エアレスポンプの吐出力のみにて内側容器の側面の蛇腹形状が円滑に収縮するように構成する。
【解決手段】内側容器の側面が蛇腹構造をなし、内側容器の最大直径が蛇腹構造の1ピッチの長さの3.5〜5倍であり、蛇腹構造の隣接面の角度が75°〜95°、さらには84°〜92°であり、完全収縮状態にて吸入管の端部が内側容器の底面近傍に位置するように構成されているエアレスポンプ付流体容器を提供する。
【選択図】 図1
In a fluid container with an airless pump, a side surface of an inner container is formed in a bellows shape in order to discharge the contents substantially completely. When the bellows shape contracts, a discharge force of the airless pump is not used without a coil spring. Only by this, the bellows shape on the side surface of the inner container is configured to be smoothly contracted.
The side surface of the inner container has a bellows structure, the maximum diameter of the inner container is 3.5 to 5 times the length of one pitch of the bellows structure, and the angle of the adjacent surface of the bellows structure is 75 ° to 95. An airless pump-equipped fluid container is provided which is configured to be in the fully contracted state, and the end of the suction pipe is positioned in the vicinity of the bottom surface of the inner container.
[Selection] Figure 1

Description

本発明は、エアレスポンプ付流体容器に関するものであり、さらに詳しくは、以下の構成を有するエアレスポンプ付流体容器に関するものである。
<構成1>
エアレスポンプと、該エアレスポンプを口部に装着した軟質材からなる内側容器と、内側容器の全体を収容する硬質材からなる外側容器から構成されるエアレスポンプ付流体容器において、内側容器の側面が蛇腹構造をなし、エアレスポンプの操作によって内容物が排出されることにより該蛇腹構造が収縮されて内側容器の内容積が減少され、さらに上記蛇腹構造が完全に収縮された状態にてエアレスポンプの吸入管の端部が内側容器の底面近傍に位置するように構成されていることを特徴とするエアレスポンプ付流体容器。
<構成2>
エアレスポンプ付流体容器の内側容器の最大直径が側面の蛇腹構造の最大延伸時における1ピッチの長さの3.5倍〜5倍の範囲内であることを特徴とする構成1に記載のエアレスポンプ付流体容器。
<構成3>
エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が75°〜95°の範囲内であることを特徴とする構成1あるいは構成2に記載のエアレスポンプ付流体容器。
<構成4>
エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が84°〜92°の範囲内であることを特徴とする構成3に記載のエアレスポンプ付流体容器。
<構成5>
内側容器の底面全体が下に凸の曲面状に構成されていることを特徴とする構成1あるいは構成2あるいは構成3あるいは構成4に記載のエアレスポンプ付流体容器。
The present invention relates to a fluid container with an airless pump, and more particularly, to a fluid container with an airless pump having the following configuration.
<Configuration 1>
In a fluid container with an airless pump comprising an airless pump, an inner container made of a soft material with the airless pump attached to the mouth, and an outer container made of a hard material that accommodates the entire inner container, the side surface of the inner container is The bellows structure is formed, and the contents are discharged by the operation of the airless pump, so that the bellows structure is contracted to reduce the inner volume of the inner container, and further, the bellows structure is completely contracted. A fluid container with an airless pump, characterized in that the end of the suction pipe is positioned near the bottom surface of the inner container.
<Configuration 2>
The airless according to Configuration 1, wherein the maximum diameter of the inner container of the fluid container with an airless pump is in the range of 3.5 to 5 times the length of one pitch when the side bellows structure is fully extended. Fluid container with pump.
<Configuration 3>
When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 75 ° to 95 °. The fluid container with an airless pump according to Configuration 1 or Configuration 2, wherein the fluid container is an inside.
<Configuration 4>
When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 84 ° to 92 °. The fluid container with an airless pump according to Configuration 3, wherein the fluid container is inside.
<Configuration 5>
5. The fluid container with an airless pump according to Configuration 1, Configuration 2, Configuration 3 or Configuration 4, wherein the entire bottom surface of the inner container is formed in a downwardly convex curved shape.

エアレスポンプと、該エアレスポンプを口部に装着した軟質材からなる内側容器と、内側容器の全体を収容する硬質材からなる外側容器からなるエアレスポンプ付流体容器は従来からよく知られており、その一例の構成は、下記特許文献1の図11に見るとおりである。このようなエアレスポンプ付流体容器は、内側容器の収縮が不十分であるところから、内側容器内に内容物の残留が顕著で、通常10〜5%の内容物は吐出されず、内側容器とともに廃棄されるしかなかった。そこで、内側容器の底面形状、吸入管の長さ、内側容器の底面の厚さなどに工夫を加えて内容物の残留を3%以下に留めることのできるエアレスポンプ付流体容器を開発したが、この容器が下記特許文献1に記載のエアレスポンプ付流体容器である。   An airless pump, an inner container made of a soft material with the airless pump attached to the mouth, and a fluid container with an airless pump made of an outer container made of a hard material that accommodates the entire inner container are well known in the art. An example of the configuration is as shown in FIG. In such a fluid container with an airless pump, since the inner container is not sufficiently contracted, the content remains remarkably in the inner container, and usually 10 to 5% of the contents are not discharged, and together with the inner container. It had to be discarded. Therefore, we developed a fluid container with an airless pump that can keep the residual content to 3% or less by devising the bottom shape of the inner container, the length of the suction pipe, the thickness of the bottom surface of the inner container, etc. This container is a fluid container with an airless pump described in Patent Document 1 below.

しかしながら、下記特許文献1に記載のエアレスポンプ付流体容器にても、3%以下という微量ながら内容物の残留が見られる。そこで、さらに内側容器の形状に工夫を加え、内容物の残留を略0%にできるエアレスポンプ付流体容器の開発を目指した。その過程で浮上してきたのが、内側容器の側面を蛇腹状に形成し、収縮時に蛇腹部分が折畳まれることにより内側容器の底面自体が上昇し、完全に内容物を吐出することが可能となるエアレスポンプ付流体容器の構成である。   However, even in the fluid container with an airless pump described in Patent Document 1 below, the content remains even though the amount is 3% or less. Therefore, we devised the shape of the inner container and aimed to develop a fluid container with an airless pump that can reduce the residual content to approximately 0%. In the process, the side surface of the inner container is formed in a bellows shape, and the bottom surface of the inner container rises by folding the bellows part when contracted, allowing the contents to be completely discharged. It is the structure of the fluid container with an airless pump.

内側容器の側面を蛇腹状に形成したノズル付流体容器自体は既に知られている。その例を、下記特許文献2、3に掲げる。このうち、下記特許文献2の「スプレー容器」は、側面を蛇腹状に形成した軟質の内側容器の底面にピストンとコイルバネを連接して全体を硬質の外側容器内に封入したもので、内側容器の内容物が減少するにつれてコイルバネが伸長し、内側容器の蛇腹状の側面が収縮して、ついには内容物を略完全に吐出できるとするものである。   A nozzle-equipped fluid container itself in which the side surface of the inner container is formed in a bellows shape is already known. Examples thereof are listed in Patent Documents 2 and 3 below. Among these, the “spray container” of the following Patent Document 2 is such that a piston and a coil spring are connected to the bottom surface of a soft inner container whose side surface is formed in a bellows shape, and the whole is enclosed in a hard outer container. The coil spring expands as the contents of the container decrease, the bellows-like side surface of the inner container contracts, and the contents can finally be discharged almost completely.

また、下記特許文献3の「流体放出容器」は、側面を蛇腹状に形成した軟質の内側容器の側面の凸部(山部)の内側にコイルバネを装着し、硬質の外側容器内に封入したもので、内側容器の内容物が減少するにつれてコイルバネの収縮力によって強制的に内側容器を折畳むものである。この「流体放出容器」の場合には目的が環境に悪影響を与えるフレオンガスを使用しない「流体放出容器」を開発するという点にあり、フレオンガスの吐出力をコイルバネの収縮力によって代替させている点にその特色があるが、コイルバネの付勢力によって内側容器の蛇腹部分を収縮させるという点においては下記特許文献2の「スプレー容器」と共通する技術内容を開示するものである。
特願2006‐329161号 特開平11‐115977号公報 実開平2‐81648号公報
In addition, the “fluid discharge container” of Patent Document 3 below has a coil spring attached to the inside of a convex portion (mountain portion) of a side surface of a soft inner container whose side surface is formed in a bellows shape, and is enclosed in a hard outer container. Therefore, as the contents of the inner container decrease, the inner container is forcibly folded by the contraction force of the coil spring. The purpose of this “fluid discharge container” is to develop a “fluid discharge container” that does not use freon gas, which adversely affects the environment, and the discharge force of freon gas is replaced by the contraction force of the coil spring. Although it has the feature, the technical content which is common with the "spray container" of the following patent document 2 is disclosed in that the bellows portion of the inner container is contracted by the biasing force of the coil spring.
Japanese Patent Application No. 2006-329161 Japanese Patent Laid-Open No. 11-115977 Japanese Utility Model Publication No. 2-81648

上記特許文献2の「スプレー容器」、上記特許文献3の「流体放出容器」は、内側容器の側面を蛇腹状とし、該蛇腹部分を収縮させるという技術内容を開示するものである。しかしながら、コイルバネの付勢力によって内側容器の側面の蛇腹部分を収縮させるという点において、実用化がなかなかなされにくいという問題点を有していた。   The “spray container” of Patent Document 2 and the “fluid discharge container” of Patent Document 3 disclose the technical contents of making the side surface of the inner container bellows and contracting the bellows part. However, there is a problem that it is difficult to put into practical use in that the bellows portion on the side surface of the inner container is contracted by the biasing force of the coil spring.

すなわち、上記特許文献3の「流体放出容器」においては、従来の単純な内側容器に比較して製造工程がかなり複雑なものとなり、その結果は価格に反映されざるをえない。たとえば、内容物をシャンプーや化粧液として、これらの内容物を単純な構成の内側容器に収納し、内側容器の口部にエアレスポンプを装着しさらに内側容器を硬質の外側容器に収納したエアレスポンプ付流体容器においては、内側容器の内容物を使い切ると、内容物が充填された新たな内側容器と交換するという用いられ方が一般的であるが、この際に、常にコイルバネが装着された内側容器を購入しなければならないということになり、所謂「リフィル容器」(再充填容器)としての魅力が相当程度減じられる。   That is, in the “fluid discharge container” of Patent Document 3, the manufacturing process is considerably complicated as compared with a conventional simple inner container, and the result must be reflected in the price. For example, the contents are stored as shampoo or cosmetic liquid in an inner container with a simple configuration, an airless pump is attached to the mouth of the inner container, and the inner container is stored in a hard outer container. In the attached fluid container, it is generally used to replace the inner container with a new inner container when the contents of the inner container are used up. This means that the container must be purchased, and the attractiveness as a so-called “refill container” (refill container) is considerably reduced.

すなわち、「リフィル容器」の利点としては、まず第1に安価であるという点が挙げられるが、コイルバネが装着された内側容器は製造工程が複雑で、単純な「リフィル容器」よりどうしてもコスト高とならざるをえない。また、収縮過程においても、内側にコイルバネが装着されているのでコイルバネのスペース分だけ収縮が不完全となり、内容物の残留度が高くなるという欠点も合わせ持つ。 In other words, the advantage of the “refill container” is that it is inexpensive first, but the inner container equipped with the coil spring has a complicated manufacturing process and is inevitably more expensive than a simple “refill container”. I have to be. Further, in the contraction process, since the coil spring is mounted on the inner side, the contraction is incomplete by the amount of space of the coil spring, and the residual degree of the contents is increased.

上記特許文献2の「スプレー容器」においては、内側容器自体にはコイルバネは装着されていないが、外側容器の底面にコイルバネとシリンダが装着されており、新たな内側容器を外側容器にセットする際には、なんらかの手段でコイルバネを収縮させなければならない。この際、コイルバネの付勢力が強いとコイルバネの収縮に困難が生じるが、逆に弱いと使用時に内側容器の円滑な収縮に支障が生じる。いずれにせよ、単純な構成の内側容器を単純な構成の外側容器に収納する際のような簡単な操作にはならない。また、外側容器自体の構成が複雑なので、当然製造工程も複雑となり、その点は「スプレー容器」全体のコストに必然的に反映されざるをえない。さらに、コイルバネとシリンダの分だけ容器全体が嵩張るという欠点も存した。すなわち、容器の見せかけの大きさの割りに、内容物が少ないという問題点である。 In the “spray container” of Patent Document 2, the coil spring is not attached to the inner container itself, but the coil spring and the cylinder are attached to the bottom surface of the outer container. For this, the coil spring must be contracted by some means. At this time, if the urging force of the coil spring is strong, it will be difficult to contract the coil spring. Conversely, if the coil spring is weak, it will hinder smooth contraction of the inner container during use. In any case, the operation is not as easy as storing the inner container with a simple structure in the outer container with a simple structure. Further, since the configuration of the outer container itself is complicated, the manufacturing process is naturally complicated, and this point is inevitably reflected in the cost of the “spray container” as a whole. In addition, there is a disadvantage that the entire container is bulky by the amount of the coil spring and the cylinder. That is, there is a problem that the content is small for the apparent size of the container.

さらに、両者に共通する問題点としては、いずれもコイルバネを用いるので、その分全体重量が重くなり扱いづらいという点、さらには、コイルバネを金属製とした場合には廃棄の際に分解して選別しなければならないという点があげられる。また、美容室などにおいて用いられるシャンプーや洗顔剤等の容器においては、外観の美しさも問題となるので、容器全体を透明とすることが多い。このような環境において、コイルバネが露見する構成の容器はやはり敬遠されるものと予測せざるをえない。   In addition, the problem common to both is that coil springs are used, so that the overall weight is heavy and difficult to handle. Furthermore, if the coil springs are made of metal, they are disassembled and discarded at the time of disposal. The point that must be done. In addition, in the case of containers such as shampoos and facial cleansing agents used in beauty salons and the like, the appearance is also a problem, so the entire container is often transparent. In such an environment, it must be predicted that the container with the coil spring exposed will still be avoided.

上記より、本発明の解決すべき課題を以下のように設定した。
内容物を略完全に吐出するために、内側容器の側面を蛇腹構造とするが、該蛇腹構造の収縮に際しては、コイルバネを用いず、エアレスポンプの吐出力のみにて内側容器の側面の蛇腹構造が円滑に収縮するように構成する。このために、内側容器の蛇腹構造の構成について、さまざまな試作による検討を重ねた結果、エアレスポンプの吐出力のみにて円滑な収縮が行われるためには、内側容器の最大直径と蛇腹構造の最大延伸時におけるピッチの長さの問題、及び蛇腹構造の最大延伸時における隣接する2面がなす角度の問題が決め手になることがわかってきた。したがって、この2点について適切な構成を有する蛇腹構造とすることにより、エアレスポンプの吐出力のみにて円滑な収縮が可能な内側容器を有するエアレスポンプ用流体容器の開発を実現することを、本発明の課題とした。
From the above, the problems to be solved by the present invention are set as follows.
In order to discharge the contents almost completely, the side surface of the inner container has a bellows structure. When the bellows structure is contracted, a coil spring is not used, and the bellows structure is formed on the side surface of the inner container only by the discharge force of the airless pump. Is configured to contract smoothly. For this reason, as a result of repeated examinations on various configurations of the bellows structure of the inner container, in order to perform smooth contraction only by the discharge force of the airless pump, the maximum diameter of the inner container and the bellows structure It has been found that the problem of the length of the pitch at the maximum stretching and the problem of the angle formed by two adjacent surfaces at the maximum stretching of the bellows structure are decisive. Therefore, the present invention realizes the development of a fluid container for an airless pump having an inner container that can be smoothly contracted only by the discharge force of the airless pump by adopting a bellows structure having an appropriate configuration for these two points. The subject of the invention.

本発明は、上記課題を解決するためになされたものであって、以下に示す解決手段を提供するものである。
<解決手段1>
エアレスポンプと、該エアレスポンプを口部に装着した軟質材からなる内側容器と、内側容器の全体を収容する硬質材からなる外側容器から構成されるエアレスポンプ付流体容器において、内側容器の側面が蛇腹構造をなし、エアレスポンプの操作によって内容物が排出されることにより該蛇腹構造が収縮されて内側容器の内容積が減少され、さらに上記蛇腹構造が完全に収縮された状態にてエアレスポンプの吸入管の端部が内側容器の底面近傍に位置するように構成されていることを特徴とするエアレスポンプ付流体容器。
<解決手段2>
エアレスポンプ付流体容器の内側容器の最大直径が側面の蛇腹構造の最大延伸時における1ピッチの長さの3.5倍〜5倍の範囲内であることを特徴とする解決手段1に記載のエアレスポンプ付流体容器。
<解決手段3>
エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が75°〜95°の範囲内であることを特徴とする解決手段1あるいは解決手段2に記載のエアレスポンプ付流体容器。
<解決手段4>
エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が84°〜92°の範囲内であることを特徴とする解決手段3に記載のエアレスポンプ付流体容器。
<解決手段5>
内側容器の底面全体が下に凸の曲面状に構成されていることを特徴とする解決手段1あるいは解決手段2あるいは解決手段3あるいは解決手段4に記載のエアレスポンプ付流体容器。
The present invention has been made to solve the above-described problems, and provides the following solution.
<Solution 1>
In a fluid container with an airless pump comprising an airless pump, an inner container made of a soft material with the airless pump attached to the mouth, and an outer container made of a hard material that accommodates the entire inner container, the side surface of the inner container is The bellows structure is formed, and the contents are discharged by the operation of the airless pump, so that the bellows structure is contracted to reduce the inner volume of the inner container, and further, the bellows structure is completely contracted. A fluid container with an airless pump, characterized in that the end of the suction pipe is positioned near the bottom surface of the inner container.
<Solution 2>
The maximum diameter of the inner container of the fluid container with an airless pump is in the range of 3.5 to 5 times the length of one pitch when the maximum stretching of the side bellows structure is performed. Fluid container with airless pump.
<Solution 3>
When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 75 ° to 95 °. The fluid container with an airless pump according to Solution 1 or Solution 2, wherein
<Solution 4>
When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 84 ° to 92 °. The fluid container with an airless pump according to Solution 3, wherein the fluid container is inside.
<Solution 5>
The fluid container with an airless pump according to Solution 1, Solution 2, Solution 3, or Solution 4, wherein the entire bottom surface of the inner container is formed in a downwardly convex curved shape.

解決手段2の内側容器の最大直径と蛇腹構造の最大延伸時における1ピッチの長さとの関連について、詳細に説明すれば、以下のとおりである。
図16に見るように、内側容器1の最大直径をφ、蛇腹構造Bの最大延伸時における長さ(上下方向の延長)をL、蛇腹構造Bの最大延伸時における1ピッチの長さをPTとすると、長さLは長さPTのn倍になっている。ただし、n=正の整数とする。
The relationship between the maximum diameter of the inner container of Solution 2 and the length of one pitch at the time of maximum stretching of the bellows structure will be described in detail as follows.
As shown in FIG. 16, the maximum diameter of the inner container 1 is φ, the length of the bellows structure B at the maximum stretch (extension in the vertical direction) is L, and the length of one pitch at the maximum stretch of the bellows structure B is PT. Then, the length L is n times the length PT. However, n = a positive integer.

ここで、最大直径φと長さLの比RT1を、一般的に用いられる内側容器について求めてみると、RT1は2〜5の間に入る。すなわち、
φ:L=1:RT1 (1)
RT1=2〜5 (2)
このような関係が成立する。
特に、理美容界において用いられるエアレスポンプ付流体容器の内側容器1に関しては、略すべての容器が上記比率の範囲内のものであるといっても良い。
Here, when the ratio RT1 between the maximum diameter φ and the length L is obtained for a commonly used inner container, RT1 falls between 2 and 5. That is,
φ: L = 1: RT1 (1)
RT1 = 2-5 (2)
Such a relationship is established.
In particular, regarding the inner container 1 of the fluid container with an airless pump used in the hairdressing and cosmetic industry, it can be said that almost all containers are within the above range.

ここで、1ピッチの長さPTと最大直径φの比をRT2とすれば、
PT:φ=1:RT2 (3)
となる。
したがって、
RT2=φ/PT (4)
となる。
ここで、(1)式を変形すると、
φ=L/RT1 (5)
となるから、このφの値を(4)式に代入すれば、
RT2=L/RT1×PT (6)
である。ところが、L=n×PT(nは正の整数)であるから、
RT2=n/RT1 (7)
となる。
Here, if the ratio of the length PT of one pitch to the maximum diameter φ is RT2,
PT: φ = 1: RT2 (3)
It becomes.
Therefore,
RT2 = φ / PT (4)
It becomes.
Here, when the equation (1) is transformed,
φ = L / RT1 (5)
Therefore, if the value of φ is substituted into equation (4),
RT2 = L / RT1 × PT (6)
It is. However, since L = n × PT (n is a positive integer),
RT2 = n / RT1 (7)
It becomes.

内側容器1は、最も縦長のもの、すなわちRT1の値が最大の5の容器であっても、n、すなわち蛇腹構造のピッチ数は余り多くしたくない。その理由は、nが大になればなるほど金型製作に要する手間も複雑となるし、また、蛇腹構造Bが完全に収縮した場合にも、全体の延長が余り短くならないからである。すなわち、完全収縮時において、長さLが3分の1以下になるようにしたい。このような諸条件を勘案して、RT1の値が最大の5の容器の場合で、nの最大値が25という条件を設けた。したがって、(7)式にn=25、RT1=5を代入して、
RT2=5
という結果を得た。
ゆえに、RT2、すなわち蛇腹構造Bの最大延伸時における1ピッチの長さPTと内側容器1の最大直径φとの比RT2の最大値を5とした。
Even if the inner container 1 is the most vertically long container, that is, a container having a maximum value of RT1, the number n, that is, the number of pitches of the bellows structure is not so large. The reason for this is that the larger n is, the more complicated is the labor required for manufacturing the mold, and even when the bellows structure B is completely contracted, the entire extension is not so shortened. That is, it is desired that the length L is 1/3 or less during complete contraction. In consideration of such various conditions, the condition that the maximum value of n is 25 in the case of the container having the maximum value of RT1 of 5 is provided. Therefore, substituting n = 25 and RT1 = 5 into equation (7),
RT2 = 5
The result was obtained.
Therefore, RT2, that is, the maximum value RT2 of the ratio RT2 between the length PT of one pitch and the maximum diameter φ of the inner container 1 at the time of maximum stretching of the bellows structure B is set to 5.

次に、比RT2の最小値であるが、これは、比RT1の値が最小値の2である容器から定められる。すなわち、比RT1の値が2の最も扁平な内側容器においても、ある程度の全体のピッチ数nは確保しなければならない。というのは、最大直径φや長さLを一定とした場合に、全体のピッチ数nが小さくなればなるほど内容積の少ない容器となってしまうからである。このように、ある程度の内容積を確保しようと思えば比RT1の値が最小の2の容器においてもnはある程度の数としなければならないので、諸条件からnの最小値を7という条件を設けた。したがって、(7)式にn=7、RT1=2を代入して、
RT2=3.5
という結果を得た。
ゆえに、RT2、すなわち内側容器1の最大直径φと蛇腹構造Bの最大延伸時における1ピッチの長さPTの比RT2の最小値を3.5とした。
Next, the minimum value of the ratio RT2, which is determined from a container whose value of the ratio RT1 is the minimum value of 2. That is, even in the flattest inner container having a ratio RT1 value of 2, a certain number n of pitches as a whole must be secured. This is because, when the maximum diameter φ and the length L are constant, the smaller the overall pitch number n, the smaller the inner volume of the container. In this way, if a certain amount of internal volume is to be secured, n must be a certain number even in a container having a minimum ratio RT1 of 2, so the condition that the minimum value of n is 7 is set from various conditions. It was. Therefore, substituting n = 7 and RT1 = 2 into equation (7),
RT2 = 3.5
The result was obtained.
Therefore, RT2, that is, the minimum value of the ratio RT2 between the maximum diameter φ of the inner container 1 and the length PT of one pitch at the time of maximum stretching of the bellows structure B is set to 3.5.

上記より、比RT2、すなわち蛇腹構造Bの最大延伸時における1ピッチの長さPTと内側容器1の最大直径φとの比RT2は、3.5〜5の範囲内とする。なお、比RT1がさまざまな比率(2〜5の範囲内にて)の内側容器について考えてみると、比RT2は、実際には4を若干下回るくらいから5を若干下回るくらいのものが、最も実用性が高いものと判断される。すなわち、製作時の金型製作も楽で、完全収縮時の全体の長さも3分の1よりかなり短くなり、しかも内容積に与える影響が少ないものが、比RT2が3.7〜4.8くらいのものであるといえる。 From the above, the ratio RT2, that is, the ratio RT2 between the length PT of one pitch and the maximum diameter φ of the inner container 1 at the time of maximum stretching of the bellows structure B is set in the range of 3.5 to 5. When considering the inner container with the ratio RT1 of various ratios (within the range of 2 to 5), the ratio RT2 is actually slightly lower than 4 to slightly lower than 5. Judged to be highly practical. That is, it is easy to manufacture the mold at the time of manufacture, and the total length at the time of complete contraction is considerably shorter than one third, and the ratio RT2 is 3.7 to 4.8 which has little influence on the internal volume. It can be said that it is about.

次に、解決手段3、4の内側容器の蛇腹構造の隣接する2面の角度限定について詳細に説明すれば、次のとおりである。
図17a〜図17eに見るように、内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器1の側面の蛇腹構造Bの隣接する2面PL1、PL2のなす角度をαとする。この角度αは、山部Sを挟む2面でも谷部Tを挟む2面でも同一であるが、図17a〜図17eにては、谷部Tを挟む2面PL1、PL2にて示している。
Next, the angle limitation of the two adjacent surfaces of the bellows structure of the inner container of the solving means 3 and 4 will be described in detail as follows.
As shown in FIGS. 17a to 17e, when the inner container is cut along a plane including the central axis in the longitudinal direction, an angle formed by two adjacent surfaces PL1 and PL2 of the bellows structure B on the side surface of the inner container 1 is α. To do. This angle α is the same for the two surfaces sandwiching the peak S and the two surfaces sandwiching the valley T, but in FIGS. 17a to 17e, it is indicated by two surfaces PL1 and PL2 sandwiching the valley T. .

この際、角度αは、小であればあるほど内側容器1の収縮性能は良くなることは自明の理であるが、余りに角度αを小にしすぎると、内側容器1の金型製作が難しくなる。また、内側容器1の内容積も減少することになる。したがって、そのような点からすれば、角度αは余り小さくしない方が良いという結果になる。 At this time, it is obvious that the smaller the angle α is, the better the contraction performance of the inner container 1 is. However, if the angle α is too small, it becomes difficult to manufacture the mold of the inner container 1. . Further, the inner volume of the inner container 1 is also reduced. Therefore, from such a point, the result is that the angle α should not be too small.

そこで、角度αを様々に変化させた内側容器1で検討した結果、角度αが95°(図17e)を越えると収縮性能に顕著な悪影響が見られることが明らかとなった。したがって、角度αの最大値は95°とした。また、角度αが75°(図17a)を下回ると金型の製作に要する手間が顕著な増大を示すことが予想され、かつ内容積の減少に与える影響も顕著になるので、角度αの最小値は75°とした。この範囲内で、さらに適切な角度範囲を求めた結果、角度αの最適値を84°(図17b)〜92°(図17d)の範囲内とした。なお、図17cは、角度αを84°と92°の中間の角度である88°とした例である。 Therefore, as a result of studying the inner container 1 with various changes in the angle α, it has been clarified that when the angle α exceeds 95 ° (FIG. 17e), a remarkable adverse effect is observed on the shrinkage performance. Therefore, the maximum value of the angle α is set to 95 °. Further, when the angle α is less than 75 ° (FIG. 17a), it is expected that the labor required for manufacturing the mold will be significantly increased, and the influence on the decrease in the internal volume will be significant. The value was 75 °. As a result of obtaining a more appropriate angle range within this range, the optimum value of the angle α was set within a range of 84 ° (FIG. 17b) to 92 ° (FIG. 17d). FIG. 17c is an example in which the angle α is 88 ° which is an intermediate angle between 84 ° and 92 °.

本発明の、解決手段1の発明によれば、内側容器の側面が蛇腹構造をなし、エアレスポンプの操作によって内容物が排出されることにより該蛇腹構造が収縮されて内側容器の内容積が減少され、さらに上記蛇腹構造が完全に収縮された状態にてエアレスポンプの吸入管の端部が内側容器の底面近傍に位置するように構成されているので、エアレスポンプの操作によって、内容物を略完全に吐出することが可能である。   According to the solution 1 of the present invention, the side surface of the inner container has a bellows structure, and the contents are discharged by the operation of the airless pump, whereby the bellows structure is contracted and the inner volume of the inner container is reduced. In addition, since the end portion of the suction pipe of the airless pump is positioned near the bottom surface of the inner container in a state where the bellows structure is completely contracted, the contents can be reduced by operating the airless pump. It is possible to discharge completely.

またこの際には、コイルバネなどの付加物を一切用いないので、内側容器の製造工程は従来の内側容器の製造工程と同程度に単純であり、製造コストの上昇を招くこともなく、重量の増加もない。また、コイルバネを内部に含むものより内容物の残留度ははるかに少なくなり、コイルバネを外部に有するものと比較すると、同一内容量で全体のサイズをはるかに小さくできる。さらに、使い終わった内側容器の交換も従来の内側容器と同じく簡単に行え、また廃棄する際にも面倒な分別作業は一切必要としない。また、容器全体を透明とした場合にてもコイルバネなどの付加物が一切見えないので、美容室などの外観を重要視する現場にても充分に用いることが可能である。要するに、製造工程においても、使い勝手においても、価格面においても、さらに外観的にも、従来のエアレスポンプ付流体容器と略同程度の感覚で扱え、しかも性能的にははるかに優れ、全体をコンパクトに形成できるエアレスポンプ付流体容器を提供できる。   In this case, since no additional components such as a coil spring are used, the manufacturing process of the inner container is as simple as the manufacturing process of the conventional inner container, and does not increase the manufacturing cost. There is no increase. Further, the residual content of the contents is much less than that including the coil spring inside, and the overall size can be made much smaller with the same internal capacity as compared with the one having the coil spring outside. Furthermore, replacement of the used inner container can be performed as easily as the conventional inner container, and there is no need for troublesome separation work when it is discarded. Further, even if the entire container is transparent, no additional items such as coil springs can be seen, so that it can be used sufficiently even at sites that emphasize the appearance of a beauty salon. In short, in terms of manufacturing process, usability, price, and appearance, it can be handled with the same feeling as a conventional fluid container with an airless pump, and it is far superior in performance and compact overall. Thus, a fluid container with an airless pump that can be formed in the following manner can be provided.

本発明の、解決手段2の発明によれば、エアレスポンプ付流体容器の内側容器の最大直径が蛇腹構造の最大延伸時における1ピッチの長さの3.5倍〜5倍の範囲内であるので、製作時における金型製作に格別の困難を感じることがなく、内側容器の内容積の減少も余り顕著ではなく、しかも収縮性能が良く、収縮完了時には内側容器の全体の長さが当初の3分の1以下となる。   According to the invention of Solution 2 of the present invention, the maximum diameter of the inner container of the fluid container with an airless pump is in the range of 3.5 to 5 times the length of one pitch at the maximum extension of the bellows structure. Therefore, there is no particular difficulty in making the mold at the time of production, the decrease in the inner volume of the inner container is not so remarkable, and the shrinkage performance is good, and when the shrinkage is completed, the entire length of the inner container is the original length. 1/3 or less.

本発明の解決手段3の発明によれば、エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が75°〜95°の範囲内であるので、収縮性能に悪影響を与えることがなく、製作時の金型製作が楽で、内容積の減少も余り目立たない内側容器を得ることができる。さらに本発明の解決手段4の発明によれば、上記角度が84°〜92°の範囲内であるので、円滑な収縮性能、金型製作の利便性、内容積の確保の3点を総合的に判断した場合に、最も高性能の内側容器を得ることができるものである。 According to the invention of Solution 3 of the present invention, when the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the adjacent two at the time of maximum extension of the bellows structure on the side surface of the inner container. Since the angle between the surfaces is in the range of 75 ° to 95 °, an inner container that does not adversely affect the shrinkage performance, is easy to manufacture the mold at the time of manufacture, and the reduction in the internal volume is not noticeable. Can do. Furthermore, according to the invention of Solution 4 of the present invention, since the angle is in the range of 84 ° to 92 °, the three points of smooth shrinkage performance, convenience of mold manufacture, and securing of the internal volume are comprehensive. In this case, the innermost container having the highest performance can be obtained.

本発明の、解決手段5の発明によれば、内側容器の底面全体が下に凸の曲面状に構成されているので、内容物が略吐出された段階にて、残留する僅かの内容物は、内側容器の底面中央に集中される。しかるに、この部分にエアレスポンプの吸入管の端部が到達するように構成されているので、最後に残留する内容物も略完全にエアレスポンプに吸引され、吐出される。これにより、内容物の残留が略0%のエアレスポンプ付流体容器が実現される。 According to the invention of Solution 5 of the present invention, since the entire bottom surface of the inner container is formed in a downwardly convex curved shape, the slight remaining contents at the stage when the contents are substantially discharged are , Concentrated on the bottom center of the inner container. However, since the end of the suction pipe of the airless pump reaches this portion, the content remaining at the end is almost completely sucked and discharged by the airless pump. Thereby, a fluid container with an airless pump in which the content remains approximately 0% is realized.

本発明を実施するための最良の形態を、図面を参照しながら詳細に説明する。なお、図1〜図12は本発明の実施例1に関するものであり、図14は本発明の実施例2に関するもの、図15は本発明の実施例3に関するものである。   The best mode for carrying out the present invention will be described in detail with reference to the drawings. 1 to 12 relate to the first embodiment of the present invention, FIG. 14 relates to the second embodiment of the present invention, and FIG. 15 relates to the third embodiment of the present invention.

<実施例1の構成>
本発明の実施例1のエアレスポンプ付流体容器Aは、図1(右側面図)あるいは図4(縦断面図)に示す形状のものであり、口部11(図4参照)にエアレスポンプ3が装着され流体である内容物Cを収容する軟質材からなる内側容器1と該内側容器1を収納する硬質材からなる外側容器2の2重構造となっている。内側容器1の形状は全体が略円筒形状であり、底面13全体が下に凸の曲面状に形成され、側面12は蛇腹構造Bとして構成されている。
<Configuration of Example 1>
The fluid container A with an airless pump according to the first embodiment of the present invention has a shape shown in FIG. 1 (right side view) or FIG. 4 (longitudinal sectional view), and has an airless pump 3 in the mouth portion 11 (see FIG. 4). Is a double structure of an inner container 1 made of a soft material and containing a content C as a fluid, and an outer container 2 made of a hard material and containing the inner container 1. The inner container 1 has a substantially cylindrical shape as a whole, the entire bottom surface 13 is formed in a downwardly convex curved shape, and the side surface 12 is configured as a bellows structure B.

内側容器1は透明のポリエチレン製で、図11に見るように、口部11、側面12、下に凸の曲面状をなす底面13が一体として形成されている。口部11は、図8、図11に見るように、上端部が上に向かうに従い縮径する縮径部11a、円筒形状の本体部11c、本体部11cと縮径部11aをつなぐ接続部11bから成り、縮径部11a、接続部11b、本体部11cはすべて一体として構成されている。本体部11cには螺旋状の突条R1が本体部11cと一体に突設されているが、この突条R1は、エアレスポンプ3のキャップ34の内側に突設された螺旋状の突条(図示せず)と係合することにより、口部11をパッキンP1を介してキャップ34に螺着させる役割を有し、これにより、エアレスポンプ3が内側容器1に気密的に装着されるものである。また、接続部11bには平板状の凸部11d、11eが接続部11bと一体に突設されているが、凸部11d、11eは、傘部4(図12b参照)の円孔HRの周縁のリム部43に90°間隔で周設された凹部43a〜43dのうち、凹部43a、43c、あるいは凹部43b、43dに係合されることにより、内側容器1と傘部4が相対的に回動しないように固定させる役割を果たすものである。   The inner container 1 is made of transparent polyethylene, and as shown in FIG. 11, a mouth portion 11, a side surface 12, and a bottom surface 13 having a convex curved surface are integrally formed. As shown in FIG. 8 and FIG. 11, the mouth portion 11 has a reduced diameter portion 11a that is reduced in diameter as the upper end is directed upward, a cylindrical main body portion 11c, and a connecting portion 11b that connects the main body portion 11c and the reduced diameter portion 11a. The reduced diameter portion 11a, the connecting portion 11b, and the main body portion 11c are all configured as one body. The main body portion 11c is provided with a spiral ridge R1 that is integrally provided with the main body portion 11c. The ridge R1 is provided on the inner side of the cap 34 of the airless pump 3 ( By engaging with the cap 34 via the packing P1, the airless pump 3 is attached to the inner container 1 in an airtight manner. is there. The connecting portion 11b has flat plate-like convex portions 11d and 11e protruding integrally with the connecting portion 11b, and the protruding portions 11d and 11e are peripheral edges of the circular hole HR of the umbrella portion 4 (see FIG. 12b). The inner container 1 and the umbrella part 4 are relatively rotated by being engaged with the recesses 43a and 43c or the recesses 43b and 43d among the recesses 43a to 43d provided around the rim portion 43 at intervals of 90 °. It plays a role of fixing so as not to move.

内側容器1の側面12の構成を、以下に詳細に説明する。側面12は蛇腹構造Bをなしており、山部Sと谷部Tが交互に現われる。図4、図5はエアレスポンプ付流体容器Aの内側容器1の長手方向の中心軸Xを含む平面で切断した縦断面図であるが、図5において、谷部Tあるいは山部Sの隣接する面PL1、PL2の作る角度をαとすれば、角度αが75°〜95°の範囲内となるように蛇腹構造Bが構成されている。   The configuration of the side surface 12 of the inner container 1 will be described in detail below. The side surface 12 has a bellows structure B, and peaks S and valleys T appear alternately. 4 and 5 are longitudinal sectional views cut along a plane including the central axis X in the longitudinal direction of the inner container 1 of the fluid container A with an airless pump. In FIG. 5, the valley portion T or the mountain portion S are adjacent to each other. If the angle formed by the surfaces PL1 and PL2 is α, the bellows structure B is configured so that the angle α is in the range of 75 ° to 95 °.

角度αの範囲の数値限定については、前述のとおりであり、75°〜95°の範囲内、中でも84°〜92°の範囲内にて最良の結果が得られることが判明している。なお、図5における角度αは88°である。また、蛇腹構造Bの最大延伸時における1ピッチの長さPTと内側容器1の最大直径φの比RT2の数値限定についても前述のとおり3.5〜5であるが、実施例1のエアレスポンプ付流体容器Aの場合には、この比RT2は4.2である。さらに、内側容器1の素材としては、一般的なエアレスポンプ付流体容器の内側容器に通常用いられるポリエチレンとし、厚さも通常の内側容器の厚さと同程度とした。   The numerical limitation of the range of the angle α is as described above, and it has been found that the best result can be obtained in the range of 75 ° to 95 °, particularly in the range of 84 ° to 92 °. Note that the angle α in FIG. 5 is 88 °. Further, as described above, the numerical limitation of the ratio RT2 between the length PT of one pitch and the maximum diameter φ of the inner container 1 at the time of maximum stretching of the bellows structure B is 3.5 to 5, but the airless pump of Example 1 In the case of the fluid container A, this ratio RT2 is 4.2. Furthermore, the material of the inner container 1 is polyethylene which is usually used for the inner container of a general fluid container with an airless pump, and the thickness is approximately the same as the thickness of the ordinary inner container.

外側容器2は、透明のアクリル樹脂製で、図4、図5に見るように、上方に向かうに従い僅かに拡径する円筒形状の側面21と円盤状の底面22が一体として形成され、側面21の上端部21aには螺旋状の突条R3が側面21と一体に形成されている。突条R3は、後述の傘部4(図12a〜図12c参照)のフランジ部42の内側面に突設された螺旋の一部の形状の突条R4と係合することにより、傘部4を外側容器2の上端部21aに螺着させる。外側容器2の直径は、内側容器1の直径よりやや大に構成されており、内側容器1を、僅かの間隙をもって外側容器2の内側面より離間させた状態で収納できるように構成されている。   The outer container 2 is made of a transparent acrylic resin, and as shown in FIGS. 4 and 5, a cylindrical side surface 21 and a disc-shaped bottom surface 22 that are slightly enlarged in diameter toward the upper side are integrally formed. A spiral protrusion R3 is formed integrally with the side surface 21 at the upper end portion 21a. The protrusion R3 is engaged with a protrusion R4 having a shape of a part of a spiral projecting on the inner surface of the flange part 42 of the umbrella part 4 (see FIGS. 12a to 12c), which will be described later. Is screwed to the upper end portion 21a of the outer container 2. The diameter of the outer container 2 is configured to be slightly larger than the diameter of the inner container 1 so that the inner container 1 can be stored in a state of being separated from the inner surface of the outer container 2 with a slight gap. .

エアレスポンプ3は公知技術のエアレスポンプであるので、内部構造に関する詳細な説明は省略し、他の構成との関連において説明が必要となる点のみを記述する。エアレスポンプ3は、図11に見るように、吐出口31aを有する頸部31、頸部31に連接された本体部32、本体部32の下端に連接された円筒形状の吸入管33、そして、本体部32と頸部31の接合部分に周設されたキャップ34から構成されている。また、SP(図8参照)は本体部32に内装されたスプリングで、頸部31が押し下げられた場合に、頸部31を元の位置に復元させる作用を果たすものである。   Since the airless pump 3 is a known airless pump, a detailed description of the internal structure is omitted, and only the points that need to be described in relation to other configurations are described. As shown in FIG. 11, the airless pump 3 includes a neck portion 31 having a discharge port 31a, a main body portion 32 connected to the neck portion 31, a cylindrical suction pipe 33 connected to the lower end of the main body portion 32, and The cap 34 is provided around the joint portion of the main body 32 and the neck 31. SP (see FIG. 8) is a spring built in the main body 32, and serves to restore the neck 31 to its original position when the neck 31 is pushed down.

吸入管33の端部33aは、図7、図8に見るように、蛇腹構造Bが完全に折畳まれた状態にて内側容器1の底面13近傍に位置するように構成されている。具体的には、端部33aと底面13の中央部分の間の距離を1mm以下とするように構成されているもので、これにより、内容物Cの略完全な吐出が実現されるものである。吸入管33の端部33aと内側容器1の底面13の位置関係の決定に際しては、まず内側容器1を完全収縮状態とし、この状態にて端部33aと底面13の中央部分の間の距離を1mm以下となるように吸入管33の長さが決められる。   As shown in FIGS. 7 and 8, the end 33 a of the suction pipe 33 is configured to be positioned near the bottom surface 13 of the inner container 1 in a state where the bellows structure B is completely folded. Specifically, the distance between the end portion 33a and the central portion of the bottom surface 13 is set to be 1 mm or less, whereby substantially complete discharge of the contents C is realized. . In determining the positional relationship between the end portion 33a of the suction pipe 33 and the bottom surface 13 of the inner container 1, first, the inner container 1 is brought into a completely contracted state, and in this state, the distance between the end portion 33a and the central portion of the bottom surface 13 is set. The length of the suction pipe 33 is determined so as to be 1 mm or less.

傘部4は、図12a〜図12cに見るように、全体が傘状で、上方に向かうに従って縮径する本体部41、本体部41の下端から下方に垂設されたフランジ部42、本体部41の上端から内側にリング状に突設されたリム部43が一体として構成され、頂部にリム部43に囲繞された円孔HRを有している。また、リム部43の底面には凹部43a、43b、43c、43dが円周方向に90°間隔にて周設されており、フランジ部42の内周には螺旋の一部の形状の突条R4、R4が突設されている。   As shown in FIGS. 12 a to 12 c, the umbrella portion 4 is entirely umbrella-shaped and has a main body portion 41 that is reduced in diameter toward the upper side, a flange portion 42 that is suspended downward from the lower end of the main body portion 41, and a main body portion. A rim portion 43 projecting in a ring shape inward from the upper end of 41 is integrally formed, and has a circular hole HR surrounded by the rim portion 43 at the top. In addition, concave portions 43a, 43b, 43c, 43d are circumferentially provided on the bottom surface of the rim portion 43 at intervals of 90 ° in the circumferential direction. R4 and R4 are projected.

傘部4は、図8に示すように、円孔HRに、内側容器1の口部11が挿通され、口部11の接続部11bの上端面とエアレスポンプ3のキャップ34の下端面との間に傘部4のリム部43が挟着されることにより固着される。この際、内側容器1の口部11の凸部11d、11e(図8、図11参照)を傘部4のリム部43の凹部43a、43c、あるいは43b、43d(図12a〜図12c参照)に嵌着させることにより、傘部4と内側容器1の相対的な回動が防止される。また、前述のように内側容器1は口部11がエアレスポンプ3のキャップ34にパッキンP1を介して螺着固定され、傘部4のフランジ部42は外側容器2の上端部21aに螺着固定されるので、実施例1のエアレスポンプ付流体容器Aにおいては、エアレスポンプ3の頸部31を除くすべての部材が一体に固着され、各部材間の相対的な回動が防止される。エアレスポンプ3の頸部31のみは、その本体部32に対して回動自在に構成されている。   As shown in FIG. 8, the umbrella portion 4 has the mouth portion 11 of the inner container 1 inserted through the circular hole HR, and the upper end surface of the connection portion 11 b of the mouth portion 11 and the lower end surface of the cap 34 of the airless pump 3. The rim part 43 of the umbrella part 4 is fixed by being sandwiched therebetween. At this time, the convex portions 11d and 11e (see FIGS. 8 and 11) of the mouth portion 11 of the inner container 1 are replaced with the concave portions 43a and 43c of the rim portion 43 of the umbrella portion 4 or 43b and 43d (see FIGS. 12a to 12c). The relative rotation of the umbrella part 4 and the inner container 1 is prevented by being fitted on. Further, as described above, the opening 11 of the inner container 1 is screwed and fixed to the cap 34 of the airless pump 3 via the packing P1, and the flange portion 42 of the umbrella 4 is fixed to the upper end 21a of the outer container 2 by screwing. Therefore, in the fluid container A with an airless pump of the first embodiment, all members except the neck portion 31 of the airless pump 3 are integrally fixed, and relative rotation between the members is prevented. Only the neck portion 31 of the airless pump 3 is configured to be rotatable with respect to the main body portion 32.

図13a、図13bは、内側容器1が独立して流通される際の状態を示している。すなわち、内側容器1は内部に内容物C(図4参照)を充填した状態で、パッキンP2を介してキャップCPを螺着した、図13bに示す状態にて流通させられるので、使用者(図示せず)は、使用に際しては、キャップCPを外し(パッキンP2はキャップCPと一体に外れる)、口部11に傘部4とエアレスポンプ3を装着し、内側容器1全体を外側容器2に装着した状態(図1参照)にて用いるのである。   13a and 13b show a state when the inner container 1 is circulated independently. That is, since the inner container 1 is circulated in the state shown in FIG. 13b in which the cap CP is screwed through the packing P2 with the contents C (see FIG. 4) filled therein, the user (FIG. When not in use, the cap CP is removed (the packing P2 is removed integrally with the cap CP), the umbrella portion 4 and the airless pump 3 are attached to the mouth portion 11, and the entire inner container 1 is attached to the outer container 2. In this state (see FIG. 1).

<実施例1の作用>
実施例1のエアレスポンプ付流体容器Aは、使用開始当初は図1、図4に示すように、エアレスポンプ3が装着され内容物Cが内側容器1内に充填された状態である。使用者(図示せず)が、この状態で、エアレスポンプ3の頸部31の押圧と開放を繰り返すと吸入管33から内容物Cが吸入され、吐出口31aから吐出される。このようにして使用を繰り返すと、内容物Cが汲み出されるにつれて内側容器1の側面12の蛇腹構造Bは収縮するが、その途中の段階を示すと図2、図6のとおりである。
<Operation of Example 1>
As shown in FIGS. 1 and 4, the fluid container A with an airless pump according to the first embodiment is in a state in which the airless pump 3 is mounted and the contents C are filled in the inner container 1 as shown in FIGS. 1 and 4. If a user (not shown) repeatedly presses and releases the neck 31 of the airless pump 3 in this state, the contents C are sucked from the suction pipe 33 and discharged from the discharge port 31a. When the use is repeated in this way, the bellows structure B on the side surface 12 of the inner container 1 contracts as the contents C are pumped, and the intermediate stages are as shown in FIGS.

すなわち、内側容器1の側面12の蛇腹構造Bは、上部から順番に折畳まれていく。そして、ついに蛇腹構造Bの全体が折畳まれると、図3、図7に示す状態となる。この状態にて、吸入管33の端部33aは内側容器1の底面13の中央部分に殆ど当接しそうなくらいに(1mm以下)接近する。蛇腹構造Bの収縮が完了しても、内容物Cの吐出は吸入管33の端部33aが浸漬されている限り進行し、最終的には図3、図7に示すように内側容器1の底面13の中央部分に残留する。しかしながら、エアレスポンプ付流体容器Aを垂直に保持すれば底面13の中央部分に残留する内容物Cに吸入管33の端部33aが当接状態となるので、端部33aが底面13の中央部分に当接されていなくても、表面張力によって残留する内容物Cは略全てが吐出される。   That is, the bellows structure B on the side surface 12 of the inner container 1 is folded in order from the top. And when the whole bellows structure B is finally folded, it will be in the state shown in FIG. 3, FIG. In this state, the end 33a of the suction pipe 33 approaches so as to almost come into contact with the central portion of the bottom surface 13 of the inner container 1 (1 mm or less). Even if the contraction of the bellows structure B is completed, the discharge of the contents C proceeds as long as the end portion 33a of the suction pipe 33 is immersed, and finally, as shown in FIGS. It remains in the central portion of the bottom surface 13. However, if the fluid container A with an airless pump is held vertically, the end portion 33a of the suction pipe 33 comes into contact with the contents C remaining in the central portion of the bottom surface 13, so that the end portion 33a is in the central portion of the bottom surface 13. Even if it is not in contact with the surface, substantially all of the content C remaining due to the surface tension is discharged.

ここで重要な点は、最後に内容物Cの残留部分を略完全に吐出させる際にはエアレスポンプ付流体容器Aを垂直に保持することは必要であるが、それまでの段階においては、吸入管33の端部33aが内容物Cに浸漬されている状態が保持される限りにおいて、エアレスポンプ付流体容器Aを適宜傾斜させても、さらに倒立させたとしても内容物Cの吐出が可能となるという点である。従って、使用開始状態(図1、図4参照)においては無論のこと、図6に示すように内容物Cの半分以上が吐出された段階においても、エアレスポンプ付流体容器Aを倒立させた状態で吐出が可能である。要するに、実施例1のエアレスポンプ付流体容器Aは、内容物Cの残留がごく僅かとなった最終段階を除いては自由に傾斜、倒立させた使用が可能であるが、この点は、内側容器1の側面12の蛇腹構造B及び吸入管33をきわめて短く構成したことによって可能となった効果であるといえる。   The important point here is that it is necessary to hold the fluid container A with an airless pump vertically when the remaining portion of the content C is finally completely discharged. As long as the state where the end 33a of the pipe 33 is immersed in the contents C is maintained, the fluid C can be discharged even if the fluid container A with an airless pump is appropriately inclined or further inverted. It is that. Accordingly, it goes without saying that in the use start state (see FIGS. 1 and 4), the fluid container A with the airless pump is inverted even when more than half of the contents C are discharged as shown in FIG. Can be discharged. In short, the fluid container A with an airless pump according to the first embodiment can be used by being tilted and inverted freely except for the final stage in which the content C remains very little. This can be said to be an effect made possible by configuring the bellows structure B and the suction pipe 33 on the side surface 12 of the container 1 to be extremely short.

図8、図9に、蛇腹構造Bの襞F、F、……が折畳まれる状態の詳細を示す。襞F、F、……は、山部Sが上部に引き上げられる形で折畳まれていく。すなわち、口部11の縮径部11aに連接する面12aに接近するようにすぐ下の面12bが折畳まれ、面12bに引き上げられるかたちで面12cが折畳まれ、さらに面12cに引き上げられるかたちで面12dが折畳まれるという形で、結局襞F、F、……は、山部Sが上部に引き上げられる状態にて順次折畳まれていくものである。   FIG. 8 and FIG. 9 show details of the state in which the flanges F, F,... Of the bellows structure B are folded. The ridges F, F,... Are folded so that the mountain S is pulled up. That is, the lower surface 12b is folded so as to approach the surface 12a connected to the reduced diameter portion 11a of the mouth portion 11, and the surface 12c is folded in the form of being pulled up to the surface 12b, and further raised to the surface 12c. In the form that the surface 12d is folded in the form, the folds F, F,... Are eventually folded in a state where the mountain portion S is pulled up.

このようにして内容物Cが略完全に吐出されてしまうと、内側容器1は図8、図10bに見るような形状となる。この状態で、使用者(図示せず)は内側容器1を外側容器2から取り出し、傘部4とエアレスポンプ3を取り外し、使用済みの内側容器1を廃棄する。そして、内容物Cが充填された新しい内側容器1のキャップCPを外し、口部11に傘部4とエアレスポンプ3を装着し、内側容器1を外側容器2に収納する。このようにすることにより、実施例1のエアレスポンプ付流体容器Aを再利用することができる。 When the contents C are almost completely discharged in this way, the inner container 1 has a shape as shown in FIGS. 8 and 10b. In this state, the user (not shown) takes out the inner container 1 from the outer container 2, removes the umbrella part 4 and the airless pump 3, and discards the used inner container 1. Then, the cap CP of the new inner container 1 filled with the contents C is removed, the umbrella part 4 and the airless pump 3 are attached to the mouth part 11, and the inner container 1 is stored in the outer container 2. By doing in this way, the fluid container A with an airless pump of Example 1 can be reused.

実施例2のエアレスポンプ付流体容器AAは、図14に見るように、実施例1のエアレスポンプ付流体容器Aの構成において、エアレスポンプ3をロックができる形式のエアレスポンプ30としたものである。このロックができるタイプのエアレスポンプ30については、前記特許文献1に詳細に記載されている。なお、内側容器10は実施例1のエアレスポンプ付流体容器Aの内側容器1と構成は略同一であるが、直径と高さの比率が内側容器1とやや異なる。蛇腹構造BBの構成も実施例1のエアレスポンプ付流体容器Aの内側容器1の蛇腹構造Bの構成と略同一で、作用も略同一である。さらに、外側容器20は実施例1のエアレスポンプ付流体容器Aの外側容器2と構成は略同一であるが、直径と高さの比率が外側容器2とやや異なる。また傘部40も実施例1のエアレスポンプ付流体容器Aの傘部4と構成は略同一であるが、直径と高さの比率が傘部4とやや異なる。   As shown in FIG. 14, the fluid container AA with an airless pump according to the second embodiment is an airless pump 30 that can lock the airless pump 3 in the configuration of the fluid container A with an airless pump according to the first embodiment. . The airless pump 30 that can be locked is described in detail in the above-mentioned Patent Document 1. The inner container 10 has substantially the same configuration as the inner container 1 of the fluid container A with an airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the inner container 1. The configuration of the bellows structure BB is substantially the same as the configuration of the bellows structure B of the inner container 1 of the fluid container A with the airless pump of the first embodiment, and the operation is also substantially the same. Furthermore, the outer container 20 has substantially the same configuration as the outer container 2 of the fluid container A with an airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the outer container 2. The umbrella portion 40 is substantially the same in configuration as the umbrella portion 4 of the fluid container A with the airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the umbrella portion 4.

実施例3のエアレスポンプ付流体容器AAAは、図14に見るように、実施例1のエアレスポンプ付流体容器Aの構成において、エアレスポンプ3をガンタイプのエアレスポンプ300としたものである。なお、内側容器100は実施例1のエアレスポンプ付流体容器Aの内側容器1と構成は略同一であるが、直径と高さの比率が内側容器1とやや異なる。蛇腹構造BBBの構成も実施例1のエアレスポンプ付流体容器Aの内側容器1の蛇腹構造Bの構成と略同一で、作用も略同一である。さらに、外側容器200は実施例1のエアレスポンプ付流体容器Aの外側容器2と構成は略同一であるが、直径と高さの比率が外側容器2とやや異なる。また傘部400も実施例1のエアレスポンプ付流体容器Aの傘部4と構成は略同一であるが、直径と高さの比率が傘部4とやや異なる。 As shown in FIG. 14, a fluid container AAA with an airless pump according to the third embodiment is obtained by replacing the airless pump 3 with a gun-type airless pump 300 in the configuration of the fluid container A with an airless pump according to the first embodiment. The inner container 100 has substantially the same configuration as the inner container 1 of the fluid container A with an airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the inner container 1. The configuration of the bellows structure BBB is substantially the same as the configuration of the bellows structure B of the inner container 1 of the fluid container A with the airless pump of the first embodiment, and the operation is also substantially the same. Further, the outer container 200 is substantially the same in configuration as the outer container 2 of the fluid container A with an airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the outer container 2. Further, the umbrella part 400 has substantially the same configuration as the umbrella part 4 of the fluid container A with an airless pump of the first embodiment, but the ratio of the diameter and the height is slightly different from that of the umbrella part 4.

上記のように、本発明のエアレスポンプ付流体容器は、蛇腹構造の採用によって、従来のエアレスポンプ付流体容器に比較した内容物の残存比率を激減させ、内容物を略完全に吐出させることに成功した、画期的なものである。すなわち、資源の保護と経済効率の向上に二つながら大きく役立つものであり、エアレスポンプ付流体容器が用いられる各種の分野、理美容業界、家庭用のサニタリー分野、食品容器の分野等において幅広く用いられることが期待される。   As described above, the fluid container with an airless pump of the present invention drastically reduces the remaining ratio of the contents compared to the conventional fluid container with an airless pump by adopting the bellows structure, and discharges the contents almost completely. Successful and groundbreaking. In other words, it is extremely useful for protecting resources and improving economic efficiency, and is widely used in various fields where fluid containers with airless pumps are used, in the hairdressing and beauty industry, the sanitary field for home use, the food container field, etc. It is expected.

本発明の実施例1のエアレスポンプ付流体容器の右側面図である。It is a right view of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例1のエアレスポンプ付流体容器の作用を説明する説明図である。It is explanatory drawing explaining an effect | action of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例1のエアレスポンプ付流体容器の作用を説明する説明図である。It is explanatory drawing explaining an effect | action of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例1のエアレスポンプ付流体容器の右側面から見た縦断面図である。It is the longitudinal cross-sectional view seen from the right side of the fluid container with an airless pump of Example 1 of this invention. 図4の一部を省略した部分拡大図である。It is the elements on larger scale which abbreviate | omitted a part of FIG. 本発明の実施例1のエアレスポンプ付流体容器の作用を説明する説明図である。It is explanatory drawing explaining an effect | action of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例1のエアレスポンプ付流体容器の作用を説明する説明図である。It is explanatory drawing explaining an effect | action of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例1のエアレスポンプ付流体容器の作用を説明する説明図である。It is explanatory drawing explaining an effect | action of the fluid container with an airless pump of Example 1 of this invention. 図8の一部を仮想線で示した要部の拡大図である。It is the enlarged view of the principal part which showed a part of FIG. 8 with the virtual line. (a)本発明の実施例1のエアレスポンプ付流体容器の内側容器にエアレスポンプを装着した状態の外観斜視図である。(b)本発明の実施例1のエアレスポンプ付流体容器の内側容器にエアレスポンプを装着した状態の外観斜視図で、内側容器の収縮が完了した状態を示す。(A) It is an external appearance perspective view of the state which attached the airless pump to the inner side container of the fluid container with an airless pump of Example 1 of this invention. (B) It is an external appearance perspective view of the state which mounted | wore the inner container of the fluid container with an airless pump of Example 1 of this invention with the airless pump, and the state which the shrinkage | contraction of the inner container was completed is shown. 本発明の実施例1のエアレスポンプ付流体容器の内側容器とエアレスポンプの組付け構成を説明する説明図である。It is explanatory drawing explaining the assembly | attachment structure of the inner side container and airless pump of the fluid container with an airless pump of Example 1 of this invention. (a)本発明の実施例1のエアレスポンプ付流体容器の傘部の縦断面図である。 (b)本発明の実施例1のエアレスポンプ付流体容器の傘部の底面図である。 (c)本発明の実施例1のエアレスポンプ付流体容器の傘部を底面側から見た外観斜視図である。(A) It is a longitudinal cross-sectional view of the umbrella part of the fluid container with an airless pump of Example 1 of this invention. (B) It is a bottom view of the umbrella part of the fluid container with an airless pump of Example 1 of this invention. (C) It is the external appearance perspective view which looked at the umbrella part of the fluid container with an airless pump of Example 1 of this invention from the bottom face side. (a)本発明の実施例1のエアレスポンプ付流体容器の内側容器とキャップの組付け構成を説明する説明図である。 (b)本発明の実施例1のエアレスポンプ付流体容器の内側容器にキャップを螺着した状態を示す外観斜視図である。(A) It is explanatory drawing explaining the assembly | attachment structure of the inner side container and cap of the fluid container with an airless pump of Example 1 of this invention. (B) It is an external appearance perspective view which shows the state which screwed the cap to the inner side container of the fluid container with an airless pump of Example 1 of this invention. 本発明の実施例2のエアレスポンプ付流体容器の右側面から見た縦断面図である。It is the longitudinal cross-sectional view seen from the right side of the fluid container with an airless pump of Example 2 of this invention. 本発明の実施例3のエアレスポンプ付流体容器の右側面から見た縦断面図である。It is the longitudinal cross-sectional view seen from the right side of the fluid container with an airless pump of Example 3 of this invention. 本発明のエアレスポンプ付流体容器の内側容器の各部寸法を説明する説明図である。It is explanatory drawing explaining each part dimension of the inner side container of the fluid container with an airless pump of this invention. (a)本発明のエアレスポンプ付流体容器の内側容器の蛇腹構造の詳細を示す説明図である。 (b)本発明のエアレスポンプ付流体容器の内側容器の蛇腹構造の詳細を示す説明図である。 (c)本発明のエアレスポンプ付流体容器の内側容器の蛇腹構造の詳細を示す説明図である。 (d)本発明のエアレスポンプ付流体容器の内側容器の蛇腹構造の詳細を示す説明図である。 (e)本発明のエアレスポンプ付流体容器の内側容器の蛇腹構造の詳細を示す説明図である。(A) It is explanatory drawing which shows the detail of the bellows structure of the inner side container of the fluid container with an airless pump of this invention. (B) It is explanatory drawing which shows the detail of the bellows structure of the inner side container of the fluid container with an airless pump of this invention. (C) It is explanatory drawing which shows the detail of the bellows structure of the inner side container of the fluid container with an airless pump of this invention. (D) It is explanatory drawing which shows the detail of the bellows structure of the inner side container of the fluid container with an airless pump of this invention. (E) It is explanatory drawing which shows the detail of the bellows structure of the inner side container of the fluid container with an airless pump of this invention.

符号の説明Explanation of symbols

1 内側容器
11 口部
11a 縮径部
11b 接続部
11c 本体部
11d 凸部
11e 凸部
12 側面
12a 面
12b 面
12c 面
12d 面
13 底面
2 外側容器
20 外側容器
21 側面
21a 上端部
22 底面
200 外側容器
3 エアレスポンプ
30 エアレスポンプ
31 頸部
31a 吐出口
32 本体部
33 吸入管
33a 端部
34 キャップ
300 エアレスポンプ
4 傘部
40 傘部
41 本体部
42 フランジ部
43 リム部
43a 凹部
43b 凹部
43c 凹部
43d 凹部
400 傘部
A エアレスポンプ付流体容器
AA エアレスポンプ付流体容器
AAA エアレスポンプ付流体容器
B 蛇腹構造
BB 蛇腹構造
BBB 蛇腹構造
C 内容物
CP キャップ
F 襞
HR 円孔
L 長さ
P1 パッキン
P2 パッキン
PL1 面
PL2 面
PT 長さ
R1 突条
R2 突条
R3 突条
R4 突条
RT1 比
RT2 比
S 山部
SP スプリング
T 谷部
X 中心軸
α 角度
φ 最大直径

























DESCRIPTION OF SYMBOLS 1 Inner container 11 Mouth part 11a Reduced diameter part 11b Connection part 11c Main body part 11d Convex part 11e Convex part 12 Side surface 12a Surface 12b Surface 12c Surface 12d Surface 13 Bottom surface 2 Outer container 20 Outer container 21 Side surface 21a Upper end portion 22 Bottom surface 200 Outer container DESCRIPTION OF SYMBOLS 3 Airless pump 30 Airless pump 31 Neck part 31a Discharge port 32 Main body part 33 Suction pipe 33a End part 34 Cap 300 Airless pump 4 Umbrella part 40 Umbrella part 41 Main body part 42 Flange part 43 Rim part 43a Recess 43b Recess 43c Recess 43d Recess 43 Umbrella A Fluid container with airless pump AA Fluid container with airless pump AAA Fluid container with airless pump B Bellows structure BB Bellows structure BBB Bellows structure C Contents CP Cap F 襞 HR Circular hole L Length P1 Packing P2 Packing PL1 Surface PL2 PT length R1 protrusion R2 protrusion R3 protrusion R4 ridges RT1 ratio RT2 ratio S crest SP spring T troughs X central axis α angle φ maximum diameter

























Claims (5)

エアレスポンプと、該エアレスポンプを口部に装着した軟質材からなる内側容器と、内側容器の全体を収容する硬質材からなる外側容器から構成されるエアレスポンプ付流体容器において、内側容器の側面が蛇腹構造をなし、エアレスポンプの操作によって内容物が排出されることにより該蛇腹構造が収縮されて内側容器の内容積が減少され、さらに上記蛇腹構造が完全に収縮された状態にてエアレスポンプの吸入管の端部が内側容器の底面近傍に位置するように構成されていることを特徴とするエアレスポンプ付流体容器。   In a fluid container with an airless pump comprising an airless pump, an inner container made of a soft material with the airless pump attached to the mouth, and an outer container made of a hard material that accommodates the entire inner container, the side surface of the inner container is The bellows structure is formed, and the contents are discharged by the operation of the airless pump, so that the bellows structure is contracted to reduce the inner volume of the inner container, and further, the bellows structure is completely contracted. A fluid container with an airless pump, characterized in that the end of the suction pipe is positioned near the bottom surface of the inner container. エアレスポンプ付流体容器の内側容器の最大直径が側面の蛇腹構造の最大延伸時における1ピッチの長さの3.5倍〜5倍の範囲内であることを特徴とする請求項1に記載のエアレスポンプ付流体容器。 The maximum diameter of the inner container of the fluid container with an airless pump is in the range of 3.5 to 5 times the length of one pitch at the time of maximum stretching of the side bellows structure. Fluid container with airless pump. エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が75°〜95°の範囲内であることを特徴とする請求項1あるいは請求項2に記載のエアレスポンプ付流体容器。   When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 75 ° to 95 °. The fluid container with an airless pump according to claim 1 or 2, wherein the fluid container is inside. エアレスポンプ付流体容器の内側容器を長手方向の中心軸を含む平面で切断した場合に、内側容器の側面の蛇腹構造の最大延伸時における隣接する2面のなす角度が84°〜92°の範囲内であることを特徴とする請求項3に記載のエアレスポンプ付流体容器。   When the inner container of the fluid container with an airless pump is cut along a plane including the central axis in the longitudinal direction, the angle formed by the two adjacent surfaces at the maximum extension of the bellows structure on the side surface of the inner container is in the range of 84 ° to 92 °. The fluid container with an airless pump according to claim 3, wherein the fluid container is inside. 内側容器の底面全体が下に凸の曲面状に構成されていることを特徴とする請求項1あるいは請求項2あるいは請求項3あるいは請求項4に記載のエアレスポンプ付流体容器。


5. The fluid container with an airless pump according to claim 1, wherein the entire bottom surface of the inner container is formed in a downwardly convex curved shape.


JP2007223475A 2007-08-30 2007-08-30 Fluid container with airless pump Active JP4052484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223475A JP4052484B1 (en) 2007-08-30 2007-08-30 Fluid container with airless pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223475A JP4052484B1 (en) 2007-08-30 2007-08-30 Fluid container with airless pump

Publications (2)

Publication Number Publication Date
JP4052484B1 true JP4052484B1 (en) 2008-02-27
JP2009057055A JP2009057055A (en) 2009-03-19

Family

ID=39181804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223475A Active JP4052484B1 (en) 2007-08-30 2007-08-30 Fluid container with airless pump

Country Status (1)

Country Link
JP (1) JP4052484B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458351B2 (en) * 2009-07-09 2014-04-02 医療環境テクノ株式会社 Simple liquid spray device
JP2012166792A (en) * 2011-02-10 2012-09-06 Naruhito Shioda Spray container
JP6875101B2 (en) * 2016-11-02 2021-05-19 花王株式会社 Bag container with pump dispenser
JP7210838B2 (en) * 2018-03-28 2023-01-24 東洋製罐株式会社 Variable volume container
KR102609420B1 (en) * 2021-07-30 2023-12-04 펌텍코리아 (주) Liquid content discharge container

Also Published As

Publication number Publication date
JP2009057055A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4052484B1 (en) Fluid container with airless pump
JP4002941B1 (en) Fluid container with airless pump
US7306124B2 (en) Piston for fluid container
CN102333708B (en) Synthetic resin container provided with an inverting, foldback bottom wall
KR200454099Y1 (en) push pocket construction of spuit type cosmetic container
JP2004051201A (en) Fluid discharging pump
US20160368664A1 (en) Collapsible Container
KR102079144B1 (en) Packages for container packaging and container packaging sets including the same
JP5476084B2 (en) Synthetic resin container with inverted and folded bottom wall
WO2023065554A1 (en) Elastic member for liquid pump, liquid pump, and cosmetic container
JP2016088582A5 (en)
US20090103970A1 (en) Cosmetics appliance
WO2014157693A1 (en) Spouting pump and pump-equipped container provided with same, container body used in spouting pump, and port member for container body
JP7394687B2 (en) thin wall container
US20220097088A1 (en) Dispenser and dispensing container
US9206797B2 (en) Bellows for a pump device
JP3179409U (en) Spray head structure
KR100830410B1 (en) Spare cap of vessel
JPH033494Y2 (en)
KR20190070223A (en) Cosmetic case
KR102527875B1 (en) Cosmetic dispenser
KR200428052Y1 (en) head structure of tube type vessel
JP7473958B2 (en) Packaging containers
CN214049159U (en) Health care nursing device
JP2024014360A (en) Lid body, discharge container, and discharge product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

RVTR Cancellation due to determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3