JP4052415B2 - Vehicle detection device - Google Patents

Vehicle detection device Download PDF

Info

Publication number
JP4052415B2
JP4052415B2 JP26371299A JP26371299A JP4052415B2 JP 4052415 B2 JP4052415 B2 JP 4052415B2 JP 26371299 A JP26371299 A JP 26371299A JP 26371299 A JP26371299 A JP 26371299A JP 4052415 B2 JP4052415 B2 JP 4052415B2
Authority
JP
Japan
Prior art keywords
vehicle
lane
image processing
speed
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26371299A
Other languages
Japanese (ja)
Other versions
JP2001093081A (en
Inventor
高重 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26371299A priority Critical patent/JP4052415B2/en
Publication of JP2001093081A publication Critical patent/JP2001093081A/en
Application granted granted Critical
Publication of JP4052415B2 publication Critical patent/JP4052415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速道路の料金所や、有料駐車場の出入口等における車両検知装置に関する。
【0002】
【従来の技術】
高速道路の料金所ゲートや、有料駐車場の出入口等においては、料金請求、車両出入り管理等のために通過車両の存在を検知し、またその進行方向、速度、寸法等を検出して車種を判別する車両検知装置が設置されている。
【0003】
図5に基づき従来の光電管方式の車両検知装置の例を説明する。図5は光電管方式の車両検知装置の斜視図であり、図において、車線120の両脇には互いに対向して光電管を用いた車両分離器121が設置されており、車線120の路面には踏板122が埋設されている。
【0004】
車両100が車線120に進入して車両分離器121の一方から発せられ他方で受光していた光が遮られてその車両の進入が検知され、また、踏板122により車両100の前後進が判別される。
【0005】
このような車両検知装置には、さらに各種補助センサが取り付けられることによって、車両100の進入だけでなく、車種の判別も行なっている。
【0006】
しかしながら、このような光電管を用いた方式は、料金所ゲートのように車両100が一列に順序良く進入する場合にのみ適用可能であり、高速道路の本線のように複数の車両100が並行して通過する場所への適用は、検出のための光線が複数の車両に同時にあるいは連続的に遮られる状態があり適用不可能という問題があった。
【0007】
図6に基づき従来のオーバヘッド方式の車両検知装置の例を説明する。図6はオーバヘッド方式の車両検知装置の斜視図であり、図において、車線120の上方にはガントリ104が車線120を横切るように架設されており、ガントリ104には車線120真上に位置してオーバヘッドセンサ103が設置されている。
【0008】
複数車線に跨がってガントリ104を架設すれば、オーバヘッドセンサ103を車線120毎に設けられるので、車線120が複数あり車両100が並行して通過するような、高速道路本線、または、複数ゲートを有する料金所や有料駐車場の出入口等にも適用可能である。
【0009】
オーバヘッドセンサ103は車線120上方から車線120上にLED(発光ダイオード:Light Emitting Diode)やレーザ光等の投光光線(本明細書において、「ビーム」という)を照射し、その反射光を受光することにより車線120を進行する車両100の存在を検知するものであるが、この場合、車線120の前後に2つのビームA102a、ビームB102bがそれぞれ車線上方から車線の路面に向け且つ車線を横切るように極短時間のサイクル(例えば2、3ミリ秒)で走査(スキャン)して照射されており、車両100がその2つのビームA102a、ビームB102bの遮る順序によりその進行方向が計測される。
【0010】
また、ビームの反射光から、通過する車両100迄の距離を計測し、その車両の車幅、形状、高さを算出し、2つのビームA102a、ビームB102bを遮る時間差から、通過する車両100の通過速度を演算し、その結果から車両100の車長が算出される。そして、以上の算出された車両100の各諸元情報からは、その車種を判別することもできるものである。
【0011】
しかしながら、上記のオーバヘッド方式の車両検知装置の場合は、車長計測精度が車両通過速度に大きく左右され、渋滞時など、車両100が超低速で走行する場合やオーバヘッドセンサ103の真下で静止した場合などでは、車長計測精度が大幅に低下するという原理上の欠点を有している。
【0012】
すなわち、この車長計算方法では、ビーム検知時間中の車両は等速で移動するという前提で2つのビームを通過する時間を車速で割ることで車長を計算しており、ある程度以上の車速で走行中は一般的に時間当たりの速度の変化が少ない上一定区間を通過する時間も小さいのでその時間内の車速変化量も少ないため、高速走行時、または少なくとも通常の巡行走行時は、ビーム検知時間中の車両100がほぼ等速で移動すると近似できるが、ビーム検知時間中の車両100の車速変化が大きい(等速で移動しない)場合には誤差が大きくなってしまう。
【0013】
車両100の車速変化が大きい場合とは、前述のように渋滞時などに超低速で走行したり発進加速、減速停止を行なったり、一時停止する場合であり、ある程度以下の車速の状態(以下、「一定速度以下」という)に起きるものである。したがって一定速度以下においては常に可能性のある車長計測精度の大幅な低下に対して何らかの対策を講ずる必要があった。
【0014】
【発明が解決しようとする課題】
本発明は、上記のような従来の車両検知装置の欠点を解消し、車線が複数あり車両が並行して通過するような場合においても適用でき、車両の車速にかかわらず、特に一定速度以下においても、正確に車長を計測できる車両検知装置を提供することを課題とするものである。
【0015】
【課題を解決するための手段】
(1)本発明は、上記の課題を解決するためのなされたものであり、その第1の手段として、車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査する1本のビームを照射しその反射光から前記車両を検知して同車両までの距離を計測する投受光部と、同車線上に設けられ同車線上の映像を撮像するカメラと同カメラで撮像した映像を画像処理し車両の進行方向と車速をリアルタイムで計測する人工網膜アルゴリズムとを有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記投受光部で計測した等時間単位の前記車両の横断面形状を前記画像処理部で計測したリアルタイムの車速を用いて積分することで算出した車長を用いて前記車両の判別を行なうコントローラ部とを備えてオーバヘッドセンサを構成することを特徴とする車両検知装置を提供するものである。
【0016】
上記手段によれば、車線が複数あり車両が並行して通過するような場合においても適用でき、且つ車両の車速は投受光部によらず人工網膜アルゴリズムでリアルタイムで計測できるので、車両の車速およびその変化にかかわらず正確に車長を算出できる。
【0017】
(2)また、第2の手段として、車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査するビームを同車線方向前後に2本照射しその反射光から前記車両を検知して同車両までの距離と同車両の車速を計測し車長を算出する投受光部と、前記車線上に設けられ同車線を通過する車両の全形を視野内に収められる広角レンズ付カメラと同車両の車速が一定速度以下の場合は前記投受光部に代わり同広角レンズ付カメラで撮像した映像を画像処理して同車両の車長を計測する画像処理回路を有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記車両の車速が前記一定速度より高速の場合は前記投受光部の算出した車長を用い、前記車両の車速が前記一定速度以下の場合は前記画像処理部の計測した車長を用いて車両の判別を行なうコントローラ部とを備えたオーバヘッドセンサを構成することを特徴とする車両検知装置を提供するものである。
【0018】
上記第2の手段によれば、車線が複数あり車両が並行して通過するような場合においても適用でき、且つ車両の車長は通常は2本のビームにより投受光部によって計測した結果より算出し、誤差の出やすい同車速の一定速度以下においては広角レンズ付カメラの映像を画像処理して車長を計測することができる。
【0019】
【発明の実施の形態】
図1および図2に基づいて本発明の実施の第1形態にかかる車両検知装置を説明する。図1は本実施の形態のオーバヘッド方式の車両検知装置の斜視図であり、図2はそのオーバヘッドセンサの構成の概念図である。
【0020】
図1に示すように本実施の形態の車両検知装置1においては、車線20を跨いでその上方に架設されたガントリ4上にオーバヘッドセンサ3が設置されており、オーバヘッドセンサ3は、前述の従来例と異なり1本のビームを下方の車線20上へ投光し、その反射光を受光し、さらにカメラ映像による画像処理を併用する、複合方式となっている。
【0021】
図2にその構成を示すように、オーバヘッドセンサ3は、ビーム2を照射しその反射光から車両100の検知、および車両100までの距離を計測する投受光部6と、人工網膜アルゴリズムを有する画像処理部7と、投受光部6と画像処理部7を制御して総合的に車両の判別を行なうコントローラ部5とから構成されている。
【0022】
投受光部6は、車線20を走行する車両100に対してビーム2を照射しその反射光を受光する投受光器8と、ビームの反射光から、通過する車両100迄の距離を計測し、その車両100の形状認識、車幅、車高を算出する物体検知・距離計測回路9を有している。
【0023】
ビーム2は車線20上方から車線20上に照射されるが、この場合、ビーム2が車線20上方から車線の路面に向け且つ車線を横切るように極短時間のサイクル(例えば2、3ミリ秒)で走査されて照射されており、車線20を通過する車両100は必ず検知される。
【0024】
また、画像処理部7は、カメラ11を有し、そのとらえた映像を処理する人工網膜アルゴリズム10を備えている。この人工網膜アルゴリズム10は、映像を画素の集まりとして認識するのではなく、画素の一定のかたまりを物体として捉え、そのかたまりの移動や色等の変化量を抽出することに特化した画像処理手法を行なうものである。
【0025】
なお、このような人工網膜アルゴリズム10自体は画像処理チップ(IC)やモジュール(基板)がすでに開発、販売されているものであって、それらのチップやモジュールを搭載することで高速なCPUや大容量メモリ無しに、画像処理部7は車両100の移動方向や単位時間あたりの移動距離、すなわち車速を容易に求めることができるものである。
【0026】
人工網膜アルゴリズムは一般に、画素数が少ないため形状を精度良く認識する事は不得意であるが、物体の移動を捕らえることは得意とするので、画像処理部7では通過する車両100の進行方向、車速をリアルタイムで計測してその判別が可能である。
【0027】
本実施の形態の車両検知装置では、画像処理部7でリアルタイムで計測した速度情報と、投受光部6で計測した車両形状とを総合することにより、車両100の車長は精度良く算出できる。具体的には、投受光部6で計測した等時間単位の車両100の横断面形状を画像処理部7で計測したリアルタイムの車速を用いて積分することで、車速の等速性を必要とせず、車速の如何に係わらず、精度のよい車両形状認識、車長算出が可能となるのである。
【0028】
なお、オーバヘッドセンサ3における投受光部6、画像処理部7、コントローラ部5は図示のように1体のユニットに収められるものでなくてもよく、各々別のユニットに構成してもよい。
【0029】
次に、図3および図4に基づいて本発明の実施の第2形態にかかる車両検知装置を説明する。図3は本実施の形態のオーバヘッド方式の車両検知装置の斜視図であり、図4はそのオーバヘッドセンサの構成の概念図である。
【0030】
図3に示すように本実施の形態の車両検知装置1’においては、前述の実施の第1形態と同様に、車線20を跨いでその上方に架設されたガントリ4’上にオーバヘッドセンサ3’が設置されているが、オーバヘッドセンサ3’は、第1形態と違い、前述の従来例と同様に車線の方向の前後に2本のビームを下方の車線20に投光し、その反射光を受光し、さらに広角カメラ映像による画像処理を併用する、複合方式となっている。
【0031】
図4にその構成を示すように、本実施の形態のオーバヘッドセンサ3’は、2本のビームA2a、ビームB2bを照射しその反射光から車両100の検知、および車両100までの距離および車速を計測する投受光部6’と、広角レンズ付カメラ11’と画像処理回路10’を有する画像処理部7’と、投受光部6’と画像処理部7’を制御して総合的に車両100の判別を行なうコントローラ部5’とから構成されている。
【0032】
投受光部6’は、車線20を走行する車両100に対して前後2本のビームA2a、ビームB2bを照射しその反射光を受光する投受光器8’と、ビームの反射光から、通過する車両100を検知し、車両100迄の距離を計測し、その車両100の形状認識、車幅、車高を算出する物体検知・距離計測回路9’とを有している。
【0033】
2本のビームA2a、ビームB2bは車線20上方から車線20上に照射されるが、各ビーム2a、2bは車線20上方から車線の路面に向け且つ車線を横切るように極短時間のサイクル(例えば2、3ミリ秒)で走査されて照射されており、車線20を通過する車両100は必ず検知される。
【0034】
また、物体検知・距離計測回路9’は、車両100が高速で通過するときは、前述の従来例と同様に通過する車両100が2つのビームA2a、ビームB2bを遮る時間差から、車両100の通過速度を演算し、その結果から車両100の車長を算出する。
【0035】
しかし、前述のような車両100が一定速度以下の場合に起こりうる車長計測精度の大幅な低下を補うために、本実施の形態においては画像処理部7’が設けられているものである。
【0036】
画像処理部7’は、広角レンズ付カメラ11’を有し、そのとらえた映像を処理する画像処理回路10’を備えている。
【0037】
広角レンズ付カメラ11’は広範囲の車線20を監視することが可能であるが、本実施の形態の車両検知装置1’での広角レンズ付カメラ11’の監視必要範囲は車線20を通過するあらゆる車種の車両の全形を視野内に収められる範囲である。
【0038】
また、画像処理回路10’は、カメラでとらえた画像を画素として記憶するメモリと、その画素から車両を抽出し車長を計測するプロセッサ(CPU等)とから構成される一般的なものである。本来、画像処理において、通行する車両の画像をリアルタイムに処理するには高速なCPUを必要とするが、後述のように、画像処理の適用を一定速度以下に限定することでより安価に画像処理回路10’を構成することが可能となる。
【0039】
画像処理部7’は、投受光部6’により車両100が一定速度以下で走行していると判定された時のみ、広角レンズ付カメラ11’が撮像している車両100の全形の画像処理を行うもので、その場合、画像処理回路10’が車両の車長を計測する。
【0040】
画像処理部7’は一般に処理時間がかかるが、適用する場合を車両100が一定速度以下の場合に限定することによって、問題を生じることなくその機能が適用されるものとなる。
【0041】
ここで「一定速度以下」とは、前述のように渋滞時などに超低速で走行したり発進加速、減速停止を行なったり、一時停止したりして、従来通りの投受光部9’による計測では車速の変化による車長計測精度の大幅な低下の起きる可能性がある速度範囲であって、高速道路、駐車場出入口等のそれぞれの条件によって、例えば「10km/h以下」等のように、コンローラ部5’に設定されるものである。
【0042】
以上から、投受光部6’で計測した車両形状、車高、車幅、車長等の諸元情報に、車両100が一定速度以下の場合には、画像処理部7’で計測した車長情報を代えて補うことにより、車長計測の精度が著しく向上し、その結果、車速の等速性を必要とせず、車速の如何に係わらず、精度のよい車両形状認識、車長算出が可能となるのである。
【0043】
なお、オーバヘッドセンサ3’における投受光部6’、画像処理部7’、コントローラ部5’は図示のように1体のユニットに収められるものでなくてもよく、各々別のユニットに構成してもよい。
【0044】
以上、本発明の実施の形態について説明したが、上記実施の形態に限定されるものではなく、本発明の範囲で種々の変更を加えてもよいことは言うまでもない。
【0045】
【発明の効果】
(1)以上、請求項1の発明によれば、車両検知装置を、車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査する1本のビームを照射しその反射光から前記車両を検知して同車両までの距離を計測する投受光部と、同車線上に設けられ同車線上の映像を撮像するカメラと同カメラで撮像した映像を画像処理し車両の進行方向と車速をリアルタイムで計測する人工網膜アルゴリズムとを有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記投受光部で計測した等時間単位の前記車両の横断面形状を前記画像処理部で計測したリアルタイムの車速を用いて積分することで算出した車長を用いて前記車両の判別を行なうコントローラ部とを備えてオーバヘッドセンサを構成するようにしたので、車線が複数あり車両が並行して通過するような場合においても適用でき、且つ車両の車速は投受光部によらず人工網膜アルゴリズムでリアルタイムで計測できるため、車両の車速およびその変化にかかわらず、計測された車速に基づき正確な車長が得られる。
【0046】
(2)また、請求項2の発明によれば、車両検知装置を、車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査するビームを同車線方向前後に2本照射しその反射光から前記車両を検知して同車両までの距離と同車両の車速を計測し車長を算出する投受光部と、前記車線上に設けられ同車線を通過する車両の全形を視野内に収められる広角レンズ付カメラと同車両の車速が一定速度以下の場合は前記投受光部に代わり同広角レンズ付カメラで撮像した映像を画像処理して同車両の車長を計測する画像処理回路を有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記車両の車速が前記一定速度より高速の場合は前記投受光部の算出した車長を用い、前記車両の車速が前記一定速度以下の場合は前記画像処理部の計測した車長を用いて車両の判別を行なうコントローラ部とを備えたオーバヘッドセンサを構成するようにしたので、車線が複数あり車両が並行して通過するような場合においても適用でき、且つ車両の車長は通常は2本のビームにより投受光部によって計測した結果より算出し、同車速の一定速度以下においては広角レンズ付カメラの映像を画像処理して車長を計測するので、車両の車速にかかわらず、正確な車長が得られる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態にかかる車両検知装置の説明図であり、その全体斜視図である。
【図2】実施の第1形態のオーバヘッドセンサの構成の概念図である。
【図3】本発明の実施の第2形態にかかる車両検知装置の説明図であり、その全体斜視図である。
【図4】実施の第2形態のオーバヘッドセンサの構成の概念図である。
【図5】従来の光電管方式の車両検知装置の例の説明図であり、その全体斜視図である。
【図6】従来のオーバヘッド方式の車両検知装置の例の説明図であり、その全体斜視図である。
【符号の説明】
1 車両検知装置
2 ビーム
2a ビームA
2b ビームB
3、3’ オーバヘッドセンサ
4、4’ ガントリ
5、5’ コントローラ部
6、6’ 投受光部
7、7’ 画像処理部
8、8’ 投受光器
9、9’ 物体検知・距離計測回路
10 人工網膜アルゴリズム
10’ 画像処理回路
11 カメラ
11’ 広角レンズ付カメラ
20 車線
100 車両
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle detection apparatus at a tollgate on a highway, an entrance / exit of a toll parking lot, or the like.
[0002]
[Prior art]
At toll gates on expressways and entrances and exits of toll parking lots, the existence of passing vehicles is detected for toll billing, vehicle entry / exit management, etc., and the direction of travel, speed, dimensions, etc. are detected to select the vehicle type. A vehicle detection device for discrimination is installed.
[0003]
An example of a conventional photoelectric tube type vehicle detection device will be described with reference to FIG. FIG. 5 is a perspective view of a photoelectric tube type vehicle detection device. In the figure, vehicle separators 121 using photoelectric tubes are installed on both sides of the lane 120 so as to face each other, and a tread board is provided on the road surface of the lane 120. 122 is embedded.
[0004]
The vehicle 100 enters the lane 120 and the light emitted from one of the vehicle separators 121 and received by the other is blocked to detect the entry of the vehicle, and the tread 122 determines whether the vehicle 100 is moving forward or backward. The
[0005]
Such a vehicle detection device is further equipped with various auxiliary sensors, so that not only the vehicle 100 enters but also the vehicle type is determined.
[0006]
However, such a method using a phototube is applicable only when the vehicles 100 enter in a line in order like a toll gate, and a plurality of vehicles 100 like the main line of a highway are parallel. The application to the place where it passes through has a problem that the light beam for detection is not applicable because there is a state in which a plurality of vehicles are blocked simultaneously or continuously.
[0007]
An example of a conventional overhead vehicle detection device will be described with reference to FIG. FIG. 6 is a perspective view of the overhead type vehicle detection device. In the figure, a gantry 104 is installed above the lane 120 so as to cross the lane 120, and the gantry 104 is positioned directly above the lane 120. An overhead sensor 103 is installed.
[0008]
If the gantry 104 is installed across multiple lanes, the overhead sensor 103 is provided for each lane 120. Therefore, there are a plurality of lanes 120 and the highway main line or multiple gates where the vehicle 100 passes in parallel. It can also be applied to tollgates having a parking lot and entrances and exits of pay parking lots.
[0009]
The overhead sensor 103 irradiates a light beam (hereinafter referred to as “beam”) such as an LED (Light Emitting Diode) or a laser beam on the lane 120 from above the lane 120 and receives the reflected light. Thus, the presence of the vehicle 100 traveling in the lane 120 is detected. In this case, the two beams A102a and B102b before and after the lane 120 are directed from the upper lane toward the lane surface and across the lane. Irradiation is performed by scanning (scanning) in an extremely short cycle (for example, 2 or 3 milliseconds), and the traveling direction of the vehicle 100 is measured by the order in which the two beams A102a and B102b are blocked.
[0010]
In addition, the distance from the reflected light of the beam to the passing vehicle 100 is measured, the vehicle width, shape, and height of the vehicle are calculated, and the time difference between the two beams A102a and B102b is determined. The passing speed is calculated, and the vehicle length of the vehicle 100 is calculated from the result. The vehicle type can also be determined from the above-described various pieces of specification information of the vehicle 100.
[0011]
However, in the case of the overhead type vehicle detection device described above, the vehicle length measurement accuracy greatly depends on the vehicle passing speed, and the vehicle 100 travels at an extremely low speed, such as when there is a traffic jam, or when the vehicle 100 is stationary just below the overhead sensor 103. Etc., there is a principle drawback that the vehicle length measurement accuracy is greatly reduced.
[0012]
That is, in this vehicle length calculation method, the vehicle length is calculated by dividing the time of passing two beams by the vehicle speed on the assumption that the vehicle during the beam detection time moves at a constant speed. While traveling, there is generally little change in speed per hour and there is little time to pass through a certain section, so the amount of change in vehicle speed within that time is also small, so beam detection during high-speed driving, or at least during normal cruise driving Although it can be approximated that the vehicle 100 during the time moves at a substantially constant speed, the error increases when the vehicle speed change of the vehicle 100 during the beam detection time is large (it does not move at a constant speed).
[0013]
The case where the vehicle speed change of the vehicle 100 is large is a case where the vehicle 100 travels at an ultra-low speed, starts acceleration, decelerates, stops, or temporarily stops during a traffic jam or the like, as described above. Occurs at a certain speed or below). Therefore, it is necessary to take some measures against a significant drop in vehicle length measurement accuracy that is always possible at a certain speed or less.
[0014]
[Problems to be solved by the invention]
The present invention eliminates the drawbacks of the conventional vehicle detection device as described above, and can be applied to a case where there are a plurality of lanes and the vehicle passes in parallel. It is another object of the present invention to provide a vehicle detection device that can accurately measure the vehicle length.
[0015]
[Means for Solving the Problems]
(1) The present invention has been made to solve the above-mentioned problems. As a first means, the vehicle scans in the direction across the lane from above the lane to the lane for each lane through which the vehicle passes. A light projecting / receiving unit that irradiates a beam of light and detects the vehicle from the reflected light to measure the distance to the vehicle, and a camera that is provided on the lane and captures an image on the lane, and the image is captured by the camera An image processing unit having an artificial retina algorithm for processing a video and measuring a vehicle traveling direction and a vehicle speed in real time, and controlling the projecting / receiving unit and the image processing unit and measuring the same unit of time measured by the projecting / receiving unit configure the overhead sensor cross-sectional shape of the vehicle and a said controller unit a real-time vehicle speed measured by the image processing unit by using the vehicle length calculated by integrating with discriminates the vehicle It is intended to provide a vehicle detection apparatus according to claim.
[0016]
According to the above means, the present invention can be applied even when there are a plurality of lanes and the vehicle passes in parallel, and the vehicle speed of the vehicle can be measured in real time by an artificial retina algorithm regardless of the light projecting / receiving unit. The vehicle length can be calculated accurately regardless of the change.
[0017]
(2) As a second means, for each lane through which the vehicle passes, two beams that scan in the direction across the lane from above the lane to above the lane are irradiated before and after the lane, and the vehicle is reflected from the reflected light. Equipped with a light emitting and receiving unit that detects and measures the distance to the vehicle and the vehicle speed and calculates the vehicle length, and a wide-angle lens that is installed on the lane and can accommodate the entire shape of the vehicle passing through the lane An image processing unit having an image processing circuit for measuring the length of the vehicle by processing an image captured by the camera with the wide-angle lens instead of the light projecting / receiving unit when the vehicle speed of the vehicle is equal to or less than a certain speed; When the vehicle speed of the vehicle is higher than the constant speed, the vehicle length calculated by the light projector / receiver is used when the vehicle speed of the vehicle is lower than the constant speed. by using the vehicle length measured in the image processing unit There is provided a vehicle detection apparatus characterized by configuring the overhead sensor and a controller for performing determination of both.
[0018]
According to the second means, it can be applied even when there are a plurality of lanes and the vehicle passes in parallel, and the vehicle length of the vehicle is usually calculated from the result measured by the light projecting and receiving unit with two beams. However, the vehicle length can be measured by performing image processing on the video of the camera with a wide-angle lens at a certain speed or less of the same vehicle speed at which errors are likely to occur.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A vehicle detection apparatus according to a first embodiment of the present invention will be described based on FIG. 1 and FIG. FIG. 1 is a perspective view of an overhead-type vehicle detection device of the present embodiment, and FIG. 2 is a conceptual diagram of the configuration of the overhead sensor.
[0020]
As shown in FIG. 1, in the vehicle detection device 1 according to the present embodiment, an overhead sensor 3 is installed on a gantry 4 that extends over a lane 20 and is installed above the lane 20. Unlike the example, a single beam is projected onto the lane 20 below, the reflected light is received, and image processing using camera images is used in combination.
[0021]
As shown in FIG. 2, the overhead sensor 3 irradiates the beam 2 and detects the vehicle 100 from the reflected light, and measures the distance to the vehicle 100, and an image having an artificial retina algorithm. It comprises a processing unit 7 and a controller unit 5 that controls the light projecting / receiving unit 6 and the image processing unit 7 to comprehensively discriminate the vehicle.
[0022]
The light projecting / receiving unit 6 irradiates the vehicle 100 traveling on the lane 20 with the beam 2 and receives the reflected light thereof, and measures the distance from the reflected light of the beam to the passing vehicle 100, An object detection / distance measurement circuit 9 for calculating the shape recognition, vehicle width, and vehicle height of the vehicle 100 is provided.
[0023]
The beam 2 is irradiated onto the lane 20 from above the lane 20, and in this case, an extremely short cycle (for example, a few milliseconds) such that the beam 2 is directed from above the lane 20 toward the road surface of the lane and crosses the lane. The vehicle 100 that has been scanned and irradiated and passes through the lane 20 is always detected.
[0024]
The image processing unit 7 includes a camera 11 and includes an artificial retina algorithm 10 that processes the captured video. This artificial retina algorithm 10 does not recognize a video as a collection of pixels, but treats a certain cluster of pixels as an object and specializes in extracting movement of the cluster and a change amount of color, etc. Is to do.
[0025]
Note that such an artificial retina algorithm 10 itself has already been developed and sold as an image processing chip (IC) or module (substrate). Without the capacity memory, the image processing unit 7 can easily determine the moving direction of the vehicle 100 and the moving distance per unit time, that is, the vehicle speed.
[0026]
The artificial retina algorithm is generally not good at accurately recognizing the shape because of the small number of pixels, but is good at capturing the movement of the object. The vehicle speed can be measured and determined in real time.
[0027]
In the vehicle detection device of the present embodiment, the vehicle length of the vehicle 100 can be calculated with high accuracy by combining speed information measured in real time by the image processing unit 7 and the vehicle shape measured by the light projecting / receiving unit 6. Specifically, by integrating the cross-sectional shape of the vehicle 100 in the unit of equal time measured by the light projecting / receiving unit 6 using the real-time vehicle speed measured by the image processing unit 7, the vehicle speed is not required to be constant. Therefore, accurate vehicle shape recognition and vehicle length calculation are possible regardless of the vehicle speed.
[0028]
It should be noted that the light projecting / receiving unit 6, the image processing unit 7, and the controller unit 5 in the overhead sensor 3 do not have to be housed in a single unit as shown, and may be configured in separate units.
[0029]
Next, a vehicle detection apparatus according to a second embodiment of the present invention will be described based on FIGS. 3 and 4. FIG. 3 is a perspective view of the overhead-type vehicle detection device of the present embodiment, and FIG. 4 is a conceptual diagram of the configuration of the overhead sensor.
[0030]
As shown in FIG. 3, in the vehicle detection device 1 ′ of the present embodiment, as in the first embodiment, the overhead sensor 3 ′ is placed on the gantry 4 ′ that extends over the lane 20 and extends over the lane 20. However, unlike the first embodiment, the overhead sensor 3 ′ projects two beams to the lower lane 20 before and after the direction of the lane, and reflects the reflected light. It is a composite system that receives light and further uses image processing with a wide-angle camera image.
[0031]
As shown in FIG. 4, the overhead sensor 3 ′ of the present embodiment emits two beams A2a and B2b, detects the vehicle 100 from the reflected light, and determines the distance to the vehicle 100 and the vehicle speed. The vehicle 100 is comprehensively controlled by controlling the light projecting / receiving unit 6 ′ to measure, the image processing unit 7 ′ having the camera 11 ′ with the wide-angle lens and the image processing circuit 10 ′, the light projecting / receiving unit 6 ′, and the image processing unit 7 ′. And a controller unit 5 ′ for determining the above.
[0032]
The light projecting / receiving unit 6 ′ passes from the reflected light of the beam and the light projecting / receiving device 8 ′ that irradiates the vehicle 100 traveling in the lane 20 with the front and rear beams A2a and B2b and receives the reflected light. An object detection / distance measurement circuit 9 ′ that detects the vehicle 100, measures the distance to the vehicle 100, and calculates the shape recognition, vehicle width, and vehicle height of the vehicle 100 is provided.
[0033]
The two beams A2a and B2b are irradiated from above the lane 20 onto the lane 20, but each beam 2a, 2b is directed to the road surface of the lane from above the lane 20 and crosses the lane (for example, an extremely short cycle). 2 and 3 milliseconds), and the vehicle 100 passing through the lane 20 is surely detected.
[0034]
Further, the object detection / distance measurement circuit 9 ′, when the vehicle 100 passes at a high speed, passes the vehicle 100 from the time difference in which the passing vehicle 100 blocks the two beams A2a and B2b as in the above-described conventional example. The speed is calculated, and the vehicle length of the vehicle 100 is calculated from the result.
[0035]
However, in the present embodiment, an image processing unit 7 ′ is provided in order to compensate for a significant decrease in vehicle length measurement accuracy that may occur when the vehicle 100 is below a certain speed.
[0036]
The image processing unit 7 ′ includes a camera 11 ′ with a wide-angle lens and includes an image processing circuit 10 ′ that processes the captured video.
[0037]
The wide-angle lens-equipped camera 11 ′ can monitor a wide range of lanes 20, but the monitoring range of the wide-angle lens-equipped camera 11 ′ in the vehicle detection device 1 ′ of the present embodiment can be any range that passes through the lane 20. This is a range in which the entire shape of the vehicle type can be accommodated within the field of view.
[0038]
The image processing circuit 10 'is a general circuit configured by a memory that stores an image captured by the camera as a pixel, and a processor (such as a CPU) that extracts a vehicle from the pixel and measures the vehicle length. . Originally, in image processing, a high-speed CPU is required to process an image of a passing vehicle in real time. However, as will be described later, image processing can be performed more inexpensively by limiting the application of image processing to a certain speed or less. The circuit 10 ′ can be configured.
[0039]
The image processing unit 7 ′ only performs image processing of the vehicle 100 captured by the wide-angle lens-equipped camera 11 ′ only when the light projecting / receiving unit 6 ′ determines that the vehicle 100 is traveling at a constant speed or less. In this case, the image processing circuit 10 ′ measures the length of the vehicle.
[0040]
The image processing unit 7 ′ generally takes a processing time, but the function is applied without causing a problem by limiting the application to the case where the vehicle 100 is at a constant speed or less.
[0041]
Here, “below a certain speed” means that measurement is performed by a conventional light emitting / receiving unit 9 ′ by running at a very low speed, starting acceleration, decelerating / stopping, or temporarily stopping in a traffic jam as described above. In the speed range in which the vehicle length measurement accuracy may greatly decrease due to changes in vehicle speed, depending on the conditions of the expressway, parking lot entrance, etc., for example, “10 km / h or less”, etc. It is set in the controller unit 5 ′.
[0042]
From the above, when the vehicle 100 is below a certain speed in the specification information such as the vehicle shape, vehicle height, vehicle width and vehicle length measured by the light projecting / receiving unit 6 ′, the vehicle length measured by the image processing unit 7 ′. By supplementing information, the accuracy of vehicle length measurement is significantly improved. As a result, vehicle speed recognition and vehicle length calculation can be performed accurately regardless of the vehicle speed without requiring constant speed. It becomes.
[0043]
It should be noted that the light projecting / receiving unit 6 ′, the image processing unit 7 ′, and the controller unit 5 ′ in the overhead sensor 3 ′ may not be housed in one unit as shown in the figure, and may be configured as separate units. Also good.
[0044]
The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and it goes without saying that various modifications may be made within the scope of the present invention.
[0045]
【The invention's effect】
(1) As described above, according to the first aspect of the present invention, the vehicle detector is irradiated with one beam that scans in the direction crossing the lane from above the lane to the lane for each lane through which the vehicle passes, and its reflected light. A light projecting / receiving unit that detects the vehicle from the vehicle and measures the distance to the vehicle, a camera that is provided on the lane and that captures an image on the lane, and performs image processing on the image captured by the camera and the traveling direction of the vehicle And an image processing unit having an artificial retina algorithm for measuring the vehicle speed in real time, the light projecting / receiving unit and the image processing unit are controlled, and the cross-sectional shape of the vehicle in equal time units measured by the light projecting / receiving unit is since so as to constitute the overhead sensor and a controller for performing determination of the vehicle using the vehicle length calculated by integrating with the real-time vehicle speed measured by the image processing unit, lane are several It can be applied even when both of them pass in parallel, and the vehicle speed of the vehicle can be measured in real time with an artificial retina algorithm regardless of the light projecting / receiving unit, so the measured vehicle speed regardless of the vehicle speed and its change. Based on this, an accurate vehicle length can be obtained.
[0046]
(2) Further, according to the invention of claim 2, the vehicle detection device irradiates two beams for scanning in the direction crossing the lane from above the lane to the lane for each lane through which the vehicle passes. A light projecting / receiving unit that detects the vehicle from the reflected light and measures the distance to the vehicle and the vehicle speed of the vehicle to calculate the vehicle length; and the entire shape of the vehicle that is provided on the lane and passes through the lane. When the vehicle speed of the vehicle with the wide-angle lens stored in the field of view is below a certain speed, the image taken by the camera with the wide-angle lens instead of the light projecting / receiving unit is processed to measure the vehicle length of the vehicle An image processing unit having a processing circuit, the light projecting / receiving unit, and the image processing unit are controlled . When the vehicle speed of the vehicle is higher than the constant speed, the vehicle length calculated by the light projecting / receiving unit is used. When the vehicle speed is less than the predetermined speed, the image processing unit Since so as to constitute the overhead sensor and a controller for performing determination of the vehicle using the vehicle length measured, can also be applied when lane where multiple there vehicle passes in parallel, and the vehicle The vehicle length is usually calculated from the result measured by the light projecting and receiving unit with two beams. When the vehicle speed is below a certain speed, the image of the camera with a wide-angle lens is processed to measure the vehicle length. Regardless of the exact car length is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a vehicle detection device according to a first embodiment of the present invention, and is an overall perspective view thereof.
FIG. 2 is a conceptual diagram of a configuration of an overhead sensor according to the first embodiment.
FIG. 3 is an explanatory view of a vehicle detection device according to a second embodiment of the present invention, and is an overall perspective view thereof.
FIG. 4 is a conceptual diagram of a configuration of an overhead sensor according to a second embodiment.
FIG. 5 is an explanatory view of an example of a conventional photoelectric tube type vehicle detection device, and is an overall perspective view thereof.
FIG. 6 is an explanatory diagram of an example of a conventional overhead vehicle detection device, and is an overall perspective view thereof.
[Explanation of symbols]
1 Vehicle detection device 2 Beam 2a Beam A
2b Beam B
3, 3 'overhead sensor 4, 4' gantry 5, 5 'controller unit 6, 6' light emitting / receiving unit 7, 7 'image processing unit 8, 8' light emitting / receiving unit 9, 9 'object detection / distance measuring circuit 10 artificial Retina algorithm 10 'Image processing circuit 11 Camera 11' Camera with wide-angle lens 20 Lane 100 Vehicle

Claims (2)

車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査する1本のビームを照射しその反射光から前記車両を検知して同車両までの距離を計測する投受光部と、同車線上に設けられ同車線上の映像を撮像するカメラと同カメラで撮像した映像を画像処理し車両の進行方向と車速をリアルタイムで計測する人工網膜アルゴリズムとを有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記投受光部で計測した等時間単位の前記車両の横断面形状を前記画像処理部で計測したリアルタイムの車速を用いて積分することで算出した車長を用いて前記車両の判別を行なうコントローラ部とを備えてオーバヘッドセンサを構成することを特徴とする車両検知装置。A light projecting / receiving unit that irradiates one beam that scans in the direction across the lane from above the lane to the lane for each lane that the vehicle passes, and detects the vehicle from the reflected light to measure the distance to the vehicle; An image processing unit having an artificial retina algorithm that is provided on the lane and images a video captured on the lane and processes the image of the image captured by the camera and measures the vehicle traveling direction and vehicle speed in real time ; A vehicle calculated by controlling the light projecting / receiving unit and the image processing unit and integrating the cross-sectional shape of the vehicle in equal time units measured by the light projecting / receiving unit using the real-time vehicle speed measured by the image processing unit. A vehicle detection apparatus comprising: a controller unit for determining the vehicle using a length; and an overhead sensor. 車両の通過する車線毎に同車線上方から車線上へ車線を横切る方向に走査するビームを同車線方向前後に2本照射しその反射光から前記車両を検知して同車両までの距離と同車両の車速を計測し車長を算出する投受光部と、前記車線上に設けられ同車線を通過する車両の全形を視野内に収められる広角レンズ付カメラと同車両の車速が一定速度以下の場合は前記投受光部に代わり同広角レンズ付カメラで撮像した映像を画像処理して同車両の車長を計測する画像処理回路を有する画像処理部と、前記投受光部と前記画像処理部を制御し、前記車両の車速が前記一定速度より高速の場合は前記投受光部の算出した車長を用い、前記車両の車速が前記一定速度以下の場合は前記画像処理部の計測した車長を用いて車両の判別を行なうコントローラ部とを備えたオーバヘッドセンサを構成することを特徴とする車両検知装置。For each lane that the vehicle passes, irradiate two beams that scan in the direction across the lane from above the lane to the lane, and detect the vehicle from the reflected light to detect the vehicle and the distance to the vehicle. A light emitting / receiving unit that measures the vehicle speed of the vehicle and calculates the vehicle length; a camera with a wide angle lens that is provided on the lane and that can be accommodated within the field of view of the entire shape of the vehicle passing through the lane; In this case, instead of the light projecting / receiving unit, an image processing unit having an image processing circuit for measuring the length of the vehicle by processing an image captured by the camera with the wide-angle lens, the light projecting / receiving unit, and the image processing unit When the vehicle speed of the vehicle is higher than the constant speed, the vehicle length calculated by the light projecting / receiving unit is used, and when the vehicle speed of the vehicle is equal to or lower than the constant speed, the vehicle length measured by the image processing unit is used. controller for discriminating the vehicle using Vehicle detection apparatus characterized by configuring the overhead sensor with and.
JP26371299A 1999-09-17 1999-09-17 Vehicle detection device Expired - Lifetime JP4052415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26371299A JP4052415B2 (en) 1999-09-17 1999-09-17 Vehicle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26371299A JP4052415B2 (en) 1999-09-17 1999-09-17 Vehicle detection device

Publications (2)

Publication Number Publication Date
JP2001093081A JP2001093081A (en) 2001-04-06
JP4052415B2 true JP4052415B2 (en) 2008-02-27

Family

ID=17393278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26371299A Expired - Lifetime JP4052415B2 (en) 1999-09-17 1999-09-17 Vehicle detection device

Country Status (1)

Country Link
JP (1) JP4052415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176685B2 (en) 2012-11-30 2015-11-03 Casio Electronics Manufacturing Co., Ltd. Color converting apparatus and color converting method for designated-color printing, and computer readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176685B2 (en) 2012-11-30 2015-11-03 Casio Electronics Manufacturing Co., Ltd. Color converting apparatus and color converting method for designated-color printing, and computer readable recording medium

Also Published As

Publication number Publication date
JP2001093081A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US6212468B1 (en) System for optically detecting vehicles traveling along the lanes of a road
US6823261B2 (en) Monitor system of vehicle outside and the method thereof
US6195019B1 (en) Vehicle classifying apparatus and a toll system
JP3240839B2 (en) Vehicle width measuring device
US6834254B2 (en) Monitor system of vehicle outside and the method thereof
JPH11203588A (en) Vehicle type discriminating device
JP4076196B2 (en) Vehicle width measuring method and apparatus
WO2016143750A1 (en) Vehicle parameter measurement device, vehicle type determination device, vehicle parameter measurement method, and program
JP4544698B2 (en) Vehicle type identification method and apparatus
US6937375B2 (en) Scanning device
JPH11224397A (en) Vehicle measurement device
JPH11120480A (en) Vehicle characteristic extracting device and method therefor
JPH08293090A (en) Axle detector, body kind discriminating device, vehicle gate system, and vehicle detector
JP6979350B2 (en) Vehicle detection device, vehicle detection system, vehicle detection method and vehicle detection program
JP3606032B2 (en) Axle detection device and passage fee calculation device
JP4036119B2 (en) Vehicle detection device and vehicle detection method
JP4052415B2 (en) Vehicle detection device
JP4120430B2 (en) Object discrimination device
JP4033005B2 (en) Obstacle detection device for vehicle
KR102058179B1 (en) Automatic traffic enforcement system using laser signal
JPH10105868A (en) Vehicle measuring device/method
JP2003281686A (en) Distance image sensor and vehicle type distinguishing device
JP3351184B2 (en) Axis number detection device and vehicle width detection device
JPH05143887A (en) Traffic flow measuring instrument
JPH10293897A (en) Vehicle shape discrimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4052415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term