JP4051857B2 - Method for producing finely powdered calcium carbonate - Google Patents

Method for producing finely powdered calcium carbonate Download PDF

Info

Publication number
JP4051857B2
JP4051857B2 JP2000116164A JP2000116164A JP4051857B2 JP 4051857 B2 JP4051857 B2 JP 4051857B2 JP 2000116164 A JP2000116164 A JP 2000116164A JP 2000116164 A JP2000116164 A JP 2000116164A JP 4051857 B2 JP4051857 B2 JP 4051857B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
calcium carbonate
particles
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000116164A
Other languages
Japanese (ja)
Other versions
JP2001302237A (en
Inventor
邦夫 加藤
雲義 劉
潔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshizawa Lime Industry Co Ltd
Original Assignee
Yoshizawa Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshizawa Lime Industry Co Ltd filed Critical Yoshizawa Lime Industry Co Ltd
Priority to JP2000116164A priority Critical patent/JP4051857B2/en
Publication of JP2001302237A publication Critical patent/JP2001302237A/en
Application granted granted Critical
Publication of JP4051857B2 publication Critical patent/JP4051857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微粉末炭酸カルシウムの製造方法に関する。
【0002】
【従来の技術】
サブミクロンから数10μmの範囲の粒度を有する微粉末炭酸カルシウムは、紙やプラスチック、ゴムなどへの充填剤として有用であり、インクや塗料の材料としても用途がある。また、脱硫・脱塩素剤としても使用されている。
【0003】
この種の微粉末炭酸カルシウムは、従来、液相沈殿法により製造されている。液相沈殿法は、まず石灰石CaCO3を焼成して生石灰CaOを得、この生石灰を消化して消石灰Ca(OH)2とし、その希薄溶液中にCO2を吹き込んで、再びCaCO3とするものである。この方法は、技術的にはすでに確立されているが、多段階にわたる工程と大規模な製造設備とを必要とし、製品の粒度のコントロールには、さまざまな困難がある。たとえば、ごく微細な粉末を製造しようとすると、沈殿操作に長い時間がかかるという問題もある。したがって、少ない工程と簡易な装置で、かつコントロールが容易なやり方で、微粉末炭酸カルシウムを製造できるようにすることが望ましい。
【0004】
発明者の一人は、さきに、共同研究者とともに、流動層を利用した微粉末消石灰の製造方法を発明し、すでに開示した(特開平9−268012号)。その方法は、不活性物質たとえばシリカサンドの、粒度範囲100〜1500μmで粒度分布の狭いものを、加熱されたガスで流動化させて温度30〜300℃の一定温度の流動層を形成し、そこへ粒度50μm以下の消石灰粉末を水に分散させたスラリーを供給することからなり、スラリーの乾燥により、微粉末状の消石灰を得るものである。
【0005】
その後の研究により、発明者らは、この流動層を利用する消石灰スラリーの乾燥にあたり、CO2を含有するガスを流動層形成に使用するとき、消石灰がガス中のCO2と速やかに反応して、微粉末の炭酸カルシウムとなることを知った。
【0006】
【発明が解決しようとする課題】
本発明の目的は、発明者らが得たこの新しい知見を活用し、流動層を利用した新規で簡易な微粉末炭酸カルシウムの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の微粉末炭酸カルシウム製造する方法は、CO2を含んだ加熱ガスを供給し、ガスの流れにより不活性物質の媒体粒子を流動化して流動層を形成し、この流動層に、水酸化カルシウムを水に分散したスラリーを供給し、媒体粒子の表面において水スラリーの水分を蒸発させて乾燥するとともに、水酸化カルシウムとガス中のCO2とを反応させて炭酸カルシウムとし、媒体粒子の表面から離脱した炭酸カルシウムの乾燥粉末をガスの流れに乗せて運び去り、固・気分離手段により回収することからなり、流動層内の温度と、流動層を去るガスの飽和温度との差として定義される「飽和接近度」が10〜83℃の範囲となるように反応条件を選択して実施する製造方法である
【0008】
【発明の実施形態】
流動層を形成する不活性物質の媒体粒子としては、シリカサンド、川砂、アルミナ粒子、ジルコニア粒子、ガラスビーズおよび石灰石粒子からえらんだ、流動時の衝突によって摩耗することが少ないものが好ましい。流動層は、ガス分散板を使用しない噴流型流動層が有利であるが、もちろん、ガス分散板をそなえた通常の流動層を用いてもよい。
【0009】
流動層内の温度を、流動層を流出するガスの露点つまり飽和温度に対して適切な値になるように、流動化ガスの温度および供給速度、水スラリーの温度および供給速度を調節して操業することが推奨される。この、流動層内の温度とガスの飽和温度との差を「飽和接近度」(approach to saturation temperature)と称する。
【0010】
本発明の方法においては、流動層へ水酸化カルシウムを含むスラリーを供給すると、スラリーは激しく流動している媒体粒子の表面に付着し、層内に均一に分散する。このため、全体としては広い面積となる媒体粒子の表面において、スラリーの乾燥と、ガス中のCO2との反応が同時に起こり、短時間で炭酸カルシウムの生成が行なわれる。
【0011】
このような機構のもとでは、流動層内の温度とガスの露点との間にどのくらいの差があるか、つまり上記の飽和接近度がどの程度であるか、が重要である。飽和接近度が小さいと、流動層内でのスラリーの乾燥速度が遅くなるため、上記した微粉末状のCaCO3の生成が起こりやすくなるとともに、微粒子状の水酸化カルシウムの層内滞留時間も長くなるので、高い効率をもって炭酸カルシウムの生成が実現する。ところが、流動層の温度が低すぎると、水分の蒸発が不十分となり、媒体粒子表面に付着したスラリーがバインダーのように作用して媒体粒子どうしを固着させてしまい、流動層の維持が困難になる。この兼ね合いから、飽和接近度には自ずから好適範囲がある。
【0012】
生成した炭酸カルシウムは、ガスの流れに乗って流動層を去り、バグフィルターまたはサイクロン+バグフィルターのような固・気分離装置により分離回収される。
【0013】
供給された消石灰の炭酸カルシウムへの転化率を決定する因子は、上述の飽和接近度のほか、スラリー中の水酸化カルシウムの粒子径、反応温度つまり流動層内の温度、ガス中の炭酸ガス濃度、流動層内のガスの平均滞留時間などである。
【0014】
【実施例】
図1に示す構成の実験装置を組み立てた。装置の主要部は、媒体粒子の流動層を内部に形成する反応器(9)であり、この反応器は、PPSB(粉末粒子スパウテッド型流動層反応器)タイプである。反応器の内径は104mm、高さは1mで、ガス入り口は、内径28mm、コーンの角度45度である。
【0015】
流動層形成用のガス混合物は、炭酸ガスボンベ(7)からのCO2を、空気と混合することにより用意し、予熱器(8)で所定の温度に加熱した。空気は、コンプレッサー(1)で加圧され、オイルフィルター(2)およびバルブ(3)を通ったのち、シリカゲル塔(5)で乾燥されて、反応器に入る。空気の流量はオリフィス(4)で、CO2の流量はロータメーター(6)で測定した。
【0016】
消石灰の水スラリーは、スラリータンク(11)にたくわえた。反応器へは、チューブポンプ(12)通して供給した。温度の制御は、PIDコントローラ(13)で行なった。流動層を形成する不活性物質の粒子には、径850μmのガラスビーズを使用した。
【0017】
原料として、径5μmの生石灰粉末を使用した。反応器から出た製品炭酸カルシウムは、バグフィルター(10)で捕集した。反応器の操業条件としてつぎの事項を一定にし、
水対生石灰比 24.6
ガス空塔速度 75cm/s
入口温度 130℃
静止層高さ 88mm
ガス中のCO2濃度を、容積で2.7%または5.4%に選び、「飽和接近度」を10〜83の範囲で変化させて、Ca(OH)2からCaCO3への転化率を測定した。
【0018】
結果は、図2のグラフに示すとおりで、転化率は、ガス中の濃度を高いほど、また飽和接近度が小さい方が高くなる。得られた炭酸カルシウムの粒度は、1.23〜1.88μmの範囲にあり、その比表面積は15〜25m2/gの範囲にあった。転化率は87%。この微粉末炭酸カルシウムは、脱硫・脱塩素用吸収剤に要求される特性を備えていた。
【0019】
【発明の効果】
本発明により、きわめて微細な粒度の炭酸カルシウムの粉末を、流動層反応器を用いて、コントロールの容易な操業条件下に製造することができる。Ca(OH)2からCaCO3への転化率は、条件の選択により、たとえばCO2濃度を高めることにより、向上させることができる。この方法によれば、液相沈殿法のように大規模な装置を必要とせず、少ない工程で、簡単に微粉末炭酸カルシウムを製造することができる。
【図面の簡単な説明】
【図1】 本発明の製造方法を実施した実験装置の構成を示す、概念的な縦断面図。
【図2】 図1の装置を使用して行なった実験のデータであって、「飽和接近度」と転化率との関係を示すグラフ。
【符号の説明】
1 コンプレッサー 2 オイルフィルター
3 バルブ 4 オリフィス
5 シリカゲル塔 6 ロータメーター
7 炭酸ガスボンベ 8 予熱器
9 粉末粒子スパウテッド型流動層反応器
10 バグフィルター 11 スラリータンク
12 チューブポンプ 13 PIDコントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing finely powdered calcium carbonate.
[0002]
[Prior art]
Fine powder calcium carbonate having a particle size in the range of submicron to several tens of μm is useful as a filler for paper, plastic, rubber and the like, and is also used as a material for ink and paint. It is also used as a desulfurization / dechlorination agent.
[0003]
This type of finely powdered calcium carbonate is conventionally produced by a liquid phase precipitation method. In the liquid phase precipitation method, first, limestone CaCO 3 is calcined to obtain quick lime CaO, this quick lime is digested to obtain slaked lime Ca (OH) 2, and CO 2 is blown into the dilute solution to make CaCO 3 again. It is. Although this method has already been established technically, it requires a multi-step process and a large-scale manufacturing facility, and there are various difficulties in controlling the product granularity. For example, when trying to produce a very fine powder, there is also a problem that the precipitation operation takes a long time. Therefore, it is desirable to be able to produce finely powdered calcium carbonate in a manner that is easy to control with few steps and simple equipment.
[0004]
One of the inventors, together with a collaborator, invented a method for producing fine powdered slaked lime using a fluidized bed and has already disclosed it (Japanese Patent Laid-Open No. 9-268012). In the method, an inert substance such as silica sand having a particle size range of 100 to 1500 μm and a narrow particle size distribution is fluidized with a heated gas to form a fluidized bed having a constant temperature of 30 to 300 ° C. The slurry consists of supplying a slurry in which slaked lime powder having a particle size of 50 μm or less is dispersed in water, and finely powdered slaked lime is obtained by drying the slurry.
[0005]
Through subsequent research, the inventors have found that when slaked lime slurry using this fluidized bed is dried, when a gas containing CO 2 is used for fluidized bed formation, the slaked lime reacts quickly with CO 2 in the gas. Knew that it would be a fine powder of calcium carbonate.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a new and simple method for producing finely powdered calcium carbonate using a fluidized bed by utilizing the new knowledge obtained by the inventors.
[0007]
[Means for Solving the Problems]
In the method for producing finely powdered calcium carbonate of the present invention, a heated gas containing CO 2 is supplied, and fluid particles are formed by fluidizing inert medium particles by the gas flow. A slurry in which calcium oxide is dispersed in water is supplied, and water in the water slurry is evaporated and dried on the surface of the medium particles. At the same time, calcium hydroxide and CO 2 in the gas are reacted to form calcium carbonate. the dry powder of calcium carbonate that has left from the surface to carry away put the flow of gas, Ri Do from be recovered by solid-gas separating means, the difference between the temperature of the fluidized bed, the saturation temperature of the gas leaving the fluidized bed It is the manufacturing method implemented by selecting reaction conditions so that the "saturation approach degree" defined as may become the range of 10-83 degreeC .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As the medium particles of the inert substance that forms the fluidized bed, those that are selected from silica sand, river sand, alumina particles, zirconia particles, glass beads, and limestone particles and that are less likely to wear due to collision during flow are preferable. The fluidized bed is advantageously a jet type fluidized bed that does not use a gas dispersion plate, but of course, a normal fluidized bed having a gas dispersion plate may be used.
[0009]
The fluidized gas temperature and supply rate, water slurry temperature and supply rate are adjusted so that the temperature in the fluidized bed is appropriate for the dew point or saturation temperature of the gas flowing out of the fluidized bed. It is recommended to do. This difference between the temperature in the fluidized bed and the gas saturation temperature is referred to as “approach to saturation temperature”.
[0010]
In the method of the present invention, when a slurry containing calcium hydroxide is supplied to the fluidized bed, the slurry adheres to the surface of the vigorously flowing medium particles and is uniformly dispersed in the layer. For this reason, the drying of the slurry and the reaction with CO 2 in the gas occur simultaneously on the surface of the medium particles having a large area as a whole, and calcium carbonate is generated in a short time.
[0011]
Under such a mechanism, what is the difference between the temperature in the fluidized bed and the gas dew point, that is, the degree of saturation approach is important. When the degree of saturation approach is small, the drying rate of the slurry in the fluidized bed becomes slow, so that the above-mentioned fine powdery CaCO 3 is likely to be produced, and the residence time in the layer of fine particle calcium hydroxide is also long. Therefore, the production of calcium carbonate is realized with high efficiency. However, if the temperature of the fluidized bed is too low, the evaporation of moisture becomes insufficient, and the slurry adhering to the surface of the media particles acts like a binder to fix the media particles, making it difficult to maintain the fluidized bed. Become. From this balance, the saturation approach degree naturally has a preferable range.
[0012]
The produced calcium carbonate rides on the gas flow, leaves the fluidized bed, and is separated and recovered by a solid / gas separation device such as a bag filter or a cyclone + bag filter.
[0013]
Factors that determine the conversion rate of supplied slaked lime into calcium carbonate include the above-mentioned saturation approach, the particle size of calcium hydroxide in the slurry, the reaction temperature, that is, the temperature in the fluidized bed, the concentration of carbon dioxide in the gas And the average residence time of the gas in the fluidized bed.
[0014]
【Example】
An experimental apparatus having the configuration shown in FIG. 1 was assembled. The main part of the apparatus is a reactor (9) in which a fluidized bed of medium particles is formed, and this reactor is a PPSB (powder particle spouted fluidized bed reactor) type. The inner diameter of the reactor is 104 mm, the height is 1 m, the gas inlet has an inner diameter of 28 mm, and the cone angle is 45 degrees.
[0015]
A gas mixture for forming a fluidized bed was prepared by mixing CO 2 from a carbon dioxide gas cylinder (7) with air and heated to a predetermined temperature by a preheater (8). The air is pressurized by the compressor (1), passes through the oil filter (2) and the valve (3), is then dried by the silica gel column (5) and enters the reactor. The flow rate of air was measured with an orifice (4), and the flow rate of CO 2 was measured with a rotameter (6).
[0016]
The slaked lime water slurry was stored in the slurry tank (11). The reactor was fed through a tube pump (12). The temperature was controlled by the PID controller (13). Glass particles having a diameter of 850 μm were used as the inert substance particles forming the fluidized bed.
[0017]
A quicklime powder having a diameter of 5 μm was used as a raw material. The product calcium carbonate from the reactor was collected with a bag filter (10). Make the following items constant as the operating conditions of the reactor,
Water to quicklime ratio 24.6
Gas superficial velocity 75cm / s
Inlet temperature 130 ° C
Static layer height 88mm
Conversion rate from Ca (OH) 2 to CaCO 3 by selecting the CO 2 concentration in the gas as 2.7% or 5.4% by volume and changing the “saturation proximity” in the range of 10 to 83 Was measured.
[0018]
The result is as shown in the graph of FIG. 2, and the conversion rate increases as the concentration in the gas increases and the degree of saturation approach decreases. The particle size of the obtained calcium carbonate was in the range of 1.23-1.88 μm, and the specific surface area was in the range of 15-25 m 2 / g. Conversion is 87%. This finely powdered calcium carbonate had characteristics required for an absorbent for desulfurization / dechlorination.
[0019]
【The invention's effect】
According to the present invention, calcium carbonate powder having a very fine particle size can be produced using a fluidized bed reactor under operating conditions that are easy to control. The conversion rate from Ca (OH) 2 to CaCO 3 can be improved by selecting the conditions, for example, by increasing the CO 2 concentration. According to this method, a fine powder calcium carbonate can be easily produced with few steps without requiring a large-scale apparatus unlike the liquid phase precipitation method.
[Brief description of the drawings]
FIG. 1 is a conceptual longitudinal sectional view showing a configuration of an experimental apparatus in which a manufacturing method of the present invention is implemented.
FIG. 2 is a graph showing the relationship between the “saturation approach degree” and the conversion rate, which is data of an experiment performed using the apparatus of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Oil filter 3 Valve 4 Orifice 5 Silica gel tower 6 Rotor meter 7 Carbon dioxide gas cylinder 8 Preheater 9 Powder particle spouted fluidized bed reactor 10 Bag filter 11 Slurry tank 12 Tube pump 13 PID controller

Claims (3)

微粉末炭酸カルシウムを製造する方法であって、CO2を含んだ加熱ガスを供給し、ガスの流れにより不活性物質の媒体粒子を流動化して流動層を形成し、この流動層に、水酸化カルシウムを水に分散したスラリーを供給し、媒体粒子の表面において水スラリーの水分を蒸発させて乾燥するとともに、水酸化カルシウムとガス中のCO2とを反応させて炭酸カルシウムとし、媒体粒子の表面から離脱した炭酸カルシウムの乾燥粉末をガスの流れに乗せて運び去り、固・気分離手段により回収することからなり、流動層内の温度と、流動層を去るガスの飽和温度との差として定義される「飽和接近度」が10〜83℃の範囲となるように反応条件を選択して実施する製造方法。 A method for producing finely powdered calcium carbonate , comprising supplying a heated gas containing CO 2 , fluidizing inert medium particles by a gas flow to form a fluidized bed, and A slurry in which calcium is dispersed in water is supplied, and moisture in the water slurry is evaporated and dried on the surface of the medium particles. At the same time, calcium hydroxide reacts with CO 2 in the gas to form calcium carbonate. the dry powder leaving the calcium carbonate from the carry away put the flow of gas, Ri Do from be recovered by solid-gas separation means, and the temperature of the fluidized layer, as the difference between the saturation temperature of the gas leaving the fluidized bed A production method which is carried out by selecting reaction conditions so that the defined “saturation approach” is in the range of 10 to 83 ° C. 流動層を形成する不活性物質の媒体粒子として、シリカサンド、川砂、アルミナ粒子、ジルコニア粒子、ガラスビーズおよび石灰石粒子からえらんだものを使用する請求項1の製造方法。The production method according to claim 1, wherein the medium particles of the inert substance forming the fluidized bed are selected from silica sand, river sand, alumina particles, zirconia particles, glass beads and limestone particles. 流動層として、ガス分散板を用いない噴流型流動層を採用した請求項1の製造方法。The manufacturing method of Claim 1 which employ | adopted the jet type fluidized bed which does not use a gas dispersion plate as a fluidized bed.
JP2000116164A 2000-04-18 2000-04-18 Method for producing finely powdered calcium carbonate Expired - Fee Related JP4051857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116164A JP4051857B2 (en) 2000-04-18 2000-04-18 Method for producing finely powdered calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116164A JP4051857B2 (en) 2000-04-18 2000-04-18 Method for producing finely powdered calcium carbonate

Publications (2)

Publication Number Publication Date
JP2001302237A JP2001302237A (en) 2001-10-31
JP4051857B2 true JP4051857B2 (en) 2008-02-27

Family

ID=18627659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116164A Expired - Fee Related JP4051857B2 (en) 2000-04-18 2000-04-18 Method for producing finely powdered calcium carbonate

Country Status (1)

Country Link
JP (1) JP4051857B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1015841A3 (en) * 2003-12-24 2005-10-04 Lhoist Rech & Dev Sa POWDER COMPOSITION BASED COMPOUND CALCO-magnesium.
JP2008100195A (en) * 2006-10-20 2008-05-01 Sumitomo Chemical Co Ltd Inspection method of multi-tubular reactor and maintenance method of multi-tubular reactor
CN105836781B (en) * 2016-06-02 2017-09-05 湖南化工职业技术学院 A kind of carbonization-activation integrated apparatus and method for producing nano-calcium carbonate
CN107019926B (en) * 2016-11-27 2019-06-04 中国药科大学 A kind of gas scoreboard and inert particle fluidized-bed dryer

Also Published As

Publication number Publication date
JP2001302237A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
CN101896558B (en) Method for post-treating carbon black
CA2302785C (en) Process and apparatus for preparing precipitated calcium carbonate
EP3401596B1 (en) Continuous filtering system comprising a moving bed particle layer with adjustable thickness of filtering layer
ZA200505912B (en) Method and plant for removing gaseous pollutants from exhaust gases
JPH0351459B2 (en)
Ma et al. Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed
JPS58119341A (en) Catalyst carrier
KR100226990B1 (en) Apparatus for continuously supplying fine powder in minute and quantitative amounts
JPS59166229A (en) Method and device for removing sulfur dioxide from hot flue gas
CN106587125A (en) Preparation method for light calcium carbonate
JP4051857B2 (en) Method for producing finely powdered calcium carbonate
Imani et al. A novel, green, cost-effective and fluidizable SiO2-decorated calcium-based adsorbent recovered from eggshell waste for the CO2 capture process
JP2006511326A (en) Method and equipment for transporting fine solids
CN109046187A (en) A kind of gas-solid fluidized bed reactor of high inflation rate, the method and its application for realizing high inflation rate in a fluidized bed
JPH03124772A (en) Treatment of carbon black
JPS6090026A (en) Semi-dry sox removal in vortex reactor
US5122348A (en) Method of slurrying partially calcined alumina dust
JPH09268013A (en) Production of fine powder slaked lime by utilizing fluidized bed
KR101757414B1 (en) Method for continuous preparation of metal oxide particles
JPH09268012A (en) Production of fine powder slaked lime by utilizing fluidized bed
JPH0262483B2 (en)
WO2019079227A1 (en) Multi-batch process for generating precipitated calcium carbonate
JPH02102730A (en) Production of multiple fine powdery material
US20230140807A1 (en) Method and Apparatus for Producing Core-Shell Calcium Hydroxide-Calcium Carbonate Particles
Nakazato et al. Semi-dry process for production of very fine calcium carbonate powder by a powder-particle spouted bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees