JP4051694B2 - Door device in heat treatment furnace - Google Patents

Door device in heat treatment furnace Download PDF

Info

Publication number
JP4051694B2
JP4051694B2 JP32548398A JP32548398A JP4051694B2 JP 4051694 B2 JP4051694 B2 JP 4051694B2 JP 32548398 A JP32548398 A JP 32548398A JP 32548398 A JP32548398 A JP 32548398A JP 4051694 B2 JP4051694 B2 JP 4051694B2
Authority
JP
Japan
Prior art keywords
gate valve
door device
gate
heat treatment
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32548398A
Other languages
Japanese (ja)
Other versions
JP2000146453A (en
Inventor
英明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP32548398A priority Critical patent/JP4051694B2/en
Publication of JP2000146453A publication Critical patent/JP2000146453A/en
Application granted granted Critical
Publication of JP4051694B2 publication Critical patent/JP4051694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は熱処理炉における扉装置に関する。金属材料やセラミックス材料等の被処理材の熱処理に、雰囲気炉、真空炉、これらのバッチ炉或は連続炉等、各種の熱処理炉が使用されている。これらの熱処理炉には、被処理材を熱処理するための一つ或は二つ以上の処理室が形成されており、該処理室には被処理材を装入、装出或は移送するための開口部が設けられていて、該開口部にはこれを密閉して処理室を所定の雰囲気ガス、圧力或は温度下に保持するための扉装置が装備されている。本発明はかかる扉装置の改良に関する。
【0002】
【従来の技術】
従来、上記のような扉装置として、シリンダと、そのシリンダロッド端にリンク機構を介して取り付けられた第1仕切弁及び第2仕切弁と、これらの第1仕切弁及び第2仕切弁を収容する加圧室とを備えて成るものが提案されている(特開昭63−161114)。この扉装置は、シリンダロッドを下降させて第1仕切弁及び第2仕切弁を処理室の開口部よりも下部に設けられたストッパに当接するまで下降させた後、更にシリンダロッドを下降させてリンク機構を介し第1仕切弁及び第2仕切弁を左右に押し広げて処理室の開口部周縁に当接させ、この状態で加圧室に加圧用ガスを送入して該加圧室の圧力を処理室の圧力よりも高くすることにより、第1仕切弁及び第2仕切弁を処理室の開口部周縁に密着させて該開口部を密閉するというものである。ところが、かかる従来の扉装置には、シリンダ機構により単に第1仕切弁及び第2仕切弁を昇降させるだけでなく、これらをリンク機構を介し左右に押し広げて処理室の開口部周縁に当接させるため、構造が複雑で、動作不良を生じ易く、シリンダも含めて装置全体が大型であり、また第1仕切弁及び第2仕切弁を収容する加圧室に加圧用ガスを送入して該加圧室の圧力を処理室の圧力よりも高くするため、大量の加圧用ガスが必要である等、多くの問題がある。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来の扉装置では、構造が複雑である、動作不良を生じ易い、全体が大型である、大量の加圧用ガスが必要である、という点である。
【0004】
【課題を解決するための手段】
上記の課題を解決する本発明は、熱処理炉における処理室の開口部を密閉するための扉装置であって、該開口部に対し昇降可能に装備された第1仕切弁と、該第1仕切弁との間のシール性を保ちつつ該第1仕切弁に対し進退可能に係合された第2仕切弁と、双方の仕切弁で囲まれる密閉室に接続された加圧手段及び/又は減圧手段とを備え、該加圧手段及び/又は該減圧手段で該密閉室内の圧力を変えることにより該第1仕切弁と該第2仕切弁との被処理材移送方向の間隔を可変としたことを特徴とする熱処理炉における扉装置に係る。
【0005】
本発明に係る扉装置も熱処理炉における処理室の開口部を密閉するためのもので、その扉は、処理室の開口部が被処理材を該処理室へ装入するための装入口である場合には装入扉として、また処理室の開口部が処理材を該処理室から装出するための装出口である場合には装出扉として、更に処理室の開口部が被処理材を一つの処理室からこれに隣接する他の処理室へ移送するための移送口である場合には中間扉として使用される。
【0006】
本発明に係る扉装置は、処理室の開口部に対し昇降可能に装備された第1仕切弁と、該第1仕切弁との間のシール性を保ちつつ該第1仕切弁に対し進退可能に係合された第2仕切弁と、双方の仕切弁で囲まれる密閉室に接続された加圧手段及び/又は減圧手段とを備えており、該加圧手段及び/又は該減圧手段で該密閉室内の圧力を変えることにより該第1仕切弁と該第2仕切弁との被処理材移送方向の間隔を可変としたものである。
【0007】
第1仕切弁の昇降手段としては例えばシリンダ機構を採用できる。この場合、シリンダロッド端に第1仕切弁を吊下げる。第1仕切弁と第2仕切弁との間のシール性を保つ手段としては例えばオーリング、蛇腹を採用できる。第1仕切弁と第2仕切弁とで囲まれる密閉室内の加圧手段としては例えばコンプレッサを採用でき、また減圧手段としては例えば真空ポンプを採用できる。第1仕切弁に対し第2仕切弁は進退可能に係合されているため、双方の仕切弁で囲まれる密閉室内を加圧手段で加圧すると、双方の仕切弁が広がって、第1仕切弁と第2仕切弁との被処理材移送方向の間隔が広くなる。逆に、双方の仕切弁で囲まれる密閉室内を減圧手段で減圧すると、双方の仕切弁が狭まって、第1仕切弁と第2仕切弁との被処理材移送方向の間隔が狭くなる。
【0008】
第1仕切弁に対し第2仕切弁を進退可能に係合する手段としては、双方の仕切弁を相対する平底容器状に形成し、第1仕切弁の側面に対し第2仕切弁の側面をシール材としての例えばオーリングを介し摺動可能に係合する手段を採用できる。また別の手段として、第1仕切弁に第2仕切弁をシール材としての筒状の伸縮部材、例えば蛇腹を介して取り付ける手段を採用できる。これらの係合手段において、第1仕切弁と第2仕切弁との間にスプリングを介装し、このスプリングの復元力により、双方の仕切弁の被処理材移送方向の間隔を復元させるようにすることもできる。したがってスプリングを介装する場合には、双方の仕切弁で囲まれる加圧室内の加圧手段及び減圧手段のうちでいずれか一方を省略できる。
【0009】
双方の仕切弁で形成される扉を、熱処理炉における処理室の装入口を密閉するための装入扉として使用する場合には、双方の仕切弁で形成される扉を装入口を臨む位置まで下降させた後、前述したように双方の仕切弁の間隔を広くして、いずれか一方の仕切弁を装入口周縁に密着させ、装入口を密閉する。双方の仕切弁で形成される扉を、熱処理炉における処理室の装出口を密閉するための装出扉として使用する場合も同様である。双方の仕切弁で形成される扉を、熱処理炉における一つの処理室の移送口及びこれに隣接する他の処理室の移送口を密閉するための中間扉として使用する場合には、双方の仕切弁で形成される扉をこれらの移送口を臨む位置まで下降させた後、前述したように双方の仕切弁の間隔を広くして、第1仕切弁を一つの処理室の移送口周縁に密着させると同時に第2仕切弁を他の処理室の移送口周縁に密着させ、これらの移送口を密閉する。
【0010】
本発明に係る扉装置では、従来装置のように双方の仕切弁を左右に押し広げるためのリンク機構は必要でなく、双方の仕切弁の昇降手段は双方の仕切弁を昇降させるためにのみ機能すればよいので、構造が簡単であり、動作不良を生ぜず、昇降手段も含めて装置全体が小型である。また本発明に係る扉装置では、従来装置のようにその昇降時を含めて双方の仕切弁を収容する大きな加圧室を設け、これに加圧用ガスを送入してその圧力を処理室の圧力よりも高くする必要はなく、双方の仕切弁で囲まれる小さな密閉室を加圧及び/又は減圧すればよいので、加圧用ガスは小量ですむ。
【0011】
【発明の実施の形態】
図1は本発明に係る扉装置を例示する炉長方向の縦断面図である。ここでは、双方の仕切弁で形成される扉を中間扉として使用する場合を示している。全体は図示しない熱処理炉11の炉内に、炉殻21に内張りされた断熱材31,32で囲まれて、処理室41,42が形成されている。処理室41と処理室42は連設されており、これらには相対して移送口51,52が開設されている。処理室41と処理室42との中間にて立ち上げられた炉殻21にはシリンダ筒61が取り付けられており、シリンダ筒61のシリンダロッド61aは炉殻21内に挿入されている。
【0012】
シリンダロッド61aの先端部には平底容器状の第1仕切弁71が吊下げられており、第1仕切弁71の外底面にはオーリング81が取り付けられている。第1仕切弁71にはこれと相対して平底容器状の第2仕切弁72が係合されており、第2仕切弁72の外底面にはオーリング82が取り付けられている。第2仕切弁72の外側面にはオーリング91が取り付けられており、第2仕切弁72の外側面はオーリング91を介して第1仕切弁71の内側面に対し摺動可能になっていて、かかる第1仕切弁71と第2仕切弁72とで囲まれて密閉室101が形成されている。
【0013】
第1仕切弁71の上側面には密閉室101と連通する給排気口71aが設けられており、給排気口71aには撓みを持たせた耐圧ホース111が接続されていて、耐圧ホース111の基端側はバルブ131,132を介してコンプレッサ121及び真空ポンプ122へと分岐して接続されている。
【0014】
図1は、シリンダロッド61aを介して第1仕切弁71及び第2仕切弁72を移送口51,52を臨む位置まで下降させた後、バルブ131を開いてコンプレッサ121から耐圧ホース111を介して密閉室101内へ所定の雰囲気ガスを送入し、密閉室101内を加圧することにより第1仕切弁71及び第2仕切弁72を左右に広げ、第1仕切弁71と第2仕切弁72との被処理材移送方向の間隔(左右方向の間隔)を広くして、第1仕切弁71の外底面に取り付けたオーリング81を移送口51の周縁部に密着させると同時に第2仕切弁72の外底面に取り付けたオーリング82を移送口52の周縁部に密着させ、移送口51,52を密閉した状態を示している。移送口51,52を開くときは、バルブ131を閉じ、コンプレッサ121を止め、次にバルブ132を開き、真空ポンプ122を作動させて密閉室101内の雰囲気ガスを排気し、密閉室101内を減圧することにより第1仕切弁71及び第2仕切弁72を中央寄りに狭め、第1仕切弁71と第2仕切弁72との被処理材移送方向の間隔(左右方向の間隔)を狭くした後、シリンダロッド61aを介して第1仕切弁71及び第2仕切弁72を上昇させる。
【0015】
図2は本発明に係る他の扉装置を例示する炉長方向の縦断面図である。ここでも、双方の仕切弁で形成される扉を中間扉として使用する場合を示している。全体は図示しない熱処理炉12の炉内に、炉殻22に内張りされた断熱材33,34で囲まれて、処理室43,44が形成されている。処理室43と処理室44は連設されており、これらには相対して移送口53,54が開設されている。処理室43と処理室44との中間にて立ち上げられた炉殻22にはシリンダ筒62が取り付けられており、シリンダ筒62のシリンダロッド62aは炉殻22内に挿入されている。
【0016】
シリンダロッド62aの先端部には平底容器状の第1仕切弁73が吊下げられており、第1仕切弁73の外底面にはオーリング83が取り付けられている。第1仕切弁73にはこれと相対して平底容器状の第2仕切弁74が係合されており、第2仕切弁74の外底面にはオーリング84が取り付けられている。第2仕切弁74の外側面にはオーリング92が取り付けられており、第2仕切弁74の外側面はオーリング92を介して第1仕切弁73の内側面に対し摺動可能になっている。第1仕切弁73と第2仕切弁74との間にはスプリング73bが介装されており、かかる第1仕切弁73と第2仕切弁74とで囲まれて密閉室102が形成されている。
【0017】
第1仕切弁73の上側面には密閉室102と連通する給排気口73aが設けられており、給排気口73aには撓みを持たせた耐圧ホース112が接続されている。耐圧ホース112の基端側はバルブ133を介してコンプレッサ123へと接続されており、また排気用のバルブ134へと分岐して接続されている。
【0018】
図2は、シリンダロッド62aを介して第1仕切弁73及び第2仕切弁74を移送口53,54を臨む位置まで下降させた後、バルブ133を開いてコンプレッサ123から耐圧ホース112を介して密閉室102内へ所定の雰囲気ガスを送入し、密閉室102内を加圧することにより第1仕切弁73及び第2仕切弁74を左右に広げ、第1仕切弁73と第2仕切弁74との被処理材移送方法の間隔(左右方向の間隔)を広くして、第1仕切弁73の外底面に取り付けたオーリング83を移送口53の周縁部に密着させると同時に第2仕切弁74の外底面に取り付けたオーリング84を移送口54の周縁部に密着させ、移送口53,54を密閉した状態を示している。移送口53,54を開くときは、バルブ133を閉じ、コンプレッサ123を止め、次に排気用バルブ134を開いて密閉室102内の雰囲気ガスを排気する一方で、スプリング73bの復元力により第1仕切弁73及び第2仕切弁74を中央寄りに狭め、第1仕切弁73と第2仕切弁74との被処理材移送方向の間隔(左右方向の間隔)を狭くした後、シリンダロッド62aを介して第1仕切弁73及び第2仕切弁74を上昇させる。
【0019】
図3は本発明に係る更に他の扉装置を例示する炉長方向の縦断面図である。ここでも、双方の仕切弁で形成される扉を中間扉として使用する場合を示している。全体は図示しない熱処理炉13の炉内に、炉殻23に内張りされた断熱材35,36で囲まれて、処理室45,46が形成されている。処理室45と処理室46は連設されており、これらには相対して移送口55,56が開設されている。処理室45と処理室46との中間にて立ち上げられた炉殻23にはシリンダ筒63が取り付けられており、シリンダ筒63のシリンダロッド63aは炉殻23内に挿入されている。
【0020】
シリンダロッド63aの先端部には平底容器状の第1仕切弁75が吊下げられており、第1仕切弁75の外底面にはオーリング85が取り付けられている。第1仕切弁75にはこれと相対して平底容器状の第2仕切弁76が係合されており、第2仕切弁76の外底面にはオーリング86が取り付けられている。第1仕切弁75の側面と第2仕切弁76の側面との間には筒状の蛇腹75bが取り付けられており、かかる第1仕切弁75と第2仕切弁76と蛇腹75bとで囲まれて密閉室103が形成されている。
【0021】
第1仕切弁75の上側面には密閉室103と連通する給排気口75aが設けられており、給排気口75aには撓みを持たせた耐圧ホース113が接続されていて、耐圧ホース113の基端側はバルブ135,136を介してコンプレッサ124及び真空ポンプ125へと分岐して接続されている。
【0022】
図3は、シリンダロッド63aを介して第1仕切弁75及び第2仕切弁76を移送口55,56を臨む位置まで下降させた後、バルブ135を開いてコンプレッサ124から耐圧ホース113を介して密閉室103内へ所定の雰囲気ガスを送入し、密閉室103内を加圧することにより第1仕切弁75及び第2仕切弁76との左右に広げ、第1仕切弁75と第2仕切弁76との被処理材異送方向の間隔(左右方向の間隔)を広くして、第1仕切弁75の外底面に取り付けたオーリング85を移送口55の周縁部に密着させると同時に第2仕切弁76の外底面に取り付けたオーリング86を移送口56の周縁部に密着させ、移送口55,56を密閉した状態を示している。移送口55,56を開くときは、バルブ135を閉じ、コンプレッサ124を止め、次にバルブ136を開き、真空ポンプ125を作動させて密閉室103内の雰囲気ガスを排気し、密閉室103内を減圧することにより第1仕切弁75及び第2仕切弁76を中央寄りに狭め、第1仕切弁75と第2仕切弁76との被処理材移送方法の間隔(左右方向の間隔)を狭くした後、シリンダロッド63aを介して第1仕切弁75及び第2仕切弁76を上昇させる。
【0023】
図4は本発明に係る更にまた他の扉装置を例示する炉長方向の縦断面図である。ここでは、双方の仕切弁で形成される扉を装出扉として使用する場合を示している。全体は図示しない熱処理炉14の炉内に、炉殻24に内張りされた断熱材37で囲まれて、処理室47が形成されている。処理室47には装出口57が開設されている。炉殻24は処理室47の装出口57側へ立ち上げて延設されており、その端部には支持板24aが取り付けられていて、支持板24aには装出口57と相対する抽出口57aが開設されている。処理室47の装出口57側にて立ち上げられた炉殻24にはシリンダ筒64が取り付けられており、シリンダ筒64のシリンダロッド64aは炉殻24内に挿入されている。
【0024】
シリンダロッド64aの先端部には平底容器状の第1仕切弁77が吊下げられており、第1仕切弁77の外底面にはオーリング87が取り付けられている。第1仕切弁77にはこれと相対して平底容器状の第2仕切弁78が係合されており、第2仕切弁78の外底面にはオーリング88が取り付けられている。第2仕切弁78の外側面にはオーリング93が取り付けられており、第2仕切弁78の外側面はオーリング93を介して第1仕切弁77の内側面に対し摺動可能になっていて、かかる第1仕切弁77と第2仕切弁78とで囲まれて密閉室104が形成されている。
【0025】
第1仕切弁77の上側面には密閉室104と連通する給排気口77aが設けられており、給排気口77aには撓みを持たせた耐圧ホース114が接続されていて、耐圧ホース114の基端側はバルブ137,138を介してコンプレッサ126及び真空ポンプ127へと分岐して接続されている。
【0026】
図4は、シリンダロッド64aを介して第1仕切弁77及び第2仕切弁78を装出口57及び抽出口57aを臨む位置まで下降させた後、バルブ137を開いてコンプレッサ126から耐圧ホース114を介して密閉室104内へ所定の雰囲気ガスを送入し、密閉室104内を加圧することにより第1仕切弁77及び第2仕切弁78を左右に広げ、第1仕切弁77と第2仕切弁78との被処理材移送(装出)方向の間隔(左右方向の間隔)を広くして、第1仕切弁77の外底面に取り付けたオーリング87を装出口57の周縁部に密着させると同時に第2仕切弁78の外底面に取り付けたオーリング88を抽出口57aの周縁部に密着させ、装出口57を密閉した状態を示している。装出口57を開くときは、バルブ137を閉じ、コンプレッサ126を止め、次にバルブ138を開き、真空ポンプ127を作動させて密閉室104内の雰囲気ガスを排気し、密閉室104内を減圧することにより第1仕切弁77及び第2仕切弁78を中央寄りに狭め、第1仕切弁77と第2仕切弁78との被処理材移送(装出)方向の間隔(左右方向の間隔)を狭くした後、シリンダロッド64aを介して第1仕切弁77及び第2仕切弁78を上昇させる。
【0027】
【発明の効果】
既に明らかなように、以上説明した本発明には、構造が簡単であり、動作不良を生ぜず、装置全体が小型であって、加圧用ガスの必要量が小さい、という効果がある。
【図面の簡単な説明】
【図1】 本発明に係る扉装置を例示する炉長方向の縦断面図。
【図2】 本発明に係る他の扉装置を例示する炉長方向の縦断面図。
【図3】 本発明に係る更に他の扉装置を例示する炉長方向の縦断面図。
【図4】 本発明に係る更にまた他の扉装置を例示する炉長方向の縦断面図。
【符号の説明】
11〜14・・熱処理炉、41〜47・・処理室、51〜56・・移送口、57・・装出口、61a〜64a・・シリンダロッド、71,73,75,77・・第1仕切弁、72,74,76,78・・第2仕切弁、73b・・スプリング、75b・・蛇腹、81〜88,91〜93・・オーリング、101〜104・・密閉室、121,123,124,126・・コンプレッサ、122,125,127・・真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a door device in a heat treatment furnace. Various heat treatment furnaces such as an atmospheric furnace, a vacuum furnace, a batch furnace, or a continuous furnace are used for heat treatment of materials to be processed such as metal materials and ceramic materials. In these heat treatment furnaces, one or two or more treatment chambers for heat treating the material to be treated are formed, and the material to be treated is loaded, discharged or transferred to the treatment chamber. The opening is provided with a door device for hermetically sealing the opening and maintaining the processing chamber at a predetermined atmospheric gas, pressure or temperature. The present invention relates to an improvement of such a door device.
[0002]
[Prior art]
Conventionally, as a door device as described above, a cylinder, a first gate valve and a second gate valve attached to the cylinder rod end via a link mechanism, and the first gate valve and the second gate valve are accommodated. A pressurizing chamber is proposed (Japanese Patent Laid-Open No. 63-161114). This door device lowers the cylinder rod and lowers the first gate valve and the second gate valve until they contact a stopper provided below the opening of the processing chamber, and then further lowers the cylinder rod. Through the link mechanism, the first gate valve and the second gate valve are expanded to the left and right to contact the peripheral edge of the opening of the processing chamber. In this state, the pressurizing gas is fed into the pressurizing chamber to By making the pressure higher than the pressure in the processing chamber, the first gate valve and the second gate valve are brought into close contact with the periphery of the opening of the processing chamber to seal the opening. However, in such a conventional door device, not only the first gate valve and the second gate valve are moved up and down by the cylinder mechanism, but they are also extended to the left and right through the link mechanism to come into contact with the periphery of the opening of the processing chamber. Therefore, the structure is complicated, malfunction is likely to occur, the entire device including the cylinder is large, and the pressurizing gas is fed into the pressurizing chamber that houses the first gate valve and the second gate valve. Since the pressure in the pressurizing chamber is made higher than the pressure in the processing chamber, there are many problems such as the need for a large amount of pressurizing gas.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the conventional door device has a complicated structure, is likely to cause malfunction, is large in size, and requires a large amount of pressurized gas.
[0004]
[Means for Solving the Problems]
The present invention that solves the above-described problems is a door device for sealing an opening of a processing chamber in a heat treatment furnace, the first gate valve equipped to be movable up and down with respect to the opening, and the first partition A second gate valve engaged with the first gate valve while being able to move forward and backward while maintaining a sealing property between the valve, a pressurizing means connected to a sealed chamber surrounded by both gate valves and / or a pressure reduction And the interval in the material transfer direction between the first gate valve and the second gate valve is variable by changing the pressure in the sealed chamber with the pressurizing unit and / or the pressure reducing unit. The present invention relates to a door device in a heat treatment furnace.
[0005]
The door device according to the present invention is also for sealing the opening of the processing chamber in the heat treatment furnace, and the door is an inlet for charging the material to be processed into the processing chamber by the opening of the processing chamber. In some cases, it is used as a loading door, and when the opening of the processing chamber is a loading outlet for discharging the processing material from the processing chamber, the opening of the processing chamber further supplies the material to be processed. In the case of a transfer port for transferring from one process chamber to another process chamber adjacent thereto, it is used as an intermediate door.
[0006]
The door device according to the present invention is capable of moving forward and backward with respect to the first gate valve while maintaining a sealing property between the first gate valve equipped to be able to move up and down with respect to the opening of the processing chamber and the first gate valve. And a pressurizing means and / or a pressure reducing means connected to a sealed chamber surrounded by both of the gate valves, and the pressure means and / or the pressure reducing means By changing the pressure in the sealed chamber, the distance in the material transfer direction between the first gate valve and the second gate valve is made variable.
[0007]
For example, a cylinder mechanism can be adopted as the lifting means for the first gate valve. In this case, the first gate valve is suspended from the cylinder rod end. As a means for maintaining the sealing performance between the first gate valve and the second gate valve, for example, an O-ring or bellows can be employed. For example, a compressor can be used as the pressurizing means in the sealed chamber surrounded by the first gate valve and the second gate valve, and a vacuum pump can be used as the pressure reducing means. Since the second gate valve is engaged with the first gate valve so as to be able to advance and retreat, when the sealed chamber surrounded by both the gate valves is pressurized by the pressurizing means, both the gate valves expand and the first gate valve expands. The distance between the valve and the second gate valve in the material transfer direction is increased. Conversely, when the pressure in the sealed chamber surrounded by both gate valves is reduced by the pressure reducing means, both gate valves are narrowed, and the interval in the material transfer direction between the first gate valve and the second gate valve is narrowed.
[0008]
As means for engaging the second gate valve with respect to the first gate valve so as to be able to advance and retract, both gate valves are formed in a flat bottom container shape, and the side surface of the second gate valve is formed on the side surface of the first gate valve. For example, a means for slidably engaging via an O-ring as a sealing material can be employed. As another means, a means for attaching the second gate valve to the first gate valve via a cylindrical expansion / contraction member such as a bellows as a sealing material can be employed. In these engaging means, a spring is interposed between the first gate valve and the second gate valve so that the restoring force of the spring restores the interval in the material transfer direction of both gate valves. You can also Therefore, when a spring is interposed, one of the pressurizing means and the decompressing means in the pressurizing chamber surrounded by both gate valves can be omitted.
[0009]
When the door formed by both gate valves is used as a charging door for sealing the inlet of the processing chamber in the heat treatment furnace, the door formed by both gate valves to the position facing the inlet. After the lowering, as described above, the interval between both gate valves is increased, and either gate valve is brought into close contact with the peripheral edge of the inlet, and the inlet is sealed. The same applies to the case where the door formed by both gate valves is used as a loading door for sealing the loading port of the processing chamber in the heat treatment furnace. When the door formed by both gate valves is used as an intermediate door for sealing the transfer port of one processing chamber in the heat treatment furnace and the transfer port of another processing chamber adjacent thereto, After lowering the door formed by the valve to a position facing these transfer ports, as described above, the interval between both the gate valves is widened, and the first gate valve is brought into close contact with the periphery of the transfer port of one processing chamber. At the same time, the second gate valve is brought into close contact with the peripheral edges of the transfer ports of the other processing chambers, and these transfer ports are sealed.
[0010]
In the door device according to the present invention, unlike the conventional device, a link mechanism for expanding both gate valves to the left and right is not necessary, and the lifting means of both gate valves function only to lift and lower both gate valves. Therefore, the structure is simple, no malfunction occurs, and the entire apparatus including the lifting means is small. Further, the door device according to the present invention is provided with a large pressurizing chamber that accommodates both gate valves including the time of raising and lowering as in the conventional device, and the pressure gas is fed into the pressurizing gas to the processing chamber. The pressure does not need to be higher than the pressure, and a small sealed chamber surrounded by both gate valves may be pressurized and / or decompressed, so that a small amount of gas for pressurization is required.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view in the furnace length direction illustrating a door device according to the present invention. Here, the case where the door formed of both gate valves is used as an intermediate door is shown. As a whole, processing chambers 41 and 42 are formed in a heat treatment furnace 11 (not shown) surrounded by heat insulating materials 31 and 32 lined on the furnace shell 21. The processing chamber 41 and the processing chamber 42 are connected to each other, and transfer ports 51 and 52 are opened to face them. A cylinder cylinder 61 is attached to the furnace shell 21 raised between the processing chamber 41 and the processing chamber 42, and a cylinder rod 61 a of the cylinder cylinder 61 is inserted into the furnace shell 21.
[0012]
A flat-bottomed container-like first gate valve 71 is suspended from the tip of the cylinder rod 61 a, and an O-ring 81 is attached to the outer bottom surface of the first gate valve 71. The first gate valve 71 is engaged with a second gate valve 72 having a flat bottom container, and an O-ring 82 is attached to the outer bottom surface of the second gate valve 72. An O-ring 91 is attached to the outer surface of the second gate valve 72, and the outer surface of the second gate valve 72 can slide with respect to the inner surface of the first gate valve 71 via the O-ring 91. Thus, the sealed chamber 101 is formed surrounded by the first gate valve 71 and the second gate valve 72.
[0013]
An air supply / exhaust port 71 a communicating with the sealed chamber 101 is provided on the upper side surface of the first gate valve 71, and a pressure-resistant hose 111 having a bend is connected to the air supply / exhaust port 71 a. The proximal end side is branched and connected to a compressor 121 and a vacuum pump 122 via valves 131 and 132.
[0014]
In FIG. 1, after the first gate valve 71 and the second gate valve 72 are lowered to the position facing the transfer ports 51 and 52 via the cylinder rod 61 a, the valve 131 is opened and the compressor 121 passes through the pressure hose 111. By feeding a predetermined atmospheric gas into the sealed chamber 101 and pressurizing the sealed chamber 101, the first gate valve 71 and the second gate valve 72 are expanded to the left and right, and the first gate valve 71 and the second gate valve 72. The O-ring 81 attached to the outer bottom surface of the first gate valve 71 is brought into close contact with the peripheral edge of the transfer port 51 at the same time as the second gate valve. The O-ring 82 attached to the outer bottom surface of 72 is brought into close contact with the peripheral edge of the transfer port 52, and the transfer ports 51 and 52 are sealed. When the transfer ports 51 and 52 are opened, the valve 131 is closed, the compressor 121 is stopped, then the valve 132 is opened, the vacuum pump 122 is operated to exhaust the atmospheric gas in the sealed chamber 101, and the inside of the sealed chamber 101 is exhausted. By reducing the pressure, the first gate valve 71 and the second gate valve 72 are narrowed toward the center, and the distance in the material transfer direction between the first gate valve 71 and the second gate valve 72 (the space in the left-right direction) is narrowed. Then, the 1st gate valve 71 and the 2nd gate valve 72 are raised through the cylinder rod 61a.
[0015]
FIG. 2 is a longitudinal sectional view in the furnace length direction illustrating another door device according to the present invention. Here, the case where the door formed of both gate valves is used as an intermediate door is shown. As a whole, processing chambers 43 and 44 are formed in a furnace of a heat treatment furnace 12 (not shown) surrounded by heat insulating materials 33 and 34 lining the furnace shell 22. The processing chamber 43 and the processing chamber 44 are connected to each other, and transfer ports 53 and 54 are opened relative to these. A cylinder cylinder 62 is attached to the furnace shell 22 raised between the processing chamber 43 and the processing chamber 44, and a cylinder rod 62 a of the cylinder cylinder 62 is inserted into the furnace shell 22.
[0016]
A flat bottom container-shaped first gate valve 73 is suspended from the tip of the cylinder rod 62 a, and an O-ring 83 is attached to the outer bottom surface of the first gate valve 73. The first gate valve 73 is engaged with a flat bottom-bottomed second gate valve 74 and an O-ring 84 is attached to the outer bottom surface of the second gate valve 74. An O-ring 92 is attached to the outer surface of the second gate valve 74, and the outer surface of the second gate valve 74 can slide with respect to the inner surface of the first gate valve 73 via the O-ring 92. Yes. A spring 73b is interposed between the first gate valve 73 and the second gate valve 74, and the sealed chamber 102 is formed surrounded by the first gate valve 73 and the second gate valve 74. .
[0017]
An air supply / exhaust port 73a that communicates with the sealed chamber 102 is provided on the upper side surface of the first gate valve 73, and a pressure-resistant hose 112 that is bent is connected to the air supply / exhaust port 73a. The proximal end side of the pressure hose 112 is connected to the compressor 123 via the valve 133 and is branched and connected to the exhaust valve 134.
[0018]
In FIG. 2, after the first gate valve 73 and the second gate valve 74 are lowered to the position facing the transfer ports 53 and 54 via the cylinder rod 62 a, the valve 133 is opened and the compressor 123 passes through the pressure hose 112. A predetermined atmosphere gas is fed into the sealed chamber 102 and the inside of the sealed chamber 102 is pressurized to expand the first gate valve 73 and the second gate valve 74 to the left and right, and the first gate valve 73 and the second gate valve 74. The O-ring 83 attached to the outer bottom surface of the first gate valve 73 is brought into close contact with the peripheral edge portion of the transfer port 53 at the same time as the second material is transferred. The O-ring 84 attached to the outer bottom surface of 74 is brought into close contact with the peripheral edge of the transfer port 54, and the transfer ports 53 and 54 are sealed. When opening the transfer ports 53 and 54, the valve 133 is closed, the compressor 123 is stopped, and then the exhaust valve 134 is opened to exhaust the atmospheric gas in the sealed chamber 102, while the first force is restored by the restoring force of the spring 73b. After narrowing the gate valve 73 and the second gate valve 74 closer to the center and narrowing the distance (the distance in the left-right direction) in the material transfer direction between the first gate valve 73 and the second gate valve 74, the cylinder rod 62a is The first gate valve 73 and the second gate valve 74 are raised.
[0019]
FIG. 3 is a longitudinal sectional view in the furnace length direction illustrating still another door device according to the present invention. Here, the case where the door formed of both gate valves is used as an intermediate door is shown. As a whole, treatment chambers 45 and 46 are formed in a furnace of a heat treatment furnace 13 (not shown) surrounded by heat insulating materials 35 and 36 lined on the furnace shell 23. The processing chamber 45 and the processing chamber 46 are connected to each other, and transfer ports 55 and 56 are opened to face them. A cylinder cylinder 63 is attached to the furnace shell 23 raised between the processing chamber 45 and the processing chamber 46, and a cylinder rod 63 a of the cylinder cylinder 63 is inserted into the furnace shell 23.
[0020]
A flat bottom container-shaped first gate valve 75 is suspended from the tip of the cylinder rod 63 a, and an O-ring 85 is attached to the outer bottom surface of the first gate valve 75. The first gate valve 75 is engaged with a flat bottom-bottomed second gate valve 76 oppositely, and an O-ring 86 is attached to the outer bottom surface of the second gate valve 76. A cylindrical bellows 75b is attached between the side face of the first gate valve 75 and the side face of the second gate valve 76, and is surrounded by the first gate valve 75, the second gate valve 76, and the bellows 75b. Thus, a sealed chamber 103 is formed.
[0021]
An air supply / exhaust port 75a communicating with the sealed chamber 103 is provided on the upper side surface of the first gate valve 75, and a pressure-resistant hose 113 having a bend is connected to the air supply / exhaust port 75a. The proximal end side is branched and connected to a compressor 124 and a vacuum pump 125 via valves 135 and 136.
[0022]
FIG. 3 shows that after the first gate valve 75 and the second gate valve 76 are lowered to the position facing the transfer ports 55 and 56 via the cylinder rod 63a, the valve 135 is opened and the compressor 124 is connected via the pressure hose 113. A predetermined atmosphere gas is fed into the sealed chamber 103 and the inside of the sealed chamber 103 is pressurized to expand the first gate valve 75 and the second gate valve 76 to the left and right, and the first gate valve 75 and the second gate valve 76. The O-ring 85 attached to the outer bottom surface of the first gate valve 75 is brought into close contact with the peripheral edge portion of the transfer port 55 at the same time as the interval in the material feed direction with respect to 76 (in the left-right direction) is increased. An O-ring 86 attached to the outer bottom surface of the gate valve 76 is brought into close contact with the peripheral edge of the transfer port 56, and the transfer ports 55 and 56 are sealed. When opening the transfer ports 55 and 56, the valve 135 is closed, the compressor 124 is stopped, then the valve 136 is opened, the vacuum pump 125 is operated to exhaust the atmospheric gas in the sealed chamber 103, and the inside of the sealed chamber 103 is exhausted. By reducing the pressure, the first gate valve 75 and the second gate valve 76 are narrowed toward the center, and the distance (the distance in the left-right direction) of the material transfer method between the first gate valve 75 and the second gate valve 76 is narrowed. Then, the 1st gate valve 75 and the 2nd gate valve 76 are raised via the cylinder rod 63a.
[0023]
FIG. 4 is a longitudinal sectional view in the furnace length direction illustrating still another door device according to the present invention. Here, the case where the door formed of both gate valves is used as a loading door is shown. The whole is surrounded by a heat insulating material 37 lined in the furnace shell 24 in a furnace of a heat treatment furnace 14 (not shown) to form a processing chamber 47. An outlet 57 is opened in the processing chamber 47. The furnace shell 24 is extended and extended toward the loading port 57 side of the processing chamber 47, and a support plate 24 a is attached to an end portion of the furnace shell 24, and an extraction port 57 a facing the loading port 57 is attached to the support plate 24 a. Has been established. A cylinder tube 64 is attached to the furnace shell 24 raised on the loading port 57 side of the processing chamber 47, and a cylinder rod 64 a of the cylinder tube 64 is inserted into the furnace shell 24.
[0024]
A flat bottom container-shaped first gate valve 77 is suspended from the tip of the cylinder rod 64 a, and an O-ring 87 is attached to the outer bottom surface of the first gate valve 77. The first gate valve 77 is engaged with a second gate valve 78 having a flat bottom container shape, and an O-ring 88 is attached to the outer bottom surface of the second gate valve 78. An O-ring 93 is attached to the outer surface of the second gate valve 78, and the outer surface of the second gate valve 78 is slidable with respect to the inner surface of the first gate valve 77 via the O-ring 93. Thus, a sealed chamber 104 is formed surrounded by the first gate valve 77 and the second gate valve 78.
[0025]
An air supply / exhaust port 77a that communicates with the sealed chamber 104 is provided on the upper side surface of the first gate valve 77, and a pressure-resistant hose 114 that is bent is connected to the air supply / exhaust port 77a. The proximal end side is branched and connected to the compressor 126 and the vacuum pump 127 via valves 137 and 138.
[0026]
FIG. 4 shows that the first gate valve 77 and the second gate valve 78 are lowered through the cylinder rod 64a to a position facing the outlet 57 and the extraction port 57a, and then the valve 137 is opened to connect the pressure hose 114 from the compressor 126. Then, a predetermined atmospheric gas is fed into the sealed chamber 104 and the interior of the sealed chamber 104 is pressurized to expand the first gate valve 77 and the second gate valve 78 to the left and right, and the first gate valve 77 and the second gate valve are expanded. The O ring 87 attached to the outer bottom surface of the first gate valve 77 is brought into close contact with the peripheral portion of the loading outlet 57 by widening the interval (horizontal direction interval) in the material transfer (unloading) direction with the valve 78. At the same time, the O-ring 88 attached to the outer bottom surface of the second gate valve 78 is brought into close contact with the peripheral edge of the extraction port 57a, and the loading port 57 is sealed. When opening the outlet 57, the valve 137 is closed, the compressor 126 is stopped, then the valve 138 is opened, the vacuum pump 127 is operated to exhaust the atmospheric gas in the sealed chamber 104, and the pressure in the sealed chamber 104 is reduced. As a result, the first gate valve 77 and the second gate valve 78 are narrowed toward the center, and the distance (horizontal direction distance) between the first gate valve 77 and the second gate valve 78 in the direction of material transfer (discharging). After narrowing, the first gate valve 77 and the second gate valve 78 are raised through the cylinder rod 64a.
[0027]
【The invention's effect】
As is apparent from the above, the present invention described above has an effect that the structure is simple, no malfunction occurs, the entire apparatus is small, and the required amount of pressurizing gas is small.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view in a furnace length direction illustrating a door device according to the present invention.
FIG. 2 is a longitudinal sectional view in the furnace length direction illustrating another door device according to the present invention.
FIG. 3 is a longitudinal sectional view in the furnace length direction illustrating still another door device according to the present invention.
FIG. 4 is a longitudinal sectional view in the furnace length direction illustrating still another door device according to the present invention.
[Explanation of symbols]
11-14 ... Heat treatment furnace 41-47 ... Processing chamber 51-56 ... Transfer port 57 ... Loading port 61a-64a ... Cylinder rod 71, 73, 75, 77 ... First partition Valve, 72, 74, 76, 78, second gate valve, 73b, spring, 75b, bellows, 81-88, 91-93, O-ring, 101-104, sealed chamber, 121, 123, 124,126 ・ Compressor, 122,125,127 ・ ・ Vacuum pump

Claims (4)

熱処理炉における処理室の開口部を密閉するための扉装置であって、該開口部に対し昇降可能に装備された第1仕切弁と、該第1仕切弁との間のシール性を保ちつつ該第1仕切弁に対し進退可能に係合された第2仕切弁と、双方の仕切弁で囲まれる密閉室に接続された加圧手段及び/又は減圧手段とを備え、該加圧手段及び/又は該減圧手段で該密閉室内の圧力を変えることにより該第1仕切弁と該第2仕切弁との被処理材移送方向の間隔を可変としたことを特徴とする熱処理炉における扉装置。A door device for sealing an opening of a processing chamber in a heat treatment furnace, maintaining a sealing property between the first gate valve and the first gate valve equipped to be movable up and down with respect to the opening. A second gate valve engaged with the first gate valve so as to be capable of moving back and forth, and a pressurizing means and / or a pressure reducing means connected to a sealed chamber surrounded by the two gate valves, A door device in a heat treatment furnace characterized in that the interval in the material transfer direction between the first gate valve and the second gate valve is variable by changing the pressure in the sealed chamber with the pressure reducing means. 第1仕切弁及び第2仕切弁が相対する平底容器状に形成されており、該第1仕切弁の側面に対し該第2仕切弁の側面がシール材を介して摺動するようにした請求項1記載の熱処理炉における扉装置。  The first gate valve and the second gate valve are formed in a flat bottom container shape, and the side surface of the second gate valve slides with respect to the side surface of the first gate valve via a sealing material. The door device in the heat treatment furnace according to Item 1. 第1仕切弁に第2仕切弁が筒状の伸縮部材を介して取り付けられた請求項1記載の熱処理炉における扉装置。  The door device in the heat treatment furnace according to claim 1, wherein the second gate valve is attached to the first gate valve via a cylindrical elastic member. 第1仕切弁と第2仕切弁との間にスプリングが介装されており、該スプリングの復元力により該第1仕切弁と該第2仕切弁との被処理材移送方向の間隔が復元されるようにした請求項2又は3記載の熱処理炉における扉装置。A spring is interposed between the first gate valve and the second gate valve, and the restoring force of the spring restores the distance in the material transfer direction between the first gate valve and the second gate valve. The door device in the heat treatment furnace according to claim 2 or 3, wherein the door device is provided.
JP32548398A 1998-11-16 1998-11-16 Door device in heat treatment furnace Expired - Fee Related JP4051694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32548398A JP4051694B2 (en) 1998-11-16 1998-11-16 Door device in heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32548398A JP4051694B2 (en) 1998-11-16 1998-11-16 Door device in heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2000146453A JP2000146453A (en) 2000-05-26
JP4051694B2 true JP4051694B2 (en) 2008-02-27

Family

ID=18177389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32548398A Expired - Fee Related JP4051694B2 (en) 1998-11-16 1998-11-16 Door device in heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4051694B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079157B2 (en) * 2005-04-12 2008-04-23 東京エレクトロン株式会社 Gate valve device and processing system
JP2007138252A (en) * 2005-11-18 2007-06-07 Nachi Fujikoshi Corp Inlet door of heat treatment chamber in vacuum carburizing furnace

Also Published As

Publication number Publication date
JP2000146453A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
KR100461911B1 (en) High-temperature high-pressure gas processing apparatus
JPH0371481B2 (en)
JP5272486B2 (en) Heat treatment furnace
US20060277962A1 (en) Hollow metallic ring seal for press
CN110234793A (en) Deposition or cleaning device and operating method with removable frame
JP4051694B2 (en) Door device in heat treatment furnace
JP2879833B2 (en) Processing system
KR100295706B1 (en) Heating pressure processing apparatus
KR20230130596A (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
JPS6225677Y2 (en)
CN105470169A (en) GaN-device-oriented dielectric growing system and operating method thereof
US3543345A (en) Apparatus for rapid fluid compacting
JPS63161114A (en) Sluice valve device
GB2575466A (en) An apparatus for treating a workpiece under loading
JPH0221193A (en) Hot hydrostatic pressurizing device
JP3351521B2 (en) Heat treatment equipment
JPH0221191A (en) Hot hydrostatic pressurizing device
JPH08976B2 (en) Connecting device for vacuum exhaust pipe and gas introduction pipe in vapor phase growth apparatus
JPS6239056B2 (en)
JPH0129513Y2 (en)
CN214308208U (en) Exhaust system of rotary bell-jar furnace
JPS6239055B2 (en)
JPS62167802A (en) Sintering method
JPH0343596Y2 (en)
JPS63404A (en) Hot static water pressure forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees