JP4051551B2 - Hydrodynamic bearing - Google Patents

Hydrodynamic bearing Download PDF

Info

Publication number
JP4051551B2
JP4051551B2 JP2002371331A JP2002371331A JP4051551B2 JP 4051551 B2 JP4051551 B2 JP 4051551B2 JP 2002371331 A JP2002371331 A JP 2002371331A JP 2002371331 A JP2002371331 A JP 2002371331A JP 4051551 B2 JP4051551 B2 JP 4051551B2
Authority
JP
Japan
Prior art keywords
hydrodynamic bearing
sleeve
copper alloy
working fluid
brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371331A
Other languages
Japanese (ja)
Other versions
JP2003254331A (en
Inventor
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2002371331A priority Critical patent/JP4051551B2/en
Publication of JP2003254331A publication Critical patent/JP2003254331A/en
Application granted granted Critical
Publication of JP4051551B2 publication Critical patent/JP4051551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は動圧軸受に関し、特にハードディスク駆動装置用をはじめとして、耐食性が要求される部位に用いるのに適した動圧軸受に関する。
【0002】
【従来の技術】
高速度で高精度の回転が要求される装置に用いられる軸受として、近年、動圧軸受が多用されつつある。動圧軸受は、一般に、軸と軸受との間に潤滑油等の作動流体を注入するとともに、軸および軸受のいずれか一方に微細な動圧溝を形成し、軸と軸受との相対回転により生じるポンピング作用等によって作動流体の圧力を上昇させ、その圧力によって軸受に対して軸を実質的に非接触のもとに相対回転自在に支持する(例えば、特許文献1参照)。
【0003】
このような動圧軸受を用いるのに適した用途として、ハードディスク駆動装置における動圧軸受が知られている。この用途における動圧軸受においては、通常、スリーブの内周面に例えばヘリングボーンパターン等の動圧発生溝を形成し、その内部に軸を貫通させた構造を採る。このハードディスク駆動装置に用いられる動圧軸受には、特に加工の容易性や摺動特性さらには耐摩耗性と耐食性が要求される。このような要求に応えるため、従来のハードディスク駆動装置用の動圧軸受には、例えば黄銅などCu−Zn系の銅合金を母材とし、その表面に硬質Niメッキによるコーティング層を形成した構造のものが用いられている。
【0004】
【特許文献1】
特開平11−223214号公報
【0005】
ところで、近年、動圧軸受においては、高速化や極小化に伴いその内径寸法精度(軸に対するクリアランス)をはじめとして、高い加工精度が要求され、上記のように表面にNiメッキを施す場合、そのメッキ層の厚さのばらつきに起因して製品歩留りが悪くなるという問題が指摘されるようになってきた。
【0006】
【発明が解決しようとする課題】
そこで、コーティングレスが検討されるようになってきたが、従来、動圧軸受に用いられる銅合金においては、既存の銅合金と同様に、その快削性を向上させるためにPbやBiをはじめとし、過飽和して析出分散しやすい低融点軟金属成分が含まれている。そのため、析出分散したPbやBiなどの低融点金属は、動圧軸受の作動流体中に溶けだして作動流体の劣化を招き、潤滑不良に至らしめることが指摘されている。また、黄銅などの銅合金自体では、耐摩耗性と耐食性について要求を満たしているとは言えない。
【0007】
本発明は、上記する課題に対処するためになされたものであり、不良の原因となりやすいNiメッキ等のコーティングを施すことなく、ハードディスク駆動装置等用途での耐食性や耐摩耗性などの要求性能を満たすことができ、もって高い製造歩留りのもとに長期にわたって安定した性能を発揮することのできる動圧軸受を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の動圧軸受は、金型で溶製され、作動流体である潤滑油剤を介すことで非接触状態を保ちながら軸が相対回動自在に挿入される略円筒状のスリーブの内周面に動圧発生溝を形成した動圧軸受において、該スリーブが、銅(Cu)と亜鉛(Zn)とからなるα黄銅に、けい素(Si)を2.0〜7重量%含有し、ビスマス(Bi)と鉛(Pb)とが前記作動流体中に溶け出すことによる該作動流体の劣化を防止すべく、ビスマス(Bi)を含有せず、鉛(Pb)の含有量を0.1重量%以下とした銅合金からなることによって特徴づけられる(請求項1)。
【0009】
ここで本発明においては、前記スリーブの銅合金は、黄銅とけい素の化合物からなる硬質相をマトリックス状に混在させた構成(請求項2)を好適に採用することができる。
【0010】
本発明は、PbやBiなどの過飽和により析出分散する低融点軟金属成分を含まずに快削性を得るとともに、境界潤滑状態における耐摩耗性や耐食性を得ることのできる銅合金を用いることにより、所期の目的を達成しようとするものである。
【0011】
すなわち、本発明の動圧軸受においては、銅合金中に銅と亜鉛およびけい素の化合物でその化合比率が相違することによって冷却速度の違う化合物がマトリクス化して、硬質相と軟質相を構成することにより、快削性と耐摩耗性および耐食性を得ている。
【0012】
快削性が良好である条件は、切削時に生じる切削屑が連続した長いものとならず、定常的な切り込み時においても短く分断されることであるが、本発明の動圧軸受で用いる銅合金は、銅と亜鉛およびけい素の化合物からなる硬質相と、α黄銅の軟質相とが混在した状態であるため、過飽和して析出分散する低融点軟金属成分を含んでいなくても切削屑は連続したものとならず、適宜に分断されて短いものとなり、良好な快削性が得られる。
【0013】
また、銅の化合物による硬質相と軟質相が混在しているため、表面にNiなどの他金属のコーティングが施されていなくても動圧軸受の境界潤滑状態において摩耗量を低減させ、良好な耐摩耗性が得られるとともに耐食性も確保できる。
【0014】
そして、本発明の動圧軸受は、その表面に硬質Niメッキ等によるコーティングを施さなくても、従来の黄銅などにPbやBiを添加した銅合金を用いる場合のように低融点軟金属が作動流体中に溶けだして劣化を生じさせたりすることがない。従って本発明によれば、Niメッキ等のコーティング層の厚さのばらつきによる歩留りの低下を生じることなく、長期にわたり高い性能を維持することのできる動圧軸受が得られる。
【0015】
本発明の動圧軸受に用いる銅合金としては、Cu4 ZnSiとCu8 Zn2 Siが硬質相となり、これらがα黄銅の軟質相にマトリクス状に混在することにより、良好な快削性と耐摩耗性が得られ、しかも耐食性にも優れた合金となり得る。
【0016】
本発明の動圧軸受に用いる銅合金における各成分の含有率については、要は合金の母地組織中に銅の化合物でその化合比率の相違による硬質相と軟質相が混在していればよく、軟質相にけい素が含まれていても良い。
【0017】
なお、本発明の金属成分の含有率において、Znが5〜35重量%、Siが2.0〜7重量%の範囲内であれば、前述のCu4 ZnSiとCu8 Zn2 Siの硬質相が効果的な割合で形成される。なお、鉛については含有しないことが好ましいが、溶製中に金型等から不可避的に溶出するので、少なくともCu−Zn−Siの固溶限界内に留めればよい。その含有率についてはおよそ0.1重量%以下が望ましい。
【0018】
更に、本発明においては、Siの含有率を2.0重量%以上にすれば、図2に示すように、特に銅合金としての耐食性と摩耗量の低減が良好となる。また、Siの含有量が7重量%以上になると銅合金自体が硬くなり過ぎて加工性が悪くなる。この図2は、Siを含まないCu−Zn合金の耐酸化性と摩耗量を100として、Siの各含有率に応じた耐酸化性と摩耗量の減少を表したもので、縦軸の数値が小さいものほど耐酸化性,摩耗量低減効果が優れていることを表している。ここで、耐酸化性とは、スリーブ表面が酸化によって黒色変化する度合いを数値化したものである。
【0019】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の要部断面図である。
【0020】
動圧軸受3はスリーブ1と軸2からなり、スリーブ1の内周面に例えばヘリングボーンパターンの動圧発生用溝1aが形成されている。このスリーブ1の内部に軸2が回動自在に挿入されている。軸2の動圧発生用溝1aに対向する外周面は一様な円筒面となっており、これらのスリーブ1と軸2の間に潤滑油剤等の作動流体(図示せず)が充填される。
【0021】
以上の構成において、軸2とスリーブ1が相対回転すると、動圧発生用溝1aのポンピング作用等によって作動流体に高圧力が発生し、これによって軸2とスリーブ1は非接触状態を保ちながら相対回転することができる。
【0022】
スリーブ1の材質は、CuとZnとからなる黄銅に対し、Siを添加したものであり、PbやBi等の過飽和して析出分散する低融点軟金属成分は含有していない。このようなスリーブ1を形成する銅合金においては、その母地組織中にCu4 ZnSiとCu8 Zn2 Siが混在した状態、つまりいずれも銅の化合物でその化合比率が相違することによって起こる冷却速度の違いにより硬質相と軟質相が混在した状態となる。そして、このスリーブ1には、その表面に何らコーティングがなされていない。
【0023】
本発明の動圧軸受のスリーブの加工方法の一例を示す。
銅合金を溶融させて合金化した後、棒状に押し出し成型し、棒状に成型された材料を約400℃で焼き戻しを行う。焼き戻しをした後、所定の断面形状に圧延して切削素材を得る。この切削素材を切削加工することによりスリーブを製作する。ここで、銅合金を焼き戻すことで硬質相を均一に分散させ、圧延することで硬質相の粒子サイズを小さくしている。
【0024】
なお、軸2の材質は、特に限定されるものではないが、ステンレス鋼(オーステナイト系もしくはマルテンサイト系)や高炭素鋼、あるいは他の各種合金を用いることができる。
【0025】
以上の本発明の実施の形態のスリーブ1によると、その材質である銅合金の母地組織中に銅合金からなる硬質相と軟質相とが混在しているので、快削性に富んでいるが故に高精度の加工が容易であると同時に、境界潤滑状態においても摩耗を抑制することができ、更に、潤滑油剤等の作動流体中に低融点軟金属が溶けだすこともなく、耐食性並びに耐摩耗性に優れ、長期に渡り安定した性能を発揮することができる。しかも、表面にNiメッキ等によるコーティングを施さないので、そのコーティング厚さのばらつきに起因する製造歩留りの低下の恐れもない。
【0026】
【発明の効果】
以上のように、本発明によれば、動圧発生用溝が形成されるスリーブの材質を、銅合金で、銅の化合物の混合比率の相違による硬質相と軟質相とが混在した合金としたので、従来のように既存の銅合金の表面に硬質Niメッキ等のコーティングを施すことなく、耐摩耗性と耐食性に優れ、作動流体を劣化させることなく長期にわたって安定した性能を維持することができ、ハードディスク駆動装置のラジアル軸受等に用いるのに適した動圧軸受が得られる。しかも、快削性に富み、かつ、表面にメッキを施さないことから、比較的製造が容易で高い歩留りを達成することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の要部断面図である。
【図2】本発明において、黄銅に対するけい素の添加による特性変化を示すグラフである。
【符号の説明】
1 スリーブ
1a 動圧発生用溝
2 軸
3 動圧軸受
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing, and more particularly, to a hydrodynamic bearing suitable for use in a portion where corrosion resistance is required, including for a hard disk drive.
[0002]
[Prior art]
In recent years, hydrodynamic bearings have been widely used as bearings used in devices that require high speed and high precision rotation. In general, a hydrodynamic bearing injects a working fluid such as lubricating oil between a shaft and a bearing, and forms a fine dynamic pressure groove in one of the shaft and the bearing. The pressure of the working fluid is increased by the generated pumping action or the like, and the shaft is supported by the pressure so as to be relatively rotatable with substantially no contact with the bearing (see, for example, Patent Document 1).
[0003]
As an application suitable for using such a dynamic pressure bearing, a dynamic pressure bearing in a hard disk drive is known. The dynamic pressure bearing in this application usually employs a structure in which a dynamic pressure generating groove such as a herringbone pattern is formed on the inner peripheral surface of the sleeve and a shaft is passed through the groove. The hydrodynamic bearing used in this hard disk drive device is required to be particularly easy to process, sliding characteristics, wear resistance and corrosion resistance. In order to meet such demands, a conventional hydrodynamic bearing for a hard disk drive device has a structure in which, for example, a Cu-Zn-based copper alloy such as brass is used as a base material and a coating layer is formed on the surface thereof by hard Ni plating. Things are used.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-223214
By the way, in recent years, dynamic pressure bearings are required to have high machining accuracy, including the inner diameter dimensional accuracy (clearance with respect to the shaft), as the speed is increased and minimized, and when Ni plating is applied to the surface as described above, The problem that the product yield is deteriorated due to the variation in the thickness of the plating layer has been pointed out.
[0006]
[Problems to be solved by the invention]
Therefore, it has come to the coating-less is considered, conventionally, in the copper alloy that is used in the dynamic pressure bearing, as with existing copper alloy, the Pb and Bi to improve its free-cutting First, it contains a low-melting-point soft metal component that is supersaturated and easily precipitates and disperses. For this reason, it has been pointed out that the low melting point metal such as Pb or Bi that has been deposited and dispersed dissolves in the working fluid of the hydrodynamic bearing, causes the working fluid to deteriorate, and leads to poor lubrication. Moreover, it cannot be said that copper alloys such as brass themselves satisfy the requirements for wear resistance and corrosion resistance.
[0007]
The present invention has been made in order to cope with the above-described problems, and provides required performance such as corrosion resistance and wear resistance in applications such as a hard disk drive device without applying a coating such as Ni plating, which is likely to cause defects. An object of the present invention is to provide a hydrodynamic bearing that can be satisfied and can exhibit stable performance over a long period of time with a high production yield.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the hydrodynamic bearing of the present invention is melted in a mold, and the shaft is inserted in a relatively rotatable manner while maintaining a non-contact state through a lubricant as a working fluid. in substantially cylindrical pressure bearing forming the inner peripheral surface dynamic pressure generating grooves of the sleeve, the sleeve, the copper (Cu) and zinc (Zn) because Do that α brass, a silicon (Si) 2 In order to prevent deterioration of the working fluid due to dissolution of bismuth (Bi) and lead (Pb) in the working fluid, lead ( It is characterized by being made of a copper alloy having a content of Pb) of 0.1% by weight or less (claim 1).
[0009]
Here in the present invention, the copper alloy of the sleeve may be employed a hard phase consisting of the compounds of Brass and silicon a structure in which are mixed in a matrix (claim 2) suitably.
[0010]
The present invention uses a copper alloy that can obtain free-cutting properties without including a low melting point soft metal component that precipitates and disperses due to supersaturation such as Pb and Bi, and can obtain wear resistance and corrosion resistance in a boundary lubrication state. , Trying to achieve the intended purpose.
[0011]
That is, in the hydrodynamic bearing of the present invention, compounds having different cooling rates are formed into a matrix by the compound ratios of copper, zinc and silicon in the copper alloy, thereby forming a hard phase and a soft phase. As a result, free machinability, wear resistance and corrosion resistance are obtained.
[0012]
The condition that the free-cutting property is good is that the cutting waste generated at the time of cutting is not continuous and long, and it is divided shortly even at the time of steady cutting, but the copper alloy used in the hydrodynamic bearing of the present invention Is a state in which a hard phase composed of a compound of copper, zinc and silicon and a soft phase of α brass are mixed, so even if it does not contain a low-melting-point soft metal component that is supersaturated and precipitates and disperses, Does not become continuous, is appropriately divided and becomes short, and good free machinability is obtained.
[0013]
In addition, since a hard phase and a soft phase are mixed due to the copper compound, the amount of wear is reduced in the boundary lubrication state of the hydrodynamic bearing even if the surface is not coated with other metals such as Ni, which is good. Abrasion resistance can be obtained and corrosion resistance can be secured.
[0014]
The hydrodynamic bearing of the present invention operates with a low melting point soft metal as in the case of using a copper alloy in which Pb or Bi is added to conventional brass or the like, without coating the surface with hard Ni plating or the like. It will not dissolve in the fluid and cause deterioration. Therefore, according to the present invention, it is possible to obtain a hydrodynamic bearing capable of maintaining high performance over a long period of time without causing a decrease in yield due to variations in the thickness of the coating layer such as Ni plating.
[0015]
As a copper alloy used in the hydrodynamic bearing of the present invention, Cu 4 ZnSi and Cu 8 Zn 2 Si become a hard phase, and these are mixed in a matrix in the soft phase of α brass, so that good free machinability and resistance to resistance are obtained. Abrasion can be obtained, and an alloy having excellent corrosion resistance can be obtained.
[0016]
About the content rate of each component in the copper alloy used for the hydrodynamic bearing of the present invention, it is essential that the hard phase and the soft phase due to the difference in the compounding ratio are mixed in the matrix structure of the alloy. The soft phase may contain silicon.
[0017]
If the content of the metal component of the present invention is such that Zn is in the range of 5 to 35% by weight and Si is in the range of 2.0 to 7% by weight, the hard phase of the aforementioned Cu 4 ZnSi and Cu 8 Zn 2 Si is used. Are formed at an effective rate. In addition, although it is preferable not to contain about lead, since it inevitably elutes from a metal mold | die etc. during melting, what is necessary is just to stay within the solid solution limit of Cu-Zn-Si at least. The content is preferably about 0.1% by weight or less.
[0018]
Furthermore, in the present invention, if the Si content is 2.0% by weight or more, as shown in FIG. 2, the corrosion resistance and the reduction of the wear amount as a copper alloy are particularly good. On the other hand, when the Si content is 7% by weight or more, the copper alloy itself becomes too hard and the workability is deteriorated. FIG. 2 shows the reduction in oxidation resistance and wear amount according to each content of Si, with the oxidation resistance and wear amount of a Cu—Zn alloy not containing Si being 100. The smaller the value, the better the oxidation resistance and wear reduction effect. Here, the oxidation resistance is a numerical value of the degree to which the sleeve surface changes to black due to oxidation.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of an essential part of an embodiment of the present invention.
[0020]
The dynamic pressure bearing 3 includes a sleeve 1 and a shaft 2, and a dynamic pressure generating groove 1 a having a herringbone pattern, for example, is formed on the inner peripheral surface of the sleeve 1. A shaft 2 is rotatably inserted into the sleeve 1. The outer peripheral surface of the shaft 2 facing the dynamic pressure generating groove 1a is a uniform cylindrical surface, and a working fluid (not shown) such as a lubricant is filled between the sleeve 1 and the shaft 2. .
[0021]
In the above configuration, when the shaft 2 and the sleeve 1 rotate relative to each other, a high pressure is generated in the working fluid by the pumping action or the like of the dynamic pressure generating groove 1a, so that the shaft 2 and the sleeve 1 are kept in a non-contact state. Can rotate.
[0022]
The material of the sleeve 1, with respect to brass ing from Cu and Zn, is obtained by addition of Si, supersaturated low melting soft metal component to be deposited distributed in such Pb and Bi does not contain. In the copper alloy forming such a sleeve 1, the cooling caused by the mixed state of Cu 4 ZnSi and Cu 8 Zn 2 Si in the matrix structure, that is, both are compound of copper and the compounding ratio is different. Due to the difference in speed, a hard phase and a soft phase are mixed. The sleeve 1 has no coating on its surface.
[0023]
An example of the processing method of the sleeve of the hydrodynamic bearing of this invention is shown.
After the copper alloy is melted and alloyed, it is extruded into a rod shape, and the material molded into the rod shape is tempered at about 400 ° C. After tempering, the material is cut into a predetermined cross-sectional shape to obtain a cutting material. A sleeve is manufactured by cutting this cutting material. Here, the hard phase is uniformly dispersed by tempering the copper alloy, and the particle size of the hard phase is reduced by rolling.
[0024]
The material of the shaft 2 is not particularly limited, but stainless steel (austenite or martensite), high carbon steel, or other various alloys can be used.
[0025]
According to the sleeve 1 of the above embodiment of the present invention, since the hard phase and the soft phase made of the copper alloy are mixed in the matrix structure of the copper alloy that is the material thereof, it is rich in free-cutting properties. Therefore, high-precision machining is easy, and at the same time, wear can be suppressed even in the boundary lubrication state, and the low-melting point soft metal does not dissolve in the working fluid such as a lubricant, and the corrosion resistance and resistance. Excellent wear resistance and stable performance over a long period of time. In addition, since the surface is not coated with Ni plating or the like, there is no risk of a decrease in manufacturing yield due to variations in the coating thickness.
[0026]
【The invention's effect】
As described above, according to the present invention, the material of the sleeve in which the dynamic pressure generating groove is formed is a copper alloy, in which a hard phase and a soft phase are mixed due to a difference in the mixing ratio of the copper compound. So, without applying a coating such as hard Ni plating on the surface of the existing copper alloy as before, it has excellent wear resistance and corrosion resistance, and can maintain stable performance for a long time without deteriorating the working fluid. Thus, a hydrodynamic bearing suitable for use in a radial bearing of a hard disk drive or the like can be obtained. Moreover, since it is rich in free-cutting properties and is not plated on the surface, it can be manufactured relatively easily and a high yield can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of an embodiment of the present invention.
FIG. 2 is a graph showing changes in characteristics due to the addition of silicon to brass in the present invention.
[Explanation of symbols]
1 Sleeve 1a Dynamic pressure generating groove 2 Shaft 3 Dynamic pressure bearing

Claims (2)

金型で溶製され、作動流体である潤滑油剤を介すことで非接触状態を保ちながら軸が相対回動自在に挿入される略円筒状のスリーブの内周面に動圧発生溝を形成した動圧軸受において、
該スリーブが、銅(Cu)と亜鉛(Zn)とからなるα黄銅に、けい素(Si)を2.0〜7重量%含有し、
ビスマス(Bi)と鉛(Pb)とが前記作動流体中に溶け出すことによる該作動流体の劣化を防止すべく、ビスマス(Bi)を含有せず、鉛(Pb)の含有量を0.1重量%以下とした銅合金からなることを特徴とする動圧軸受。
A dynamic pressure generating groove is formed on the inner peripheral surface of a substantially cylindrical sleeve into which a shaft is inserted so as to be relatively rotatable while being kept in a non-contact state through a lubricant that is melted by a mold and working fluid. In the hydrodynamic bearing
The sleeve, copper (Cu) and zinc (Zn) because Do that α brass, a silicon (Si) containing 2.0 to 7 wt%,
In order to prevent deterioration of the working fluid due to dissolution of bismuth (Bi) and lead (Pb) in the working fluid, bismuth (Bi) is not contained and the content of lead (Pb) is 0.1. A hydrodynamic bearing characterized by comprising a copper alloy having a weight percent or less.
前記スリーブの銅合金は、黄銅とけい素の化合物からなる硬質相をマトリックス状に混在させたことを特徴とする請求項1に記載の動圧軸受。  2. The hydrodynamic bearing according to claim 1, wherein the copper alloy of the sleeve includes a hard phase composed of a compound of brass and silicon mixed in a matrix.
JP2002371331A 2001-12-28 2002-12-24 Hydrodynamic bearing Expired - Fee Related JP4051551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371331A JP4051551B2 (en) 2001-12-28 2002-12-24 Hydrodynamic bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-400802 2001-12-28
JP2001400802 2001-12-28
JP2002371331A JP4051551B2 (en) 2001-12-28 2002-12-24 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2003254331A JP2003254331A (en) 2003-09-10
JP4051551B2 true JP4051551B2 (en) 2008-02-27

Family

ID=28677422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371331A Expired - Fee Related JP4051551B2 (en) 2001-12-28 2002-12-24 Hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP4051551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216423A1 (en) * 2019-10-24 2021-04-29 Aktiebolaget Skf Plain bearing and process for its manufacture

Also Published As

Publication number Publication date
JP2003254331A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
KR101607726B1 (en) High-strength brass alloy for sliding members, and sliding members
JP5492089B2 (en) Pb-free Cu-Bi sintered material sliding parts
JP3507388B2 (en) Copper-based sliding material
JPH0949006A (en) Self-lubricating sintered sliding member and its production
KR20090130128A (en) Pb-free copper alloy sliding material and plain bearings
US6692548B2 (en) Copper-based sliding material, method of manufacturing the same, and sliding bearing
JPH07508560A (en) Machinable Cu alloy with low Pb content
US6875290B2 (en) Aluminum bearing-alloy
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP4389026B2 (en) Sliding material and manufacturing method thereof
WO2009136457A1 (en) Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
EP0716240B1 (en) Sliding bearing
JP2733736B2 (en) Copper-lead alloy bearings
KR20130084267A (en) Sliding bearing
GB2404228A (en) A layered bearing member
EP4265356A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
JPH11325077A (en) Multiple-layered slide material
JP2000345258A (en) Sliding bearing
JP4051551B2 (en) Hydrodynamic bearing
US6974257B2 (en) Dynamic pressure bearing
JPS6238417B2 (en)
JP2002147459A (en) Sliding bearing with overlay layer quality-improved
JP2010265500A (en) High-tensile brass alloy for sliding member and sliding member
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
KR20090050694A (en) Casting method of sleeve bearing by bi-metal centrifucal casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees