JP4050580B2 - Photocoupler circuit - Google Patents

Photocoupler circuit Download PDF

Info

Publication number
JP4050580B2
JP4050580B2 JP2002267759A JP2002267759A JP4050580B2 JP 4050580 B2 JP4050580 B2 JP 4050580B2 JP 2002267759 A JP2002267759 A JP 2002267759A JP 2002267759 A JP2002267759 A JP 2002267759A JP 4050580 B2 JP4050580 B2 JP 4050580B2
Authority
JP
Japan
Prior art keywords
circuit
drive element
photocoupler
light receiving
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267759A
Other languages
Japanese (ja)
Other versions
JP2004111413A (en
Inventor
光広 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2002267759A priority Critical patent/JP4050580B2/en
Publication of JP2004111413A publication Critical patent/JP2004111413A/en
Application granted granted Critical
Publication of JP4050580B2 publication Critical patent/JP4050580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、受信機から引き出された線路に接続される感知器用中継器等で使用される高速伝送用のフォトカプラ回路に関する。
【0002】
【従来の技術】
従来、R型として知られた受信機と端末の間でアドレス指定による端末呼出で防災情報を収集して監視する防災監視システムでは、受信機から引き出された線路に端末としての複数の感知器用中継器を接続している。この感知器用中継器からは複数の感知器回線が引き出され、オン、オフ型の火災感知器を接続している。
【0003】
受信機は感知器用中継器のアドレスを指定して呼出信号を送信し、アドレス一致を判別した感知器用中継器から火災感知器の検出情報を収集して火災を監視している。
【0004】
感知器用中継器にあっては、受信機側の伝送回線と感知器回線との間を電気的に分離するために図7のようなフォトカプラ回路を設けている。
【0005】
図7のフォトカプラ回路において、発光側回路は発光用駆動素子G1の出力に電源電圧V1のラインにより抵抗R10を介してフォトカプラ100のLED100aを接続している。また受光側回路は、電源電圧V2のラインより抵抗R11を介してフォトカプラ100のフォトトランジスタ(以下「PT」という)100bを接続し、抵抗R11とPT100bの間を受光用駆動素子G2に入力接続している。
【0006】
このフォトカプラ回路の動作は、Hレベルとなる伝送パルス信号が発光用駆動素子G1に入力して出力がLレベルになると、LED100aに電流が流れて発光し、これを受けてPT100bがオンして受光用駆動素子G2の入力をLレベルに引き込み、Hレベルの受光信号を出力する。
【0007】
【特許文献1】
特開昭59−10315号公報
【特許文献2】
実開平3−17899号公報
【特許文献3】
実開昭62−53796号公報
【特許文献4】
特開平6−274783号公報
【0008】
【発明が解決しようとする課題】
ところで、防災監視システムにあっては、受信機からの伝送路に例えば数百台といった多数の感知器用中継器が接続され、受信機からの呼出信号を受けてそれぞれのフォトカプラが一斉に駆動されることから、感知器用中継器に使用するフォトカプラ回路としては、低消費電流のものが要求される。
【0009】
そこで低消費電流とするために図7のフォトカプラ回路で抵抗R10、R11を大きくすると、LED100aに流れる電流が低下して発光量が下がり、受光側のPT100bがオンするまでの応答時間が遅くなる。また抵抗R10、R11を小さくすると、応答時間は速くなるが、消費電流が大きくなるという不具合があった。
【0010】
本発明は、消費電流を低減すると同時に応答速度の高いフォトカプラ回路を提供することを目的とする。
【0011】
【課題を解決するための手段】
この目的を達成するため、本発明のフォトカプラ回路は、発光用駆動素子、2組のフォトカプラ及び受光用駆動素子を備え、2組のフォトカプラのLEDを直列接続して一端のアノード側と他端のカソード側の各々を前記発光用駆動素子の出力に接続すると共に、LED接続間の中点とアースとの間に低抵抗とコンデンサを直列接続して発光側回路を構成し、2組のフォトカプラのフォトトランジスタを直列接続して一端のコレクタ側を電源に接続すると共に他端のエミッタ側をアースに接続し、更にフォトトランジスタ接続間の中点を受光用駆動素子の入力に接続して受光側回路を構成したことを特徴とする。
【0012】
このような本発明のフォトカプラ回路によれば、発光用駆動素子の出力がHレベルになると、フォトカプラのLED及び低抵抗を介してコンデンサに充電電流が流れ、低抵抗のためLEDの発光に充分な充電電流が初期的に流れ、そのため受光側回路のフォトトランジスタは高速にスイッチングする。ここで、低抵抗とコンデンサの時定数は受光側のフォトトランジスタがスイッチングできる以上の時間に設定するが、短時間であるため平均の消費電流は微少である。
【0013】
続いて発光側駆動素子の出力Lになると、充電されているコンデンサから低抵抗と別のLEDを介して十分な放電電流が流れて受光側の別のフォトトランジスタを高速にスイッチングでき、このとき電源からの消費電流はない。
【0014】
この結果、発光用駆動素子の出力がHレベルからLレベルと変化する1周期の消費電流は、Hレベル期間の充電電流を時間平均した平均消費電流であり、この平均消費電流は十分に小さくできる。
【0015】
更に本発明のフォトカプラ回路は、発光側回路に設けたコンデンサと低抵抗の直列回路と並列に中抵抗を接続し、受光側回路のフォトトランジスタ接続間を高抵抗を介してプルダウン接続したことを特徴とする。
【0016】
これにより発光側駆動素子のHレベル出力が長時間続いてコンデンサの充電電流が流れなくなっても、中抵抗を介してLEDの発光を維持する電流が継続して流れることで、受光側のフォトトランジスタはオン状態を維持する。この場合、中抵抗で決まる少なめの電流が継続して流れるが、低抵抗による電流に比べると十分低いため、その分、消費電流を低減できる。
【0017】
また発光用駆動素子のLレベル出力が長時間続くと、コンデンサの放電が完了してLEDは消灯し、受光側の2つのフォトトランジスタはオフとなり、受光用駆動素子の入力がフローティング状態となって不定となる恐れがあるが、ここを高抵抗でプルダウンしておくことで、本来あるべき入力状態に固定して安定させることができる。
【0018】
本発明によるフォトカプラ回路別の形態にあっては、発光用駆動素子、2組のフォトカプラ及び受光用駆動素子を備え、2組のフォトカプラのLEDを2つの低抵抗を介して直列接続して一端のアノード側と他端のカソード側の各々を発光用駆動素子の出力に接続すると共に、2つの低抵抗接続間の中点とアースの間にコンデンサを接続して発光側回路を構成し、2組のフォトカプラのフォトトランジスタを直列接続して一端のコレクタ側を電源に接続すると共に他端のエミッタ側をアースに接続し、更にフォトトランジスタ接続間の中点を受光用駆動素子の入力に接続して受光側回路を構成したことを特徴とする。
【0019】
これにより、発光用駆動素子の吐出電流と吸込電流が違っている場合や、受光用駆動素子の閾値が中点電圧でない場合に、2つの低抵抗の値を変更して2組のフォトカプラの発光特性を調整して動作を安定にすることができる。
【0020】
この場合にも、発光側回路に設けたプラス側の低抵抗とコンデンサと直列回路と並列に中抵抗を接続し、受光側回路のプラス側のフォトトランジスタと低抵抗との接続間を高抵抗を介してプルダウン接続する。
【0021】
さらに本発明は2組のフォトトランジスタと受光用駆動素子の入力とのそれぞれの間に低抵抗を挿入接続する。
【0022】
これにより、供給電流が2組のフォトトランジスタを介してアース側に流れる貫通電流により受光用駆動素子の誤動作することを防止することができる。
【0023】
本発明のフォトカプラ回路にあっては、低抵抗に対し中抵抗は少なくとも10倍程度の抵抗値であり、また中抵抗に対し高抵抗は少なくとも10倍程度の抵抗値であることを特徴とする。例えば低抵抗は数キロオーム、中抵抗は数十キロオーム、高抵抗は数百キロオームといった関係を持つ。
【0024】
【発明の実施の形態】
図1は本発明のフォトカプラ回路が使用される感知器用中継器を備えた防災監視システムの説明図である。図1において、本発明の防災監視システムは、管理人室などに設置された受信機1から警戒区域に対し線路2として、電源線V、伝送線S、伝送コモン線SC、電話線T及びコモン線Cを引き出している。ここでコモン線Cは、電源線Vと電話線Tに対するコモン線となる。
【0025】
受信機1から引き出された線路2に対しては感知器用中継器3が複数台設置されている。本発明の防災監視システムにあっては、受信機1は感知器用中継器3に設定した端末アドレスの指定により呼出しなどのコマンドを送信して応答情報を受信しており、受信機1に対しては端末アドレスの設定可能数分だけの感知器用中継器3を接続することができ、大規模な防災監視システムにあっては受信機1に対し数百台といった感知器用中継器3が接続される。
【0026】
感知器用中継器3からは複数の感知器線L1〜Lnと感知器コモン線LCが引き出され、各感知器線L1〜Lnとの感知器コモン線LCとの間にオン、オフ型の火災感知器4を接続している。
【0027】
なお、この例では、感知器線L1〜Lnのそれぞれに1台の火災感知器4を接続した場合を例にとっているが、必要に応じて複数台の火災感知器4が各感知器線ごとに接続される。また、感知器線L1〜Lnの終端には断線検出のための終端器を接続するが、これは省略している。
【0028】
一方、感知器用中継器3が設置されている警戒区域には、受信機1と現場との間で通話連絡を行うため電話ジャック5が設けられている。この電話ジャック5は具体的には、警戒区域に設置されている火災発信機などに設けられることになる。
【0029】
電話ジャック5の一端には受信機1から引き出された電話線Tが接続され、電話ジャック5の他端は電話コモン線TCにより感知器用中継器3から引き出された感知器コモン線LCに接続され、このコモン線LCには受信機1から引き出されたコモン線Cが接続される。
【0030】
受信機1には、監視制御部7、伝送回路部8、操作表示部9、電話回路部10、電話ジャック11が設けられる。電話ジャックに対しては、通話の際には電話器12が挿入接続される。
【0031】
一方、感知器用中継器3には伝送回路部13、CPU回路部14及び火災受信回路部15が設けられる。感知器用中継器3にあっては、伝送回路部13とCPU回路部14との間の下り信号と上り信号のやり取りについて、本発明のフォトカプラ回路18を2組設け、電気的に分離している。フォトカプラ回路18は、2組のフォトカプラ16,17を備えている。
【0032】
伝送回路部13に対する電源供給は、伝送線Sと伝送コモン線SCにより行われている。このため伝送線Sと伝送コモン線Cの間には、電源電圧と同時に伝送回路部8からの下り信号及び伝送回路部13からの上り信号が重畳されることになる。
【0033】
ここで受信機1の伝送回路部8からの下り信号は、電源線を兼ねる伝送線Sと伝送コモン線SC間に電圧信号として重畳させている。また感知器用中継器3の伝送回路部13から受信機1に対する上り信号は、伝送線Sと伝送コモン線SC間に流れる線路電流を変化させることで送信している。
【0034】
受信機1の伝送回路部8は、通常監視状態にあっては、感知器用中継器3の端末アドレスを順番に指定した呼出コマンドを含む呼出信号を送信しており、この呼出信号は感知器用中継器3の伝送回路部13で受信され、一方のフォトカプラ回路18を介してCPU回路部14に入力される。
【0035】
CPU回路部14は受信した呼出信号から呼出アドレスを抽出して、予め設定された自己アドレスと比較し、アドレス一致を判別したときに、そのときの感知器用中継器3における状態信号を他方のフォトカプラ回路18を介して伝送回路部13に出力し、伝送回路部13より線路電流の変化として受信機1に送出する。
【0036】
受信機1からの呼出信号に対する感知器用中継器3の応答信号としては、例えば8ビットの応答データ中の特定のビットに対応して、正常、障害、火災などの検出状態を設定し、対応する状態ビットを立てることで応答信号を受信機に返す。
【0037】
また火災検出時にあっては、受信機1に火災割込信号を送出し、受信機1において火災割込処理を行わせる。即ち受信機1は、感知器用中継器3から火災割込信号を受信すると、火災を検出している感知器用中継器3のアドレスを検索するためのアドレス検索処理を実行して、火災を検出した感知器用中継器3を特定し、特定したアドレスの感知器用中継器3に対し継続的に呼出信号を送って火災検出情報の応答を得るようになる。
【0038】
更に受信機1の伝送回路部8にあっては、感知器用中継器3に対する呼出信号の転送と並行して、一定周期例えば1秒間隔で断線検出制御信号を送信しており、この断線検出制御信号を受けてCPU回路部14は、火災受信回路部15に感知器線L1〜Lnと感知器コモン線LC間の断線検出動作を行わせる。この断線検出動作による検出結果は、断線検出処理が終了した後の次の呼出信号に対する応答信号により送り返される。
【0039】
受信機1の監視制御部7は、伝送回路部8により感知器用中継器3との間の伝送制御で得られた感知器用中継器3に関する情報に基づいて、火災受信処理や障害発生処理などの監視制御を行う。この監視制御部7に対しては操作表示部9が設けられており、火災表示や障害表示に加え、それぞれの表示に必要な操作入力を行うようにしている。
【0040】
更に電話回路部10は、端末側の電話ジャック5に図示のように電話器6が挿入接続されると、このとき電話線Tとコモン線C間に流れる電流を検出して通話接続を認識し、監視制御部7に電話器挿入接続を通知して通話呼出動作を行わせる。
【0041】
通話呼出しがあったならば、管理者は受信機1に設置されている電話器12を取り出して電話ジャック11に接続することで、端末側の電話器6との間で通話を行うことができる。
【0042】
図2は本発明によるフォトカプラ回路の基本的な実施形態を示した回路図である。図2において、本発明のフォトカプラ回路は、発光側回路20と受光側回路21で構成され、両者を電気的に分離して結合するため、2組のフォトカプラ16,17を設けている。フォトカプラ16は発光部としてのLED16a,17a及び受光部としてのフォトトランジスタ(以下「PT」という)16b,17bを備えている。
【0043】
発光側回路20は、フォトカプラ16,17のLED16a,17aを直列接続し、LED16aのアノード側となる一端を発光用駆動素子G1の出力に接続し、更にLED17aのカソード側となる他端を同じく発光用駆動素子G1の出力に接続している。
【0044】
更に、LED16a,17aの接続間の中点とアースの間に、低抵抗R0とコンデンサC1を接続している。この発光側回路20は図1の感知器用中継器3の伝送回路部13側に設けられており、受信機1からの伝送線Sと伝送コモン線SCの間に供給されている電源電圧V1を受けて動作する。
【0045】
受光側回路21は、フォトカプラ16,17のPT16b,17bを電源電圧V2の電源ラインとアース間に直列接続し、PT16b,17bの接続間の中点を受光用駆動素子G2の入力に接続している。
【0046】
ここで発光用駆動素子G1は反転入力型であり、伝送回線側からの受信信号のLレベル入力を反転してHレベル出力とし、またHレベル入力を反転してLレベルとして出力する。また受光用駆動素子G2は出力反転型であり、Lレベル入力をHレベル出力に反転し、またHレベル入力をLレベル出力に反転する。更に、発光側回路部20に設けている低抵抗R0の抵抗値としては、例えば数キロオームのものが使用される。
【0047】
次に図2のフォトカプラ回路の動作を説明する。図3(A)は、図2のフォトカプラ回路において発光用駆動素子G1の出力がLレベルからHレベルとなったときの回路動作を示している。
【0048】
図3(A)において、Lレベルの入力信号を受けて発光用駆動素子G1の出力がHレベルになると、例えば電源電圧V1に対応したHレベル電圧が出力され、フォトカプラ16のLED16a、低抵抗R0及びコンデンサC1を通る経路で電流i1が流れる。この電流i1は低抵抗R0とコンデンサC1の時定数に依存した充電電流であり、発光用駆動素子G1のHレベルへの立ち上がり直後において十分に大きな電流i1が流れ、その後コンデンサC1の充電に伴い徐々に電流i1は低下する。
【0049】
ここで、抵抗R0とコンデンサC1の時定数を受光側回路21のPT16bをスイッチングできる以上の時間に設定しておくことで、発光用駆動素子G1が伝送パルス信号の入力Lレベル期間に亘りHレベルとなっている間、LED16aは十分に発光し、PT16bをオン状態にスイッチングできる。
【0050】
LED16aの発光でPT16bがオンすると、電源電圧V2の電源ラインよりPT16bを通って受光用駆動素子G2に電流i2が流れ、受光用駆動素子G2の入力はHレベルとなり、このため出力は反転してLレベルとなる。
【0051】
続いて、発光用駆動素子G1の入力がHレベルに変化したとすると、図3(B)のように発光用駆動素子G1の出力がLレベルとなる。このため発光側回路20にあっては、図3(A)の状態で充電されたコンデンサC1の充電電圧により、低抵抗R0、フォトカプラ17のLED17aを通って、発光用駆動素子G1の出力に放電電流i3が流れる。
【0052】
この放電電流i3によりLED17aが発光し、受光側回路21側のPT17bをオンする。このため、受光用駆動素子G2の入力からオンしたPT17bを通って電流i4が流れ、受光用駆動素子G2の入力はLレベルとなり、これが反転されて出力がHレベルとなる。
【0053】
ここで、受信機から電源供給を受けている発光側回路20側の消費電流をみると、図3(A)の発光用駆動素子G1のHレベル出力のときにコンデンサC1に対し流れる充電電流i1が消費電流となるだけであり、図3(B)の発光用駆動素子G1の出力のLレベル期間についてはコンデンサC1の充電電圧による放電電流i3の消費であることから、受信機側からの電源に対する消費電流はない。
【0054】
したがって、発光用駆動素子G1に入力する1周期の伝送パルス信号の期間について、充電電流i1を平均化した平均消費電流が流れることとなり、このため平均消費電流は十分に小さくできる。
【0055】
また、フォトカプラ16,17のスイッチングはコンデンサC1の充電電流とコンデンサC1の放電電流によるLED16a,17aの発光で行われるため、充電電流及び放電電流共に初期状態においては十分に流れることで、PT16b,17bの高速スイッチングが実現できる。
【0056】
図4は図2のフォトカプラ回路に安定用の中抵抗と高抵抗を追加した本発明によるフォトカプラ回路の他の実施形態の回路図である。
【0057】
図4のフォトカプラ回路にあっては、まず発光側回路20におけるLED16a,17aの接続間の中点とアースの間に接続した低抵抗R0とコンデンサC1の直列回路と並列に中抵抗R1を接続し、また受光側回路21に対しPT16bと17bの接続間の中点とアースの間に高抵抗R4を接続し、この接続間の中点をプルダウンしている。
【0058】
ここで、発光側回路20に設けた中抵抗R1の抵抗値は低抵抗R0に対し少なくとも10倍以上の値を持つ。例えば低抵抗R0が数キロオームであったとすると、中抵抗R1は数十キロオームとなる。また、受光側回路21に設けた高抵抗R4の抵抗値は中抵抗R1に対し少なくとも10倍程度の値であり、例えば中抵抗R1が数十キロオームであったとすると、高抵抗R4は数百キロオームとなる。
【0059】
発光側回路20に設けた中抵抗R1は、発光用駆動素子G1のHレベル出力が長時間継続した場合のフォトカプラ回路の動作が不安定となることを回避する。即ち、発光用駆動素子G1の出力のHレベルが長時間継続すると、図2の実施形態にあっては、図3(A)のようなコンデンサC1に対する充電電流i1が時間の経過に伴って減少して、最終的には0となり、このためLED16aが消灯し、PT16bがオフとなってしまう。
【0060】
そこで中抵抗R1を設けることで、コンデンサC1の充電電流に加えて並列的に中抵抗R1に電流を流し、コンデンサC1の充電完了で充電電流がなくなっても、中抵抗R1による電流を継続的にLED16aに流して発光を維持し、これによってPT16bのオン状態を維持することができる。
【0061】
このように中抵抗R1を設けた場合には、中抵抗R1に流れる電流分だけ消費電流が増えることになるが、従来の低抵抗により流れる電流でLED16aを発光する場合に比べると、約10分の1程度に消費電流を低減できる。
【0062】
一方、受光側回路21に設けた高抵抗R4は、発光用駆動素子G1のLレベル出力が長時間継続した場合の動作不安定状態を解消する。図2の実施形態にあっては、図3(B)のように発光用駆動素子G1の出力がLレベルになると、コンデンサC1の放電電流によりフォトカプラ17のLED17aが発光されるが、発光用駆動素子G1のLレベル出力が長時間継続すると、コンデンサC1の放電が完了し、LED17aは消灯し、PT17bもオフとなってしまう。
【0063】
このとき受光側回路21の受光用駆動素子G2の入力は、PT16b,17bが共にオフであることから、そのままではアース側に対しフローティング状態となり、動作が不安定になる。
【0064】
そこで図4の実施形態にあっては、高抵抗R4を介して受光用駆動素子G2の入力をアースに接続するプルダウン接続をしているため、コンデンサC1の放電電流が0となって、LED17aの消灯によりPT17bがオフとなっても、高抵抗R4によるプルダウンで受光用駆動素子G2の入力レベルはLレベルに固定され、安定して動作することができる。
【0065】
図5は本発明によるフォトカプラ回路の他の実施形態であり、この実施形態にあっては、発光側回路20についてはLED16a,17aの間に低抵抗R2,R3を直列接続し、低抵抗R2,R3の接続間の中点よりコンデンサC1をアースに接続している。また受光側回路21については、PT16b,17bの間に低抵抗R5,R6を直列接続し、この接続間の中点を受光用駆動素子G2の入力に接続している。
【0066】
この実施形態は、図2の実施形態がコンデンサC1に対する充電抵抗及び放電抵抗として低抵抗R0を共用していたものを、充電用の低抵抗R2と放電用の低抵抗R3に分離している。また受光側回路21についても、PT16bがオンしたときの入力への電流流れ込みとPT17bがオンしたときの入力からの電流流れ出しについて、それぞれ別々の低抵抗R5,R6を使用している。
【0067】
このように発光側回路20及び受光側回路21について、それぞれの中点に対する抵抗値を2つに分けて設けることで、中点の電位に対するバランス調整が容易となる。
【0068】
つまり、発光用駆動素子G1の吐出電流と吸込電流が違っている場合や、受光用駆動素子G2の閾値が中点電圧でない場合には、2組のフォトカプラ16,17の発光特性を調整したい場合がある。この場合に2つの低抵抗R2,R3の値を調整することで動作を安定化することができる。
【0069】
また、図2の受光側回路21においては、動作時に電源電圧V2からPT16b,17bを介してアース側に電流が貫通して(貫通電流)、受光用駆動素子G2の動作が不安定になる可能性がある。そこでPT16b,PT17bと受光用駆動素子G2の入力端の間に低抵抗R5,R6を挿入することで、貫通電流を阻止することができる。また、使用する抵抗としてワット数の小さな小型のものを使用できる。
【0070】
この図5の実施形態における動作は、図2の実施形態における図3に示した動作と基本的に同じである。
【0071】
即ち、発光用駆動素子G1の出力がHレベルになると、LED16a、低抵抗R2、コンデンサC1を通る経路で充電電流が流れ、LED16aの発光でPT16bがオンし、低抵抗R5を介して受光用駆動素子G2の入力に電流が流れ、入力がHレベルとなって、出力が反転されたLレベルとなる。
【0072】
次に、発光用駆動素子G1の出力がLレベルになると、コンデンサC1の充電電圧により低抵抗R3、LED17aを通って充電電流が流れ、LED17aの発光でPT17bがオンし、抵抗R6を通して受光用駆動素子G2の入力から電流が流れ出し、このとき入力はLレベルに引き込まれることでHレベル出力となる。
【0073】
図6は、図5の実施形態に対し、動作を安定するための中抵抗と高抵抗を追加した実施形態の回路図である。図6において、発光側回路20には中抵抗R1が追加される。中抵抗R1はLED17aと低抵抗R2の間の中点からアースに接続される。即ち、低抵抗R2とコンデンサC1の直列回路に対し、中抵抗R1は並列接続される。また受光側回路21の高抵抗R4は、PT16bと低抵抗R5の接続間の中点をアースにプルダウン接続している。
【0074】
この発光側回路20における中抵抗R1は、発光用駆動素子G1のHレベル出力が長時間継続した場合、コンデンサC1に対する充電電流が断たれた後も中抵抗R1に流れる電流でLED16aの発光を継続させる。また、発光用駆動素子G1のLレベル出力が長時間継続したとき、コンデンサC1の充電完了でLED17aが消灯してPT17bがオフとなっても、高抵抗R4によるプルダウンで受光用駆動素子G2の入力をLレベルに固定し、フローティング状態となる不安定さを解消している。
【0075】
なお上記の実施形態は、防災監視システムの感知器用中継器における伝送信号のやり取りに使用されるフォトカプラ回路を例に取るものであったが、本発明はこれに限定されず、電気的な分離を行う回路、特に高速のパルス信号のやり取りを行う回路につき、そのまま適用することができる。また本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
【0076】
また、図2、4、5、6の発光側回路20、受光側回路21の回路組み合わせは実施形態の組み合わせに限定されるものではなく、例えば図2の発光側回路20と図5の受光側回路21の組み合わせや、図6の発光側回路20と図4の受光側回路21の組み合わせも考えられる。
【0077】
【発明の効果】
以上説明してきたように本発明によれば、発光用駆動素子のHレベル出力で動作するフォトカプラと発光用駆動素子のLレベル出力で駆動するフォトカプラを別々に設け、発光用駆動素子のHレベル出力の際にはコンデンサの充電電流で一方のフォトカプラを駆動し、発光用駆動素子のLレベル出力ではコンデンサの放電電流で別のフォトカプラを発光駆動しており、フォトカプラの発光駆動に必要な消費電流は発光用駆動素子のHレベル区間の充電電流のみであり、発光用駆動素子の出力がLレベルとなる放電電流によるフォトカプラの駆動について外部からの消費電流はなく、したがって全体として見た消費電流は発光用駆動素子のHレベルとLレベルの期間の平均電流となって、十分に小さな消費電流とできる。
【0078】
また、フォトカプラの駆動はコンデンサの充電電流と放電電流により各々行われるため、コンデンサに対する放電電流の立ち上がり及び充電電流の立ち上がりは共に十分に大きな電流が得られ、これによってフォトカプラの高速スイッチングを実現することができる。
【図面の簡単な説明】
【図1】本発明のフォトカプラ回路が使用される防災監視システムの説明図
【図2】本発明の基本的な実施形態の回路図
【図3】図2の実施形態における動作説明図
【図4】図2に対し安定用の中抵抗と高抵抗を付加して本発明の他の実施形態の回路図
【図5】本発明の他の実施形態の回路図
【図6】図5に対し安定用の中抵抗と高抵抗を付加して本発明の他の実施形態の回路図
【図7】従来のフォトカプラ回路図
【符号の説明】
1:受信機
2:線路
3:感知器用中継器
4:火災感知器
5,11:電話ジャック
6,12:電話器
7:監視制御部
8,13:伝送回路部
9:操作表示部
10:電話回路部
14:CPU回路部
15:火災受信回路部
16,17:フォトカプラ
16a,17a:LED
16b,17b:フォトトランジスタ
18:フォトカプラ回路
19:送信回路
20:発光側回路
21:受光側回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocoupler circuit for high-speed transmission used in a sensor repeater connected to a line drawn from a receiver.
[0002]
[Prior art]
Conventionally, in a disaster prevention monitoring system that collects and monitors disaster prevention information by a terminal call by address designation between a receiver and a terminal known as R type, a relay for a plurality of sensors as terminals on a line drawn from the receiver Connected. A plurality of sensor lines are drawn from this sensor repeater, and an on / off type fire sensor is connected.
[0003]
The receiver designates the address of the sensor repeater, transmits a call signal, collects the detection information of the fire detector from the sensor repeater that has determined the address match, and monitors the fire.
[0004]
In the sensor repeater, a photocoupler circuit as shown in FIG. 7 is provided in order to electrically isolate the transmission line on the receiver side from the sensor line.
[0005]
In the photocoupler circuit of FIG. 7, the light emitting side circuit connects the LED 100a of the photocoupler 100 to the output of the light emitting drive element G1 via the resistor R10 via the line of the power supply voltage V1. The light receiving side circuit connects the phototransistor 100 phototransistor (hereinafter referred to as “PT”) 100b from the power supply voltage V2 line via the resistor R11, and the resistor R11 and PT100b are connected to the light receiving drive element G2 by input connection. is doing.
[0006]
The operation of this photocoupler circuit is such that when a transmission pulse signal that becomes H level is input to the light emitting drive element G1 and the output becomes L level, a current flows through the LED 100a and light is emitted. The input of the light receiving drive element G2 is pulled to L level, and an H level light receiving signal is output.
[0007]
[Patent Document 1]
JP 59-10315 A
[Patent Document 2]
Japanese Utility Model Publication No. 3-17899
[Patent Document 3]
Japanese Utility Model Publication No. 62-53796
[Patent Document 4]
Japanese Patent Laid-Open No. 6-274783
[0008]
[Problems to be solved by the invention]
By the way, in the disaster prevention monitoring system, many detector repeaters such as several hundreds are connected to the transmission path from the receiver, and the photocouplers are driven all at once by receiving the calling signal from the receiver. Therefore, a photocoupler circuit used for the sensor repeater is required to have a low current consumption.
[0009]
Therefore, if the resistors R10 and R11 are increased in the photocoupler circuit of FIG. 7 in order to reduce the current consumption, the current flowing through the LED 100a decreases, the amount of light emission decreases, and the response time until the light receiving side PT 100b is turned on is delayed. . Further, when the resistances R10 and R11 are reduced, the response time is increased, but the current consumption is increased.
[0010]
An object of the present invention is to provide a photocoupler circuit that reduces current consumption and at the same time has a high response speed.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the photocoupler circuit of the present invention includes a light emitting drive element, two sets of photocouplers, and a light receiving drive element, and the LEDs of the two sets of photocouplers are connected in series to the anode side at one end. Each of the cathode side of the other end is connected to the output of the light emitting drive element, and a low resistance and a capacitor are connected in series between the midpoint between the LED connections and the ground to constitute a light emitting side circuit, and two sets Connect the phototransistor of the photocoupler in series, connect the collector side of one end to the power supply, connect the emitter side of the other end to ground, and connect the midpoint between the phototransistor connections to the input of the light receiving drive element. Thus, a light receiving side circuit is configured.
[0012]
According to the photocoupler circuit of the present invention, when the output of the light emitting drive element becomes H level, the charging current flows to the capacitor via the LED of the photocoupler and the low resistance, and the LED emits light due to the low resistance. Sufficient charging current flows initially, so that the phototransistor of the light receiving side circuit switches at high speed. Here, the time constant of the low resistance and the capacitor is set to a time longer than the phototransistor on the light receiving side can be switched, but the average current consumption is very small because it is a short time.
[0013]
Subsequently, when the output L of the light emitting side driving element becomes L, a sufficient discharge current flows from the charged capacitor via another LED with a low resistance, so that another phototransistor on the light receiving side can be switched at high speed. There is no current consumption from.
[0014]
As a result, the consumption current of one cycle in which the output of the light emitting drive element changes from the H level to the L level is an average consumption current obtained by averaging the charging current during the H level period, and this average consumption current can be sufficiently reduced. .
[0015]
Furthermore, the photocoupler circuit of the present invention is such that a medium resistor is connected in parallel with a capacitor provided on the light emitting side circuit and a low resistance series circuit, and a phototransistor connection between the light receiving side circuit is pulled down via a high resistance. Features.
[0016]
As a result, even if the H level output of the light emitting side driving element continues for a long time and the charging current of the capacitor does not flow, the current that maintains the light emission of the LED continuously flows through the intermediate resistor, so that the phototransistor on the light receiving side Remains on. In this case, a small amount of current determined by the medium resistance continues to flow. However, since the current is sufficiently lower than the current due to the low resistance, the current consumption can be reduced accordingly.
[0017]
When the L level output of the light emitting drive element continues for a long time, the discharge of the capacitor is completed, the LED is turned off, the two phototransistors on the light receiving side are turned off, and the input of the light receiving drive element is in a floating state. Although it may become indefinite, by pulling down here with a high resistance, it is possible to fix and stabilize the input state as it should be.
[0018]
In another form of the photocoupler circuit according to the present invention, a light emitting drive element, two sets of photocouplers, and a light receiving drive element are provided, and two sets of photocoupler LEDs are connected in series via two low resistances. The anode side at one end and the cathode side at the other end are connected to the output of the light emitting drive element, and a capacitor is connected between the midpoint between the two low resistance connections and the ground to constitute a light emitting side circuit. The phototransistors of two sets of photocouplers are connected in series, the collector side of one end is connected to the power supply, the emitter side of the other end is connected to the ground, and the midpoint between the phototransistor connections is the input of the light receiving drive element It is characterized in that a light receiving side circuit is configured by being connected to.
[0019]
Thus, when the discharge current and the suction current of the light emitting drive element are different, or when the threshold value of the light receiving drive element is not the midpoint voltage, the two low-resistance values are changed to The light emission characteristics can be adjusted to stabilize the operation.
[0020]
In this case as well, a low resistance on the plus side in the light emitting side circuit, a capacitor and a series resistor are connected in parallel with the series circuit, and a high resistance is connected between the plus side phototransistor on the light receiving side circuit and the low resistance. Pull down via.
[0021]
Furthermore, the present invention inserts and connects a low resistance between the two sets of phototransistors and the input of the light receiving drive element.
[0022]
Thereby, it is possible to prevent the light receiving drive element from malfunctioning due to the through current flowing to the ground side through the two sets of phototransistors.
[0023]
In the photocoupler circuit of the present invention, the middle resistance is at least about 10 times the resistance value with respect to the low resistance, and the high resistance is at least about 10 times the resistance value with respect to the middle resistance. . For example, low resistance has a relationship of several kilo ohms, medium resistance has several tens of kilo ohms, and high resistance has several hundreds of kilo ohms.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram of a disaster prevention monitoring system provided with a sensor repeater in which the photocoupler circuit of the present invention is used. In FIG. 1, the disaster prevention monitoring system of the present invention includes a power line V, a transmission line S, a transmission common line SC, a telephone line T and a common line as a line 2 from a receiver 1 installed in a manager's room to a warning area. Line C is drawn. Here, the common line C is a common line for the power line V and the telephone line T.
[0025]
A plurality of sensor repeaters 3 are installed on the line 2 drawn from the receiver 1. In the disaster prevention monitoring system of the present invention, the receiver 1 receives a response information by transmitting a command such as a call by designating a terminal address set in the sensor repeater 3, and Can connect as many detector repeaters 3 as the number of terminal addresses that can be set, and in a large-scale disaster prevention monitoring system, hundreds of detector repeaters 3 are connected to the receiver 1. .
[0026]
A plurality of sensor lines L1 to Ln and a sensor common line LC are drawn out from the sensor repeater 3, and an on / off type fire detection is performed between the sensor line L1 and the sensor common line LC. A device 4 is connected.
[0027]
In this example, the case where one fire detector 4 is connected to each of the detector lines L1 to Ln is taken as an example, but a plurality of fire detectors 4 are provided for each detector line as necessary. Connected. Moreover, although the terminator for a disconnection detection is connected to the termination | terminus of the sensor lines L1-Ln, this is abbreviate | omitted.
[0028]
On the other hand, in the alert area where the sensor repeater 3 is installed, a telephone jack 5 is provided in order to make a call communication between the receiver 1 and the site. Specifically, the telephone jack 5 is provided in a fire transmitter or the like installed in the alert area.
[0029]
A telephone line T drawn from the receiver 1 is connected to one end of the telephone jack 5, and the other end of the telephone jack 5 is connected to a sensor common line LC drawn from the sensor repeater 3 by a telephone common line TC. The common line C drawn from the receiver 1 is connected to the common line LC.
[0030]
The receiver 1 is provided with a monitoring control unit 7, a transmission circuit unit 8, an operation display unit 9, a telephone circuit unit 10, and a telephone jack 11. A telephone 12 is inserted and connected to the telephone jack when making a call.
[0031]
On the other hand, the sensor repeater 3 is provided with a transmission circuit unit 13, a CPU circuit unit 14, and a fire reception circuit unit 15. In the sensor repeater 3, two sets of the photocoupler circuit 18 of the present invention are provided and electrically separated for the exchange of the downstream signal and upstream signal between the transmission circuit unit 13 and the CPU circuit unit 14. Yes. The photocoupler circuit 18 includes two sets of photocouplers 16 and 17.
[0032]
The power supply to the transmission circuit unit 13 is performed by the transmission line S and the transmission common line SC. For this reason, between the transmission line S and the transmission common line C, the downstream signal from the transmission circuit unit 8 and the upstream signal from the transmission circuit unit 13 are superimposed simultaneously with the power supply voltage.
[0033]
Here, the downstream signal from the transmission circuit unit 8 of the receiver 1 is superimposed as a voltage signal between the transmission line S that also serves as a power supply line and the transmission common line SC. The upstream signal from the transmission circuit unit 13 of the sensor repeater 3 to the receiver 1 is transmitted by changing the line current flowing between the transmission line S and the transmission common line SC.
[0034]
In the normal monitoring state, the transmission circuit unit 8 of the receiver 1 transmits a call signal including a call command in which the terminal addresses of the sensor repeater 3 are sequentially specified. This call signal is transmitted to the sensor relay. The signal is received by the transmission circuit unit 13 of the device 3 and input to the CPU circuit unit 14 via one photocoupler circuit 18.
[0035]
The CPU circuit unit 14 extracts the call address from the received call signal, compares it with a preset self address, and when it determines that the address matches, the status signal in the sensor repeater 3 at that time is used as the other photo. The signal is output to the transmission circuit unit 13 via the coupler circuit 18 and sent to the receiver 1 as a change in line current from the transmission circuit unit 13.
[0036]
As a response signal of the sensor repeater 3 with respect to the calling signal from the receiver 1, for example, corresponding to a specific bit in 8-bit response data, a detection state such as normal, failure, fire, etc. is set and handled. A response signal is returned to the receiver by setting the status bit.
[0037]
When a fire is detected, a fire interrupt signal is sent to the receiver 1 to cause the receiver 1 to perform a fire interrupt process. That is, when the receiver 1 receives the fire interrupt signal from the sensor repeater 3, the receiver 1 detects the fire by executing an address search process for searching for the address of the sensor repeater 3 that detects the fire. The sensor repeater 3 is specified, and a call signal is continuously sent to the sensor repeater 3 of the specified address to obtain a response of fire detection information.
[0038]
Further, in the transmission circuit unit 8 of the receiver 1, in parallel with the transfer of the calling signal to the sensor repeater 3, the disconnection detection control signal is transmitted at a constant cycle, for example, at intervals of 1 second. Upon receiving the signal, the CPU circuit unit 14 causes the fire receiving circuit unit 15 to perform a disconnection detection operation between the sensor lines L1 to Ln and the sensor common line LC. The detection result by the disconnection detection operation is sent back as a response signal to the next calling signal after the disconnection detection process is completed.
[0039]
The monitoring control unit 7 of the receiver 1 performs a fire reception process, a failure generation process, and the like based on information on the sensor relay 3 obtained by transmission control with the sensor relay 3 by the transmission circuit unit 8. Perform supervisory control. An operation display unit 9 is provided for the monitoring control unit 7, and in addition to a fire display and a failure display, an operation input necessary for each display is performed.
[0040]
Further, when the telephone 6 is inserted and connected to the telephone jack 5 on the terminal side as shown in the figure, the telephone circuit unit 10 detects the current flowing between the telephone line T and the common line C at this time and recognizes the telephone connection. Then, the supervisory control unit 7 is notified of the telephone set insertion connection, and a call calling operation is performed.
[0041]
If there is a telephone call, the manager can take a call with the telephone 6 on the terminal side by taking out the telephone 12 installed in the receiver 1 and connecting it to the telephone jack 11. .
[0042]
FIG. 2 is a circuit diagram showing a basic embodiment of a photocoupler circuit according to the present invention. In FIG. 2, the photocoupler circuit of the present invention comprises a light emitting side circuit 20 and a light receiving side circuit 21, and two sets of photocouplers 16 and 17 are provided to electrically separate and couple them. The photocoupler 16 includes LEDs 16a and 17a serving as light emitting units and phototransistors (hereinafter referred to as “PT”) 16b and 17b serving as light receiving units.
[0043]
The light-emitting side circuit 20 connects the LEDs 16a and 17a of the photocouplers 16 and 17 in series, connects one end on the anode side of the LED 16a to the output of the light-emitting drive element G1, and the other end on the cathode side of the LED 17a in the same manner. It is connected to the output of the light emitting drive element G1.
[0044]
Further, a low resistance R0 and a capacitor C1 are connected between the midpoint between the connections of the LEDs 16a and 17a and the ground. The light emission side circuit 20 is provided on the transmission circuit unit 13 side of the sensor repeater 3 of FIG. 1, and the power supply voltage V1 supplied between the transmission line S and the transmission common line SC from the receiver 1 is supplied. Receive and operate.
[0045]
The light receiving side circuit 21 connects the PTs 16b and 17b of the photocouplers 16 and 17 in series between the power supply line of the power supply voltage V2 and the ground, and connects the midpoint between the connections of PT16b and 17b to the input of the light receiving drive element G2. ing.
[0046]
Here, the light emitting drive element G1 is an inverting input type, which inverts an L level input of a received signal from the transmission line side to an H level output, and inverts an H level input to output an L level. The light receiving drive element G2 is an output inversion type, which inverts an L level input to an H level output and inverts an H level input to an L level output. Further, as the resistance value of the low resistance R0 provided in the light emitting side circuit unit 20, for example, a resistance value of several kilohms is used.
[0047]
Next, the operation of the photocoupler circuit of FIG. 2 will be described. FIG. 3A shows a circuit operation when the output of the light emitting drive element G1 changes from L level to H level in the photocoupler circuit of FIG.
[0048]
In FIG. 3A, when the output of the light emitting drive element G1 becomes H level in response to the L level input signal, for example, an H level voltage corresponding to the power supply voltage V1 is output, and the LED 16a of the photocoupler 16 and the low resistance A current i1 flows through a path passing through R0 and the capacitor C1. This current i1 is a charging current depending on the time constant of the low resistance R0 and the capacitor C1, and a sufficiently large current i1 flows immediately after the light emitting drive element G1 rises to the H level, and then gradually with the charging of the capacitor C1. In addition, the current i1 decreases.
[0049]
Here, by setting the time constant of the resistor R0 and the capacitor C1 to a time longer than the time at which the PT 16b of the light receiving side circuit 21 can be switched, the light emitting drive element G1 is at the H level over the input L level period of the transmission pulse signal. During this time, the LED 16a emits light sufficiently, and the PT 16b can be switched on.
[0050]
When PT16b is turned on by the light emission of the LED 16a, the current i2 flows from the power supply line of the power supply voltage V2 through the PT16b to the light receiving drive element G2, and the input of the light receiving drive element G2 becomes H level. L level.
[0051]
Subsequently, if the input of the light emitting drive element G1 changes to H level, the output of the light emitting drive element G1 becomes L level as shown in FIG. Therefore, in the light emission side circuit 20, the output voltage of the light emitting drive element G1 passes through the low resistance R0 and the LED 17a of the photocoupler 17 by the charging voltage of the capacitor C1 charged in the state of FIG. A discharge current i3 flows.
[0052]
The LED 17a emits light by the discharge current i3, and the PT 17b on the light receiving side circuit 21 side is turned on. Therefore, the current i4 flows through the PT 17b that is turned on from the input of the light receiving drive element G2, and the input of the light receiving drive element G2 becomes L level, which is inverted and the output becomes H level.
[0053]
Here, looking at the current consumption on the light emission side circuit 20 side that is supplied with power from the receiver, the charging current i1 that flows to the capacitor C1 when the light emission drive element G1 in FIG. Is the consumption current, and the L level period of the output of the light emitting drive element G1 in FIG. 3B is the consumption of the discharge current i3 due to the charging voltage of the capacitor C1, so that the power There is no current consumption.
[0054]
Therefore, an average current consumption obtained by averaging the charging current i1 flows during the period of one transmission pulse signal input to the light emitting drive element G1, and therefore the average current consumption can be sufficiently reduced.
[0055]
Further, since the switching of the photocouplers 16 and 17 is performed by the light emission of the LEDs 16a and 17a by the charging current of the capacitor C1 and the discharging current of the capacitor C1, the charging current and the discharging current sufficiently flow in the initial state, so that PT16b, High-speed switching of 17b can be realized.
[0056]
FIG. 4 is a circuit diagram of another embodiment of the photocoupler circuit according to the present invention in which a middle resistance and a high resistance for stabilization are added to the photocoupler circuit of FIG.
[0057]
In the photocoupler circuit of FIG. 4, first, a medium resistance R1 is connected in parallel with a series circuit of a low resistance R0 and a capacitor C1 connected between the midpoint between the connection of the LEDs 16a and 17a in the light emitting side circuit 20 and the ground. Further, a high resistance R4 is connected between the midpoint between the connections of PT16b and 17b and ground with respect to the light receiving side circuit 21, and the midpoint between these connections is pulled down.
[0058]
Here, the resistance value of the middle resistor R1 provided in the light emitting side circuit 20 has a value of at least 10 times the low resistance R0. For example, if the low resistance R0 is several kilo ohms, the middle resistance R1 is several tens of kilo ohms. The resistance value of the high resistance R4 provided in the light receiving side circuit 21 is at least about 10 times the value of the medium resistance R1. For example, if the medium resistance R1 is several tens of kilohms, the high resistance R4 is several hundred kiloohms. It becomes.
[0059]
The intermediate resistor R1 provided in the light emission side circuit 20 avoids the unstable operation of the photocoupler circuit when the H level output of the light emitting drive element G1 continues for a long time. That is, when the H level of the output of the light emitting drive element G1 continues for a long time, in the embodiment of FIG. 2, the charging current i1 for the capacitor C1 as shown in FIG. 3A decreases with time. Eventually, it becomes 0, so that the LED 16a is turned off and the PT 16b is turned off.
[0060]
Therefore, by providing the middle resistor R1, in addition to the charging current of the capacitor C1, a current is passed through the middle resistor R1 in parallel. The LED 16a is allowed to flow to maintain light emission, whereby the on state of the PT 16b can be maintained.
[0061]
When the middle resistor R1 is provided in this way, the current consumption increases by the amount of current flowing through the middle resistor R1, but it is about 10 minutes compared to the case where the LED 16a emits light with the current flowing through the conventional low resistance. The current consumption can be reduced to about 1.
[0062]
On the other hand, the high resistance R4 provided in the light receiving side circuit 21 eliminates an unstable operation state when the L level output of the light emitting drive element G1 continues for a long time. In the embodiment of FIG. 2, when the output of the light emitting drive element G1 becomes L level as shown in FIG. 3B, the LED 17a of the photocoupler 17 emits light due to the discharge current of the capacitor C1. When the L level output of the drive element G1 continues for a long time, the discharge of the capacitor C1 is completed, the LED 17a is turned off, and the PT 17b is also turned off.
[0063]
At this time, the input to the light receiving drive element G2 of the light receiving side circuit 21 is in a floating state with respect to the ground side because the PTs 16b and 17b are both off, and the operation becomes unstable.
[0064]
Therefore, in the embodiment of FIG. 4, since the pull-down connection for connecting the input of the light receiving drive element G2 to the ground via the high resistance R4 is performed, the discharge current of the capacitor C1 becomes 0, and the LED 17a Even if the PT 17b is turned off by turning off the light, the input level of the light receiving drive element G2 is fixed to the L level by pull-down by the high resistance R4, and can operate stably.
[0065]
FIG. 5 shows another embodiment of the photocoupler circuit according to the present invention. In this embodiment, low-resistance R2 and R3 are connected in series between the LEDs 16a and 17a for the light-emitting side circuit 20, and the low-resistance R2 is connected. , R3, the capacitor C1 is connected to the ground from the midpoint between the connections. For the light receiving side circuit 21, low resistances R5 and R6 are connected in series between PTs 16b and 17b, and the midpoint between these connections is connected to the input of the light receiving drive element G2.
[0066]
In this embodiment, the embodiment shown in FIG. 2 shares the low resistance R0 as the charging resistance and discharging resistance for the capacitor C1, and is separated into a low resistance R2 for charging and a low resistance R3 for discharging. The light receiving side circuit 21 also uses separate low resistances R5 and R6 for current flow into the input when PT16b is turned on and current flow from the input when PT17b is turned on.
[0067]
As described above, the light-emitting side circuit 20 and the light-receiving side circuit 21 are each provided with two resistance values for the midpoint, thereby facilitating balance adjustment with respect to the midpoint potential.
[0068]
That is, when the discharge current and the suction current of the light emitting drive element G1 are different, or when the threshold value of the light receiving drive element G2 is not the midpoint voltage, the light emission characteristics of the two sets of photocouplers 16 and 17 are to be adjusted. There is a case. In this case, the operation can be stabilized by adjusting the values of the two low resistances R2 and R3.
[0069]
Further, in the light receiving side circuit 21 of FIG. 2, during operation, a current may pass from the power supply voltage V2 to the ground side via the PTs 16b and 17b (through current), and the operation of the light receiving drive element G2 may become unstable. There is sex. Therefore, by inserting low resistances R5 and R6 between the input ends of PT16b and PT17b and the light receiving drive element G2, it is possible to prevent a through current. Further, a small resistor having a small wattage can be used.
[0070]
The operation in the embodiment of FIG. 5 is basically the same as the operation shown in FIG. 3 in the embodiment of FIG.
[0071]
That is, when the output of the light emitting drive element G1 becomes H level, a charging current flows through the path through the LED 16a, the low resistance R2, and the capacitor C1, the PT 16b is turned on by the light emission of the LED 16a, and the light receiving drive through the low resistance R5. A current flows through the input of the element G2, the input becomes H level, and the output becomes L level inverted.
[0072]
Next, when the output of the light emitting drive element G1 becomes L level, a charging current flows through the low resistance R3 and the LED 17a due to the charging voltage of the capacitor C1, the PT 17b is turned on by the light emission of the LED 17a, and the light receiving drive through the resistor R6. A current flows out from the input of the element G2, and at this time, the input is pulled to the L level to become the H level output.
[0073]
FIG. 6 is a circuit diagram of an embodiment in which a medium resistance and a high resistance for stabilizing the operation are added to the embodiment of FIG. In FIG. 6, a middle resistor R <b> 1 is added to the light emission side circuit 20. The middle resistance R1 is connected to the ground from the middle point between the LED 17a and the low resistance R2. That is, the middle resistor R1 is connected in parallel to the series circuit of the low resistor R2 and the capacitor C1. The high resistance R4 of the light receiving side circuit 21 has a midpoint between the connection of PT16b and the low resistance R5 connected to the ground by pulling down.
[0074]
The intermediate resistor R1 in the light emission side circuit 20 continues to emit light from the LED 16a with the current flowing through the intermediate resistor R1 even after the charging current to the capacitor C1 is cut off when the H level output of the light emitting drive element G1 continues for a long time. Let Further, when the L level output of the light emitting drive element G1 continues for a long time, even if the LED 17a is turned off and the PT 17b is turned off when the charging of the capacitor C1 is completed, the input of the light receiving drive element G2 is pulled down by the high resistance R4. Is fixed at the L level to eliminate the instability of the floating state.
[0075]
In the above embodiment, the photocoupler circuit used for the exchange of transmission signals in the sensor repeater of the disaster prevention monitoring system is taken as an example. However, the present invention is not limited to this, and electrical separation is performed. The present invention can be applied as it is to a circuit that performs the above, particularly a circuit that exchanges high-speed pulse signals. Further, the present invention includes appropriate modifications that do not impair the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.
[0076]
Further, the circuit combination of the light emission side circuit 20 and the light reception side circuit 21 in FIGS. 2, 4, 5, and 6 is not limited to the combination of the embodiments, and for example, the light emission side circuit 20 in FIG. 2 and the light reception side in FIG. A combination of the circuits 21 and a combination of the light emitting side circuit 20 in FIG. 6 and the light receiving side circuit 21 in FIG. 4 are also conceivable.
[0077]
【The invention's effect】
As described above, according to the present invention, the photocoupler that operates with the H level output of the light emitting drive element and the photocoupler that operates with the L level output of the light emitting drive element are provided separately, and the H of the light emitting drive element is provided. At the time of level output, one photocoupler is driven by the charging current of the capacitor, and at the L level output of the light emitting drive element, another photocoupler is driven to emit light by the discharge current of the capacitor. The necessary current consumption is only the charging current in the H level section of the light emitting drive element, and there is no current consumption from the outside for driving the photocoupler by the discharge current at which the output of the light emitting drive element becomes L level. The viewed current consumption becomes an average current during the period of H level and L level of the light emitting drive element, and can be made sufficiently small.
[0078]
In addition, since the photocoupler is driven by the charge current and discharge current of the capacitor, a sufficiently large current is obtained for both the rise of the discharge current and the rise of the charge current, thereby realizing high-speed switching of the photocoupler. can do.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a disaster prevention monitoring system in which a photocoupler circuit of the present invention is used.
FIG. 2 is a circuit diagram of a basic embodiment of the present invention.
FIG. 3 is an operation explanatory diagram in the embodiment of FIG. 2;
4 is a circuit diagram of another embodiment of the present invention by adding a middle resistance and a high resistance for stabilization to FIG.
FIG. 5 is a circuit diagram of another embodiment of the present invention.
6 is a circuit diagram of another embodiment of the present invention by adding a middle resistance and a high resistance for stabilization to FIG.
FIG. 7 is a circuit diagram of a conventional photocoupler.
[Explanation of symbols]
1: Receiver
2: Track
3: Repeater for sensor
4: Fire detector
5, 11: Telephone jack
6,12: Telephone
7: Monitoring control unit
8, 13: Transmission circuit section
9: Operation display section
10: Telephone circuit
14: CPU circuit section
15: Fire receiving circuit section
16, 17: Photocoupler
16a, 17a: LED
16b, 17b: Phototransistor
18: Photocoupler circuit
19: Transmitter circuit
20: Light emission side circuit
21: Light receiving side circuit

Claims (6)

発光用駆動素子、2組のフォトカプラ及び受光用駆動素子を備え、
前記2組のフォトカプラのLEDを直列接続して一端のアノード側と他端のカソード側の各々を前記発光用駆動素子の出力に接続すると共に、LED接続間の中点とアースの間に低抵抗とコンデンサを直列接続して発光側回路を構成し、
前記2組のフォトカプラのフォトトランジスタを直列接続して一端のコレクタ側を電源に接続すると共に他端のエミッタ側をアースに接続し、更にフォトトランジスタ接続間の中点を前記受光用駆動素子の入力に接続して受光側回路を構成したことを特徴とするフォトカプラ回路。
Equipped with a light emitting drive element, two sets of photocouplers and a light receiving drive element,
The LEDs of the two sets of photocouplers are connected in series, and the anode side at one end and the cathode side at the other end are connected to the output of the driving element for light emission. A resistor and a capacitor are connected in series to configure the light-emitting side circuit,
The phototransistors of the two sets of photocouplers are connected in series, the collector side of one end is connected to the power source, the emitter side of the other end is connected to the ground, and the midpoint between the phototransistor connections is connected to the light receiving drive element. A photocoupler circuit comprising a light receiving side circuit connected to an input.
請求項1記載のフォトカプラ回路に於いて、前記発光側回路に設けた前記コンデンサと低抵抗の直列回路と並列に中抵抗を接続し、前記受光側回路のフォトトランジスタ接続間を高抵抗を介してプルダウン接続したことを特徴とするフォトカプラ回路。2. The photocoupler circuit according to claim 1, wherein a medium resistor is connected in parallel with the capacitor and a low-resistance series circuit provided in the light-emitting side circuit, and the phototransistor connection between the light-receiving side circuit is connected through a high resistance. A photocoupler circuit characterized by pull-down connection. 発光用駆動素子、2組のフォトカプラ及び受光用駆動素子を備え、
前記2組のフォトカプラのLEDを2つの低抵抗を介して直列接続して一端のアノード側と他端のカソード側の各々を前記発光用駆動素子の出力に接続すると共に、前記2つの低抵抗接続間の中点とアースの間にコンデンサを接続して発光側回路を構成し、
前記2組のフォトカプラのフォトトランジスタを直列接続して一端のコレクタ側を電源に接続すると共に他端のエミッタ側をアースに接続し、更にフォトトランジスタ接続間の中点を前記受光用駆動素子の入力に接続して受光側回路を構成したことを特徴とするフォトカプラ回路。
Equipped with a light emitting drive element, two sets of photocouplers and a light receiving drive element,
The two sets of photocoupler LEDs are connected in series via two low resistances, one end of the anode side and the other end of the cathode side are connected to the output of the light emitting drive element, and the two low resistances Connect the capacitor between the midpoint between the connections and the ground to configure the light emission side circuit,
The phototransistors of the two sets of photocouplers are connected in series, the collector side of one end is connected to the power source, the emitter side of the other end is connected to the ground, and the midpoint between the phototransistor connections is connected to the light receiving drive element. A photocoupler circuit comprising a light receiving side circuit connected to an input.
請求項3のフォトカプラ回路に於いて、前記発光側回路に設けたプラス側の低抵抗と前記コンデンサの直列回路と並列に中抵抗を接続し、前記受光側回路のフォトトランジスタ接続間を高抵抗を介してプルダウン接続したことを特徴とするフォトカプラ回路。4. The photocoupler circuit according to claim 3, wherein an intermediate resistor is connected in parallel with a series circuit of the plus side low resistance provided in the light emitting side circuit and the capacitor, and a high resistance is provided between the phototransistor connections of the light receiving side circuit. A photocoupler circuit characterized by being connected via pull-down. 請求項1乃至4のいずれかに記載のフォトカプラ回路に於いて、前記2組のフォトトランジスタと前記受光用駆動素子の入力とのそれぞれの間に低抵抗を挿入したことを特徴とするフォトカプラ回路。5. The photocoupler circuit according to claim 1, wherein a low resistance is inserted between each of the two sets of phototransistors and the input of the light receiving drive element. circuit. 請求項1乃至5のいずれかに記載のフォトカプラ回路に於いて、前記低抵抗に対し前記中抵抗は少なくとも10倍程度の抵抗値であり、前記中抵抗に対し前記高抵抗は少なくとも10倍程度の抵抗値であることを特徴とするフォトカプラ回路。6. The photocoupler circuit according to claim 1, wherein the intermediate resistance is at least about 10 times the resistance of the low resistance, and the high resistance is at least about 10 times the intermediate resistance. A photocoupler circuit characterized by having a resistance value of.
JP2002267759A 2002-09-13 2002-09-13 Photocoupler circuit Expired - Fee Related JP4050580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267759A JP4050580B2 (en) 2002-09-13 2002-09-13 Photocoupler circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267759A JP4050580B2 (en) 2002-09-13 2002-09-13 Photocoupler circuit

Publications (2)

Publication Number Publication Date
JP2004111413A JP2004111413A (en) 2004-04-08
JP4050580B2 true JP4050580B2 (en) 2008-02-20

Family

ID=32266174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267759A Expired - Fee Related JP4050580B2 (en) 2002-09-13 2002-09-13 Photocoupler circuit

Country Status (1)

Country Link
JP (1) JP4050580B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073621A (en) 2005-09-05 2007-03-22 Sharp Corp Optical coupling device and electronic apparatus using the same
CN110873812B (en) * 2018-08-31 2021-08-24 深圳光峰科技股份有限公司 Color wheel rotating speed detection device, light source system and projection equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283082A (en) * 1987-05-14 1988-11-18 Fuji Electric Co Ltd Light-coupling semiconductor device
JPH0358532A (en) * 1989-07-27 1991-03-13 Toshiba Corp Optical transmission system
JPH05122157A (en) * 1991-10-28 1993-05-18 Canon Inc Optical transmission equipment
JP3077365B2 (en) * 1992-03-31 2000-08-14 横河電機株式会社 Signal isolation device
JPH07131319A (en) * 1993-11-08 1995-05-19 Oki Electric Ind Co Ltd Photocoupler circuit and device for the same
JPH088069A (en) * 1994-04-21 1996-01-12 Takaaki Ikeda Solar sign
JP3394018B2 (en) * 2000-03-28 2003-04-07 株式会社東芝 Complementary optical wiring circuit

Also Published As

Publication number Publication date
JP2004111413A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CN101129036B (en) Transceiver with adjustable terminal network for a control device
JPH07212506A (en) Terminal feeding system
KR20020041463A (en) I2c opto-isolator circuit
CN114342553A (en) Power supply apparatus, power reception apparatus, and power supply and reception method
JP4050580B2 (en) Photocoupler circuit
CN113606761A (en) Current loop communication circuit and air conditioner
US6407402B1 (en) I2C opto-isolator circuit
CN109672636B (en) Resistance matching circuit
US4495494A (en) Detector circuit for communication lines
CN111600696B (en) Design circuit and method based on half-duplex communication bus and robot
US9401821B2 (en) Powered device, power supply system, and operation mode selection method
JP3803075B2 (en) Disaster prevention monitoring system
US4140881A (en) Telephone loop extending apparatus
CN217693341U (en) Optical communication device and optical communication system
CN215809187U (en) Current loop communication circuit and air conditioner
JP2002063678A (en) Meter device for automatic meter-reading and automatic meter-reading system
CN220711484U (en) Anti-interference single-wire bidirectional communication circuit
JP3803077B2 (en) Fire alarm equipment telephone equipment
JP2001268152A (en) Transmission line switching controller
JPH01302180A (en) Disconnection detecting system
JPH08307485A (en) Line current detection circuit for telephone set
JP2000349754A (en) Isdn digital line terminating equipment with automatic terminal function
JP2005044305A (en) Fire receiver and fire monitoring system
CN116170245A (en) Control circuit of power supply and POE power supply circuit
CN117608226A (en) Resistor circuit of communication bus terminal and loading method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

R150 Certificate of patent or registration of utility model

Ref document number: 4050580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees