JP4049841B2 - Method for forming silicon nitride thin film - Google Patents

Method for forming silicon nitride thin film Download PDF

Info

Publication number
JP4049841B2
JP4049841B2 JP35857696A JP35857696A JP4049841B2 JP 4049841 B2 JP4049841 B2 JP 4049841B2 JP 35857696 A JP35857696 A JP 35857696A JP 35857696 A JP35857696 A JP 35857696A JP 4049841 B2 JP4049841 B2 JP 4049841B2
Authority
JP
Japan
Prior art keywords
film
silicon nitride
thin film
nitride thin
polysilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35857696A
Other languages
Japanese (ja)
Other versions
JPH10194873A (en
Inventor
文孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZ Electronic Materials Japan Co Ltd
Original Assignee
AZ Electronic Materials Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials Japan Co Ltd filed Critical AZ Electronic Materials Japan Co Ltd
Priority to JP35857696A priority Critical patent/JP4049841B2/en
Publication of JPH10194873A publication Critical patent/JPH10194873A/en
Application granted granted Critical
Publication of JP4049841B2 publication Critical patent/JP4049841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/4922Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane
    • C04B41/4944Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane containing atoms other than carbon, hydrogen, oxygen, silicon, alkali metals or halogens, e.g. N-silyldisilazane: Image
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Description

【0001】
【発明の属する技術分野】
本発明は、窒化珪素薄膜の形成方法及び同方法により得られる窒化珪素薄膜に関し、詳しくは半導体装置や液晶表示装置における絶縁膜、保護膜などとして、あるいはセラミックスや金属等の表面改質被膜などとして有用な、透明性、緻密性、耐蝕性、耐摩耗性、耐熱性に優れ、且つ耐薬品性に優れた高屈折率を有する高品質の窒化珪素薄膜の形成方法に関する。
【0002】
【従来の技術】
シリカ、窒化珪素、酸窒化珪素等の珪素質セラミックス薄膜は、その優れた耐熱性、耐摩耗性、耐蝕性等の面から、例えば半導体装置や液晶表示装置における絶縁膜として、あるいは画素電極ないしカラーフィルター上に設けられる保護膜として、利用されている。それらの薄膜の中でも窒化珪素膜は特に不活性雰囲気や還元性雰囲気で高温で安定であり、またシリカ等に比べ高屈折率な透明膜であるという特徴を有する。特に窒化珪素膜は緻密性、高屈折率の点から、近年光デバイスの保護膜、ガスバリア膜として利用されつつある。
このような分野で用いられる珪素質被膜は、一般にCVD法、スパッタリング法等の気相成長法あるいは珪素質被膜形成用塗布液を用いる塗布法によって基板上に形成されている。ただ、気相成長法によると、手間がかかると共に大きな設備を必要とし、しかも凹凸面上に被膜を形成する場合に凹凸面の平坦化ができない等の問題があるため、近年は塗布法が広く採用されている。
【0003】
一方、近年、シリカ、窒化珪素、酸窒化珪素の前駆体ポリマーであるポリシラザンが、耐熱性、耐摩耗性、耐蝕性等に優れた珪素質コーティング膜を形成し得るため、注目されており、ポリシラザンを使用する窒化珪素薄膜の形成についても、例えば、特開平1−203476号、特開平6−47862号各公報等に報告されている。
【0004】
すなわち、特開平1−203476号公報には、ポリシラザン含有コーティング組成物を基板に塗布した後、焼成し、窒化珪素からなる被覆膜を形成させるコーティング方法が提案されており、焼成は100〜1,000℃(好ましくは200〜500℃)の温度範囲で行なわれ、非酸化性雰囲気であれば、Si−N結合の被膜が形成されるとしている。
【0005】
一方、特開平6−47862号公報には、鋼板(成形体)の表面にポリシラザンからなる被膜を形成する工程と、このポリシラザン被膜を有する鋼板(成形体)を熱処理する工程からなるセラミックス被膜を有する鋼板(成形体)の製造方法が提案されており、ポリシラザン被膜の加熱処理は、空気、不活性ガス、還元性ガスの雰囲気下又は真空下において、100℃以上(好ましくは200〜1,300℃)の温度で行なわれ、加熱処理によりポリシラザン被膜はSi−N結合やSi−N−O結合を有するセラミックス(前駆体)の被膜となるとしている。更に、不活性ガスや還元性雰囲気下での加熱においては、500℃以上の温度ではポリシラザンの分解が主として起り、Si−N結合を有するセラミックスが形成されると述べられている。
【0006】
しかし、このようにポリシラザン被膜を不活性ガスや還元性雰囲気下で加熱処理してSi−N結合を有するセラミックス被膜を得る場合には、ポリシラザンの酸化しやすさのために、環境からの不純物として酸素が膜中に取り込まれ、純粋な窒化珪素膜とならずに酸窒化珪素膜となりやすい。このため純粋な窒化珪素膜を得るためには、1300℃以上の高温が必要であった。ここで、酸窒化珪素膜は窒化珪素膜に比べ、フッ化水素酸等に対する耐薬品性が劣り、屈折率が低くなるという問題がある。
【0007】
【発明が解決しようとする課題】
従って、本発明は上記従来技術の実状に鑑みてなされたものであって、耐摩耗性、耐熱性、耐蝕性に優れているのみならず、耐薬品性に優れ且つ高屈折率を有する良好な窒化珪素薄膜の形成方法を提供することをその目的とする。
【0008】
【課題を解決するための手段】
本発明者は、ポリシラザン塗膜の焼成による窒化珪素薄膜の形成において、より良好な薄膜を得るために鋭意研究を重ねた結果、反応系内における水分が窒化珪素薄膜形成を阻害することを見い出し、本発明に到達した。
【0009】
すなわち、本発明によれば、ペルヒドロポリシラザン又はその変性物を基材上に塗布した後、真空下に600℃以上の温度で焼成することを特徴とする窒化珪素薄膜の形成方法が提供される。
【0010】
なお、本発明によれば、好ましい態様として、下記窒化珪素薄膜及び窒化珪素薄膜の形成方法が提供される。
(1)上記の方法で形成された、5重量%のフッ酸水溶液に対して侵されることがない窒化珪素薄膜。
(2)真空度が0.1Pa以下の雰囲気で焼成すること特徴とする上記の窒化珪素薄膜の形成方法。
【0011】
本発明の窒化珪素薄膜の形成方法は、ペルヒドロポリシラザン(変性物)を基材に塗布した後、真空下に600℃以上の温度で焼成するという構成としたことから、本方法によると、反応系内における水分が速やかに除去されるため、ポリシラザンの酸化が抑制され、容易に耐薬品に優れ高屈折率を有する良好な窒化珪素薄膜が得られる。なお、前記特開平6−47862号公報には、ポリシラザン被膜の加熱処理が真空下において行われる場合もある旨記されているが、該公報には本発明の目的は全く認識されておらず、もちろん実施例もない。
【0012】
【発明の実施の形態】
以下、本発明について詳しく説明する。
本発明では原料ポリシラザンとして、主として下記一般式(I)
【化1】

Figure 0004049841
で表される構造単位からなる骨格を有する数平均分子量が約100〜50,000のペルヒドロポリシラザン又はその変性物が用いられる。ペルヒドロポリシラザンには、鎖状、環状、あるいは分子内にこれら複数の構造を同時に有するものがあり、これら単独でもあるいは混合物でも利用できる。
【0013】
上記ペルヒドロポリシラザンの製造方法は、例えば特開昭60−145903号公報、D.SeyferthらCommunication of Am.Cer.Soc.,C−13,January 1983.に報告されている。これらの方法で得られるものは、種々の構造を有するポリマーの混合物であるが、基本的には分子内に鎖状部分と環状部分を含み、
【化2】
Figure 0004049841
の化学式で表すことができる。
【0014】
ペルヒドロポリシラザンの構造の一例を示すと下記の如くである。
【化3】
Figure 0004049841
【0015】
また、本発明においては、原料ポリシラザンとして、上記のペルヒドロポリシラザン又は米国特許第4,397,828号明細書等により開示されたシラザン重合体をトリアルキルアミンの如き第3級アミン類、立体障害性の基を有する第2級アミン類、フォスフィン等の如き塩基性化合物を溶媒とするか又はこれを非塩基性溶媒、例えば、炭化水素類に添加し−78℃〜300℃で加熱し脱水縮合反応を行わせることにより得られる数平均分子量200〜500,000、好ましくは500〜100,000の高重合体(特開平1−138108号公報参照)を用いることもできる。
【0016】
更に、ペルヒドロポリシラザンの改質反応により得られる重合体で架橋結合−(NH)−n(n=1又は2)を有し、珪素原子に結合する窒素と珪素との原子比(N/Si)が0.8以上で数平均分子量が200〜500,000、好ましくは500〜100,000の改質ポリシラザンを用いることもできる。この改質ポリシラザンは、アンモニア又はヒドラジンを使用してポリシラザンの脱水素縮合反応を行わせることにより製造することができる(特開平1−1381107号公報参照)。
【0017】
本発明の窒化珪素薄膜の形成方法においては、ペルヒドロポリシラザン(変性物)を基材に塗布した後、該塗膜を真空下に600℃以上の温度で焼成する。すなわち、まず上記ポリシラザン(変性物)を基材に塗布する処理が行なわれる。該処理に当たっては、上記ポリシラザン(変性物)を有機溶媒に溶解し塗布液を調製する。この場合の有機溶媒としては、特に限定されるものではないが、好ましい具体例としては、次のものが挙げられる。
【0018】
ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等の芳香族化合物;n−ペンタン、i−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、i−ヘプタン、n−オクタン、i−オクタン、n−ノナン、i−ノナン、n−デカン、i−デカン等の飽和炭化水素化合物;エチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、シクロヘキセン、p−メンタン、デカヒドロナフタレン、ジペンテン;ジプロピルエーテル、ジブチルエーテル、MTBE(メチルターシャリーブチルエーテル)等のエーテル類;MIBK等のケトン類など。また、溶剤の蒸発速度の調整のため、適宜これらの溶媒を2種以上混合したものも使用できる。
【0019】
前記塗布液において、必要に応じて適当な充填剤及び/又は増量剤を加えることができる。充填剤の添加量はペルヒドロポリシラザン(変性物)1重量部に対し、0.05〜10重量部の範囲であり、特に好ましい添加量は0.2〜3重量部の範囲である。塗布液には、更に必要に応じて各種顔料、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、分散剤、表面改質剤、可塑剤、乾燥促進剤、流れ止め剤、等を加えてもよい。
ペルヒドロポリシラザン(変性物)溶解後の濃度は特に限定されるものではないが、通常5〜95重量%、好ましくは10〜90重量%である。
【0020】
調製された塗布液は、次に基材上に塗布される。基材への塗布は、1回でもよいし、2回以上繰り返し行ってもよい。塗布液を塗布する基材は、特に限定されず、金属、セラミックス、プラスチック等のいずれでもよい。塗布手段としては、通常の塗布方法、つまりスピンコート法、ディップ法、スプレー法、転写法などが用いられる。また、塗布前に基材の脱脂、洗浄等により清浄表面にしておくことで、上記ポリシラザン(変性物)の付着性能が向上する。
【0021】
基板上に塗布されたペルヒドロポリシラザン(変性物)は、乾燥後、真空中で焼成される。焼成は600℃以上、好ましくは800〜1,300℃の温度で行なわれる。この場合、昇温速度は200℃/分以下、1℃/分以上、好ましくは100℃/分以下、5℃/分以上である。真空度は0.1Pa以下、好ましくは0.01Pa以下、0.0001Pa以上の範囲で選択される。真空中の焼成処理により、生成水分が迅速に系外に除去され、常圧下における焼成処理と比べて、低温でペルヒドロポリシラザン(変性物)塗膜がSi−N結合を有する窒化珪素薄膜に変換される。
【0022】
本発明の方法によって形成された窒化珪素薄膜は、環境から取り込まれる不純物としての酸素が少なく、膜中濃度で2at%以下となる(不活性雰囲気あるいは還元性雰囲気の常圧下で1300℃以下で形成される膜中酸素濃度は3〜20at%)。そのため、1.9〜2.1という高屈折率を有し(常圧下では1.5〜1.6)、フッ化水素酸に対する耐薬品性を有するという特徴がある。
【0023】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲がこれらにより限定されるものではない。
【0024】
参考例1[ペルヒドロポリシラザンの合成]
内容積1リットルの四つ口フラスコにガス吹き込み管、メカニカルスターラー、ジュワーコンデンサーを装着した。反応器内部を脱酸素した乾燥窒素で置換した後、四つ口フラスコに脱気した乾燥ピリジンを490ml入れ、これを氷冷した。次に、ジクロロシラン51.9gを加えると、白色固体状のアダクト(SiH2Cl2・2C55N)が生成した。反応混合物を氷冷し、撹拌しながら水酸化ナトリウム管及び活性炭管を通して精製したアンモニア51.0gを吹き込んだ後、乾燥窒素を液層に吹き込んで未反応のアンモニアを除去した。
【0025】
反応終了後、反応混合物を遠心分離し、乾燥ピリジンを用いて洗浄した後、更に乾燥窒素雰囲気下で濾過して濾液850mlを得た。濾液5mlから溶媒を減圧除去すると、樹脂状固体ペルヒドロポリシラザン0.102gが得られた。数平均分子量をベンゼンの凝固点降下法で測定したところ、900であった。
【0026】
実施例1
参考例1で合成したペルヒドロポリシラザン10gをモレキュラーシープにより十分脱水したキシレン40gに溶解し、20wt%のポリシラザン溶液を得た。これをスピンコーターにより清浄なシリコンウェハー上に約0.3μm厚に塗布した。このときのスピンコーターの回転条件は4000rpm−20secであった。この膜を窒素雰囲気下で100℃のホットプレートで乾燥した後、真空加熱炉で焼成した。焼成条件は900℃−30minで、このときの真空度は0.001Paとした。
【0027】
得られた膜は、膜厚0.1μmで、屈折率2.1、赤外透過スペクトルはSi−N起因のピークのみで、Si−H、N−H、Si−Oピークは見られず、窒化珪素膜となっていることが確認された。この膜の耐薬品性を調べたところ、5wt%のフッ酸水溶液に対して侵されることなく、十分な耐薬品性を有していることがわかった。
【0028】
実施例2
参考例1で合成したペルヒドロポリシラザン10gをモレキュラーシーブにより十分脱水したシクロヘキサン90gに溶解し、10wt%のポリシラザン溶液を得た。これをディップコートにより清浄なガラス上に約0.3μm厚に塗布した。この膜を窒素雰囲気下で100℃のホットプレートで乾燥した後、真空加熱炉で焼成した。焼成条件は900℃−30minで、このときの真空度は0.001Paとした。
【0029】
得られた膜は、膜厚0.1μmで、屈折率2.1であり、この膜の耐薬品性を調べたところ、5wt%のフッ酸水溶液に侵されることなく、十分な耐薬品性を有していることがわかった。
【0030】
比較例
参考例1で合成したペルヒドロポリシラザン10gをモレキュラーシープにより十分脱水したキシレン40gに溶解し、20wt%のポリシラザン溶液を得た。これをスピンコーターにより清浄なシリコンウェハー上に約0.3μm厚に塗布した。このときのスピンコーターの回転条件は4000rpm−20secあった。この膜を窒素雰囲気下で100℃のホットプレートで乾燥した後、常圧窒素雰囲気下で焼成した。焼成条件は900℃−30minとした。
得られた膜は、膜厚0.2μmで、屈折率1.6、赤外透過スペクトルはSi−N起因のピークが主であるが、Si−Oピークも僅かに観察された。この膜の耐薬品性を調べたところ、5wt%のフッ酸水溶液に侵され、十分な耐薬品性を有していなかった。
【0031】
【発明の効果】
請求項1の窒化珪素薄膜の形成方法は、ペルヒドロポリシラザン(変性物)を基材に塗布した後、真空下に600℃以上の温度で焼成するという構成としたことから、本方法によると、反応系内における水分が速やかに除去され、ポリシラザンの酸化が抑制されるため、容易に耐薬品性に優れ高屈折率を有する良好な窒化珪素薄膜が得られる。
1[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a silicon nitride thin film and a silicon nitride thin film obtained by the method, and more specifically, as an insulating film, a protective film, etc. in a semiconductor device or a liquid crystal display device, or as a surface-modified film such as ceramics or metal. The present invention relates to a method for forming a high-quality silicon nitride thin film having a high refractive index that is excellent in transparency, denseness, corrosion resistance, abrasion resistance, heat resistance, and chemical resistance.
[0002]
[Prior art]
Silicon ceramic thin films such as silica, silicon nitride, silicon oxynitride, etc. are used as insulating films in, for example, semiconductor devices and liquid crystal display devices, or as pixel electrodes or collars in terms of their excellent heat resistance, wear resistance, corrosion resistance, etc. It is used as a protective film provided on the filter. Among these thin films, the silicon nitride film is characterized in that it is stable at a high temperature particularly in an inert atmosphere or a reducing atmosphere and is a transparent film having a higher refractive index than silica or the like. In particular, silicon nitride films are being used as protective films and gas barrier films for optical devices in recent years because of their denseness and high refractive index.
A silicon film used in such a field is generally formed on a substrate by a vapor deposition method such as a CVD method or a sputtering method, or a coating method using a coating solution for forming a silicon film. However, according to the vapor phase growth method, there is a problem that it takes time and requires a large facility, and there is a problem that the uneven surface cannot be flattened when a film is formed on the uneven surface. It has been adopted.
[0003]
On the other hand, in recent years, polysilazane, which is a precursor polymer of silica, silicon nitride, and silicon oxynitride, has been attracting attention because it can form a silicon coating film having excellent heat resistance, wear resistance, corrosion resistance, and the like. The formation of a silicon nitride thin film using a metal is reported, for example, in JP-A-1-203476 and JP-A-6-47862.
[0004]
That is, JP-A-1-203476 proposes a coating method in which a polysilazane-containing coating composition is applied to a substrate and then baked to form a coating film made of silicon nitride. The film is formed in a temperature range of 1,000 ° C. (preferably 200 to 500 ° C.), and a Si—N bond film is formed in a non-oxidizing atmosphere.
[0005]
On the other hand, JP-A-6-47862 has a ceramic film comprising a step of forming a film made of polysilazane on the surface of a steel plate (formed body) and a step of heat-treating the steel sheet (formed body) having this polysilazane film. A method of manufacturing a steel sheet (formed body) has been proposed, and the heat treatment of the polysilazane coating is performed at 100 ° C. or higher (preferably 200 to 1,300 ° C.) in an atmosphere of air, inert gas, reducing gas, or vacuum. The polysilazane coating is formed into a ceramic (precursor) coating having a Si—N bond or a Si—N—O bond by heat treatment. Furthermore, it is stated that in heating in an inert gas or a reducing atmosphere, decomposition of polysilazane mainly occurs at a temperature of 500 ° C. or higher, and ceramics having Si—N bonds are formed.
[0006]
However, when a polysilazane film is heat-treated in an inert gas or a reducing atmosphere to obtain a ceramic film having a Si-N bond, the polysilazane is easily oxidized as an impurity from the environment. Oxygen is taken into the film and is likely to be a silicon oxynitride film instead of a pure silicon nitride film. Therefore, in order to obtain a pure silicon nitride film, a high temperature of 1300 ° C. or higher is necessary. Here, there is a problem that the silicon oxynitride film is inferior in chemical resistance to hydrofluoric acid and the like and has a lower refractive index than the silicon nitride film.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the actual state of the above-described prior art, and not only has excellent wear resistance, heat resistance, and corrosion resistance, but also has excellent chemical resistance and a high refractive index. It is an object of the present invention to provide a method for forming a silicon nitride thin film.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to obtain a better thin film in the formation of a silicon nitride thin film by baking a polysilazane coating film, the present inventors have found that moisture in the reaction system inhibits the formation of the silicon nitride thin film, The present invention has been reached.
[0009]
That is, according to the present invention, there is provided a method for forming a silicon nitride thin film, wherein perhydropolysilazane or a modified product thereof is applied on a substrate and then baked at a temperature of 600 ° C. or higher under vacuum. .
[0010]
In addition, according to this invention, the formation method of the following silicon nitride thin film and silicon nitride thin film is provided as a preferable aspect.
(1) A silicon nitride thin film formed by the above method and not attacked by a 5 wt% hydrofluoric acid aqueous solution.
(2) The method for forming a silicon nitride thin film as described above, wherein firing is performed in an atmosphere having a degree of vacuum of 0.1 Pa or less.
[0011]
The method for forming a silicon nitride thin film of the present invention has a structure in which perhydropolysilazane (modified product) is applied to a substrate and then baked at a temperature of 600 ° C. or higher under vacuum. Since water in the system is quickly removed, oxidation of polysilazane is suppressed, and a good silicon nitride thin film having excellent chemical resistance and high refractive index can be easily obtained. In addition, in the above-mentioned JP-A-6-47862, it is noted that the heat treatment of the polysilazane film may be performed under vacuum, but the purpose of the present invention is not recognized at all in the publication, Of course, there is no embodiment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In the present invention, the raw material polysilazane is mainly represented by the following general formula (I)
[Chemical 1]
Figure 0004049841
Perhydropolysilazane having a skeleton composed of structural units represented by the formula (I) and having a number average molecular weight of about 100 to 50,000 or a modified product thereof is used. Some perhydropolysilazanes are chain-like, cyclic, or have a plurality of these structures in the molecule at the same time, and these can be used alone or in a mixture.
[0013]
The method for producing the perhydropolysilazane is disclosed in, for example, JP-A-60-145903, D.C. Seyferth et al. Communication of Am. Cer. Soc. , C-13, January 1983. Has been reported. What is obtained by these methods is a mixture of polymers having various structures, but basically includes a chain portion and a cyclic portion in the molecule,
[Chemical 2]
Figure 0004049841
It can be represented by the chemical formula
[0014]
An example of the structure of perhydropolysilazane is as follows.
[Chemical 3]
Figure 0004049841
[0015]
In the present invention, the perhydropolysilazane or the silazane polymer disclosed in US Pat. No. 4,397,828 is used as a starting polysilazane, a tertiary amine such as a trialkylamine, a steric hindrance. A secondary compound having a functional group, a basic compound such as phosphine or the like, or a non-basic solvent such as a hydrocarbon, and heating at −78 ° C. to 300 ° C. for dehydration condensation A high polymer (see JP-A-1-138108) having a number average molecular weight of 200 to 500,000, preferably 500 to 100,000, obtained by carrying out the reaction can also be used.
[0016]
Further, a polymer obtained by a modification reaction of perhydropolysilazane, which has a crosslink bond — (NH) —n (n = 1 or 2), and an atomic ratio of nitrogen to silicon bonded to silicon atoms (N / Si) ) Is 0.8 or more, and a modified polysilazane having a number average molecular weight of 200 to 500,000, preferably 500 to 100,000 can also be used. This modified polysilazane can be produced by performing a dehydrogenative condensation reaction of polysilazane using ammonia or hydrazine (see Japanese Patent Laid-Open No. 1-181107).
[0017]
In the method for forming a silicon nitride thin film of the present invention, after applying perhydropolysilazane (modified product) to a substrate, the coating film is baked at a temperature of 600 ° C. or higher under vacuum. That is, first, a process of applying the polysilazane (modified product) to a substrate is performed. In the treatment, the polysilazane (modified product) is dissolved in an organic solvent to prepare a coating solution. The organic solvent in this case is not particularly limited, but preferred specific examples include the following.
[0018]
Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene; n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, n-octane, i -Saturated hydrocarbon compounds such as octane, n-nonane, i-nonane, n-decane, i-decane; ethylcyclohexane, methylcyclohexane, cyclohexane, cyclohexene, p-menthane, decahydronaphthalene, dipentene; dipropyl ether, di Ethers such as butyl ether and MTBE (methyl tertiary butyl ether); ketones such as MIBK. Further, in order to adjust the evaporation rate of the solvent, a mixture of two or more of these solvents can be used as appropriate.
[0019]
In the coating solution, an appropriate filler and / or extender can be added as necessary. The addition amount of the filler is in the range of 0.05 to 10 parts by weight with respect to 1 part by weight of perhydropolysilazane (modified product), and the particularly preferable addition amount is in the range of 0.2 to 3 parts by weight. For the coating solution, various pigments, leveling agents, antifoaming agents, antistatic agents, UV absorbers, pH adjusters, dispersants, surface modifiers, plasticizers, drying accelerators, and flow inhibitors are added as necessary. , Etc. may be added.
The concentration after dissolution of perhydropolysilazane (modified product) is not particularly limited, but is usually 5 to 95% by weight, preferably 10 to 90% by weight.
[0020]
The prepared coating solution is then applied onto the substrate. The application to the substrate may be performed once or may be repeated twice or more. The base material to which the coating solution is applied is not particularly limited, and may be any of metal, ceramics, plastic, and the like. As a coating means, a normal coating method, that is, a spin coating method, a dip method, a spray method, a transfer method, or the like is used. Moreover, the adhesion performance of the said polysilazane (modified | denatured substance) improves by making it a clean surface by degreasing, washing | cleaning, etc. of a base material before application | coating.
[0021]
The perhydropolysilazane (modified product) applied on the substrate is dried and then baked in vacuum. Firing is performed at a temperature of 600 ° C. or higher, preferably 800 to 1,300 ° C. In this case, the heating rate is 200 ° C./min or less, 1 ° C./min or more, preferably 100 ° C./min or less, 5 ° C./min or more. The degree of vacuum is selected in the range of 0.1 Pa or less, preferably 0.01 Pa or less, 0.0001 Pa or more. The generated moisture is quickly removed from the system by baking in vacuum, and the perhydropolysilazane (modified) coating film is converted to a silicon nitride thin film having Si-N bonds at a lower temperature compared to baking under normal pressure. Is done.
[0022]
The silicon nitride thin film formed by the method of the present invention has less oxygen as an impurity taken in from the environment, and the concentration in the film is 2 at% or less (formed at 1300 ° C. or less under normal pressure in an inert atmosphere or a reducing atmosphere). The oxygen concentration in the film is 3 to 20 at %). Therefore, it has a high refractive index of 1.9 to 2.1 (1.5 to 1.6 under normal pressure) and is characterized by having chemical resistance against hydrofluoric acid.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited by these.
[0024]
Reference Example 1 [Synthesis of perhydropolysilazane]
A four-necked flask with an internal volume of 1 liter was equipped with a gas blowing tube, a mechanical stirrer, and a dewar condenser. After replacing the inside of the reactor with deoxygenated dry nitrogen, 490 ml of degassed dry pyridine was placed in a four-necked flask and cooled on ice. Next, when 51.9 g of dichlorosilane was added, a white solid adduct (SiH 2 Cl 2 .2C 5 H 5 N) was produced. The reaction mixture was ice-cooled, and 51.0 g of purified ammonia was blown through a sodium hydroxide tube and an activated carbon tube while stirring, and then dry nitrogen was blown into the liquid layer to remove unreacted ammonia.
[0025]
After completion of the reaction, the reaction mixture was centrifuged, washed with dry pyridine, and further filtered under a dry nitrogen atmosphere to obtain 850 ml of a filtrate. When the solvent was removed under reduced pressure from 5 ml of the filtrate, 0.102 g of resinous solid perhydropolysilazane was obtained. The number average molecular weight was 900 as measured by the freezing point depression method of benzene.
[0026]
Example 1
10 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 40 g of xylene sufficiently dehydrated by molecular sheep to obtain a 20 wt% polysilazane solution. This was applied on a clean silicon wafer to a thickness of about 0.3 μm by a spin coater. The rotation condition of the spin coater at this time was 4000 rpm-20 sec. This film was dried on a hot plate at 100 ° C. in a nitrogen atmosphere, and then baked in a vacuum heating furnace. Firing conditions were 900 ° C.-30 min, and the degree of vacuum at this time was 0.001 Pa.
[0027]
The obtained film had a thickness of 0.1 μm, a refractive index of 2.1, and an infrared transmission spectrum with only Si-N-derived peaks, and no Si-H, NH, or Si-O peaks were observed. It was confirmed to be a silicon nitride film. When the chemical resistance of this film was examined, it was found that the film had sufficient chemical resistance without being attacked by a 5 wt% hydrofluoric acid aqueous solution.
[0028]
Example 2
10 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 90 g of cyclohexane sufficiently dehydrated by molecular sieve to obtain a 10 wt% polysilazane solution. This was applied on a clean glass to a thickness of about 0.3 μm by dip coating. This film was dried on a hot plate at 100 ° C. in a nitrogen atmosphere, and then baked in a vacuum heating furnace. Firing conditions were 900 ° C.-30 min, and the degree of vacuum at this time was 0.001 Pa.
[0029]
The obtained film had a thickness of 0.1 μm and a refractive index of 2.1. When chemical resistance of this film was examined, sufficient chemical resistance was obtained without being attacked by a 5 wt% hydrofluoric acid aqueous solution. I found it.
[0030]
Comparative Example 10 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 40 g of xylene sufficiently dehydrated by molecular sheep to obtain a 20 wt% polysilazane solution. This was applied on a clean silicon wafer to a thickness of about 0.3 μm by a spin coater. The rotation condition of the spin coater at this time was 4000 rpm-20 sec. The film was dried on a hot plate at 100 ° C. in a nitrogen atmosphere and then fired in a normal pressure nitrogen atmosphere. The firing conditions were 900 ° C.-30 min.
The obtained film had a film thickness of 0.2 μm, a refractive index of 1.6, and an infrared transmission spectrum mainly having a peak due to Si—N, but a slight Si—O peak was also observed. When the chemical resistance of this film was examined, it was affected by a 5 wt% hydrofluoric acid aqueous solution and did not have sufficient chemical resistance.
[0031]
【The invention's effect】
Since the method for forming a silicon nitride thin film according to claim 1 has a structure in which perhydropolysilazane (modified product) is applied to a substrate and then fired at a temperature of 600 ° C. or higher under vacuum, according to the present method, Since moisture in the reaction system is quickly removed and oxidation of polysilazane is suppressed, a good silicon nitride thin film having excellent chemical resistance and high refractive index can be easily obtained.
1

Claims (1)

ペルヒドロポリシラザン又はその変性物を、金属、およびセラミックスからなる群から選ばれる基板上に塗布した後、真空下に600℃以上の温度で焼成することを特徴とする、半導体装置用または液晶表示装置用窒化珪素薄膜の形成方法。A perhydropolysilazane or a modified product thereof is applied onto a substrate selected from the group consisting of metals and ceramics, and then fired at a temperature of 600 ° C. or higher under vacuum , for a semiconductor device or a liquid crystal display device For forming a silicon nitride thin film.
JP35857696A 1996-12-27 1996-12-27 Method for forming silicon nitride thin film Expired - Lifetime JP4049841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35857696A JP4049841B2 (en) 1996-12-27 1996-12-27 Method for forming silicon nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35857696A JP4049841B2 (en) 1996-12-27 1996-12-27 Method for forming silicon nitride thin film

Publications (2)

Publication Number Publication Date
JPH10194873A JPH10194873A (en) 1998-07-28
JP4049841B2 true JP4049841B2 (en) 2008-02-20

Family

ID=18460030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35857696A Expired - Lifetime JP4049841B2 (en) 1996-12-27 1996-12-27 Method for forming silicon nitride thin film

Country Status (1)

Country Link
JP (1) JP4049841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022106436A1 (en) 2020-11-20 2022-05-27 Merck Patent Gmbh Method of manufacturing silicon nitrogeneous film

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303197B2 (en) * 1993-10-25 2002-07-15 日東商事株式会社 Cylinder comb for comber
WO2002009478A1 (en) 2000-07-24 2002-01-31 Tdk Corporation Luminescent device
JP3479648B2 (en) * 2001-12-27 2003-12-15 クラリアント インターナショナル リミテッド Polysilazane treatment solvent and method for treating polysilazane using this solvent
JP2008108753A (en) * 2005-02-10 2008-05-08 Az Electronic Materials Kk Semiconductor device having silicon nitride film derived from polysilazane and its fabrication process
JP4965953B2 (en) * 2006-09-29 2012-07-04 株式会社東芝 Method for handling polysilazane or polysilazane solution, method for producing polysilazane solution, and semiconductor device
JP5179401B2 (en) * 2009-02-19 2013-04-10 信越化学工業株式会社 Bonded wafer and manufacturing method thereof
IN2012DN00642A (en) 2009-07-17 2015-08-21 Mitsui Chemicals Inc
JP5381734B2 (en) * 2010-01-14 2014-01-08 コニカミノルタ株式会社 Barrier film and organic electronic device
JP2012004349A (en) 2010-06-17 2012-01-05 Az Electronic Materials Kk Forming method of silicon oxynitride film and substrate with silicon oxynitride film manufactured using the same
SG11201504015SA (en) * 2012-11-22 2015-06-29 Shinetsu Chemical Co Composite substrate manufacturing method, and composite substrate
CN108025528B (en) 2016-03-31 2020-11-27 株式会社Lg化学 Method for preparing barrier film
US11008431B2 (en) 2016-03-31 2021-05-18 Lg Chem, Ltd. Method for preparing a barrier film
KR102300537B1 (en) 2018-10-26 2021-09-10 주식회사 엘지화학 A barreir film
KR102294031B1 (en) 2018-10-26 2021-08-27 주식회사 엘지화학 A barrier film
KR102294026B1 (en) 2018-10-26 2021-08-27 주식회사 엘지화학 A barrier film
KR102294027B1 (en) 2018-10-26 2021-08-27 주식회사 엘지화학 A barrier film
CN114761229A (en) * 2019-12-05 2022-07-15 株式会社小糸制作所 Resin molded article, resin molded article for vehicle window, and method for producing resin molded article
WO2022250151A1 (en) 2021-05-28 2022-12-01 三菱マテリアル株式会社 Metal compound film production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022106436A1 (en) 2020-11-20 2022-05-27 Merck Patent Gmbh Method of manufacturing silicon nitrogeneous film

Also Published As

Publication number Publication date
JPH10194873A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP4049841B2 (en) Method for forming silicon nitride thin film
KR101840187B1 (en) Inorganic polysilazane resin
JP3212400B2 (en) Composition for ceramic coating and coating method
JP3307471B2 (en) Composition for ceramic coating and coating method
KR101500790B1 (en) Composition containing polysilazane compound, which can provide dense siliceous film
JPH0931333A (en) Composition and method for forming siliceous ceramics and ceramic film made thereof
JPH07196986A (en) Composition for coating
JPH05238827A (en) Coating composition and coating process
JP2006054353A (en) Siliceous film having little flat-band shift and its manufacturing method
JP3904691B2 (en) Polysilazane-containing composition and method for forming siliceous film
JP4011120B2 (en) Polyorganosiloxazan and process for producing the same
JP3015104B2 (en) Semiconductor device and manufacturing method thereof
JP4473352B2 (en) Low dielectric constant silica-based coating, coating liquid for forming the same, and method for preparing the coating liquid
JP3919862B2 (en) Method for forming low dielectric constant siliceous film and siliceous film
TWI793262B (en) Perhydropolysilazane compositions and methods for forming nitride films using same
JP3939408B2 (en) Low dielectric constant siliceous film
JPH09157594A (en) Polysilazane coating fluid
JP3251761B2 (en) Method for depositing borosilicate-containing coatings on electronic substrates
JPH11105187A (en) Method for forming high purity siliceous film and high purity siliceous film
JP4053105B2 (en) Method for forming siliceous ceramic coating and ceramic coating formed by the same method
JPH0899061A (en) Formation of silicon oxide-based ceramic film
KR102591159B1 (en) Polycarbosilazane, and compositions containing the same, and methods for producing silicon-containing membranes using the same
JP4046809B2 (en) Precursor polymer composition and low dielectric constant insulating material
JP7470794B2 (en) CURABLE FORMULATIONS FOR FORMING LOW-K DIELECTRIC SILICON-CONTAINING FILMS USING POLYCARBOSILAZANE - Patent application
US11760842B2 (en) Composition comprising block copolymer, and method for producing siliceous film using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term