JP4048144B2 - Multi-cylinder engine manufacturing method - Google Patents

Multi-cylinder engine manufacturing method Download PDF

Info

Publication number
JP4048144B2
JP4048144B2 JP2003104293A JP2003104293A JP4048144B2 JP 4048144 B2 JP4048144 B2 JP 4048144B2 JP 2003104293 A JP2003104293 A JP 2003104293A JP 2003104293 A JP2003104293 A JP 2003104293A JP 4048144 B2 JP4048144 B2 JP 4048144B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
order
engine
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104293A
Other languages
Japanese (ja)
Other versions
JP2004308580A (en
Inventor
潔 畑浦
学 宮▲崎▼
紀 滝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003104293A priority Critical patent/JP4048144B2/en
Publication of JP2004308580A publication Critical patent/JP2004308580A/en
Application granted granted Critical
Publication of JP4048144B2 publication Critical patent/JP4048144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、多気筒エンジンの製造方法に関する。
【0002】
【従来の技術】
従来、エンジンの燃料噴射カム軸は、カム突起を備え、カム突起の正転方向一端部にのみ燃料噴射用のカム面を備え、正転方向に回転させた場合のみ、燃料噴射が行えるようになっている。
【0003】
【発明が解決しようとする課題】
上記従来技術には、次の問題がある。
《問題》 回転仕様毎に専用の燃料噴射カム軸を製作する必要がある。
燃料噴射カム軸を正転させる正転仕様のエンジンと、燃料噴射カム軸を逆転させる逆転仕様のエンジンとを造り分ける場合に、燃料噴射カム軸を共通部品として用いることができず、回転仕様毎に専用の燃料噴射カム軸を製作する必要がある。
【0004】
本発明の課題は、上記問題点を解決できる多気筒エンジンの製造方法を提供することにある。
【0005】
【課題を解決するための手段】
(請求項1の発明)
請求項1の発明の発明特定事項は、次の通りである。
図2に例示するように、クランクギヤ ( 31 ) と燃料噴射カムギヤ ( 33 ) との間に単一のギヤ ( 29 ) を介在させることにより、燃料噴射カム軸 ( 15 ) の回転方向 ( ) をクランク軸 ( 34 ) と同方向とする仕様の多気筒エンジンを、同方向回転仕様の多気筒エンジンとし、
図4に例示するように、クランクギヤ ( 31 ) と燃料噴射カムギヤ ( 33 ) との間に一対のギヤ ( 29 )( 30 ) を介在させることにより、燃料噴射カム軸 ( 15 ) の回転方向 ( ) をクランク軸 ( 34 ) と異方向とする仕様の多気筒エンジンを、異方向回転仕様の多気筒エンジンとし、
燃料噴射カム軸 ( 15 ) と列型の燃料噴射ポンプ ( 16 ) とを共通部品として、クランク軸 ( 34 ) の回転方向を同じにした上記各仕様のものを製造するに当たり、
図1に例示するように、燃料噴射カム軸 ( 15 ) は、カム突起 ( 11 )( 12 )( 13 )( 14 ) の回転方向両端部にそれぞれ燃料噴射用のカム面 ( 11a )( 11b )( 12a )( 12b )( 13a )( 13b )( 14a )( 14b ) を設け、
図6〜図10に例示するように、上記各仕様で、燃料噴射管による燃料噴射ポンプ ( 16 ) の燃料吐出口と各気筒の燃料噴射ノズルとの接続の組み合わせを相違させることにより、各仕様での各気筒への噴射順序を一致させる、ことを特徴とする多気筒エンジンの製造方法。
【0006】
【0007】
【0008】
(請求項の発明)
請求項の発明の発明特定事項は、次の通りである。
請求項に記載した多気筒エンジンの製造方法において、
図6に例示するように、前記各仕様の直列4気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第3気筒、第4気筒、第2気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)の接続状態のままでは、燃料噴射カム軸(15)の回転方向 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第4気筒、第3気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
【0009】
(請求項の発明)
請求項の発明の発明特定事項は、次の通りである。
請求項に記載した多気筒エンジンの製造方法において、
図7に例示するように、前記各仕様の直列4気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第2気筒、第4気筒、第3気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第3気筒、第4気筒、第2気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
【0010】
(請求項の発明)
請求項の発明の発明特定事項は、次の通りである。
請求項に記載した多気筒エンジンの製造方法において、
図8に例示するように、前記各仕様の直列3気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第3気筒、第2気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第3気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
【0011】
(請求項の発明)
請求項の発明の発明特定事項は、次の通りである。
請求項に記載した多気筒エンジンの製造方法において、
図9に例示するように、前記各仕様の直列6気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)(25)(26)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒となるものを、第4気筒と第5気筒の燃料噴射管(24)(25)の接続を変更し、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
【0012】
(請求項の発明)
請求項の発明の発明特定事項は、次の通りである。
請求項に記載した多気筒エンジンの造り分け方法において、
図10に例示するように、前記各仕様の直列6気筒エンジンを造り分ける際、各仕様での各気筒への燃料噴射順序を第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)(25)(26)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒となるものを、第4気筒と第5気筒の燃料噴射管(24)(25)の接続を変更し、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
【0013】
【発明の効果】
(請求項1から6の発明)
請求項1から6の発明は、次の効果を奏する。
《効果1》 仕様毎に専用の燃料噴射カム軸を製作する必要がない。
各仕様のエンジンを製造する場合に、燃料噴射カム軸(15)を共通部品として用いることができ、各仕様毎に専用の燃料噴射カム軸(15)を製作する必要がない。
【0014】
【0015】
《効果2》 動弁カム軸も共通部品として用いることができる。
仕様の多気筒エンジンを製造する際、各気筒への燃料噴射順序を一致させることができるため、各仕様で動弁のタイミングを一致させることができ、動弁カム軸(17)も共通部品として用いることができる。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
図1は本発明の第1実施形態に係るエンジンの製造方法で用いる燃料噴射カム軸を説明する図である。図2〜図6は本発明の第1実施形態に係るエンジンの製造方法の説明図、図7は本発明の第2実施形態に係るエンジンの製造方法の説明図、図8は本発明の第3実施形態に係るエンジンの製造方法の説明図、図9は本発明の第4実施形態に係るエンジンの製造方法の説明図、図10は本発明の第5実施形態に係るエンジンの製造方法の説明図である。
各実施形態では、次のようにする。
図2に示すように、クランクギヤ ( 31 ) と燃料噴射カムギヤ ( 33 ) との間に単一のギヤ ( 29 ) を介在させることにより、燃料噴射カム軸 ( 15 ) の回転方向 ( ) をクランク軸 ( 34 ) と同方向の時計廻り方向とする仕様の多気筒エンジンを、同方向回転仕様の多気筒エンジンとする。
図4に示すように、クランクギヤ ( 31 ) と燃料噴射カムギヤ ( 33 ) との間に一対のギヤ ( 29 )( 30 ) を介在させることにより、燃料噴射カム軸 ( 15 ) の回転方向 ( ) をクランク軸 ( 34 ) と異方向とする仕様の多気筒エンジンを、異方向回転仕様の多気筒エンジンとする。
燃料噴射カム軸 ( 15 ) と列型の燃料噴射ポンプ ( 16 ) とを共通部品として、クランク軸 ( 34 ) の回転方向を同じにした上記各仕様のものを製造するに当たり、図1に示すように、燃料噴射カム軸 ( 15 ) は、カム突起 ( 11 )( 12 )( 13 )( 14 ) の回転方向両端部にそれぞれ燃料噴射用のカム面 ( 11a )( 11b )( 12a )( 12b )( 13a )( 13b )( 14a )( 14b ) を設け、
図6〜図10に示すように、上記各仕様で、燃料噴射管による燃料噴射ポンプ ( 16 ) の燃料吐出口と各気筒の燃料噴射ノズルとの接続の組み合わせを相違させることにより、各仕様での各気筒への噴射順序を一致させる。
【0017】
この実施形態の概要は、次の通りである。
図1に示すエンジンの燃料噴射カム軸(15)はクランク軸 ( 34 ) と異なる回転方向 ( ) と同じ回転方向 ( ) いずれにも対応できるもので、図2〜図6に示す第1実施形態では、この図1の燃料噴射カム軸(15)を用いて各仕様の直列4気筒エンジンを製造し、図7に示す第2実施形態では、図1の燃料噴射カム軸(15)を用いて各仕様の他の直列4気筒エンジンを製造し、図8に示す第3実施形態では、図1と同等構造の燃料噴射カム軸を用いて各仕様の直列3気筒エンジンを製造し、図9に示す第4実施形態と、図10に示す第5実施形態では、図1と同等構造の燃料噴射カム軸を用いて各仕様の直列6気筒エンジンを製造する。
【0018】
図1に示す燃料噴射カム軸(15)の構成は、次の通りである。
この燃料噴射カム軸(15)は、直列4気筒エンジン用のもので、図1(A)に示すように、4個のカム突起(11)(12)(13)(14)を備えている。符号(11)が第1気筒用のカム突起、(12)が第2気筒用のカム突起、(13)が第3気筒用のカム突起、(14)が第4気筒用のカム突起である。第3気筒用のカム突起(13)と第4気筒用のカム突起(14)との間には、燃料供給ポンプの駆動カム(18)が配置されている。図1(B)に示すように、各カム突起(11)(12)(13)(14)の回転方向両端部にそれぞれ燃料噴射用のカム面(11a)(11b)(12a)(12b)(13a)(13b)(14a)(14b)を設け、クランク軸 ( 34 ) と異なる回転方向(a)・同じ回転方向(b)のいずれの回転方向に回転させた場合でも、燃料噴射が行えるようにしている。符号(11a)が第1気筒用のカム突起(11)の異方向回転噴射用カム面、(11b)が第1気筒用のカム突起(11)の同方向回転噴射用カム面、(12a)が第2気筒用のカム突起(12)の異方向回転噴射用カム面、(12b)が第2気筒用のカム突起(12)の同方向回転噴射用カム面、(13a)が第3気筒用のカム突起(13)の異方向回転噴射用カム面、(13b)が第3気筒用のカム突起(13)の同方向回転噴射用カム面、(14a)が第4気筒用のカム突起(14)の異方向回転噴射用カム面、(14b)が第4気筒用のカム突起(14)の同方向回転噴射用カム面である。
【0019】
第1実施形態の概要は、次の通りである。
第1実施形態では、図1の燃料噴射カム軸(15)を共通部品として、燃料噴射カム軸(15)をクランク軸 ( 34 ) と異なる回転方向 ( ) に回転させる図4及び図5の異方向回転仕様の直列4気筒エンジンと、燃料噴射カム軸(15)をクランク軸 ( 34 ) と異なる回転方向 ( ) に回転させる図2及び図3の同方向回転仕様の直列4気筒エンジンとを製造する。
【0020】
各仕様のエンジンの共通点は、次の通りである。
図4及び図5に示す異方向回転仕様のエンジンについて説明すると、図5に示すように、シリンダブロック(19)の前部にギヤケース(20)を備え、シリンダブロック(19)の上部にシリンダヘッド(27)を備え、シリンダヘッド(27)に4本の燃料噴射ノズルを取り付けている。シリンダブロック(19)の左側面の前寄り部には、燃料噴射ポンプ(16)を取り付け、この燃料噴射ポンプ(16)の4本のプランジャの燃料吐出口と燃料噴射ノズルとを4本の噴射管(21)(22)(23)(24)で接続している。図2及び図3に示す同方向回転仕様のエンジンについても同様の構造である。図2及び図3中、異方向回転仕様のエンジンと同一の要素には、図4及び図5と同一の符号を付しておく。
【0021】
各仕様のエンジンの相違点は、次の通りである。
これらのエンジンは、ギヤトレインの構造が相違する。図4に示すように、異方向回転 仕様のエンジンのギヤトレイン(28a)がクランクギヤ ( 31 ) と燃料噴射カムギヤ ( 33 ) との間に一対のアイドルギヤ(29)(30)を備えているのに対して、図2に示すように、同方向回転仕様のエンジンのギヤトレイン(28b)は単一のアイドルギヤ(29)しか備えていない。
【0022】
異方向回転仕様のエンジンのギヤトレイン(28a)の構成は、次の通りである。
図4に示す異方向回転仕様のエンジンのギヤトレイン(28a)は、クランクギヤ(31)に第1アイドルギヤ(29)を噛み合わせ、第1アイドルギヤ(29)に動弁カムギヤ(32)と第2アイドルギヤ(30)とを噛み合わせ、第2アイドルギヤ(30)に燃料噴射カムギヤ(33)を噛み合わせて構成されている。図4に示すように、異方向回転仕様のエンジンのギヤトレイン(28a)の各ギヤの回転方向は、正面から見て、クランクギヤ(31)が時計廻り、第1アイドルギヤ(29)が反時計廻り、動弁カムギヤ(32)と第2アイドルギヤ(30)とがいずれも時計廻り、燃料噴射カムギヤ(33)が反時計廻りとなる。
【0023】
同方向回転仕様のエンジンのギヤトレイン(28b)の構成は、次の通りである。
図2に示す同方向回転仕様のエンジンのギヤトレイン(28b)は、クランクギヤ(31)にアイドルギヤ(29)を噛み合わせ、アイドルギヤ(29)に動弁カムギヤ(32)と燃料噴射カムギヤ(33)とを噛み合わせて構成されている。アイドルギヤ(29)と正転仕様エンジンの第1アイドルギヤ(29)とは同一物である。図2に示すように、逆転仕様エンジンのギヤトレイン(28b)の各ギヤの回転方向は、正面から見て、クランクギヤ(31)が時計廻り、アイドルギヤ(29)が反時計廻り、動弁カムギヤ(32)と燃料噴射カムギヤ(33)とが時計廻りとなる。
【0024】
共通部品は、クランク軸(34)と動弁カム軸(17)と燃料噴射カム軸(15)と燃料噴射ポンプ(16)とクランクギヤ(31)とアイドルギヤ(29)と動弁カムギヤ(32)と燃料噴射カムギヤ(33)である。これらを共通部品として用い、異方向回転仕様と同方向回転仕様の多気筒エンジンを製造する際、各仕様での各気筒への燃料噴射順序を一致させる。この場合、燃料噴射管(21)(22)(23)(24)の接続状態を各仕様で相違させることにより、燃料噴射ポンプ(16)の燃料吐出口と燃料噴射ノズルとの接続の組み合わせを各仕様で相違させる。
【0025】
気筒番号等の表現は、次の通りである。
図6では、シリンダブロック(19)内の大円で気筒を、気筒の上の番号で気筒番号を、大円内の小円で各気筒の燃料噴射ノズルを表し、燃料噴射ポンプ(16)内の小円で燃料吐出口を表し、その下の番号で燃料吐出口の配置を表している。気筒番号は、紙面右から左に向かって、第1気筒、第2気筒、第3気筒、第4気筒となる。燃料吐出口の配置は、紙面右から左に向かって第1吐出口、第2吐出口、第3吐出口、第4吐出口となる。図7〜図10も同様にして表現している。
【0026】
異方向回転仕様のエンジンでの各気筒への燃料噴射順序の設定は、次の通りである。
図6(A)に示すように、このエンジンのクランク軸(34)のクランクピン配置は、180度2方向であり、一方に第1気筒用コンロッドと第4気筒用コンロッドが連結され、他方に第3気筒用コンロッドと第2気筒用コンロッドが連結されている。クランク軸(34)は正面から見て、時計廻りに回転する。図6(A)に示すように、同方向回転仕様のエンジンでは、第1吐出口に第1燃料噴射管(21)を介して第1気筒用燃料噴射ノズルを接続し、第2吐出口に第2燃料噴射管(22)を介して第2気筒用燃料噴射ノズルを接続し、第3吐出口に第3燃料噴射管(23)を介して第3気筒用燃料噴射ノズルを接続し、第4吐出口に第4燃料噴射管(24)を介して第4気筒用燃料噴射ノズルを接続している。この場合、各気筒への燃料噴射順序は第1気筒、第3気筒、第4気筒、第2気筒の順となる。
【0027】
同方向回転仕様のエンジンで異方向回転仕様のエンジンと燃料噴射順序を一致させる手法は、次の通りである。
クランク軸(34)と燃料噴射ポンプ(16)は、異方向回転仕様のエンジンとの共通部品を用いており、シリンダブロック(19)は、異方向回転仕様のエンジンとは別部品ではあるが、同じ気筒配列のものを用いている。図6(B)に示すように、同方向回転仕様のエンジンを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)の接続状態のままでは、燃料噴射カム軸(15)の回転方向 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第4気筒、第3気筒となるため、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更する。すなわち、第2燃料噴射管(22)を第2気筒用燃料噴射ノズルではなく第3気筒用燃料噴射ノズルに接続し、第3燃料噴射管(23)を第3気筒用燃料噴射ノズルではなく第2気筒用燃料噴射ノズルに接続する。この結果、各気筒への燃料噴射順序は、第1気筒、第3気筒、第4気筒、第2気筒の順となり、異方向回転仕様の場合と一致する。
【0028】
第2実施形態の概要は、次の通りである。
図7に示す第2実施形態は、図6に示す第1実施形態と同様、直列4気筒エンジンに関するものであるが、噴射順序が異なり、第1実施形態では、第1気筒、第3気筒、第4気筒、第2気筒となるものを、この第2実施形態では、第1気筒、第2気筒、第4気筒、第3気筒としている。異方向回転仕様のエンジンと同方向回転仕様のエンジンの共通部品、及び製造の場合に噴射順序を一致させる手法は、第1実施形態と同じにしている。図7中、第1実施形態と同一の要素については、図6と同一の符号を付しておく。
【0029】
第3実施形態の概要は、次の通りである。
図8に示す第3実施形態は、図6に示す4気筒の第1実施形態と異なり、直列3気筒エンジンに関するものである。この第3実施形態では、図8(A)に示すように、エンジンのクランク軸(34)のクランクピン配置は120度毎の3方向であり、クランクピンには、時計廻りで、第1気筒用コンロッド、第3気筒用コンロッド、第2気筒用コンロッドが接続されている。クランク軸(34)は正面から見て、時計廻りに回転する。図8(A)に示すように、異方向回転仕様のエンジンでは、第1吐出口に第1燃料噴射管(21)を介して第1気筒用燃料噴射ノズルを接続し、第2吐出口に第2燃料噴射管(22)を介して第2気筒用燃料噴射ノズルを接続し、第3吐出口に第3燃料噴射管(23)を介して第3気筒用燃料噴射ノズルを接続している。この場合、各気筒への燃料噴射順序は第1気筒、第3気筒、第2気筒の順となる。図8(B)に示すように、同方向回転仕様のエンジンを造る場合に、異方向回転仕様の燃料噴射管(21)(22)(23)の接続状態のままでは、燃料噴射カム軸(15)の回転方向 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第3気筒となるため、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更する。すなわち、第2燃料噴射管(22)を第2気筒用燃料噴射ノズルではなく第3気筒用燃料噴射ノズルに接続し、第3燃料噴射管(23)を第3気筒用燃料噴射ノズルではなく第2気筒用燃料噴射ノズルに接続する。この結果、各気筒への燃料噴射順序は、第1気筒、第3気筒、第2気筒の順となり、異方向回転仕様のものと一致する。
【0030】
第4実施形態の概要は、次の通りである。
図9に示す第4実施形態は、図6に示す4気筒の第1実施形態と異なり、直列6気筒エンジンに関するものである。この第4実施形態では、図9(A)に示すように、エンジンのクランク軸(34)のクランクピン配置は120度毎の3方向であり、クランクピンには、時計廻りで、第1気筒用コンロッド及び第6気筒用コンロッド、第3気筒用コンロッド及び第4気筒用コンロッド、第2気筒用コンロッド及び第5気筒用コンロッドが接続されている。クランク軸(34)は正面から見て、時計廻りに回転する。図9(A)に示すように、異方向回転仕様のエンジンでは、第1吐出口に第1燃料噴射管(21)を介して第1気筒用燃料噴射ノズルを接続し、第2吐出口に第2燃料噴射管(22)を介して第2気筒用燃料噴射ノズルを接続し、第3吐出口に第3燃料噴射管(23)を介して第3気筒用燃料噴射ノズルを接続し、第4吐出口に第4燃料噴射管(24)を介して第4気筒用燃料噴射ノズルを接続し、第5吐出口に第5燃料噴射管(25)を介して第5気筒用燃料噴射ノズルを接続し、第6吐出口に第6燃料噴射管(26)を介して第6気筒用燃料噴射ノズルを接続している。この場合、各気筒への燃料噴射順序は第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒の順となる。
【0031】
図9(B)に示すように、同方向回転仕様のエンジンを造る場合に、異方向回転仕様の燃料噴射管(21)(22)(23)(24)(25)(26)の接続状態のままでは、燃料噴射カム軸(15)の回転方向 ( ) により、燃料噴射順序が、第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒となるため、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更し、第4気筒と第5気筒の燃料噴射管(24)(25)の接続を変更する。すなわち、第2燃料噴射管(22)を第2気筒用燃料噴射ノズルではなく第3気筒用燃料噴射ノズルに接続し、第3燃料噴射管(23)を第3気筒用燃料噴射ノズルではなく第2気筒用燃料噴射ノズルに接続し、第4燃料噴射管(24)を第4気筒用燃料噴射ノズルではなく第5気筒用燃料噴射ノズルに接続し、第5燃料噴射管(25)を第5気筒用燃料噴射ノズルではなく第4気筒用燃料噴射ノズルに接続する。この結果、各気筒への燃料噴射順序は、第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒の順となり、異方向回転仕様のものと一致する。
【0032】
第5実施形態の概要は、次の通りである。
図10に示す第5実施形態は、図9に示す第4実施形態と同様、直列6気筒エンジンに関するものであるが、クランクピンへの接続状態が異なり、第4実施形態では、クランクピンには、時計廻りで、第1気筒用コンロッド及び第6気筒用コンロッド、第3気筒用コンロッド及び第4気筒用コンロッド、第2気筒用コンロッド及び第5気筒用コンロッドが接続されているのに対し、第5実施形態では、クランクピンには、時計廻りで、第1気筒用コンロッド及び第6気筒用コンロッド、第2気筒用コンロッド及び第5気筒用コンロッド、第3気筒用コンロッド及び第4気筒用コンロッドが接続されている。また第5実施形態では、噴射順序が異なり、第4実施形態では、第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒となるものを、この第5実施形態では、第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒としている。異方向回転仕様のエンジンと同方向回転仕様のエンジンの共通部品、及び製造の場合に噴射順序を一致させる手法は、第4実施形態と同じにしている。図10中、第4実施形態と同一の要素については、図9と同一の符号を付しておく。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係るエンジンの製造方法で用いる燃料噴射カム軸を説明する図で、図1(A)は側面図、図1(B)は図1(A)のB−B線断面図、図1(C)は第1気筒用カム突起の正面図、図1(D)は図1(A)のD−D線断面図である。
【図2】 本発明の第1実施形態に係るエンジンの製造方法で得られる同方向回転仕様のエンジンの一部切欠正面図である。
【図3】 図2のエンジンの側面図である。
【図4】 本発明の第1実施形態に係るエンジンの製造方法で得られる異方向回転仕様のエンジンの一部切欠正面図である。
【図5】 図4のエンジンの側面図である。
【図6】 本発明の第1実施形態に係るエンジンの製造方法での各仕様の燃料噴射管の接続状態を説明する図で、図6(A)は異方向回転仕様のもの、図6(B)は同方向回転仕様のものを示している。
【図7】 本発明の第2実施形態に係るエンジンの製造方法での各仕様の燃料噴射管の接続状態を説明する図で、図7(A)は異方向回転仕様のもの、図7(B)は同方向回転仕様のものを示している。
【図8】 本発明の第3実施形態に係るエンジンの製造方法での各仕様の燃料噴射管の接続状態を説明する図で、図8(A)は異方向回転仕様のもの、図8(B)は同方向回転仕様のものを示している。
【図9】 本発明の第4実施形態に係るエンジンの製造方法での各仕様の燃料噴射管の接続状態を説明する図で、図9(A)は異方向回転仕様のもの、図9(B)は同方向回転仕様のものを示している。
【図10】 本発明の第5実施形態に係るエンジンの製造方法での各仕様の燃料噴射管の接続状態を説明する図で、図10(A)は異方向回転仕様のもの、図10(B)は同方向回転仕様のものを示している。
【符号の説明】
(11)(12)(13)(14)…カム突起、(11a)(11b)(12a)(12b)(13a)(13b)(14a)(14b)…カム面、(a)…異なる回転方向、(b)…同じ回転方向、(15)…燃料噴射カム軸、(16)…燃料噴射ポンプ、 (21)(22)(23)(24)(25)(26)…燃料噴射管、( 34 ) …クランク軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multi-cylinder engine .
[0002]
[Prior art]
Conventionally, an engine fuel injection camshaft has a cam projection, and a cam surface for fuel injection is provided only at one end of the cam projection in the forward rotation direction so that fuel can be injected only when rotated in the forward rotation direction. It has become.
[0003]
[Problems to be solved by the invention]
The above prior art has the following problems.
<Problem> It is necessary to manufacture a dedicated fuel injection camshaft for each rotation specification.
When differently creating a forward engine that rotates the fuel injection camshaft and a reverse engine that rotates the fuel injection camshaft, the fuel injection camshaft cannot be used as a common part. It is necessary to manufacture a dedicated fuel injection camshaft.
[0004]
The subject of this invention is providing the manufacturing method of the multicylinder engine which can solve the said problem.
[0005]
[Means for Solving the Problems]
(Invention of Claim 1)
Invention specific matters of the invention of claim 1 are as follows.
As illustrated in FIG. 2, by interposing a single gear (29) between the crank gear (31) and the fuel injection cam gear (33), the rotational direction of the fuel injection cam shaft (15) (b) A multi-cylinder engine with the same direction as the crankshaft ( 34 ) as a multi-cylinder engine with the same direction rotation,
As illustrated in FIG. 4, the rotation direction of the by interposing a pair of gears (29) (30) between the crank gear (31) and the fuel injection cam gear (33), the fuel injection cam shaft (15) ( a ) A multi-cylinder engine having a direction different from the crankshaft ( 34 ) is a multi-cylinder engine having a different direction rotation,
In manufacturing the above-mentioned specifications in which the rotation direction of the crankshaft ( 34 ) is the same, using the fuel injection camshaft ( 15 ) and the row type fuel injection pump ( 16 ) as common parts ,
As illustrated in FIG. 1, the fuel injection cam shaft (15), the cam projections (11) (12) (13) cam surfaces for each fuel injection in the rotational direction end portions of the (14) (11a) (11b) the (12a) (12b) (13a ) (13b) (14a) (14b) is provided,
As shown in FIGS. 6 to 10, in each of the above specifications, the combination of the connection between the fuel discharge port of the fuel injection pump ( 16 ) by the fuel injection pipe and the fuel injection nozzle of each cylinder is made different. The method for manufacturing a multi-cylinder engine is characterized in that the order of injection to each cylinder in the engine is made to coincide.
[0006]
[0007]
[0008]
(Invention of Claim 2 )
Invention specific matters of the invention of claim 2 are as follows.
The method of manufacturing a multi-cylinder engine according to claim 1 ,
As illustrated in FIG. 6, in the in-line four-cylinder engine of each specification , the fuel injection order to each cylinder is matched in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder.
When making those corotating specification, while in the connected state of the fuel injection pipe in the counter-rotating specifications (21) (22) (23) (24), the rotational direction of the fuel injection cam shaft (15) ( b ) By changing the connection of the fuel injection pipes (22), (23) of the second cylinder and the third cylinder , the fuel injection order becomes the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder. A method for manufacturing a multi-cylinder engine, characterized in that the fuel injection order is made to coincide with that of a different direction rotation specification .
[0009]
(Invention of Claim 3 )
Invention specific matters of the invention of claim 3 are as follows.
The method of manufacturing a multi-cylinder engine according to claim 1 ,
As illustrated in FIG. 7, in the in-line four-cylinder engine of each specification , the fuel injection order to each cylinder is matched in the order of the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder.
When manufacturing the same direction rotation specification, the rotation ( b ) of the fuel injection camshaft (15) remains in the connected state of the fuel injection pipes (21) (22) (23) (24) in the different direction rotation specification. ) , The connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed for those in which the fuel injection order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder. The method for manufacturing a multi-cylinder engine is characterized in that the fuel injection sequence is matched with that of the different direction rotation specification .
[0010]
(Invention of Claim 4 )
Invention specific matters of the invention of claim 4 are as follows.
The method of manufacturing a multi-cylinder engine according to claim 1 ,
As illustrated in FIG. 8, in the inline three-cylinder engine of each specification, in order to match the fuel injection order to each cylinder in the order of the first cylinder, the third cylinder, and the second cylinder,
When manufacturing the same direction rotation specification , the fuel injection camshaft (15) is rotated ( b ) with the fuel injection pipes (21), (22) and (23) connected in the different direction rotation specifications . fuel injection sequence, the first cylinder, second cylinder, what the third cylinder, by changing the connection of the fuel injection pipe of the second cylinder and the third cylinder (22) (23), the fuel injection order of different A method for manufacturing a multi-cylinder engine, characterized by matching with that of a direction rotation specification .
[0011]
(Invention of Claim 5 )
Invention specific matters of the invention of claim 5 are as follows.
The method of manufacturing a multi-cylinder engine according to claim 1 ,
As illustrated in FIG. 9, in the in-line 6-cylinder engine of each specification , the fuel injection order to each cylinder is the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder. In order to match,
In the case of making the same direction rotation specification , the fuel injection camshaft (21), (22), (23), (24), (25), and (26) remains connected in the different direction rotation specification. 15) With the rotation ( b ) , the fuel injection sequence becomes the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, the third cylinder, and the fifth cylinder. The connection of the fuel injection pipes (24) and (25) is changed, the connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed, and the fuel injection order is changed to that of the different direction rotation specification. A manufacturing method of a multi-cylinder engine characterized by matching.
[0012]
(Invention of Claim 6 )
Invention specific matters of the invention of claim 6 are as follows.
The method for differentiating a multi-cylinder engine according to claim 1 ,
As illustrated in FIG. 10, when the in-line 6-cylinder engine of each specification is made separately, the order of fuel injection to each cylinder in each specification is defined as the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, In order to match the order of the 3rd cylinder and the 5th cylinder,
In the case of making the same direction rotation specification , the fuel injection camshaft (21), (22), (23), (24), (25), and (26) remains connected in the different direction rotation specification. 15) With the rotation ( b ) , the fuel injection sequence becomes the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder. The connection of the fuel injection pipes (24) and (25) is changed, the connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed, and the fuel injection order is changed to that of the different direction rotation specification. A manufacturing method of a multi-cylinder engine characterized by matching.
[0013]
【The invention's effect】
(Invention of claims 1 to 6 )
The inventions according to claims 1 to 6 have the following effects.
<Effect 1> It is not necessary to manufacture a dedicated fuel injection camshaft for each specification.
When manufacturing an engine of each specification , the fuel injection cam shaft (15) can be used as a common part, and it is not necessary to manufacture a dedicated fuel injection cam shaft (15) for each specification .
[0014]
[0015]
<< Effect 2 >> The valve camshaft can also be used as a common part.
When manufacturing a multi-cylinder engine of each specification, the order of fuel injection to each cylinder can be matched, so that the timing of the valve can be matched in each specification, and the valve camshaft (17) is also a common part Can be used as
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view for explaining a fuel injection camshaft used in the engine manufacturing method according to the first embodiment of the present invention. Figures 2-6 is an explanatory view of a manufacturing method of an engine according to a first embodiment of the present invention, FIG. 7 is a schematic view for illustrating a manufacturing method for an engine according to a second embodiment of the present invention, the Figure 8 of the present invention illustration of a manufacturing method of an engine according to embodiment 3, FIG. 9 is a schematic view for illustrating a manufacturing method of an engine according to a fourth embodiment of the present invention, FIG. 10 is a manufacturing method of an engine according to a fifth embodiment of the present invention It is explanatory drawing.
In each embodiment, the following is performed.
As shown in FIG. 2, by interposing a single gear (29) between the crank gear (31) and the fuel injection cam gear (33), the rotational direction of the fuel injection cam shaft (15) and (b) A multi-cylinder engine having a clockwise direction in the same direction as the crankshaft ( 34 ) is a multi-cylinder engine having the same direction of rotation.
As shown in FIG. 4, by interposing a pair of gears ( 29 ) ( 30 ) between the crank gear ( 31 ) and the fuel injection cam gear ( 33 ) , the rotational direction of the fuel injection cam shaft ( 15 ) ( a ) Is a multi-cylinder engine with a different direction from the crankshaft ( 34 ) .
As shown in FIG. 1, when the fuel injection camshaft ( 15 ) and the row type fuel injection pump ( 16 ) are used as a common part and the crankshaft ( 34 ) has the same rotation direction, the above specifications are used. the fuel injection cam shaft (15), the cam projections (11) (12) (13) cam surfaces for each fuel injection in the rotational direction end portions of the (14) (11a) (11b) (12a) (12b) the (13a) (13b) (14a ) (14b) is provided,
As shown in FIGS. 6 to 10, in each of the above specifications, the combination of the connection between the fuel discharge port of the fuel injection pump ( 16 ) by the fuel injection pipe and the fuel injection nozzle of each cylinder is made different. The order of injection to each cylinder is matched.
[0017]
The outline of this embodiment is as follows.
Fuel injection cam shaft of the engine shown in FIG. 1 (15) intended to be capable of handling any of the crank shaft (34) different from the direction of rotation (a) and the same rotational direction (b), first shown in FIGS. 2-6 In the first embodiment , an in-line four-cylinder engine of each specification is manufactured using the fuel injection camshaft (15) of FIG. 1, and in the second embodiment shown in FIG. 7, the fuel injection camshaft (15) of FIG. to produce other series 4-cylinder engine of each specification with reference to, in the third embodiment shown in FIG. 8, to produce a series three-cylinder engine of each specification with reference to the fuel injection cam shaft in Fig 1 equivalent structure, In the fourth embodiment shown in FIG. 9 and the fifth embodiment shown in FIG. 10, an in-line 6-cylinder engine of each specification is manufactured using a fuel injection camshaft having the same structure as that in FIG.
[0018]
The configuration of the fuel injection cam shaft (15) shown in FIG. 1 is as follows.
The fuel injection camshaft (15) is for an in-line four-cylinder engine, and includes four cam projections (11), (12), (13), and (14) as shown in FIG. . Reference numeral (11) is a cam protrusion for the first cylinder, (12) is a cam protrusion for the second cylinder, (13) is a cam protrusion for the third cylinder, and (14) is a cam protrusion for the fourth cylinder. . A drive cam (18) for the fuel supply pump is disposed between the cam projection (13) for the third cylinder and the cam projection (14) for the fourth cylinder. As shown in FIG. 1 (B), the cam surfaces (11a) (11b) (12a) (12b) for fuel injection are provided at both ends in the rotational direction of the cam projections (11) (12) (13) (14). (13a), (13b), (14a), and (14b) are provided, and fuel injection can be performed even if the rotation direction is different from the rotation direction (a) or the same rotation direction (b) from the crankshaft ( 34 ). I am doing so. Reference numeral (11a) is a cam surface for different direction rotation injection of the cam projection (11) for the first cylinder, (11b) is a cam surface for same direction rotation injection of the cam projection (11) for the first cylinder, (12a) Is the cam surface for different direction rotation injection of the cam projection (12) for the second cylinder, (12b) is the cam surface for same direction rotation injection of the cam projection (12) for the second cylinder, and (13a) is the third cylinder. The cam projection for the opposite direction of the cam projection (13), (13b) is the cam projection surface for the same direction of the cam projection (13) for the third cylinder, and (14a) is the cam projection for the fourth cylinder. (14) Different direction rotational injection cam surface, (14b) is the same direction rotational injection cam surface of the cam projection (14) for the fourth cylinder.
[0019]
The outline of the first embodiment is as follows.
In the first embodiment, the fuel injection camshaft (15) in FIG. 1 is used as a common part, and the fuel injection camshaft (15) is rotated in a rotational direction ( a ) different from that of the crankshaft ( 34 ) . series 4-cylinder engine counter-rotating design a series four-cylinder engine in the same direction rotation specifications of FIGS. 2 and 3 to rotate the fuel injection cam shaft (15) in a different direction of rotation (b) a crankshaft (34) Manufacturing.
[0020]
The common points of the engine of each specification are as follows.
4 and FIG. 5, the engine of the different direction rotation specification will be described. As shown in FIG. 5, a gear case (20) is provided at the front of the cylinder block (19), and a cylinder head is provided above the cylinder block (19). (27), and four fuel injection nozzles are attached to the cylinder head (27). A fuel injection pump (16) is attached to a front side portion of the left side surface of the cylinder block (19), and four fuel injection ports and fuel injection nozzles of the four plungers of the fuel injection pump (16) are connected to four injections. It connects with pipe | tube (21) (22) (23) (24). The engine of the same direction rotation specification shown in FIGS. 2 and 3 has the same structure. 2 and 3, the same reference numerals as those in FIGS. 4 and 5 are attached to the same elements as those of the engine of the different direction rotation specification .
[0021]
The differences between the engines of each specification are as follows.
These engines differ in the structure of the gear train. As shown in FIG. 4, the gear train (28a) of the engine of the different direction rotation specification includes a pair of idle gears (29) and (30) between the crank gear ( 31 ) and the fuel injection cam gear ( 33 ) . On the other hand, as shown in FIG. 2, the gear train (28b) of the engine of the same direction rotation type has only a single idle gear (29).
[0022]
The configuration of the gear train (28a) of the engine of the different direction rotation specification is as follows.
The gear train (28a) of the engine of the different direction rotation type shown in FIG. 4 meshes the first idle gear (29) with the crank gear (31) and the valve drive cam gear (32) with the first idle gear (29). The second idle gear (30) is engaged with the second idle gear (30), and the fuel injection cam gear (33) is engaged with the second idle gear (30). As shown in FIG. 4, the rotational direction of each gear of the gear train (28a) of the engine of the different direction rotation specification is such that when viewed from the front, the crank gear (31) rotates clockwise and the first idle gear (29) counterclockwise. In the clockwise direction, both the valve drive cam gear (32) and the second idle gear (30) rotate clockwise, and the fuel injection cam gear (33) counterclockwise.
[0023]
The configuration of the gear train (28b) of the engine of the same direction rotation specification is as follows.
The gear train (28b) of the engine of the same direction rotation type shown in FIG. 2 meshes the idle gear (29) with the crank gear (31), and the valve gear cam gear (32) and the fuel injection cam gear ( 33). The idle gear (29) and the first idle gear (29) of the forward engine are the same. As shown in FIG. 2, the rotation direction of each gear of the gear train (28b) of the reverse engine is as follows. When viewed from the front, the crank gear (31) rotates clockwise and the idle gear (29) rotates counterclockwise. The cam gear (32) and the fuel injection cam gear (33) rotate clockwise.
[0024]
Common parts are the crankshaft (34), the valve drive camshaft (17), the fuel injection camshaft (15), the fuel injection pump (16), the crank gear (31), the idle gear (29), and the valve drive cam gear (32). ) And a fuel injection cam gear (33). When these are used as common parts and a multi-cylinder engine with different direction rotation specifications and same direction rotation specifications is manufactured, the order of fuel injection to each cylinder in each specification is matched. In this case, the connection state of the fuel injection pipes (21), (22), (23), and (24) is made different for each specification, so that the combination of the connection between the fuel discharge port of the fuel injection pump (16) and the fuel injection nozzle is achieved. Different for each specification.
[0025]
Expressions such as cylinder numbers are as follows.
In FIG. 6, the cylinder in the cylinder block (19) represents a cylinder, the cylinder number represents the cylinder number, the small circle within the great circle represents the fuel injection nozzle of each cylinder, and the inside of the fuel injection pump (16). The fuel discharge port is represented by a small circle, and the arrangement of the fuel discharge port is represented by a number below it. The cylinder numbers are the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder from the right to the left in the drawing. The fuel discharge ports are arranged as a first discharge port, a second discharge port, a third discharge port, and a fourth discharge port from the right to the left in the drawing. 7 to 10 are also expressed in the same manner.
[0026]
The setting of the fuel injection sequence to each cylinder in the engine of the different direction rotation specification is as follows.
As shown in FIG. 6 (A), the crank pin arrangement of the crankshaft (34) of this engine is 180 degrees in two directions, and the first cylinder connecting rod and the fourth cylinder connecting rod are connected to one, and the other is connected to the other. The third cylinder connecting rod and the second cylinder connecting rod are connected. The crankshaft (34) rotates clockwise as viewed from the front. As shown in FIG. 6A, in the engine of the same direction rotation specification, the first cylinder fuel injection nozzle is connected to the first discharge port via the first fuel injection pipe (21), and the second discharge port is connected to the first discharge port. A second cylinder fuel injection nozzle is connected via the second fuel injection pipe (22), a third cylinder fuel injection nozzle is connected to the third discharge port via the third fuel injection pipe (23), A fourth cylinder fuel injection nozzle is connected to the four discharge ports via a fourth fuel injection pipe (24). In this case, the order of fuel injection to each cylinder is the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder.
[0027]
The method of matching the fuel injection order with the engine of the same direction rotation specification and the engine of the different direction rotation specification is as follows.
Crank shaft (34) and a fuel injection pump (16) is using the common parts of the engine of counter-rotating specification, the cylinder block (19) is the engine of the counter-rotating specification is a separate part, The same cylinder arrangement is used. As shown in FIG. 6 (B), when the engine of the same direction rotation specification is manufactured , the fuel injection pipes (21), (22), (23), and (24) of the different direction rotation specification remain connected. Since the fuel injection order becomes the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder depending on the rotation direction ( b ) of the injection camshaft (15), the fuel injection pipes of the second cylinder and the third cylinder ( 22) The connection of (23) is changed. That is, the second fuel injection pipe (22) is connected to the third cylinder fuel injection nozzle instead of the second cylinder fuel injection nozzle, and the third fuel injection pipe (23) is not the third cylinder fuel injection nozzle. Connected to a 2-cylinder fuel injection nozzle. As a result, the order of fuel injection into each cylinder is in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder, and is consistent with the case of the different direction rotation specification .
[0028]
The outline of the second embodiment is as follows.
The second embodiment shown in FIG. 7 is related to the in-line four-cylinder engine as in the first embodiment shown in FIG. 6, but the injection order is different. In the first embodiment, the first cylinder, the third cylinder, In the second embodiment, the fourth cylinder and the second cylinder are the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder. The common parts of the engine of the different direction rotation specification and the engine of the same direction rotation specification , and the method of matching the injection order in the case of manufacturing are the same as in the first embodiment. In FIG. 7, the same elements as those in the first embodiment are denoted by the same reference numerals as those in FIG.
[0029]
The outline of the third embodiment is as follows.
The third embodiment shown in FIG. 8 relates to an in-line three-cylinder engine, unlike the four-cylinder first embodiment shown in FIG. In this third embodiment, as shown in FIG. 8 (A), the crank pin arrangement of the crank shaft (34) of the engine is in three directions every 120 degrees, and the first pin is connected to the crank pin clockwise. The connecting rod for the cylinder, the connecting rod for the third cylinder, and the connecting rod for the second cylinder are connected. The crankshaft (34) rotates clockwise as viewed from the front. As shown in FIG. 8 (A), in the engine of the different direction rotation specification, the first cylinder fuel injection nozzle is connected to the first discharge port via the first fuel injection pipe (21), and the second discharge port is connected to the second discharge port. The second cylinder fuel injection nozzle is connected via the second fuel injection pipe (22), and the third cylinder fuel injection nozzle is connected to the third discharge port via the third fuel injection pipe (23). . In this case, the order of fuel injection into each cylinder is the order of the first cylinder, the third cylinder, and the second cylinder. As shown in FIG. 8 (B), when making the engine corotating specifications, while the connection state of the fuel injection pipe of the counter-rotating specifications (21) (22) (23), the fuel injection cam shaft ( 15) Since the fuel injection order is the first cylinder, the second cylinder, and the third cylinder according to the rotational direction ( b ) of 15), the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder are connected. change. That is, the second fuel injection pipe (22) is connected to the third cylinder fuel injection nozzle instead of the second cylinder fuel injection nozzle, and the third fuel injection pipe (23) is not the third cylinder fuel injection nozzle. Connected to a 2-cylinder fuel injection nozzle. As a result, the order of fuel injection to each cylinder is in the order of the first cylinder, the third cylinder, and the second cylinder, and is consistent with that of the different direction rotation specification .
[0030]
The outline of the fourth embodiment is as follows.
The fourth embodiment shown in FIG. 9 is different from the four-cylinder first embodiment shown in FIG. 6 and relates to an in-line six-cylinder engine. In this fourth embodiment, as shown in FIG. 9 (A), the crank pin arrangement of the crank shaft (34) of the engine is in three directions every 120 degrees, and the first pin is in the clockwise direction on the crank pin. The connecting rod for the cylinder, the connecting rod for the sixth cylinder, the connecting rod for the third cylinder, the connecting rod for the fourth cylinder, the connecting rod for the second cylinder, and the connecting rod for the fifth cylinder are connected. The crankshaft (34) rotates clockwise as viewed from the front. As shown in FIG. 9 (A), in the engine of the different direction rotation specification, the first cylinder fuel injection nozzle is connected to the first discharge port via the first fuel injection pipe (21), and the second discharge port is connected to the second discharge port. A second cylinder fuel injection nozzle is connected via the second fuel injection pipe (22), a third cylinder fuel injection nozzle is connected to the third discharge port via the third fuel injection pipe (23), A fourth cylinder fuel injection nozzle is connected to the four discharge ports via the fourth fuel injection pipe (24), and a fifth cylinder fuel injection nozzle is connected to the fifth discharge port via the fifth fuel injection pipe (25). The sixth cylinder fuel injection nozzle is connected to the sixth discharge port via the sixth fuel injection pipe (26). In this case, the order of fuel injection to each cylinder is the order of the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder.
[0031]
As shown in FIG. 9B, when the engine of the same direction rotation specification is manufactured, the connection state of the fuel injection pipes (21) (22) (23) (24) (25) (26) of the different direction rotation specification As it is, the fuel injection order becomes the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, the third cylinder, and the fifth cylinder depending on the rotation direction ( b ) of the fuel injection camshaft (15). The connection between the fuel injection pipes (22) and (23) of the second and third cylinders is changed, and the connection between the fuel injection pipes (24) and (25) of the fourth and fifth cylinders is changed. That is, the second fuel injection pipe (22) is connected to the third cylinder fuel injection nozzle instead of the second cylinder fuel injection nozzle, and the third fuel injection pipe (23) is not the third cylinder fuel injection nozzle. The fuel injection nozzle for two cylinders is connected, the fourth fuel injection pipe (24) is connected to the fuel injection nozzle for the fifth cylinder instead of the fuel injection nozzle for the fourth cylinder, and the fifth fuel injection pipe (25) is connected to the fifth fuel injection nozzle. It is connected not to the cylinder fuel injection nozzle but to the fourth cylinder fuel injection nozzle. As a result, the order of fuel injection to each cylinder is in the order of the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder, which is the same as that of the different direction rotation specification .
[0032]
The outline of the fifth embodiment is as follows.
The fifth embodiment shown in FIG. 10 is related to an in-line 6-cylinder engine, similar to the fourth embodiment shown in FIG. 9, but the connection state to the crankpin is different. In the fourth embodiment, the crankpin includes In the clockwise direction, the connecting rod for the first cylinder and the connecting rod for the sixth cylinder, the connecting rod for the third cylinder and the connecting rod for the fourth cylinder, the connecting rod for the second cylinder and the connecting rod for the fifth cylinder are connected. In the fifth embodiment, the crankpin includes a first cylinder connecting rod and a sixth cylinder connecting rod, a second cylinder connecting rod and a fifth cylinder connecting rod, a third cylinder connecting rod and a fourth cylinder connecting rod in a clockwise direction. It is connected. In the fifth embodiment, the injection order is different. In the fourth embodiment, the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder are used in the fifth embodiment. In the embodiment, the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, the third cylinder, and the fifth cylinder are used. The common parts of the engine of the different direction rotation specification and the engine of the same direction rotation specification and the method of matching the injection order in the case of manufacturing are the same as those in the fourth embodiment. In FIG. 10, the same elements as those in the fourth embodiment are denoted by the same reference numerals as those in FIG.
[Brief description of the drawings]
FIG. 1 is a view for explaining a fuel injection camshaft used in an engine manufacturing method according to a first embodiment of the present invention, FIG. 1 (A) is a side view, and FIG. 1 (B) is FIG. FIG. 1C is a front view of the first cylinder cam projection, and FIG. 1D is a sectional view taken along the line DD of FIG. 1A.
FIG. 2 is a partially cutaway front view of the engine of the same direction rotation specification obtained by the engine manufacturing method according to the first embodiment of the present invention .
FIG. 3 is a side view of the engine of FIG. 2;
FIG. 4 is a partially cutaway front view of an engine with a different direction rotation specification obtained by the method for manufacturing an engine according to the first embodiment of the present invention .
FIG. 5 is a side view of the engine of FIG. 4;
A diagram illustrating the connection state of the fuel injection pipe of each specification of the manufacturing method of an engine according to a first embodiment of the invention; FIG 6 (A) is that of counter-rotating design, FIG. 6 ( B) shows the same direction rotation specification.
A diagram illustrating the connection state of the fuel injection pipe of each specification of the manufacturing method of an engine according to a second embodiment of the present invention; FIG 7 (A) is that of counter-rotating design, FIG. 7 ( B) shows the same direction rotation specification.
A diagram illustrating the connection state of the fuel injection pipe of each specification of the manufacturing method for an engine according to a third embodiment of the present invention; FIG 8 (A) is that of counter-rotating design, FIG. 8 ( B) shows the same direction rotation specification.
A diagram illustrating the connection state of the fuel injection pipe of each specification of the manufacturing method for an engine according to a fourth embodiment of the present invention; FIG 9 (A) is that of counter-rotating design, FIG. 9 ( B) shows the same direction rotation specification.
A diagram illustrating the connection state of the fuel injection pipe of each specification of the manufacturing method for an engine according to a fifth embodiment of the invention; FIG, 10 (A) is that of counter-rotating design, FIG. 10 ( B) shows the same direction rotation specification.
[Explanation of symbols]
(11) (12) (13) (14) ... cam protrusion, (11a) (11b) (12a) (12b) (13a) (13b) (14a) (14b) ... cam surface, (a) ... different rotation Direction , (b) ... same rotation direction , (15) ... fuel injection camshaft, (16) ... fuel injection pump, (21) (22) (23) (24) (25) (26) ... fuel injection pipe, ( 34 ) ... crankshaft .

Claims (6)

クランクギヤCrank gear (( 3131 )) と燃料噴射カムギヤAnd fuel injection cam gear (( 3333 )) との間に単一のギヤSingle gear between (( 2929 )) を介在させることにより、燃料噴射カム軸By interposing the fuel injection camshaft (( 1515 )) の回転方向Direction of rotation (( b )) をクランク軸The crankshaft (( 3434 )) と同方向とする仕様の多気筒エンジンを、同方向回転仕様の多気筒エンジンとし、The multi-cylinder engine with the same direction as the multi-cylinder engine with the same direction rotation specification,
クランクギヤCrank gear (( 3131 )) と燃料噴射カムギヤAnd fuel injection cam gear (( 3333 )) との間に一対のギヤA pair of gears between (( 2929 )() ( 3030 )) を介在させることにより、燃料噴射カム軸By interposing the fuel injection camshaft (( 1515 )) の回転方向Direction of rotation (( a )) をクランク軸The crankshaft (( 3434 )) と異方向とする仕様の多気筒エンジンを、異方向回転仕様の多気筒エンジンとし、A multi-cylinder engine with a different direction and a multi-cylinder engine with a different direction rotation specification,
燃料噴射カム軸Fuel injection camshaft (( 1515 )) と列型の燃料噴射ポンプAnd row type fuel injection pump (( 1616 )) とを共通部品として、クランク軸And crankshaft as a common part (( 3434 )) の回転方向を同じにした上記各仕様の多気筒エンジンを製造するに当たり、When manufacturing multi-cylinder engines of the above specifications with the same rotation direction,
燃料噴射カム軸Fuel injection camshaft (( 1515 )) は、カム突起The cam projection (( 1111 )() ( 1212 )() ( 1313 )() ( 1414 )) の回転方向両端部にそれぞれ燃料噴射用のカム面Fuel injection cam surfaces at both ends in the rotation direction (( 11a11a )() ( 11b11b )() ( 12a12a )() ( 12b12b )() ( 13a13a )() ( 13b13b )() ( 14a14a )() ( 14b14b )) を設け、Provided,
上記各仕様で、燃料噴射管による燃料噴射ポンプFuel injection pump with fuel injection pipe for each of the above specifications (( 1616 )) の燃料吐出口と各気筒の燃料噴射ノズルとの接続の組み合わせを相違させることにより、各仕様での各気筒への噴射順序を一致させる、ことを特徴とする多気筒エンジンの製造方法。The method of manufacturing a multi-cylinder engine is characterized in that the order of injection to each cylinder in each specification is matched by changing the combination of the connection between the fuel discharge port and the fuel injection nozzle of each cylinder.
請求項に記載した多気筒エンジンの製造方法において、
前記各仕様の直列4気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第3気筒、第4気筒、第2気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)の接続状態のままでは、燃料噴射カム軸(15)の回転方向 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第4気筒、第3気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
The method of manufacturing a multi-cylinder engine according to claim 1 ,
In the in-line four-cylinder engine of each specification, in order to make the fuel injection order to each cylinder coincide in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder,
When making those corotating specification, while in the connected state of the fuel injection pipe in the counter-rotating specifications (21) (22) (23) (24), the rotational direction of the fuel injection cam shaft (15) ( b ) By changing the connection of the fuel injection pipes (22), (23) of the second cylinder and the third cylinder , the fuel injection order becomes the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder. A method for manufacturing a multi-cylinder engine, characterized in that the fuel injection order is made to coincide with that of a different direction rotation specification .
請求項に記載した多気筒エンジンの製造方法において、
前記各仕様の直列4気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第2気筒、第4気筒、第3気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第3気筒、第4気筒、第2気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
The method of manufacturing a multi-cylinder engine according to claim 1 ,
In the in-line four-cylinder engine of each specification, in order to make the fuel injection order to each cylinder the same in the order of the first cylinder, the second cylinder, the fourth cylinder, and the third cylinder,
When manufacturing the same direction rotation specification, the rotation ( b ) of the fuel injection camshaft (15) remains in the connected state of the fuel injection pipes (21) (22) (23) (24) in the different direction rotation specification. ) , The connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed for those in which the fuel injection order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder. The method for manufacturing a multi-cylinder engine is characterized in that the fuel injection sequence is matched with that of the different direction rotation specification .
請求項に記載した多気筒エンジンの製造方法において、
前記各仕様の直列3気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第3気筒、第2気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第2気筒、第3気筒となるものを、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
The method of manufacturing a multi-cylinder engine according to claim 1 ,
In the inline three-cylinder engine of each specification, in order to match the fuel injection order to each cylinder in the order of the first cylinder, the third cylinder, and the second cylinder,
When manufacturing the same direction rotation specification , the fuel injection camshaft (15) is rotated ( b ) with the fuel injection pipes (21), (22) and (23) connected in the different direction rotation specifications . fuel injection sequence, the first cylinder, second cylinder, what the third cylinder, by changing the connection of the fuel injection pipe of the second cylinder and the third cylinder (22) (23), the fuel injection order of different A method for manufacturing a multi-cylinder engine, characterized by matching with that of a direction rotation specification .
請求項に記載した多気筒エンジンの製造方法において、
前記各仕様の直列6気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)(25)(26)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒となるものを、第4気筒と第5気筒の燃料噴射管(24)(25)の接続を変更し、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
The method of manufacturing a multi-cylinder engine according to claim 1 ,
In the in-line 6-cylinder engine of each specification, in order to make the fuel injection order to each cylinder coincide in the order of the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder,
In the case of making the same direction rotation specification , the fuel injection camshaft (21), (22), (23), (24), (25), and (26) remains connected in the different direction rotation specification. 15) With the rotation ( b ) , the fuel injection sequence becomes the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, the third cylinder, and the fifth cylinder. The connection of the fuel injection pipes (24) and (25) is changed, the connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed, and the fuel injection order is changed to that of the different direction rotation specification. A manufacturing method of a multi-cylinder engine characterized by matching.
請求項に記載した多気筒エンジンの製造方法において、
前記各仕様の直列6気筒エンジンで、各気筒への燃料噴射順序を第1気筒、第4気筒、第2気筒、第6気筒、第3気筒、第5気筒の順で一致させるに当たり、
同方向回転仕様のものを造る場合に、異方向回転仕様での燃料噴射管(21)(22)(23)(24)(25)(26)の接続状態のままでは、燃料噴射カム軸(15)の回転 ( ) により、燃料噴射順序が、第1気筒、第5気筒、第3気筒、第6気筒、第2気筒、第4気筒となるものを、第4気筒と第5気筒の燃料噴射管(24)(25)の接続を変更し、第2気筒と第3気筒の燃料噴射管(22)(23)の接続を変更して、燃料噴射順序を異方向回転仕様のものと一致させる、ことを特徴とする多気筒エンジンの製造方法
The method of manufacturing a multi-cylinder engine according to claim 1 ,
In the in-line 6-cylinder engine of each specification, in order to make the fuel injection order to each cylinder the same in the order of the first cylinder, the fourth cylinder, the second cylinder, the sixth cylinder, the third cylinder, and the fifth cylinder,
In the case of making the same direction rotation specification , the fuel injection camshaft (21), (22), (23), (24), (25), and (26) remains connected in the different direction rotation specification. 15) With the rotation ( b ) , the fuel injection sequence becomes the first cylinder, the fifth cylinder, the third cylinder, the sixth cylinder, the second cylinder, and the fourth cylinder. The connection of the fuel injection pipes (24) and (25) is changed, the connection of the fuel injection pipes (22) and (23) of the second cylinder and the third cylinder is changed, and the fuel injection order is changed to that of the different direction rotation specification. A manufacturing method of a multi-cylinder engine characterized by matching.
JP2003104293A 2003-04-08 2003-04-08 Multi-cylinder engine manufacturing method Expired - Fee Related JP4048144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104293A JP4048144B2 (en) 2003-04-08 2003-04-08 Multi-cylinder engine manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104293A JP4048144B2 (en) 2003-04-08 2003-04-08 Multi-cylinder engine manufacturing method

Publications (2)

Publication Number Publication Date
JP2004308580A JP2004308580A (en) 2004-11-04
JP4048144B2 true JP4048144B2 (en) 2008-02-13

Family

ID=33467160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104293A Expired - Fee Related JP4048144B2 (en) 2003-04-08 2003-04-08 Multi-cylinder engine manufacturing method

Country Status (1)

Country Link
JP (1) JP4048144B2 (en)

Also Published As

Publication number Publication date
JP2004308580A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR101397874B1 (en) Improved opposed piston combustion engine
EP1789664B1 (en) Motorcycle comprising a compact internal combustion engine
JPH0219521Y2 (en)
JPH0455203Y2 (en)
US7063059B2 (en) Piston engine with selectable firing order
JP4048144B2 (en) Multi-cylinder engine manufacturing method
US7219632B2 (en) Narrow angle V-type engine
JP3805640B2 (en) Piping structure of fuel injection pipe
US20120125282A1 (en) Engine assembly including combustion chambers with different port arrangements
JP6318234B2 (en) Reciprocating engine
JP3843149B2 (en) Throttle valve coupling mechanism for outboard engine
US20020056430A1 (en) Valve system for OHV-type four-cylinder internal combustion engine
US1283970A (en) Six-cylinder v-type engine.
JP2008057345A (en) Intake device
Boretti et al. Design of 65 degree V4 Moto GP engines with pneumatic poppet valves or rotary valves
FR2961256A1 (en) INTERNAL COMBUSTION ENGINE WITH DECAL TOOLS AND IN A COMMON PLAN
JPH0227144Y2 (en)
JP2657396B2 (en) Fuel injection pump device for internal combustion engine
JPH045725Y2 (en)
JPS6137788Y2 (en)
JP2009180187A (en) Multi-cylinder internal combustion engine
JP2001227427A (en) Distribution type fuel injection pump
US20050087157A1 (en) Internal combustion engine and camshaft thereof
JP5731153B2 (en) V-type engine and method of manufacturing V-type engine
JPH1037830A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4048144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees