JP4047164B2 - Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar - Google Patents

Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar Download PDF

Info

Publication number
JP4047164B2
JP4047164B2 JP2002381938A JP2002381938A JP4047164B2 JP 4047164 B2 JP4047164 B2 JP 4047164B2 JP 2002381938 A JP2002381938 A JP 2002381938A JP 2002381938 A JP2002381938 A JP 2002381938A JP 4047164 B2 JP4047164 B2 JP 4047164B2
Authority
JP
Japan
Prior art keywords
mortar
elastic
construction
strength
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002381938A
Other languages
Japanese (ja)
Other versions
JP2004211384A (en
Inventor
原田  進
秀典 小嶋
一也 和田
政典 松村
Original Assignee
富士川建材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士川建材工業株式会社 filed Critical 富士川建材工業株式会社
Priority to JP2002381938A priority Critical patent/JP4047164B2/en
Publication of JP2004211384A publication Critical patent/JP2004211384A/en
Application granted granted Critical
Publication of JP4047164B2 publication Critical patent/JP4047164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、各種建築物の施工に用いられる例えば充填樹脂系断熱材、木毛セメント板、サイディング目地、或いは合板下地などの各種下地に仕上げ材を塗り付ける際に使用し、特に剛性の小さな下地の乾湿・温冷ムーブメントに対して高い追従性及び適度な制止力を示し、施工に際し、下こすり後塗り厚2〜3mmまで容易に平滑化でき、養生後、下地との付着力が高く、また仕上げ材との付着力も高く、低吸水で硬化乾燥後には伸び弾性により、ひび割れ、外部雨水の浸入を防ぐことができ、衝撃に対しては、高強度の短繊維により緩衝効果を示す弾性下地調整モルタル、及び弾性下地調整モルタルを用いた下地調整工法に関する。
【0002】
【従来の技術】
各種建築物の施工に用いられる充填樹脂系断熱材、木毛セメント板、サイディング目地、又は合板下地などの各種下地に仕上げ材を塗り付ける際には、樹脂エマルジョンにセメント粉体を混合したものが用いられているが、このようなモルタルは、断熱材に対する付着強度のみが重視されているものであって、断熱材の乾湿・温冷ムーブメントに対して追従したり、衝撃に対して緩衝効果を示すような材料では無かった。また施工に際しても、以下▲1▼〜▲4▼に示すように工法を選択し、断熱材から縁を切る工法が多く、直接断熱材に施工する確定した工法がないという問題があった。
【0003】
▲1▼樹脂系断熱材に対し、樹脂エマルジョン、例えばSBR樹脂、アクリルカチオン樹脂、或いはエチレン・酢酸ビニル共重合樹脂を混和材としたセメントモルタルを下地として施工する下地調整工法。
▲2▼木質系断熱材に対し、樹脂セメントペーストを下塗りし、軽量サンドモルタルにより施工する下地調整工法。
▲3▼樹脂及び木質断熱材を胴縁により縁を切り、ラス工法により軽量モルタルを塗りを行う下地調整工法。
▲4▼断熱材に直接ラスを張り軽量モルタルを塗りを行う下地調整工法。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の▲1▼〜▲4▼の各工法は、それぞれ以下に示すような施工上、品質上の問題点を有していた。
【0005】
前記▲1▼の工法の場合;
(施工上の問題点)
前記▲1▼の工法では、断熱材に対する接着力(付着強度)は確保できるが、断熱材のジョイント部下地からの衝撃による断熱材の動き、剛性の小さな断熱材の乾湿・温冷ムーブメントに対しての追従性、緩衝性がないため、クラックを生じ、表層に追従性・防水性の高い複層仕上げ材を選択する必要がある。
(品質上の問題点)
上述のように仕上げ材を厳密に管理しない場合には、断熱材の劣化が起き、断熱材・モルタル層間での接着不良を生じ易い。
【0006】
前記▲2▼の工法の場合;
(施工上の問題点)
現場調合でセメントと接着剤(エチレン酢酸ビニル系、アクリル系、SBR系等の樹脂エマルジョン)を混練りして使用するもので、断熱材に対する接着力は確保できるが、断熱材のジョイント部下地からの衝撃による断熱材の動き、剛性の小さな断熱材の乾湿・温冷ムーブメントに対しての追従性、緩衝性がないため、クラックを生じ、表層に追従性・防水性の高い複層仕上げ材を選択する必要がある。
(品質上の問題点)
製造業者の定める標準の使用方法で使用した場合は品質は安定しているが、配合が数種類に及ぶため、現場での配合管理を怠ると安定した性能を示しにくい。また、仕上げの平滑さにかけ、セメントの配合割合が多いためモルタルの収縮量が大きい。
【0007】
前記▲3▼の工法の場合;
(施工上の問題点)
断熱材下地に胴縁を留め付けラス工法により軽量セメントモルタルで仕上げるため、施工工程の管理が必要であり、胴縁の固定確実にとらないと、モルタルの浮きや収縮クラックが入りやすい。軽量セメントモルタルにも、施工管理が必要である。
(品質上の問題点)
の胴縁及びラス施工管理及び軽量セメントモルタル施工管理を十分に行わないと性能が安定せず、不確実である。
【0008】
前記▲4▼の工法の場合;
(施工上の問題点)
木質系断熱材のみの施工に使用でき、樹脂系断熱材にはラス固定が困難のため不向きである。
(品質上の問題点)
ラスを固定できれば安定した性能が出るが、防水は難しい。
【0009】
【課題を解決するための手段】
本発明は、上記に鑑み提案されたもので、硬化体の面内方向の伸び弾性がダンベル2号で2.0〜5.0mmであり、且つ付着試験による硬化体の面外方向の伸び弾性が1.0〜2.7mmであって、セメント17〜52 wt %と、無機質骨材30〜60 wt %と、短繊維0 . 18〜0 . wt %と、有機質混和剤2 . 7〜7 . wt %と、ガラス転移点が−10℃以下の樹脂8 . 5〜22 wt %を含有することを特徴とする弾性下地調整モルタルに関するものである。
即ち本発明は、弾性下地調整モルタルの検討に際し、薄膜状に形成する硬化体の面内方向(=同一面方向)及び面外方向(=面に直交する方向,厚み方向)のそれぞれにおいてひび割れの原因となる伸張応力、圧縮応力について瞬間的又は遅滞的な作用が加えられた場合を想定し、例えばスポンジ状の発泡樹脂成形体のように単に何れに方向に対しても弾性があれば良いというのではなく、例えば断熱材等の下地や仕上げ材のムーブメントに対して追従でき、且つ該ムーブメントをある程度制止できるような特性が求められ、硬化体の面内方向且つ面外方向の伸び弾性が特定の範囲にあることが最も重要であることを見出して本発明に至った。
【0010】
また、本発明の弾性下地調整モルタルは、剛性の小さな断熱材の乾湿・温冷ムーブメントに対して高い追従性を示し、施工に際し、下こすり後塗り厚2〜3mmまで容易に平滑化でき、養生後断熱材等下地との付着力が高く、また樹脂との付着力も高く、低吸水で硬化乾燥後弾性によりひび割れ、外部雨水の浸入を防ぐことができ、衝撃に対しては高強度の短繊維により緩衝効果を示すことを特徴とし、下地調整工法に好適に使用される。さらに下地調整工法以外の他工法にも他一般のセメントモルタルと同様に使用でき、下地への接着力に優れ、長期安定性に優れている。
【0011】
尚、上記下地調整工法では、下地調整材として記述したが、応用として塗装下地、防水モルタル、詰めモルタル等にも適用できる。
【0012】
【発明の実施の形態】
本発明は、前述のように、硬化体の面内方向の伸び弾性がダンベル2号で2.0〜5.0mmであり、且つ付着試験による硬化体の面外方向の伸び弾性が1.0〜2.7mmであることが最も重要であり、前述の弾性下地調整モルタルの種々の問題点を解消し、各種下地に仕上げ材を塗り付ける際に使用し、特に剛性の小さな断熱材の乾湿・温冷ムーブメントに対して高い追従性を示し、施工に際し、下こすり後塗り厚2〜3mmまで容易に平滑化でき、養生後、下地との付着力が高く、また仕上げ材との付着力も高く、低吸水で硬化乾燥後には伸び弾性により、ひび割れ、外部雨水の浸入を防ぐことができ、衝撃に対しては、高強度の短繊維により緩衝効果を示す特性を持たせることができることを見出した。
硬化体の面内方向の伸び弾性がダンベル2号で2.0mmより小さい場合や付着試験による硬化体の面外方向の伸び弾性が1.0mmより小さい場合には、配合成分に大きな制限が与えられることになり、バランスの良い特性を満足する配合が得られ難く、吸水量も高くなる。また、弾性が悪く、圧縮ヤング率も低いため、ひび割れが発生し易い。逆に、硬化体の面内方向の伸び弾性がダンベル2号で5.0mmより大きい場合や付着試験による硬化体の面外方向の伸び弾性が2.7mmより大きい場合には、作業性、特に塗り付け作業が困難となり、圧縮強度や曲げ強度なども低く、靱性も悪く、付着強度も低いものとなる。
【0013】
本発明において、「低吸水」とは、具体的には硬化体の吸水量が2.0g以下であり、より望ましくは0.5g以下である。
「高付着力」とは、具体的には付着強度が0.6N/mm2以上であり、より望ましくは1.0N/mm2以上である。
「容易に平滑化でき」るとは、具体的には表面仕上げに際してもコテを使用して容易に平滑化できることであり、作業性にて確認される。
「下地等の温冷・乾湿の動きに対して追従する柔軟性を有し、ひび割れが起きにくい」とは、具体的には圧縮ヤング率や曲げ強度、圧縮強度等により確認され、圧縮ヤング率は1.0〜5.5×10-3N/mm2、より望ましくは2.5〜4.0×10-3N/mm2であり、曲げ強度は2.2N/mm2以上、より望ましくは5.0N/mm2以上であり、圧縮強度は3.9N/mm2以上、より望ましくは10.0N/mm2以上である。
【0014】
さらに、それら以外の特性として、以下の要求品質(品質基準JIS A 6916)を満足することが望ましい。
軟度変化:±20以下
耐衝撃性:ひび割れ及びはがれのないこと
透水量:0.5g以下
耐久性:割れ、膨れ及びはがれがなく、付着強さが1.0N/mm2以上であること
下地との追従性が良いこと
【0015】
このような特性を有する弾性下地調整モルタルは、以下の組成割合を有し、且つ前記伸び弾性を有するものが選択される。
セメント17〜52wt%と、無機質骨材30〜60wt%と、短繊維0.18〜0.3wt%と、有機質混和剤2.7〜7.3wt%と、ガラス転移点(Tg)が−10℃以下の樹脂8.5〜22wt%を含有する。
【0016】
前記各成分割合の範囲外のモルタルを使用した場合には、前記伸び弾性も特性も殆ど得られない。
例えば前記のようにセメントの配合量は17〜52wt%であるが、17wt%未満では、塗り付け作業が困難となり、圧縮強度、曲げ強度等が低い値となり、付着強度も低くなる傾向がある。逆に52wt%を超えると、弾性が悪く、圧縮ヤング率も低くなり、吸水量も高くなるため、ひび割れが発生し易くなる。望ましくはセメントの配合量は22〜37.5wt%である。
このセメントとしては、普通ポルトランドセメント等の各種セメントが使用できる。
【0017】
また、前記のように無機質骨材の配合量は30〜60wt%であるが、30wt%未満では、作業性が悪くなり、60wt%を超えると、粒度分布が悪くなり、水比が上昇し、且つ弾性も小さくなり、強度は低下する。望ましくは無機質骨材の配合量は40〜60wt%である。
この無機質骨材としては、各種骨材が使用でき、特に硅砂、石灰石、シラスバルーン等が好適に使用できる。
【0018】
前記のように短繊維の配合量は0.18〜0.3wt%であるが、0.18wt%未満では、硬化前のモルタルをつなぎ止める効果に欠け、0.3wt%を超えると、混練り時に空気を連行し、強度不足になる。望ましくは短繊維の配合量は0.18〜0.22wt%である。
この短繊維としては、繊維集束型アクリル繊維、ポリオレフィン系補強繊維、耐アルカリガラス繊維、カーボン繊維、ビニロン繊維、ポリエチレン繊維等の繊維が使用できる。望ましくはポリエチレン繊維が良く、繊維カット長は6〜12mmが最適であるが、施工塗り厚により決定すればよい。
【0019】
また、前記のように有機質混和剤の配合量は2.7〜7.3wt%であるが、2.7wt%未満では、接着不良が生じ易く、収縮も悪くなり、7.3wt%を超えると、硬化不良が生じ易く、作業性も低下する。望ましくは有機質混和剤の配合量は3.0〜6.0wt%である。
この有機質混和剤としては、減水剤、増粘剤、収縮低減剤、消泡剤、空気連行剤、硬化遅延剤等を適宜に選択して用いるが、例えば水溶性増粘剤としては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、エチレンヒドロキシエチルセルロース等、高性能減水剤としては、ナフタリンスルホン酸縮合塩、スルホン化メラミン縮合塩等、収縮低減剤としては、ポリオキシアルキレン化合物、低級アルコールのアルキレンオキシド付加物等、防水剤及び分散剤としてはステアリン酸アルミニウム等の脂肪酸金属塩等が使用できるが、公知の有機質混和剤を適宜に選定して使用することができる。
【0020】
さらに、前記のようにガラス転移点(Tg)が−10℃以下の樹脂の配合量は8.5〜22wt%であるが、8.5wt%未満では、伸び弾性が不足し、下地(断熱材)や仕上げ材のムーブメントに対する追従性が低くなり、ひび割れ、剥離や剥落が生じ易くなり、22wt%を超えると、下地(断熱材)や仕上げ材のムーブメントを制止する効果が低くなり、ひび割れが生じ易くなる。また、この樹脂のガラス転移点(Tg)が−10℃より高いと、伸び弾性を付与する効果が低くなる。望ましくは樹脂のガラス転移点(Tg)は−15℃以下である。
この樹脂としては、エマルジョン型、溶液型等を用いても同等の性能を発揮できるが、特に酢酸ビニル−ベオバ、エチレン酢酸ビニル、アクリル樹脂等の再乳化形樹脂粉末(再乳化形粉末樹脂ともいう)を好適に使用できる。尚、特にこの樹脂においては使用量において著しく作業性の低下を引き起こすため混入量には注意し、作業性が悪くなる場合は低粘性のメチルセルロースを使用するか又は作業性において考慮した樹脂を使用することが望ましい。
【0021】
これらの各成分は何れの成分が欠けたり、また適性範囲でない場合には、前述の特性を得ることができない。特にモルタル成分として一般的に用いられるセメントや無機質骨材、有機質混和剤に対し、短繊維やガラス転移点(Tg)が−10℃以下の樹脂(再乳化形樹脂粉末)の配合は重要である。
即ち本発明の弾性下地調整モルタルの薄膜状の硬化体において、ガラス転移点(Tg)が−10℃以下の樹脂(再乳化形樹脂粉末)の配合は、硬化体に柔軟性、撓み性、伸び性を付与する。そのため、硬化体の上側に位置する仕上げ材と下側に位置する下地とが面方向に相対的にずれ動く場合、ゆっくりとした動きであれば追従することができる。しかし、瞬間的なずれ動き(衝撃)に対しては、配合された短繊維が、コテ塗りなどにより横方向(面内方向)に向いた状態でマトリックス中に存在しているため、その横方向のずれ動き(衝撃)を面内方向及び面外方向の弾性で吸収する役割を果たし、仕上げ材と下地の何れかにひび割れが生じたり、剥離や剥落などが生ずることを抑止する。また、下地にクラックが入った場合も、短繊維の強度でクラックの開きを最小限に制止して仕上げ材にひび割れが生ずることを抑止することができる。
【0022】
こうして得られた本発明の弾性下地調整モルタルは、前述の特性を有するが、樹脂として再乳化型樹脂粉末を用いた場合には一粉型の既調合モルタルとなるため、弾性下地調整工法における弾性下地調整材としてモルタル混練り時のセメント及び骨材、樹脂等の計量ミスが防止でき、常に安定した品質が得られ、現場での資材等の運搬や混練りの作業性が向上することができる。
【0023】
本発明の弾性下地調整モルタルは、実際の要求性能により、前記範囲において各種物性、作業性等を考慮し、配合を適宜に選定すれば良い。
【0024】
【実施例】
表1に示す6種の組成を有する弾性下地調整モルタルを用い、各種物性試験を行い、表1に併記した結果を得た。尚、樹脂(再乳化形樹脂粉末)については、4種のガラス転移点のものを配合例3の組成にて予め行った表2の結果を受け、ガラス転移点(Tg)が−20℃のものを用いた。また、短繊維については、ナイロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アクリル繊維を配合例3の組成にて予め曲げ強度、曲げエネルギーを測定した結果を受け、最も優れていたポリエチレン繊維を用いた。
【0025】
各試験及び評価の方法については、JIS A 1916(建築仕上げ塗材用下地調整塗材)に規定される試験方法により行った。
作業性の評価は4段階とし、×不可、△可、○は良、◎は優であり優良可不可を詳細に判別できるよう細分化して表示した。
◎は作業性良く(コテサバキが軽い)、一定面積を短時間に施工できる。
○は作業性は普通で一定面積施工も標準的である。
△は作業性がやや悪く(コテサバキがやや重い)一定面積の施工に時間を要す。
×は作業性が悪い(コテサバキが重扱いにくい)。
面内方向弾性の評価はダンベル2号を用い、毎分1mmの速度で伸ばした時の伸び変位を4段階とし、×不可、△可、○は良、◎は優であり優良可不可を詳細に判別できるよう細分化して表示した。
◎は非常に良く伸びる。
○は良く伸びる。
△は伸びる。
×はやや伸びる。
面外方向弾性の評価は付着試験を用い、毎分1mmの速度で伸ばした時の伸び変位を4段階とし、×不可、△可、○は良、◎は優であり優良可不可を詳細に判別できるよう細分化して表示した。
◎は非常に良く伸びる。
○は良く伸びる。
△は伸びる。
×はやや伸びる。
長期弾性の評価は硬化後の柔軟性を維持できる期間を4段階とし、×不可、△可、○は良、◎は優であり優良可不可を詳細に判別できるよう細分化して表示した。
◎は1ヶ年以上。
○は1ヶ年以下。
△は6ヶ月以下。
×は2ヶ月以下。
靱性の評価はモルタルの物理的強度(曲げ及び圧縮強度)について4段階とし、×不可、△可、○は良、◎は優であり優良可不可を詳細に判別できるよう細分化して表示した。
◎は強度大。
○は強度中。
△は強度小。
×は強度微小。
【0026】
【表1】

Figure 0004047164
【表2】
Figure 0004047164
【0027】
上記弾性下地調整モルタルを用いた下地調整工法に関する施工を実際の現場において実験検証した。
【0028】
〔施工例1〕
表1に示す配合例3の弾性下地調整モルタル(富士川建材工業(株)製)を用い、東京都西早稲田においてRC造3階木毛セメント板(MKボード:(株)エム・ケー製)200mm2外壁下地調整平均塗り厚3mmを行い、1週間養生後、無機仕上げ材(レーヴ外装用:富士川建材工業(株)製)8mm施工を行った。施工時の作業性・外観及び性能性能には問題等なく3ヶ月経過するがひび割れ及び剥落等欠陥はない。
【0029】
〔施工例2〕
表1に示す配合例2の弾性下地調整モルタル(富士川建材工業(株)製)を用い、茨城県結城市においてRC造2階1階南部分約10m2、外壁樹脂断熱板下地調整平均塗り厚3mmを行い、2時間養生後、無機仕上げ材(キャンドル:富士川建材工業(株)製)3mm施工を行った。施工時の作業性・外観及び性能には問題等なく6ヶ月経過するがひび割れ及び剥落等欠陥はない。
【0030】
〔施工例3〕
表1に示す配合例3の弾性下地調整モルタル(富士川建材工業(株)製)を用い、北海道札幌市において木造1階1階南部分合板下地約50m2、弾性外壁下地調整モルタル平均塗り厚2mmを行い、1日間養生後下地プラスター塗り(SSプラスター:富士川建材工業(株)製)2時間後、漆喰(白い壁:富士川建材工業(株)製)施工を行った。施工時の作業性も良く、1年経過するがタイル浮き及び剥落等欠陥はない。
【0031】
以上本発明を実施例に基づいて説明したが、本発明は前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限りどのようにでも実施することができる。
【0032】
【発明の効果】
本発明の弾性下地調整モルタル、及びそれを用いた下地調整工法は、充填樹脂系断熱材や木毛セメント板等の各種下地に仕上げ材を塗り付ける際に使用し、特に剛性の小さな下地の乾湿・温冷ムーブメントに対して高い追従性を示し、施工に際し、下こすり後塗り厚2〜3mmまで容易に平滑化でき、養生後、下地との付着力が高く、また仕上げ材との付着力も高く、低吸水で硬化乾燥後弾性によりひび割れ、外部雨水の浸入を防ぐことができ、衝撃に対しては高強度の短繊維により緩衝効果を示すので、各種建築物の施工に好適に利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for applying finishing materials to various foundations such as filled resin-based heat insulating materials, wood cement boards, siding joints, or plywood foundations used in the construction of various buildings. High followability to dry and wet / warm and cool movements and moderate restraining force, can be easily smoothed to 2 to 3 mm after coating by rubbing during construction, and has high adhesion to the groundwork after curing. High adhesion to the material, low water absorption, cure elasticity after curing and drying can prevent cracks and intrusion of external rainwater, and for impact, elastic foundation adjustment that shows buffering effect with high strength short fibers The present invention relates to a ground preparation method using mortar and elastic ground preparation mortar.
[0002]
[Prior art]
When finishing materials are applied to various bases such as filled resin insulation, wood cement board, siding joint, or plywood base used for construction of various buildings, a mixture of resin powder and cement powder is used. However, such mortars are focused only on the adhesion strength to the heat insulating material, and follow the dry / wet / warm movement of the heat insulating material, and exhibit a shock absorbing effect against impact. There was no such material. Also, in the construction, there is a problem that there are many methods for selecting the construction method and cutting the edge from the heat insulating material as shown in the following (1) to (4), and there is no fixed construction method to be directly applied to the heat insulating material.
[0003]
(1) A base preparation method in which a resin emulsion, for example, an SBR resin, an acrylic cation resin, or a cement mortar containing an ethylene / vinyl acetate copolymer resin as an admixture is used as a base.
(2) A base preparation method in which a resin cement paste is primed to a wood-based heat insulating material and is constructed with lightweight sand mortar.
(3) A base preparation method in which a resin and wood heat insulating material are cut by a body edge and light mortar is applied by a lath method.
(4) A ground preparation method in which a lath is applied directly to a heat insulating material and light mortar is applied.
[0004]
[Problems to be solved by the invention]
However, each of the conventional methods (1) to (4) has problems in construction and quality as shown below.
[0005]
In the case of method (1) above;
(Problems in construction)
In the method (1), the adhesive strength (adhesion strength) to the heat insulating material can be ensured, but the movement of the heat insulating material due to the impact from the joint part base of the heat insulating material, and the dry / wet / hot cooling movement of the heat insulating material with small rigidity. Therefore, it is necessary to select a multi-layer finishing material that has cracks and has high followability and waterproofness on the surface layer.
(Quality issues)
When the finishing material is not strictly controlled as described above, the heat insulating material is deteriorated and adhesion failure between the heat insulating material and the mortar layer is likely to occur.
[0006]
In the case of method (2) above;
(Problems in construction)
It is used by kneading cement and an adhesive (resin emulsion such as ethylene vinyl acetate type, acrylic type, SBR type, etc.) by on-site preparation, and it can secure adhesive strength to the heat insulating material, but from the joint part base of the heat insulating material Insulation movement due to impacts of the surface, low-rigidity heat-insulating material that does not follow and damp / heat / cold movement, and has no cushioning. Must be selected.
(Quality issues)
The quality is stable when used according to the standard usage method specified by the manufacturer, but since there are several types of blending, it is difficult to show stable performance if neglected on-site blending management. In addition, the amount of shrinkage of the mortar is large due to the smoothness of the finish and the large proportion of cement.
[0007]
In the case of method (3) above;
(Problems in construction)
Since the body edge is fastened to the base of the heat insulating material and finished with a lightweight cement mortar by the lath method, it is necessary to manage the construction process. If the body edge is not fixed securely, the mortar is liable to float or shrink. Construction management is also necessary for lightweight cement mortar.
(Quality issues)
If the torso and lath construction management and lightweight cement mortar construction management are not sufficiently performed, the performance will be unstable and uncertain.
[0008]
In the case of method (4) above;
(Problems in construction)
It can be used for the construction of only wood-based heat insulating materials, and is not suitable for resin-based heat insulating materials because lath fixing is difficult.
(Quality issues)
If the lath can be fixed, stable performance will be achieved, but waterproofing is difficult.
[0009]
[Means for Solving the Problems]
The present invention has been proposed in view of the above, and the stretch elasticity in the in-plane direction of the cured body is 2.0 to 5.0 mm with Dumbbell No. 2, and the stretch elasticity in the out-of-plane direction of the cured body by an adhesion test. there a 1.0~2.7Mm, cement 17-52 wt%, and 30 to 60 wt% inorganic aggregate, short fibers 0. and 18-0. 3 wt%, organic admixtures 2. 7 7.3 and wt%, it relates to an elastic base adjustment mortar, characterized in that the glass transition point contains 8. 5~22 wt% -10 ℃ following resins.
That is, in the present invention, when examining the elastic base adjustment mortar, cracks are observed in each of the in-plane direction (= same plane direction) and the out-of-plane direction (= direction perpendicular to the plane, thickness direction) of the cured body formed into a thin film. Assuming that momentary or delayed action is applied to the causative tensile stress and compressive stress, for example, it is only necessary to have elasticity in any direction, such as a sponge-like foamed resin molded product. Rather than, for example, a characteristic that can follow the movement of the groundwork or finishing material such as a heat insulating material and can restrain the movement to some extent is required, and the in-plane and out-of-plane stretch elasticity of the cured body is specified. The present invention was found out that it was most important to be in the range.
[0010]
In addition, the elastic base adjustment mortar of the present invention shows high followability to dry / wet / cool movement of a heat insulating material with small rigidity, and can be easily smoothed to a thickness of 2-3 mm after rubbing during construction. High adhesion to the substrate such as post-insulation material, and high adhesion to the resin, low water absorption, curing and drying, elasticity prevents cracking and intrusion of external rainwater It is characterized by exhibiting a buffering effect with fibers, and is suitably used for a base preparation method. Furthermore, it can be used in other construction methods other than the base preparation method in the same manner as other general cement mortars, and has excellent adhesion to the base and excellent long-term stability.
[0011]
In addition, in the said foundation | substrate adjustment construction method, although described as a foundation | substrate adjustment material, it can apply also to a coating foundation | substrate, waterproof mortar, filling mortar, etc. as an application.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as described above, the stretch elasticity in the in-plane direction of the cured body is 2.0 to 5.0 mm with Dumbbell No. 2, and the stretch elasticity in the out-of-plane direction of the cured body by the adhesion test is 1.0. 2.7mm is the most important, solves the various problems of the above-mentioned elastic foundation adjustment mortar, and is used when applying finishing materials to various foundations. High followability to cold movement, can be easily smoothed to a thickness of 2-3mm after rubbing at the time of construction, has high adhesion to the substrate after curing, and also has high adhesion to the finish. It has been found that, after curing and drying with low water absorption, it is possible to prevent cracks and intrusion of external rainwater due to elongation elasticity, and to provide a shock-absorbing characteristic with high-strength short fibers against impact.
When the elongation elasticity in the in-plane direction of the cured body is less than 2.0 mm with Dumbbell No. 2 or when the elongation elasticity in the out-of-plane direction of the cured body by adhesion test is less than 1.0 mm, the compounding component is greatly restricted. As a result, it is difficult to obtain a composition that satisfies the well-balanced characteristics, and the amount of water absorption increases. Further, since the elasticity is poor and the compressive Young's modulus is low, cracks are likely to occur. On the other hand, when the elongation elasticity in the in-plane direction of the cured body is greater than 5.0 mm with Dumbbell No. 2 or when the elongation elasticity in the out-of-plane direction of the cured body by the adhesion test is greater than 2.7 mm, workability, especially Application work becomes difficult, compression strength and bending strength are low, toughness is poor, and adhesion strength is low.
[0013]
In the present invention, “low water absorption” specifically means that the water absorption of the cured product is 2.0 g or less, more preferably 0.5 g or less.
The “high adhesion” specifically means that the adhesion strength is 0.6 N / mm 2 or more, more desirably 1.0 N / mm 2 or more.
“Easy smoothing” specifically means that the surface can be easily smoothed using a trowel, and is confirmed by workability.
Specifically, “It has the flexibility to follow the movement of the substrate, such as heating, cooling, and drying, and hardly cracks” is confirmed by the compressive Young's modulus, bending strength, compressive strength, etc. Is 1.0 to 5.5 × 10 −3 N / mm 2 , more preferably 2.5 to 4.0 × 10 −3 N / mm 2 , and the bending strength is 2.2 N / mm 2 or more, and more desirably at 5.0 N / mm 2 or more, the compressive strength is 3.9 N / mm 2 or more, and more desirably from 10.0 N / mm 2 or more.
[0014]
Furthermore, it is desirable to satisfy the following required quality (quality standard JIS A 6916) as other characteristics.
Softness change: ± 20 or less Impact resistance: No cracking or peeling Water permeability: 0.5 g or less Durability: No cracking, blistering or peeling, Adhesive strength of 1.0 N / mm 2 or more Good trackability with [0015]
As the elastic base adjustment mortar having such characteristics, one having the following composition ratio and having the above-described elongation elasticity is selected.
Cement 17-52 wt%, inorganic aggregate 30-60 wt%, short fiber 0.18-0.3 wt%, organic admixture 2.7-7.3 wt%, and glass transition point (Tg) of -10 Contains 8.5 to 22 wt.
[0016]
When a mortar outside the range of each component ratio is used, the stretch elasticity and characteristics are hardly obtained.
For example, as described above, the blending amount of the cement is 17 to 52 wt%. However, if it is less than 17 wt%, the application work becomes difficult, the compressive strength, the bending strength, and the like tend to be low, and the adhesion strength tends to be low. Conversely, if it exceeds 52 wt%, the elasticity is poor, the compression Young's modulus is low, and the amount of water absorption is also high, so that cracks are likely to occur. Desirably, the blending amount of cement is 22-37.5 wt%.
As this cement, various cements such as ordinary Portland cement can be used.
[0017]
Further, as described above, the amount of the inorganic aggregate is 30 to 60 wt%, but if it is less than 30 wt%, the workability deteriorates, and if it exceeds 60 wt%, the particle size distribution becomes worse and the water ratio increases. In addition, the elasticity is reduced and the strength is reduced. Desirably, the compounding quantity of an inorganic aggregate is 40-60 wt%.
As this inorganic aggregate, various aggregates can be used, and in particular, cinnabar, limestone, shirasu balloon and the like can be suitably used.
[0018]
As described above, the blending amount of the short fibers is 0.18 to 0.3 wt%. However, if the amount is less than 0.18 wt%, the effect of fixing the mortar before curing is lacking, and if it exceeds 0.3 wt%, Entrain air and run out of strength. Desirably, the blending amount of short fibers is 0.18 to 0.22 wt%.
As this short fiber, fibers such as fiber-focusing acrylic fiber, polyolefin-based reinforcing fiber, alkali-resistant glass fiber, carbon fiber, vinylon fiber, and polyethylene fiber can be used. Desirably, polyethylene fiber is preferable, and the fiber cut length is optimally 6 to 12 mm, but it may be determined by the coating thickness.
[0019]
Further, as described above, the amount of the organic admixture is 2.7 to 7.3 wt%. However, if it is less than 2.7 wt%, adhesion failure is likely to occur and shrinkage is deteriorated, and if it exceeds 7.3 wt%. , Poor curing is likely to occur, and workability is also reduced. Desirably, the compounding amount of the organic admixture is 3.0 to 6.0 wt%.
As this organic admixture, a water reducing agent, a thickening agent, a shrinkage reducing agent, an antifoaming agent, an air entraining agent, a curing retarder and the like are appropriately selected and used. For example, as a water-soluble thickening agent, methyl cellulose, Hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, ethylenehydroxyethylcellulose, etc. High performance water reducing agents include naphthalene sulfonic acid condensation salts, sulfonated melamine condensation salts, etc. Shrinkage reducing agents include polyoxyalkylene compounds, alkylene oxide addition of lower alcohols Fatty acid metal salts such as aluminum stearate can be used as waterproofing agents and dispersants, etc., but known organic admixtures can be appropriately selected and used.
[0020]
Further, as described above, the blending amount of the resin having a glass transition point (Tg) of −10 ° C. or less is 8.5 to 22 wt%, but if it is less than 8.5 wt%, the elongation elasticity is insufficient and the base (heat insulating material) ) And finishing movements are less likely to follow, and cracking, peeling, and peeling are more likely to occur. If it exceeds 22 wt%, the effect of stopping the movement of the groundwork (insulating material) and finishing materials will be reduced, and cracking will occur. It becomes easy. Moreover, when the glass transition point (Tg) of this resin is higher than −10 ° C., the effect of imparting stretch elasticity is lowered. Desirably, the glass transition point (Tg) of the resin is -15 ° C or lower.
This resin can exhibit the same performance even if an emulsion type, a solution type, etc. are used. In particular, a re-emulsified resin powder (also referred to as a re-emulsified powder resin) such as vinyl acetate-veova, ethylene vinyl acetate, and acrylic resin. ) Can be suitably used. In particular, in this resin, since the workability is remarkably lowered in the use amount, attention should be paid to the mixing amount. If the workability deteriorates, use low-viscosity methylcellulose or use a resin that is considered in workability. It is desirable.
[0021]
If any of these components is missing or not in the proper range, the above-mentioned characteristics cannot be obtained. In particular, blending of short fibers and resins having a glass transition point (Tg) of −10 ° C. or less (re-emulsified resin powder) is important for cement, inorganic aggregates, and organic admixtures generally used as mortar components. .
That is, in the thin cured body of the elastic base adjustment mortar of the present invention, the blending of the resin (re-emulsified resin powder) having a glass transition point (Tg) of −10 ° C. or lower is flexible, flexible, and stretchable. Gives sex. Therefore, when the finishing material located on the upper side of the cured body and the ground located on the lower side move relatively in the plane direction, they can follow if they move slowly. However, for momentary displacement movement (impact), the blended short fibers are present in the matrix in the lateral direction (in-plane direction) by troweling etc., so the lateral direction It plays the role of absorbing the displacement movement (impact) by the elasticity in the in-plane direction and the out-of-plane direction, and suppresses the occurrence of cracks in the finishing material and the base, and the occurrence of peeling or peeling. Further, even when cracks are formed in the base, it is possible to suppress cracks from opening to a minimum with the strength of the short fibers, and to prevent the finishing material from being cracked.
[0022]
The thus obtained elastic base preparation mortar of the present invention has the above-mentioned characteristics, but when a re-emulsification type resin powder is used as the resin, it becomes a one-powder type pre-prepared mortar. Can prevent measurement errors such as cement, aggregate, resin, etc. when mixing mortar as a base conditioner, always obtain stable quality, and improve workability of material transportation and kneading on site .
[0023]
The elastic base adjustment mortar of the present invention may be appropriately selected in consideration of various physical properties and workability within the above range depending on the actual required performance.
[0024]
【Example】
Various physical property tests were performed using the elastic ground preparation mortar having the six types of compositions shown in Table 1, and the results shown in Table 1 were obtained. In addition, about resin (re-emulsification type resin powder), the glass transition point (Tg) of -20 degreeC was received in response to the result of Table 2 which performed beforehand the thing of four types of glass transition points by the composition of the compounding example 3. A thing was used. As for the short fibers, nylon fibers, polypropylene fibers, polyethylene fibers, and acrylic fibers were used, and the most excellent polyethylene fibers were used in accordance with the results of measuring the bending strength and bending energy in advance with the composition of Formulation Example 3.
[0025]
About the method of each test and evaluation, it carried out by the test method prescribed | regulated to JIS A 1916 (underlay adjustment coating material for building finishing coating materials).
The evaluation of workability was made into 4 stages, and it was divided and displayed so that it was possible to discriminate in detail whether it was x impossible, △ acceptable, ○ was good, ◎ was excellent and excellent was not possible.
◎ has good workability (light weight) and can be applied to a certain area in a short time.
○: Workability is normal and fixed area construction is standard.
△ is a little inferior in workability (a little heavy), and it takes time to construct a certain area.
× indicates poor workability (Kotesaba is difficult to handle).
The in-plane elasticity is evaluated using dumbbell No. 2, with 4 stages of extension displacement when stretched at a speed of 1 mm per minute, × Impossible, △ Acceptable, ○: Good, ◎: Excellent, Excellent: Impossible It was divided and displayed so that it could be distinguished.
◎ grows very well.
○ grows well.
Δ is extended.
X is slightly stretched.
The out-of-plane elasticity is evaluated using an adhesion test, with four stages of elongation displacement when stretched at a speed of 1 mm / min. × Impossible, △ Acceptable, ○ Acceptable, ◎ Excellent, Excellent Acceptable It was displayed in a subdivided form so that it could be identified.
◎ grows very well.
○ grows well.
Δ is extended.
X is slightly stretched.
The evaluation of long-term elasticity was divided into 4 stages for maintaining the flexibility after curing, and was subdivided and displayed in detail so that it was possible to discriminate in detail whether it was not possible, △ acceptable, ○ was good, ◎ was excellent, and good or not.
◎ is one year or more.
○ is less than one year.
△ is less than 6 months.
X is less than 2 months.
The toughness was evaluated based on four levels for the physical strength (bending and compressive strength) of the mortar, and it was subdivided and displayed in detail so that it was possible to discriminate in detail whether it was not possible or not.
◎ High strength.
○ is in strength.
△ is low in strength.
X is very weak.
[0026]
[Table 1]
Figure 0004047164
[Table 2]
Figure 0004047164
[0027]
The construction related to the base preparation method using the elastic base preparation mortar was experimentally verified in the actual site.
[0028]
[Construction Example 1]
RC 3rd floor wood wool cement board (MK board: manufactured by MK Co., Ltd.) 200 mm in Nishiwaseda, Tokyo, using the elastic base adjustment mortar (Made by Fujikawa Construction Materials Co., Ltd.) of Formulation Example 3 shown in Table 1. 2 The outer wall foundation adjustment average coating thickness was 3 mm, and after curing for 1 week, 8 mm of inorganic finishing material (for the exterior of the rave: manufactured by Fujikawa Construction Materials Co., Ltd.) was applied. There are no problems with workability, appearance, and performance at the time of construction, but there are no defects such as cracking and peeling.
[0029]
[Example 2]
Using the elastic foundation adjustment mortar (Made by Fujikawa Construction Materials Co., Ltd.) shown in Table 1 in the Yuki City, Ibaraki Prefecture, the south part of the first floor of the RC building is about 10 m 2 , and the outer wall resin insulation board foundation adjustment average coating thickness After 3 hours of curing, an inorganic finishing material (candle: manufactured by Fujikawa Construction Materials Co., Ltd.) 3 mm was applied. There are no problems with workability, appearance, and performance during construction, but there are no defects such as cracking and peeling off after 6 months.
[0030]
[Construction Example 3]
Using the elastic foundation adjustment mortar (made by Fujikawa Construction Materials Co., Ltd.) shown in Table 1 in Sapporo City, Hokkaido, 1st floor, 1st floor, south partial plywood foundation about 50m 2 , elastic outer wall foundation adjustment mortar average coating thickness 2mm After curing for 1 day, plastering (white wall: manufactured by Fujikawa Construction Materials Co., Ltd.) was performed after 2 hours after applying a base plaster (SS plaster: manufactured by Fujikawa Construction Materials Co., Ltd.). Workability at the time of construction is also good, and 1 year has passed, but there are no defects such as tile floating and peeling.
[0031]
The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be implemented in any manner as long as the configuration described in the claims is not changed.
[0032]
【The invention's effect】
The elastic substrate adjustment mortar of the present invention and the substrate adjustment method using the same are used when applying a finishing material to various substrates such as a filled resin heat insulating material and a wood wool cement board, High followability to hot and cold movements, and can be easily smoothed to a thickness of 2 to 3 mm after rubbing during construction. After curing, it has high adhesion to the substrate and high adhesion to the finish. It is possible to prevent cracking due to elasticity after curing and drying with low water absorption and to prevent the entry of external rainwater, and because it has a buffering effect with high strength short fibers against impact, it can be used suitably for construction of various buildings it can.

Claims (4)

硬化体の面内方向の伸び弾性がダンベル2号で2.0〜5.0mmであり、且つ付着試験による硬化体の面外方向の伸び弾性が1.0〜2.7mmであって、セメント17〜52 wt %と、無機質骨材30〜60 wt %と、短繊維0 . 18〜0 . wt %と、有機質混和剤2 . 7〜7 . wt %と、ガラス転移点が−10℃以下の樹脂8 . 5〜22 wt %を含有することを特徴とする弾性下地調整モルタル。Elastic elongation in the in-plane direction of the cured product is 2.0~5.0mm with dumbbell 2, and elastic elongation of the plane direction of the cured product due to adhesion test is a 1.0~2.7Mm, cement 17-52 and wt%, and the inorganic aggregate 30 to 60 wt%, the short fibers 0. 18~0. 3 wt% and, organic admixtures from 2.7 to 7.3 and wt%, the glass transition point of -10 ℃ following resins 8.5 to 22 elastic base adjustment mortar, characterized in that it contains wt%. 硬化体の吸水量が2.0g以下であり、付着強度が0.6N/mm2以上であり、作業性に優れ、圧縮ヤング率は1.0〜5.5×10-3N/mm2であり、曲げ強度は2.2N/mm2以上であり、圧縮強度は3.9N/mm2以上であることを特徴とする請求項1に記載の弾性下地調整モルタル。The cured product has a water absorption of 2.0 g or less, an adhesive strength of 0.6 N / mm 2 or more, excellent workability, and a compressive Young's modulus of 1.0 to 5.5 × 10 −3 N / mm 2. 2. The elastic base adjustment mortar according to claim 1, wherein the bending strength is 2.2 N / mm 2 or more and the compressive strength is 3.9 N / mm 2 or more. 短繊維はポリエチレン繊維であることを特徴とする請求項1に記載の弾性下地調整モルタル。2. The elastic ground adjusting mortar according to claim 1, wherein the short fiber is a polyethylene fiber. 下地調整工法に、請求項1〜3の何れか一項に記載の弾性下地調整モルタルを下地調整材として用いることを特徴とする弾性下地調整モルタルを用いた下地調整工法。A ground surface adjustment method using an elastic ground surface adjustment mortar, characterized in that the ground surface adjustment mortar according to any one of claims 1 to 3 is used as a ground surface adjustment material.
JP2002381938A 2002-12-27 2002-12-27 Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar Expired - Fee Related JP4047164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381938A JP4047164B2 (en) 2002-12-27 2002-12-27 Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381938A JP4047164B2 (en) 2002-12-27 2002-12-27 Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar

Publications (2)

Publication Number Publication Date
JP2004211384A JP2004211384A (en) 2004-07-29
JP4047164B2 true JP4047164B2 (en) 2008-02-13

Family

ID=32817710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381938A Expired - Fee Related JP4047164B2 (en) 2002-12-27 2002-12-27 Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar

Country Status (1)

Country Link
JP (1) JP4047164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273597A (en) * 2005-03-28 2006-10-12 Sumitomo Osaka Cement Co Ltd Polymer cement mortar for tile adhesion
JP2007146605A (en) * 2005-11-30 2007-06-14 Kowa Chem Ind Co Ltd External heat insulating construction method of building, heat insulating cement composition, heat insulating polymer cement mortar, and external heat insulating laminated structure
JP2012215059A (en) * 2011-03-31 2012-11-08 A & A Material Corp Construction method of plastered wall
JP5792056B2 (en) * 2011-12-28 2015-10-07 太平洋マテリアル株式会社 Mortar

Also Published As

Publication number Publication date
JP2004211384A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
KR101791932B1 (en) Eco-Friendly New Material Paint Film for Treatment of Concrete Structure and Constructing Methods Thereof
ES2552778T3 (en) Cellulose ether compounds for improved high temperature performance in mortars for external insulation finishing systems (EIFS)
JP2012503119A (en) Composite structures for external insulation applications
KR100968117B1 (en) Construction method of the outer wall for forming waterproof and insulation layer
JP5831132B2 (en) Repair method for concrete structures
CN104005478B (en) Back side dampproof and impervious structure of indoor wall of building
US6784229B2 (en) Cement-based thin-set mortar
US5362320A (en) Sandable low shrinkage mortar patching/coating compound
JP5792056B2 (en) Mortar
ATE501097T1 (en) HYDROPHOBIC LAYING OF TILES
JP4047164B2 (en) Elastic substrate adjustment mortar and substrate adjustment method using elastic substrate adjustment mortar
JP3683201B2 (en) Low shrinkage lightweight mortar, and groundwork adjustment method using low shrinkage lightweight mortar
KR100398074B1 (en) Cement mortar composition having self-levelling property for heating hot-floor in building
JP5076596B2 (en) Leveling material and concrete floor structure with leveling material
JP5469800B2 (en) Concrete floor structure and construction method thereof
JP2014073941A (en) Adiabatic mortar and its cured body
JP5923399B2 (en) Elastic adhesive
JP2013245156A (en) Base structure for detached house and method for constructing the same
JP5298676B2 (en) Hydraulic composition and structure
JPH06256057A (en) Exterior material composition for wall surface
JP4827162B2 (en) Cement-based surface coating material
JP6462476B2 (en) Elastic tile base material
JP4108264B2 (en) Cement modifier and resin mortar composition
JP2007162351A (en) Finishing method
JPS5841150A (en) External finishing method of wall surface

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees