JP4047030B2 - Transmission type sabo dam - Google Patents

Transmission type sabo dam Download PDF

Info

Publication number
JP4047030B2
JP4047030B2 JP2002049700A JP2002049700A JP4047030B2 JP 4047030 B2 JP4047030 B2 JP 4047030B2 JP 2002049700 A JP2002049700 A JP 2002049700A JP 2002049700 A JP2002049700 A JP 2002049700A JP 4047030 B2 JP4047030 B2 JP 4047030B2
Authority
JP
Japan
Prior art keywords
wall body
gravel
dam
transmission type
sabo dam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002049700A
Other languages
Japanese (ja)
Other versions
JP2003247220A (en
Inventor
大輔 竹内
久雄 飯田
毅 飯田
和樹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel and Sumikin Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Metal Products Co Ltd filed Critical Nippon Steel and Sumikin Metal Products Co Ltd
Priority to JP2002049700A priority Critical patent/JP4047030B2/en
Publication of JP2003247220A publication Critical patent/JP2003247220A/en
Application granted granted Critical
Publication of JP4047030B2 publication Critical patent/JP4047030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、堤体に設けた開口部により平常時の細粒土砂は流下させ、洪水時は大粒径土砂で開口部を閉塞して貯留させる土石流対応の透過型砂防堰堤に関するものである。
【0002】
【従来の技術】
周知のように、砂防堰堤は、急激な土砂の流出による山間部地域の荒廃や堆砂による貯水機能の低下などを防止するために従来から数多く設置されており、さらに、梅雨、台風等に伴う集中豪雨で発生する土石流の被害から民家,施設,道路等を守るためにも早急な設置が望まれる所である。
【0003】
従来より、砂防堰堤としては、図11に示すようなコンクリート製の重力式砂防堰堤50が一般的に施工されてきた。このようなコンクリート製の重力式砂防堰堤50は、小さな礫・泥水まで堰き止め、土砂を完全貯留してしまういわゆる不透過型が大半を占めている。
【0004】
このような不透過型の砂防堰堤は、土砂を完全に貯留する安心感を持つが、その反面、平常時に土砂が堆積して準備容量が少なくなるという砂防堰堤としての機能を損ないやすいという大きな欠点を有している。また、近年、下流への自然な土砂運搬が河岸及び海岸の浸食防止に必要であること、また魚類などの生態系に対しても上下流の水系の連続性が必要との考えが明確に打ち出されてきている。
【0005】
このため、流下する土石のうち、土石流時には礫の噛み合いにより開口部を閉塞し、通常時の小さな礫や泥水は下流に通過させる透過型砂防堰堤が提案され、様々な形で実施されている。これらの一般的な形態としては、図12に示すようなコンクリート製でスリットSを有する堰堤60や特公昭58−51568号公報に見られるような図13に示す鋼管71を立体格子状に配置した鋼管製透過型堰堤70などがあり、それぞれ非常に多くの施工実績を有している。
【0006】
【発明が解決しようとする課題】
図12に示すようなスリットを有するコンクリート製堰堤60の場合、次のような問題点がある。
【0007】
(1)スリットを有するコンクリート製堰堤60は、材料の引張強度が低いために堰堤に作用する巨大な外力に対抗するためには壁体61を細くすることができない。
【0008】
(2)「土木技術資料22−2」(1980)の文献「土石流対策砂防施設に関する実験」によると、スリット純間隔を流下土石中の最大礫径d95の1.5倍以下としなければ、土石流時に土石流を閉塞することができないとされており、結局、透過部を大きく取ることには限界がある。このため、平常時に砂礫が貯まりやすく、土石流時に貯砂容量が小さくなる懸念がある。
【0009】
(3)また、流量が大きな渓流では堰上げによる水位上昇が生じやすく、堰堤上流の堰上げ背水空間に土石流が到達した場合、土石流先端部の礫同士の噛み合いが緩くなり、一時的に貯留された礫の再流出の危険性がある。水位上昇による水圧の増加も断面を大きくしなければならない原因になる。
【0010】
(4)構造的弱点であるコンクリート隅角部61a,61bが礫の衝突等で欠けて断面が減少したり、礫がスリット間に進入して壁体側面が削られて厚みが減少して、構造的に安全性を損なう懸念がある。
【0011】
(5)さらに、スリット間に停止した礫は、スリットの狭さから除石は極めて困難であることも堰堤の機能維持の観点から重要な問題点である。
【0012】
特開平11−50435号公報では、図14に示すようなスリット間の上流側の面に梁材を設けたコンクリート製堰堤が発明されている。この堰堤80は、ダムの上流側の面にスリットSの左右方向に跨がる横梁81を多段状に配置し、基材82に各横梁81を固定したものであり、前述の問題点をある程度解消している。
【0013】
しかし、(1)堆砂圧に対しての安定を考えたとき、スリット間の横梁にも閉塞により圧力がかかるため、スリット純間隔を大きく取ることは、その分堰堤が同一断面では重量の減少により安定を損なうこと、(2)横梁がダムの上流側にあるため巨礫の衝突を受けて横梁がへこんだ場合に取替えが困難であること、(3)図15に示すように、満砂後に越流した礫の落下によって底版83が損傷してしまう懸念があることなど、解決すべき課題も残っている。
【0014】
図13に示すような鋼管製透過型堰堤70は、鋼材の強度を利して透過部を大きくでき、平常時に砂礫が貯まりにくいために土石流時に貯砂容量が大きく確保されているという利点があり、かつ、堰堤上流側の堰上げによる水位上昇が生じにくいことから土石流先端部の土粒子の噛み合いがほぐれずスリット間の閉塞が確実であるという利点もある。
【0015】
しかし、その一方で、材料が高く加工度も高いことからコンクリート製に比べて高価であり、かつ、巨礫の衝突を受けてへこんだ場合に連結が複雑であることから取替えが非常に困難であるという欠点を持つ。また、最上流部材の間隔で砂礫を停止させることが一般的であるが、この場合には前記のスリット間に梁を設けたコンクリート製堰堤80と同じく(2),(3)の問題点があり、かつ、図16に示すような鋼管71の格子内部に堆積した砂礫は除石が困難であるという欠点も持っている。
【0016】
本発明は、前述のような従来のスリットを有するコンクリート製堰堤、スリット間の上流側の面に梁材を設けたコンクリート製堰堤、鋼管を立体格子状に組んだ透過型堰堤の問題点を一挙に解消することができ、開口部に梁材を設けることで土石流時の貯砂容量を確保することができる透過型砂防堰堤において、壁体及び梁材等の断面を小さくでき、安定性の向上等を図れる透過型砂防堰堤を提供することを目的としている。
【0017】
【課題を解決するための手段】
本発明は、堰堤本体を構成する壁体と壁体との間の所定幅の開口部の下流側に、上下方向に所定間隔をおいて複数本の梁材を河川軸方向に傾斜させて断面配置することで、開口部(透過部)の幅を大きく取り、土石流時の土砂礫を壁体間にあえて進入させて前記梁材で停止させ、開口部の上流側の空間に土砂礫を堆積させ、かつ、その土砂堆積形状を緩勾配にせしめ、上記の従来技術の問題点を解決しようとするものである。
【0018】
即ち、本発明の請求項1は、壁体と壁体との間に形成された所定の幅の開口部の壁体間に梁材が掛け渡され、梁材は開口部の下流側に上下方向に所定の間隔をおいて複数配置され、かつ、鉛直上方になるにつれて上流側に位置するように傾斜して配置され、かつ、梁材の両端部は、開口部を挟んで対向する壁体側面にそれぞれ挿入され、この梁材の上流側において前記壁体側面で囲まれる空間に土砂礫を侵入させ堆積させるように構成されていることを特徴とする透過型砂防堰堤である。
【0019】
この請求項1において、壁体は、河川軸直角方向に延在する通常の堤体、あるいは、河川軸直角方向に間隔をおいて配設された独立の構造体(図1参照)などであり、堤体の水通し部に開口部を設け、あるいは、独立の構造体を開口部をおいて配置する。独立の構造体は、水平断面が河川軸方向(土石流方向)に長い形状とし、コンクリート構造、鋼構造、鋼等とコンクリート等の複合構造などを用いることができる。上下方向に複数本の梁材は、側面視で上流側に向かって上り勾配で傾斜しており、一定の傾斜角で一列に整列させ、あるいは、一列に揃えずに配列させる(例えば側面視で屈曲状、湾曲状等)ことができる。一定の傾斜角の場合、例えば30°〜60゜程度の勾配が好ましい。
【0020】
壁体相互の純間隔は土石流中の流下最大礫径の2倍以上とする
【0021】
これは、土石流時に開口部の上流側が閉塞されないように壁体相互の純間隔を数値限定した場合である。本発明で言うところの流下最大礫径は、通常の最大礫径の他に、流下最大礫径d95(95%礫径)等も含むものとする。
【0022】
梁材相互の純間隔は土石流中の流下最大礫径の1.5倍以下とする
【0023】
これは、土石流時に開口部の下流側を確実に閉塞できるように数値限定した場合である。この場合も、流下最大礫径は、通常の最大礫径の他に、流下最大礫径d95等も含むものとする。
【0024】
梁材は、壁体の定着部の可及的近傍に接合部を有し、あるいは、壁体に設けた孔に端部が挿入され、壁体に対して着脱可能とされている
【0025】
これは、梁材に損傷が生じた場合に容易に取替えができるようにした場合であり、壁体の定着部にフランジ継手等の接合部を介して梁材の端部を接合し、もしくは、壁体に設けた鞘管等による孔に梁材の端部を挿入し、または、梁材を前記孔に挿入される端部と中間部に分割し、これら端部と中間部とを接合部を介して接合する。また、梁材は、壁体間の内部に設ける。梁材には、鋼管,形鋼,棒鋼,ワイヤー等の鋼製部材、あるいは、鉄筋コンクリートやプレストレスコンクリート等のコンクリート製部材を使用することができる。
【0026】
本発明の請求項2は、壁体には壁体を定着する底版または壁体同士を連結する頂版が設けられていることを特徴とする請求項1に記載の透過型砂防堰堤である。
【0027】
この請求項2は、底版または頂版を設けて壁体を補剛する場合である。これら底版及び頂版は、鋼製部材、鉄筋コンクリート、無筋コンクリートやソイルセメント、枠体や籠体等に礫等を詰めた物などを使用することができる。
【0028】
本発明の請求項3は、壁体と梁材が河川軸直角方向に交互に設けられ、あるいは、壁体と梁材の1組が間隔をおいて複数設置されていることを特徴とする請求項1またはのいずれか1項に記載の透過型砂防堰堤である。
【0029】
この請求項3は、施工する河川の幅に応じて梁材開口部を複数設ける場合であり、壁体と梁材を河川軸直角方向に連続的に設け、あるいは、壁体と梁材のユニットを河川軸直角方向に間隔をおいて離散的に配置する。
【0030】
(1) 請求項1に係る透過型砂防堰堤によれば、図7に示すように、土石流時に土砂礫が壁体間に進入して堆積し、土石流停止後の堆砂勾配は傾斜配置した梁材の配置に近似されるため、壁体間の梁材にかかる堆砂土圧は、その勾配が緩いほど小さくなり、壁体及び梁材の断面を小さくすることができる。
【0031】
(2) さらに、図8に示すように、その堆砂形状が河川軸方向の転倒に対するカウンターウェイトとして働くため、透過型砂防堰堤の全体的な安定についても有利に働き、壁体や底版の断面を小さくすることができる。
【0032】
(3) 壁体の上流端で閉塞しないように壁体相互の純間隔を流下最大礫径の2倍以上と大きくすれば、壁体間への土砂礫の進入が阻害されない。これは、前述の文献「土石流対策砂防施設に関する実験」によると、スリット純間隔を流下土石中の最大礫径の2倍以上とすると、そのスリットは完全な閉塞を生じないとされていることによる。
【0033】
(4) 梁材相互の純間隔は土石流を閉塞停止させるよう土石流中の流下最大礫径の1.5倍以下の間隔とすれば、土石流を下流に流下させない。これは、前述の文献「土石流対策砂防施設に関する実験」によると、スリット純間隔を流下土石中の最大礫径の1.5倍以下の間隔とすると、そのスリットは完全な閉塞を生じると言われていることによる。
【0034】
(5) 土石流の直接衝突または満砂後の越流による礫の落下衝突により梁材に損傷が生じた場合に、着脱式とすれば、交換して機能復旧を図ることが容易である。
【0035】
(6) さらに、図9に示すように、満砂後に越流した礫は、緩傾斜を転がるように落下することで速度が増加しにくく、落下衝突時には満砂しているため、梁材は堆積土砂に支持されているため、梁材の脱落の恐れが少ない。
【0036】
(7) さらにまた、梁材を外す場合、梁材が壁体間の下流側に位置するため、かつ、堆砂勾配が緩やかなことから斜面崩壊の危険性が小さいため、下流側からの除石や梁材の交換が容易である。
【0037】
(8) 請求項2に係る透過型砂防堰堤によれば、底版もしくは頂版を設けて壁体相互を連結することで河川軸直角方向への転倒を防止することが可能である。
【0038】
【発明の実施の形態】
以下、本発明を図示する一実施形態に基づいて詳細に説明する。図1は本発明の透過型砂防堰堤の一例を示す斜視図である。図2は図1の透過型砂防堰堤の壁体の一例を示す分解斜視図である。
【0039】
図1に示すように、本実施形態における透過型砂防堰堤1は、壁体2と、梁材3と、底版4と、頂版5とから構成されている。
【0040】
(i) 壁体2
本実施形態における壁体2は、図1に示すように、河川軸直角方向に所定の間隔をおいて配置され、その間に開口部(透過部)10が形成される。この開口部10の壁体相互の純間隔Wは土石流中の流下最大礫径の2倍以上とされている。この壁体2の形状は、水平断面が半小判状で側面視が不等脚台形で、河川軸方向(土石流方向)に長い構造体であり、開口部10の下流側に梁材3を後述するように配置することで、開口部10の上流側に土砂礫の堆積空間11が形成される(図5参照)。また、壁体2の下流側は、緩やかな傾斜角θ1で傾斜する傾斜面12となっている。
【0041】
この壁体2は、図2に示すように、水平断面が半小判状で側面視が不等脚台形の外殻2aと、中詰材2bと、半小判状の蓋材2cと、長方形状の蓋材2dから構成されている。外殻2aの内部に中詰材2bを充填した後、これを蓋材2cと蓋材2dで封じることで構築される。
【0042】
壁体2は衝突衝撃力や土石流流体力や堆砂圧などの外力を直接受け、かつ、梁材3の支点反力をも受け持つ部材であり、これらの荷重に対して抵抗でき破壊されない十分な強度が必要である。このため、本実施形態では、外殻2aを強度の高い鋼板で構成することにより、土石流の衝突による破壊を生じさせないこと、型枠として中詰材2bが漏れない密封性を得ること、開口部10に進入した礫に対して壁体2が摩耗によって削られないようにすること、さらに、衝突衝撃力を中詰材2bに分散して伝播させることができる。
【0043】
中詰材2bは、土に比べて強度が高くコンクリートよりも安価なソイルセメントで構成することにより、そのせん断強度で外力に抵抗することができる。
【0044】
蓋材2cと2dは、強度が高く密封性の高いコンクリートで構成することにより、中詰材2bのソイルセメントが侵食や凍結融解により劣化するのを防止することができる。
【0045】
なお、壁体2の上流側は、図3に示すように、平面視が半円形とすることにより、応力集中の生じる隅角部を無くし、構造的な欠点を解消することができる。また、流下最大礫径でも開口部10内に容易に進入させることができる。
【0046】
また、壁体2の下流側は、図4に示すように、後述する梁材3の配置勾配にほぼ平行に傾斜角θ1で傾斜させることで、上流側からの荷重を受けた場合に地盤反力が高くなる下流側の死荷重を軽減して、透過型砂防堰堤1の全体の転倒を生じにくくさせることができる。
【0047】
壁体2の幅や高さ等の寸法は、設置現場の土石流の状況、外力条件、施工性、経済性などを勘案して適宜決定される。
【0048】
(ii)梁材3
本実施形態における梁材3は、図1に示すように、開口部10の下流側において一対の壁体2,2間に河川軸直角方向と平行に掛け渡され、かつ、鉛直上方になるにつれて上流側に位置するように傾斜角θ2で傾斜し一列に整列するように複数本配置されている。この梁材3の傾斜角θ2と傾斜面7の傾斜角θ1は、ほぼ等しくされ、例えば45°等の比較的緩やかな角度とされている。梁材3の相互の純間隔aは、土石流中の流下最大礫径の1.5倍以下とされている。従って、図5に示すように、梁材3で巨礫を捕捉して土石流を止めることができ、また、図7に示すように、土石流停止後の堆砂勾配を傾斜角θ2の梁材3で安息角に近い角度にすることができ、梁材3にかかる堆砂土圧を小さくすることができる。
【0049】
梁材3は、壁体2の側面に固定されるが、梁材3が損傷を受けた場合に取替えが容易となるように、壁体2との間を着脱可能としている。即ち、図6に示すように、梁材3は、本管3aと、鞘管3bと、接合部3cから構成し、本管3aを壁体2の側面に強固に固定でき、かつ、容易に取替えることができるようにしている。
【0050】
本管3aは中空円形鋼管としている。この部材は、局部変形を生じても断面剛性低下が小さく、閉断面部材で、かつ、応力集中が少ないため、土石流の衝突を受けて土砂礫等を停止させた後も安全性が高い。
【0051】
鞘管3bは、本管3aの外径より内径が若干大きな円形鋼管とし、壁体2に埋め込み固定し、これに本管3aの端部を挿入する。本管3aの支点反力による壁体2の部材応力を極力小さくするため、挿入する長さ、即ち、鞘管3bの長さを十分に大きく取って荷重の分散を図る。また、本管3aの端部と鞘管3bの間はゴム等の緩衝材13を介して荷重伝達することとして、衝撃的な荷重を低減する。
【0052】
接合部3cは、壁体2の純間隔Wよりも長い本管3aを鞘管3bに挿入できるようにするためのものであり、本管3aの中央部と端部を着脱自在に接合するリブ無しフランジとされている。リブ無しフランジは、リブを設けた場合に比べてフランジの板厚を大きくする必要があるが、フランジ接合部3cは、へこみによる衝撃緩衝がないため、できるだけ壁体2に近づけて礫の衝突の危険性を軽減する目的でリブ無しとしている。
【0053】
なお、土石流中の礫が大きい場合は、本実施形態のように本管3aを中空鋼管として梁の局部変形で衝撃力を吸収して支点部にかかる負担を軽減し得るし、礫が小さい場合は、衝撃力が小さくなるため、梁材3をモルタルやコンクリート等を充填した鋼管として、へこみを小さくするという選択が可能である。
【0054】
(iii) 底版4
本実施形態における底版4は、壁体2を固定する部材であり、壁体2から基礎地盤へ荷重を確実かつ円滑に伝達する必要がある。また、その相互間の開口部10に土石流を進入させることから、間隔が大きくなるため、地盤反力により壁体間に生じるせん断力や曲げモーメントに抵抗できるように、底版4は部材を鉄筋コンクリートとしている。
【0055】
(iv)頂版5
本実施形態における頂版5は、底版4と共に壁体2の固定を助ける役割を持つが、自重や土石流の荷重などを受けるため、比較的強度の大きな部材として鉄筋コンクリートとしている。
【0056】
以上のような構成の本実施形態の透過型砂防堰堤1によれば、以下に列記するような効果が奏せられる。
【0057】
(1)従来のスリットを有するコンクリート製堰堤の欠点であったスリット間隔の巨礫径による制限がなく、梁材3の間隔で調整することができて開口部10の間隔が十分に確保されるため、通常時の中小礫は目詰まりせず通過させることができ、スクリーン効果を長期間維持でき、かつ、巨礫は効率的に捕捉することができる。
【0058】
(2)壁体2は、土石流の磨耗や衝突に強い構造であり、また、底版4と頂版5に拘束されることで、土石流に対して安全性が高い構造とすることができる。
【0059】
(3)壁体2,2間に土砂礫が堆積し、梁材3は、その傾斜配置により堆砂圧が殆ど作用せず、かつ、部材の変形能力とその固定方法により衝撃力を緩和させることができるため、壁体2とともに断面を軽減することができ、経済的な部材設計をすることができる。
【0060】
(4)梁材3は、交換が容易であり、維持管理に優れ、また満砂した後に放置した場合の安全性も高く、長期的な機能を高くできる。
【0061】
実施形態の変形例
(a) 壁体2は、外殻と中詰材と蓋材からなる構造を例示したが、これに限らず、無筋コンクリート構造、鉄筋コンクリート構造、鉄骨構造、鉄骨鉄筋コンクリート構造などでもよい。
【0062】
壁体2を構成する外殻は、鋼板を例示したが、これに限らず、鋼板以外の部材、例えば、形鋼や他の金属や樹脂またはコンクリートパネル等でもよい。
【0063】
壁体2を構成する中詰材は、ソイルセメントを例示したが、これに限らず、ソイルセメント以外の材質、例えば、コンクリート、砕石や玉石等の強度が得られる礫材、砂質土、硬質粘性土などでもよい。
【0064】
壁体2を構成する蓋材は、コンクリート製の部材を例示したが、これに限らず、コンクリート以外の材質、例えば、鋼や他の金属または樹脂などでもよい。また、蓋を設けない場合も、本発明に含まれる。
【0065】
壁体2の形状は、半小判状を例示したが、これに限らず、その他の形状でもよい。
【0066】
(b) 梁材3は、円形鋼管を例示したが、これに限らず、角形鋼管、H形鋼、ワイヤーもしくは棒鋼などの他の鋼製部材、あるいは、鉄筋コンクリート、プレストレスコンクリート等のコンクリート製部材などでもよい。
【0067】
梁材3の配列は、一列に整列している場合を例示したが、これに限らず、側面視で屈曲や湾曲している等、一部が一列に揃っていない場合も、本発明に含まれる。
【0068】
(c) 底版4及び頂版5は、鉄筋コンクリート製の場合を例示したが、これに限らず、例えば、鋼製部材、無筋コンクリートやソイルセメント、金属製の枠体や籠体等に礫等を詰めた物などでもよい。また、底版や頂版を設けない場合も、本発明に含まれる。
【0069】
(d) 堰堤は、独立した壁体2体と、これに掛け渡される梁材1列の場合を例示したが、これに限らず、施工する河川の幅に応じて種々の形態を取ることができる。例えば、図10に示すように、河川軸直角方向に連続する壁体2’に開口部を1または2以上形成し、この開口部に梁材3を配置してもよいし、壁体2を3体以上配設し、壁体2と梁材3を交互に配置してもよいし、また、壁体2体と梁材1列のユニットを河川軸直角方向に間隔をおいて複数配設してもよい。
【0070】
【発明の効果】
(1) 請求項1に係る透過型砂防堰堤によれば、土石流時に土砂礫が壁体間に進入して堆積し、土石流停止後の堆砂勾配は傾斜配置した梁材の配置に近似されるため、壁体間の梁材にかかる堆砂土圧は、その勾配が緩いほど小さくなり、壁体及び梁材の断面を小さくすることができ、経済的な透過型砂防堰堤を得ることができる。
【0071】
(2) 壁体間に堆積した堆砂形状が河川軸方向の転倒に対するカウンターウェイトとして働くため、透過型砂防堰堤の全体的な安定についても有利に働き、壁体や底版の断面を小さくすることができ、安定性及び安全性に優れた経済的な透過型砂防堰堤を得ることができる。
【0072】
(3)壁体の上流端で閉塞しないように壁体相互の純間隔を流下最大礫径の2倍以上と大きくすれば、壁体間への土砂礫の進入が阻害されることがなく、平常時に中小礫が目詰まりせず通過することができ、スクリーン効果を長期間維持することができる。壁体と梁材による比較的簡易で安価な構造により、土石流時の貯砂容量を大きく確保でき、また、流量が大きい渓流における水位上昇による礫の再流出も防止することができる。
【0073】
(4) 梁材相互の純間隔は土石流を閉塞停止させるよう土石流中の流下最大礫径の1.5倍以下の間隔とすれば、土石流が下流に流下することがなく、壁体と梁材による比較的簡易で安価な構造により、巨礫を確実に捕捉することができる。
【0074】
(5) 土石流の直接衝突または満砂後の越流による礫の落下衝突により梁材に損傷が生じた場合に、着脱式とすれば、交換して機能復旧を図ることが容易であり、維持管理に優れ、また、安全性も高い。
【0075】
(6) 梁材が傾斜配置されているため、満砂後に越流した礫は、緩傾斜を転がるように落下することで速度が増加しにくく、落下衝突時には満砂しているため、梁材は堆積土砂に支持されているため、梁材の脱落の恐れが少く、安全性が高く、長期的な機能を高く維持できる。
【0076】
(7) 梁材を外す場合、梁材が壁体間の下流側に位置するため、かつ、堆砂勾配が緩やかなことから斜面崩壊の危険性が小さいため、下流側からの除石や梁材の交換が容易である。
【0077】
(8) 請求項2に係る透過型砂防堰堤によれば、底版もしくは頂版を設けて壁体相互を連結することで河川軸直角方向への転倒を防止することが可能となる。
【図面の簡単な説明】
【0078】
【図1】本発明の透過型砂防堰堤の一実施形態を示す斜視図である。
【図2】図1の透過型砂防堰堤の壁体の一例を示す分解斜視図である。
【図3】図2の壁体の上流側の状態を示す平面図である。
【図4】本発明の堰堤が上流側からの荷重を受けた場合の状態を示す側面図と反力分布図である。
【図5】本発明の壁体間に土砂礫が進入した状態を示す鉛直断面図である。
【図6】本発明の着脱自在の梁材の一例を示す部分断面の平面図である。
【図7】本発明の土砂流停止後の梁材による土砂堆積状態を示す鉛直断面図である。
【図8】本発明の堰堤の堆砂による作用を示す鉛直断面図と反力分布図である。
【図9】本発明の堰堤の満砂後の礫の動作を示す鉛直断面図である。
【図10】本発明の透過型砂防堰堤の変形例を示す平面図である。
【図11】従来の不透過型の重力式砂防堰堤を示す斜視図である。
【図12】従来のスリットを有する透過型砂防堰堤を示す斜視図である。
【図13】従来の鋼管製の透過型砂防堰堤を示す斜視図である。
【図14】従来のスリットと横梁による透過型砂防堰堤を示す斜視図である。
【図15】図14の堰堤における底版の損傷を示す鉛直断面図である。
【図16】図13の堰堤における鋼管格子内部の堆積状態を示す鉛直断面図である。
【符号の説明】
【0079】
1……透過型砂防堰堤
2……壁体
2a…外殻
2b…中詰材
2c…蓋材
2d…蓋材
3……梁材
3a…本管
3b…鞘管
3c…接合部
4……底版
5……頂版
10……開口部
11……堆積空間
12……傾斜面
13……緩衝材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission-type sabo dam that supports debris flow, in which fine-grained sediment during a normal period flows down through an opening provided in a levee body, and the opening is closed and stored with a large-grained soil during flooding.
[0002]
[Prior art]
As is well known, many sabo dams have been installed in the past to prevent devastation in mountainous areas due to a sudden outflow of sediment and deterioration of water storage function due to sedimentation, and in addition to rainy seasons, typhoons, etc. It is a place that should be installed immediately to protect private houses, facilities, roads, etc. from damage from debris flow caused by torrential rain.
[0003]
Conventionally, as a sabo dam, a concrete gravity sabo dam 50 as shown in FIG. 11 has been generally constructed. Most of the concrete gravity sabo dam 50 made of concrete is a so-called impervious type that dams even small gravel and muddy water and completely stores earth and sand.
[0004]
Such an impervious sabo dam has a sense of security to completely store sediment, but on the other hand, it has a major disadvantage that it tends to impair the function of the sabo dam as sediment accumulates at normal times and the preparation capacity decreases. have. In recent years, it has been clearly clarified that natural sediment transport downstream is necessary to prevent river and coastal erosion, and that continuity of upstream and downstream water systems is necessary for ecosystems such as fish. It has been.
[0005]
For this reason, a permeable sabo dam has been proposed, in which the opening is blocked by the engagement of gravel during the flow of debris, and small gravel and muddy water in the normal state pass downstream. As these general forms, a dam 60 having a slit S and made of concrete as shown in FIG. 12 and steel pipes 71 shown in FIG. 13 as shown in Japanese Patent Publication No. 58-51568 are arranged in a three-dimensional grid. There are steel pipe transmission type dams 70, etc., and each has a very large number of construction results.
[0006]
[Problems to be solved by the invention]
In the case of a concrete dam 60 having slits as shown in FIG. 12, there are the following problems.
[0007]
(1) Since the concrete dam 60 having a slit has a low tensile strength of the material, the wall body 61 cannot be made thin in order to resist a huge external force acting on the dam.
[0008]
(2) According to the document “Experiment on Debris Flow Countermeasure Sabo Facility” in “Civil Engineering Technical Data 22-2” (1980), if the slit net interval is not less than 1.5 times the maximum gravel diameter d 95 in the flowing sediment, It is said that the debris flow cannot be blocked at the time of debris flow, and eventually there is a limit to taking a large permeable part. For this reason, there is a concern that sand gravel tends to be stored during normal times, and the sand storage capacity is reduced during debris flow.
[0009]
(3) In addition, in a stream with a large flow rate, the water level is likely to rise due to dam raising. There is a risk of re-flow of gravel. An increase in water pressure due to rising water level also causes the cross section to be enlarged.
[0010]
(4) The concrete corners 61a and 61b, which are structural weak points, are chipped due to the impact of gravel, etc., and the cross section decreases, or the gravel enters between the slits and the side wall surface is shaved and the thickness decreases, There are concerns about structurally compromised safety.
[0011]
(5) Furthermore, it is an important problem from the viewpoint of maintaining the function of the dam that gravel stopped between the slits is extremely difficult to remove from the narrowness of the slits.
[0012]
Japanese Patent Application Laid-Open No. 11-50435 invents a concrete dam with a beam material provided on the upstream surface between slits as shown in FIG. In this dam 80, cross beams 81 extending in the left-right direction of the slit S are arranged in a multi-stage on the upstream surface of the dam, and each cross beam 81 is fixed to the base material 82. It has been resolved.
[0013]
However, (1) When considering stability against sedimentation pressure, pressure is also applied to the cross beam between the slits due to blockage, so increasing the net clearance between the slits reduces the weight of the dam in the same section. (2) It is difficult to replace when the horizontal beam is dented due to the impact of a boulder because the horizontal beam is upstream of the dam. (3) As shown in FIG. There remains a problem to be solved, such as the concern that the bottom plate 83 may be damaged by the fall of overflowing gravel.
[0014]
The steel pipe transmission type dam 70 as shown in FIG. 13 has the advantage that the transmission part can be enlarged by taking advantage of the strength of the steel material, and the sand storage capacity is ensured at the time of debris flow because it is difficult to store the gravel normally. In addition, since the water level is not easily raised due to the dam upstream of the dam, there is an advantage that the engagement of the soil particles at the tip of the debris flow is not loosened and the clogging between the slits is surely ensured.
[0015]
However, on the other hand, it is expensive compared to concrete because of its high material and high degree of processing, and it is very difficult to replace due to its complicated connection when it is dented by the impact of boulders. Have the disadvantages. In addition, it is common to stop gravel at the interval of the most upstream member. In this case, the problems (2) and (3) are the same as those of the concrete dam 80 in which a beam is provided between the slits. In addition, the gravel deposited inside the lattice of the steel pipe 71 as shown in FIG. 16 has a drawback that it is difficult to remove stones.
[0016]
The present invention has the problems of the conventional concrete dam with slits as described above, the concrete dam with a beam material on the upstream surface between the slits, and the transmission type dam with steel pipes assembled in a three-dimensional grid. In the transmission type sabo dam that can secure sand storage capacity during debris flow by providing beam material at the opening, the cross section of the wall body and beam material can be reduced, and stability is improved. The purpose is to provide a transmission type sabo dam.
[0017]
[Means for Solving the Problems]
The present invention has a cross section in which a plurality of beam members are inclined in the direction of the river axis at a predetermined interval in the vertical direction on the downstream side of an opening having a predetermined width between the walls constituting the dam body. By arranging it, the width of the opening (transmission part) is increased, debris at the time of debris flow is dared to enter between the walls and stopped by the beam material, and sediment is deposited in the space upstream of the opening In addition, it is intended to solve the above-mentioned problems of the prior art by making the sediment accumulation shape a gentle gradient.
[0018]
That is, in the first aspect of the present invention , the beam material is stretched between the walls of the opening having a predetermined width formed between the walls, and the beam is vertically moved downstream of the opening. A plurality of walls arranged at predetermined intervals in the direction and inclined so as to be positioned on the upstream side in the vertical direction, and both ends of the beam member are opposed to each other with the opening therebetween A transmission type sabo dam, which is inserted into each side surface and configured to allow sand and gravel to enter and accumulate in a space surrounded by the side surface of the wall on the upstream side of the beam member.
[0019]
In this first aspect, the wall body is a normal bank body extending in a direction perpendicular to the river axis, or an independent structure (see FIG. 1) disposed at intervals in the direction perpendicular to the river axis. An opening is provided in the water passage portion of the levee body, or an independent structure is disposed with the opening. The independent structure has a horizontal cross section that is long in the direction of the river axis (direction of debris flow), and a concrete structure, a steel structure, a composite structure such as steel and concrete, or the like can be used. The plurality of beam members in the vertical direction are inclined with an upward slope toward the upstream side in a side view, and are aligned in a line at a constant inclination angle, or arranged in a single line (for example, in a side view) Bent, curved, etc.). In the case of a constant inclination angle, for example, a gradient of about 30 ° to 60 ° is preferable.
[0020]
The net spacing between walls should be at least twice the maximum gravel diameter in the debris flow.
[0021]
This is a case where the net interval between the walls is limited numerically so that the upstream side of the opening is not blocked during the debris flow. Falling up Tsubute径referred to in the present invention, in addition to the normal maximum gravel size, the category includes a stream up gravel diameter d 95 (95% Tsubute径) or the like.
[0022]
Net spacing of beam members each other at most 1.5 times the falling up gravel size in debris flow.
[0023]
This is a case where the numerical values are limited so that the downstream side of the opening can be reliably closed during the debris flow. Also in this case, the maximum flow gravel diameter includes the maximum flow gravel diameter d 95 in addition to the normal maximum gravel diameter.
[0024]
Beam members has a joint as much as possible in the vicinity of the fixing portion of the wall, or the end is inserted into a hole provided in the wall, and is detachable from the wall.
[0025]
This is a case where it can be easily replaced when the beam material is damaged, and the end of the beam material is joined to the fixing portion of the wall body via a joint such as a flange joint, or Insert the end of the beam material into a hole made of a sheath tube or the like provided on the wall, or divide the beam material into an end portion and an intermediate portion to be inserted into the hole, and join the end portion and the intermediate portion to each other Join through. Further, Harizai is Keru set inside between walls. As the beam material, a steel member such as a steel pipe, a shape steel, a steel bar, or a wire, or a concrete member such as reinforced concrete or prestressed concrete can be used.
[0026]
Claim 2 of the present invention is the transmission type sabo dam according to claim 1 , wherein the wall body is provided with a bottom plate for fixing the wall body or a top plate for connecting the wall bodies.
[0027]
The second aspect of the present invention is a case where a wall plate is stiffened by providing a bottom plate or a top plate. As these bottom plate and top plate, steel members, reinforced concrete, unreinforced concrete, soil cement, a frame or a frame filled with gravel or the like can be used.
[0028]
Claim 3 of the present invention is characterized in that wall bodies and beam materials are alternately provided in the direction perpendicular to the river axis, or a plurality of sets of wall bodies and beam materials are provided at intervals. is a transmission Sabo dam according to any one of claim 1 or 2.
[0029]
This claim 3 is a case where a plurality of beam material openings are provided according to the width of the river to be constructed, and the wall body and the beam material are continuously provided in the direction perpendicular to the river axis, or the wall body and beam material unit. Are discretely arranged at intervals in the direction perpendicular to the river axis.
[0030]
(1) According to the transmission type sabo dam according to claim 1, as shown in FIG. 7, debris enters and accumulates between walls during debris flow, and the slope of sedimentation after debris flow stops is inclined Since it is approximated to the arrangement of the materials, the sediment pressure applied to the beam material between the wall bodies becomes smaller as the gradient becomes gentler, and the cross section of the wall body and the beam material can be made smaller.
[0031]
(2) In addition, as shown in Fig. 8, the shape of the sediment works as a counterweight against overturning in the direction of the river axis, so it also has an advantageous effect on the overall stability of the transmission-type sabo dam. Can be reduced.
[0032]
(3) be increased twice or more falling-up gravel size net spacing of the wall each other as not to block at the upstream end of the wall, entering the soil gravel into between the wall body is not inhibited. This is because, according to the above-mentioned document "Experiment related to debris flow countermeasure sabo facilities", if the slit net interval is more than twice the maximum gravel diameter in the flowing debris, the slit does not cause complete blockage. .
[0033]
(4) The debris flow will not flow downstream if the net spacing between beams is 1.5 times or less than the maximum gravel diameter in the debris flow so that the debris flow is closed and stopped. According to the above-mentioned document "Experiment related to debris flow prevention sabo facilities", it is said that if the slit pure interval is 1.5 times or less the maximum gravel diameter in the flowing debris, the slit will be completely blocked. It depends on.
[0034]
(5) If the damage to the beam members by dropping collision gravel by direct collision or fully sand after overflow of debris flow occurs, if detachable, it is easy to achieve functional recovery and replacement.
[0035]
(6) Furthermore, as shown in Fig. 9, gravel that overflowed after full sand is unlikely to increase in speed by falling so as to roll on a gentle slope, and is filled with sand at the time of falling collision. Because it is supported by sedimentary earth and sand, there is little risk of falling off beam materials.
[0036]
(7) Furthermore, when removing the beam material, the beam material is located on the downstream side between the walls, and since the slope of sedimentation is gentle, the risk of slope failure is small. Easy replacement of stones and beams.
[0037]
(8) According to the transmission type sabo dam according to claim 2 , it is possible to prevent a fall in a direction perpendicular to the river axis by providing a bottom plate or a top plate and connecting the wall bodies to each other.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a perspective view showing an example of a transmission type sabo dam according to the present invention. FIG. 2 is an exploded perspective view showing an example of a wall body of the transmission type sabo dam of FIG.
[0039]
As shown in FIG. 1, the transmission-type sabo dam 1 in this embodiment includes a wall body 2, a beam member 3, a bottom plate 4, and a top plate 5.
[0040]
(i) Wall 2
As shown in FIG. 1, the wall body 2 in the present embodiment is disposed at a predetermined interval in the direction perpendicular to the river axis, and an opening (transmission portion) 10 is formed therebetween. The pure interval W between the walls of the opening 10 is set to be twice or more the maximum falling gravel diameter in the debris flow. The shape of the wall body 2 is a semi-oval horizontal section, a trapezoidal shape in side view, and a long structure in the direction of the river axis (direction of debris flow). By arranging in such a manner, a sedimentation space 11 for earth and gravel is formed on the upstream side of the opening 10 (see FIG. 5). Further, the downstream side of the wall body 2 is an inclined surface 12 inclined at a gentle inclination angle θ 1 .
[0041]
As shown in FIG. 2, the wall body 2 has a semi-oval horizontal cross section and a trapezoidal outer shell 2 a having a lateral view, a filling material 2 b, a semi-oval lid member 2 c, and a rectangular shape. The lid material 2d. After the inside shell 2a is filled with the filling material 2b, it is constructed by sealing it with the lid material 2c and the lid material 2d.
[0042]
The wall body 2 is a member that directly receives external forces such as impact impact force, debris flow fluid force, and sedimentation pressure, and also supports the fulcrum reaction force of the beam material 3, and is sufficient to resist these loads and not be destroyed. Strength is required. For this reason, in this embodiment, the outer shell 2a is made of a high-strength steel plate so as not to cause breakage due to the collision of the debris flow, to obtain a sealing property in which the filling material 2b does not leak as a mold, It is possible to prevent the wall body 2 from being scraped by gravel that has entered 10 and to disperse and propagate the collision impact force to the filling material 2b.
[0043]
The filling material 2b can resist an external force with its shear strength by being composed of soil cement which is stronger than soil and cheaper than concrete.
[0044]
The lid members 2c and 2d are made of concrete having high strength and high sealing performance, so that the soil cement of the filling material 2b can be prevented from being deteriorated by erosion or freezing and thawing.
[0045]
As shown in FIG. 3, the upstream side of the wall body 2 is semicircular in plan view, thereby eliminating a corner portion where stress concentration occurs and eliminating a structural defect. Moreover, it can be made to approach easily into the opening part 10 even with the maximum gravel diameter.
[0046]
Further, as shown in FIG. 4, the downstream side of the wall body 2 is grounded when it receives a load from the upstream side by being inclined at an inclination angle θ 1 substantially parallel to the arrangement gradient of a beam member 3 to be described later. The dead load on the downstream side where the reaction force becomes high can be reduced, and the entire transmission type sabo dam 1 can be made difficult to fall.
[0047]
The dimensions such as the width and height of the wall body 2 are appropriately determined in consideration of the situation of debris flow at the installation site, external force conditions, workability, economy, and the like.
[0048]
(ii) Beam material 3
As shown in FIG. 1, the beam member 3 in the present embodiment is spanned between the pair of wall bodies 2 and 2 on the downstream side of the opening 10 in parallel with the direction perpendicular to the river axis and becomes vertically upward. Plural pieces are arranged so as to be inclined at an inclination angle θ 2 and aligned in a row so as to be located on the upstream side. Inclination angle theta 1 of the inclination angle theta 2 between the inclined surface 7 of the beam member 3 is substantially equal to, relatively gentle angle of 45 °, for example, or the like. The mutual pure interval a of the beam members 3 is set to 1.5 times or less of the maximum gravel diameter in the debris flow. Accordingly, as shown in FIG. 5, to catch boulders in the beam member 3 can stop debris, and as shown in FIG. 7, the beam member 3 of the inclination angle theta 2 to sedimentation gradient after debris flow stop Thus, the angle of repose can be made close to the angle of repose, and the sediment pressure on the beam 3 can be reduced.
[0049]
The beam member 3 is fixed to the side surface of the wall body 2, but is detachable from the wall body 2 so that the beam member 3 can be easily replaced when the beam member 3 is damaged. That is, as shown in FIG. 6, the beam member 3 is composed of a main pipe 3a, a sheath pipe 3b, and a joint portion 3c, and the main pipe 3a can be firmly fixed to the side surface of the wall body 2 and easily. It can be replaced.
[0050]
The main pipe 3a is a hollow circular steel pipe. Even if local deformation occurs, this member has a small reduction in cross-sectional rigidity, is a closed cross-section member, and has a low stress concentration. Therefore, safety is high even after debris and the like are stopped due to a collision with a debris flow.
[0051]
The sheath pipe 3b is a circular steel pipe whose inner diameter is slightly larger than the outer diameter of the main pipe 3a, is embedded and fixed in the wall body 2, and the end portion of the main pipe 3a is inserted therein. In order to minimize the member stress of the wall body 2 due to the fulcrum reaction force of the main pipe 3a, the length of insertion, that is, the length of the sheath pipe 3b is made sufficiently large to distribute the load. Further, the load between the end portion of the main pipe 3a and the sheath pipe 3b is transmitted through a cushioning material 13 such as rubber to reduce an impact load.
[0052]
The joint part 3c is for allowing the main pipe 3a longer than the pure interval W of the wall body 2 to be inserted into the sheath pipe 3b, and is a rib for detachably joining the central part and the end part of the main pipe 3a. There is no flange. The flange-less flange needs to be thicker than the rib, but the flange joint 3c has no impact buffer due to the dent. Ribs are not used to reduce the risk.
[0053]
When the gravel in the debris flow is large, the main pipe 3a can be a hollow steel pipe as in this embodiment to absorb the impact force by local deformation of the beam and reduce the load on the fulcrum, and the gravel is small Since the impact force is small, the beam material 3 can be selected as a steel pipe filled with mortar, concrete, or the like to reduce the dent.
[0054]
(iii) Bottom plate 4
The bottom plate 4 in the present embodiment is a member that fixes the wall body 2, and it is necessary to reliably and smoothly transmit the load from the wall body 2 to the foundation ground. In addition, since the debris flow enters the opening 10 between them, the interval becomes large, so that the bottom slab 4 is made of reinforced concrete so that it can resist the shearing force and bending moment generated between the wall bodies by the ground reaction force. Yes.
[0055]
(iv) Top version 5
The top plate 5 in this embodiment has a role of helping to fix the wall body 2 together with the bottom plate 4, but is made of reinforced concrete as a relatively strong member because it receives its own weight or load of debris flow.
[0056]
According to the transmission type sabo dam 1 of the present embodiment configured as described above, the effects listed below can be achieved.
[0057]
(1) Because there is no restriction due to the boulder diameter of the slit interval, which was a disadvantage of the concrete dam with a conventional slit, it can be adjusted by the interval of the beam material 3 and the interval between the openings 10 is sufficiently secured. In the normal condition, the medium pebbles can be passed without clogging, the screen effect can be maintained for a long time, and the boulders can be captured efficiently.
[0058]
(2) The wall body 2 has a structure that is resistant to debris flow wear and collision, and is constrained by the bottom plate 4 and the top plate 5 so that it can have a high safety against debris flow.
[0059]
(3) Sand and gravel accumulate between the walls 2 and 2, and the beam material 3 is hardly subjected to sediment pressure due to its inclined arrangement, and the impact force is mitigated by the deformability of the member and its fixing method. Therefore, the cross section can be reduced together with the wall body 2, and an economical member design can be performed.
[0060]
(4) The beam 3 is easy to replace, excellent in maintenance and management, high safety when left after being filled with sand, and high long-term function.
[0061]
Modification of the embodiment
(a) Although the wall body 2 illustrated the structure which consists of an outer shell, a filling material, and a cover material, it is not restricted to this, An unreinforced concrete structure, a reinforced concrete structure, a steel frame structure, a steel frame reinforced concrete structure, etc. may be sufficient.
[0062]
Although the outer shell which comprises the wall body 2 illustrated the steel plate, it is not restricted to this, For example, members other than a steel plate, such as a shape steel, another metal, resin, or a concrete panel, may be sufficient.
[0063]
The filling material constituting the wall body 2 is exemplified by soil cement, but is not limited thereto, and other materials than the soil cement, such as gravel material, sandy soil, hard material such as concrete, crushed stone and cobblestone, etc. Cohesive soil may be used.
[0064]
The cover member constituting the wall body 2 is a concrete member, but is not limited thereto, and may be a material other than concrete, for example, steel, other metal, or resin. Moreover, the case where a lid is not provided is also included in the present invention.
[0065]
Although the shape of the wall 2 is exemplified by a semi-oval shape, the shape is not limited to this, and other shapes may be used.
[0066]
(b) The beam 3 is exemplified by a circular steel pipe, but is not limited to this, and other steel members such as a square steel pipe, an H-shaped steel, a wire or a steel bar, or a concrete member such as reinforced concrete or prestressed concrete. Etc.
[0067]
The arrangement of the beam members 3 is illustrated as being aligned in a single row, but is not limited to this, and the present invention also includes a case in which some of the beams 3 are not aligned in a single row, such as bent or curved in a side view. It is.
[0068]
(c) Although the bottom plate 4 and the top plate 5 are made of reinforced concrete, the present invention is not limited to this example. For example, steel members, unreinforced concrete, soil cement, metal frames and frames, etc. It may be a stuffed product. Further, the case where no bottom plate or top plate is provided is also included in the present invention.
[0069]
(d) The dam was illustrated as an example of two independent walls and one row of beam members spanning them, but this is not the only case, and various forms can be taken depending on the width of the river to be constructed. it can. For example, as shown in FIG. 10, one or more openings may be formed in a wall body 2 ′ continuous in the direction perpendicular to the river axis, and the beam member 3 may be disposed in the opening. Three or more bodies may be arranged, and the wall body 2 and the beam material 3 may be alternately arranged, or a plurality of units of two wall bodies and one row of the beam material are arranged at intervals in the direction perpendicular to the river axis. May be.
[0070]
【The invention's effect】
(1) According to the transmission type sabo dam according to claim 1, earth and sand gravel enters and accumulates between walls during debris flow, and the sediment gradient after debris flow stops approximates the arrangement of inclined beams. Therefore, the sediment pressure applied to the beam material between the walls becomes smaller as the gradient becomes looser, the cross section of the wall body and the beam material can be reduced, and an economical transmission type sabo dam can be obtained. .
[0071]
(2) Since the shape of the sediment deposited between the walls acts as a counterweight against overturning in the direction of the river axis, it also has an advantageous effect on the overall stability of the transmission type sabo dam and reduces the cross section of the walls and bottom slab. Therefore, an economical transmission type sabo dam with excellent stability and safety can be obtained.
[0072]
(3) be increased twice or more falling-up gravel size net spacing of the wall each other as not to block at the upstream end of the wall, without entering the soil gravel into between walls is inhibited, During normal times, medium and small pebbles can pass without clogging, and the screen effect can be maintained for a long time. A relatively simple and inexpensive structure with walls and beams can secure a large sand storage capacity during debris flow, and also prevent gravel reflow due to rising water levels in mountain streams with high flow rates.
[0073]
(4) If the net interval between the beams is set to be 1.5 times or less the maximum gravel diameter in the debris flow so that the debris flow is blocked, the debris flow will not flow downstream, and the wall and beam material Due to the relatively simple and inexpensive structure, the boulders can be reliably captured.
[0074]
(5) If the beam material is damaged due to a gravel fall collision caused by a direct debris flow collision or overflow after overflow, it is easy to replace and restore the function if it is removable. Excellent management and high safety.
[0075]
(6) Since the beam material is inclined, the gravel that overflowed after the full sand is unlikely to increase in speed by falling so as to roll on a gentle slope, and it is filled with sand at the time of falling collision. Is supported by sedimentary earth and sand, so there is little risk of dropout of beam materials, high safety, and high long-term functionality.
[0076]
(7) When removing the beam material, because the beam material is located on the downstream side between the walls, and because the slope of sedimentation is gentle, the risk of slope failure is small. Easy to change materials.
[0077]
(8) According to the transmission type sabo dam according to claim 2 , it is possible to prevent a fall in a direction perpendicular to the river axis by providing a bottom plate or a top plate and connecting the wall bodies to each other.
[Brief description of the drawings]
[0078]
FIG. 1 is a perspective view showing an embodiment of a transmission type sabo dam according to the present invention.
2 is an exploded perspective view showing an example of a wall body of the transmission type sabo dam in FIG. 1. FIG.
FIG. 3 is a plan view showing a state on the upstream side of the wall body of FIG. 2;
FIGS. 4A and 4B are a side view and a reaction force distribution diagram showing a state where the dam of the present invention receives a load from the upstream side. FIGS.
FIG. 5 is a vertical sectional view showing a state in which earth and sand gravel has entered between the walls of the present invention.
FIG. 6 is a plan view of a partial cross section showing an example of a detachable beam member of the present invention.
FIG. 7 is a vertical sectional view showing the state of sediment accumulation by the beam material after the sediment flow stop of the present invention.
FIG. 8 is a vertical sectional view and a reaction force distribution diagram showing the action of the dam of the present invention due to sedimentation.
FIG. 9 is a vertical cross-sectional view showing the movement of gravel after full sanding of the dam of the present invention.
FIG. 10 is a plan view showing a modification of the transmission type sabo dam of the present invention.
FIG. 11 is a perspective view showing a conventional impervious gravity sabo dam.
FIG. 12 is a perspective view showing a transmission-type sabo dam having a conventional slit.
FIG. 13 is a perspective view showing a conventional transmission sabo dam made of steel pipe.
FIG. 14 is a perspective view showing a conventional transmission type sabo dam with slits and cross beams.
15 is a vertical sectional view showing damage to the bottom slab in the dam of FIG. 14. FIG.
16 is a vertical cross-sectional view showing a state of deposition inside a steel pipe lattice in the dam of FIG. 13;
[Explanation of symbols]
[0079]
DESCRIPTION OF SYMBOLS 1 ... Transmission-type sabo dam 2 ... Wall body 2a ... Outer shell 2b ... Filling material 2c ... Cover material 2d ... Cover material 3 ... Beam material 3a ... Main pipe 3b ... Sheath pipe 3c ... Joint part 4 ... Bottom plate 5 ... Top plate 10 ... Opening 11 ... Deposition space 12 ... Inclined surface 13 ... Buffer material

Claims (3)

壁体と壁体との間に形成された所定の幅の開口部の壁体間に梁材が掛け渡され、梁材は、開口部の下流側に上下方向に所定の間隔をおいて複数配置され、かつ、鉛直上方になるにつれて上流側に位置するように傾斜して配置され、かつ、梁材の両端部は、開口部を挟んで対向する壁体側面にそれぞれ挿入され、この梁材の上流側において前記壁体側面で囲まれる空間に土砂礫を侵入させ堆積させるように構成されていることを特徴とする透過型砂防堰堤。 A beam is spanned between walls of an opening having a predetermined width formed between the walls, and a plurality of beams are provided at predetermined intervals in the vertical direction on the downstream side of the opening. The both ends of the beam members are inserted into the opposite side surfaces of the wall body across the opening, and the beam members are arranged so as to be positioned on the upstream side as they are vertically upward. A transmission type sabo dam characterized by being configured to allow sand and gravel to invade and accumulate in a space surrounded by the side surface of the wall on the upstream side. 壁体には壁体を定着する底版または壁体同士を連結する頂版が設けられていることを特徴とする請求項1に記載の透過型砂防堰堤。  The transmission type sabo dam according to claim 1, wherein the wall body is provided with a bottom plate for fixing the wall body or a top plate for connecting the wall bodies. 壁体と梁材が河川軸直角方向に交互に設けられ、あるいは、壁体と梁材の1組が間隔をおいて複数設置されていることを特徴とする請求項1または2のいずれか1項に記載の透過型砂防堰堤。  The wall body and the beam material are alternately provided in the direction perpendicular to the river axis, or a plurality of sets of the wall body and the beam material are provided at intervals. The transmission type sabo dam as described in the item.
JP2002049700A 2002-02-26 2002-02-26 Transmission type sabo dam Expired - Fee Related JP4047030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049700A JP4047030B2 (en) 2002-02-26 2002-02-26 Transmission type sabo dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049700A JP4047030B2 (en) 2002-02-26 2002-02-26 Transmission type sabo dam

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007106959A Division JP4229968B2 (en) 2007-04-16 2007-04-16 Transmission type sabo dam

Publications (2)

Publication Number Publication Date
JP2003247220A JP2003247220A (en) 2003-09-05
JP4047030B2 true JP4047030B2 (en) 2008-02-13

Family

ID=28662144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049700A Expired - Fee Related JP4047030B2 (en) 2002-02-26 2002-02-26 Transmission type sabo dam

Country Status (1)

Country Link
JP (1) JP4047030B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787053B2 (en) * 2006-04-10 2011-10-05 日鐵住金建材株式会社 Sabo dam and its construction method
JP5162682B2 (en) * 2011-02-04 2013-03-13 日鐵住金建材株式会社 Sabo dam and its construction method
JP5957398B2 (en) * 2013-03-06 2016-07-27 Jfe建材株式会社 Sabo dam and construction method of sabo dam
CN112195869B (en) * 2020-10-10 2022-04-29 中国科学院、水利部成都山地灾害与环境研究所 Mountain torrent debris flow sand dam with power generation function and application thereof

Also Published As

Publication number Publication date
JP2003247220A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
KR20090098554A (en) Scour preventive of pier
JP4229968B2 (en) Transmission type sabo dam
CN109653163A (en) River Chip entrapment structure
JP7118709B2 (en) Weirs and traps
KR102037464B1 (en) Multifunctional debris flow reduction facility part transmission type assembly
CN109594530B (en) Novel structure of fine sand stratum flood control dykes and dams
JP4047030B2 (en) Transmission type sabo dam
JPH0782725A (en) Permeable erosion control weir levee
JP4275595B2 (en) Transmission type sabo dam and gravel capture method
JPH09170218A (en) Debris flow stopping frame
KR101008839B1 (en) Hybrid type debris barrier
JP5488125B2 (en) Filling reinforcement structure
CN210368865U (en) Multistage dissipation of mud-rock flow structure of blocking
JP3698629B2 (en) Transmission type dam unit and transmission type dam
JP4663403B2 (en) Transmission type sabo dam
KR101170789B1 (en) Complex debris barrier of eco-friendly
JP6392984B2 (en) Transmission type sabo dam
KR100965522B1 (en) Reinforcement material for slope ditch and slope ditch structure using the same
KR101977350B1 (en) Buttress Erosion Dam
KR101052295B1 (en) Four-sided dam with double drips
KR20210021214A (en) Eco-friendly side gutter structure for ridge of a mountain
JP2531200B2 (en) Slit type Sabo dam
JPH06280239A (en) Fabricated fish way
RU2076168C1 (en) Dike dam and method of its construction
CN212533961U (en) Repair and reinforcement structure for downstream canal slope of main canal river entering section with water drop and energy dissipation functions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees