JP4046782B2 - 鋳型空隙部中の溶融物の鋳造方法及び鋳型空隙部中の溶融物のインベストメント鋳造方法、指向性凝固鋳物の製造方法 - Google Patents

鋳型空隙部中の溶融物の鋳造方法及び鋳型空隙部中の溶融物のインベストメント鋳造方法、指向性凝固鋳物の製造方法 Download PDF

Info

Publication number
JP4046782B2
JP4046782B2 JP05996596A JP5996596A JP4046782B2 JP 4046782 B2 JP4046782 B2 JP 4046782B2 JP 05996596 A JP05996596 A JP 05996596A JP 5996596 A JP5996596 A JP 5996596A JP 4046782 B2 JP4046782 B2 JP 4046782B2
Authority
JP
Japan
Prior art keywords
melt
mold
casting
mold cavity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05996596A
Other languages
English (en)
Other versions
JPH0910915A (ja
Inventor
エル. シュミデクネクト ディーン
ジェイ. ストラシェイム マーク
ジェイ. トンプソン デニス
エル ラース ブラッド
Original Assignee
ホーメット コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーメット コーポレーション filed Critical ホーメット コーポレーション
Publication of JPH0910915A publication Critical patent/JPH0910915A/ja
Application granted granted Critical
Publication of JP4046782B2 publication Critical patent/JP4046782B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は1つ以上の鋳型空隙部の溶融物による充填を向上させる方式で、特に、鋳型空隙部に内設したセラミックコア周辺の充填を向上させる方式で、鋳型中の前記溶融物を鋳造する方法に関する。
【0002】
【従来の技術】
ニッケル基超合金のタービンブレードとベーン等、ガスタービンエンジンの部品の製造においては、ガスタービンエンジンのタービン部で直面する高温時の機械的特性を向上させた単結晶の鋳物又は柱状結晶粒の鋳物を生成するために、従来、指向性凝固インベストメント鋳造法を採用してきた。
【0003】
【発明が解決しようとする課題】
近代的で高推力のガスタービンエンジンのタービンブレードとベーンの製造においては、複雑な内部冷却通路を有する内部冷却式のブレードとベーンであって、前記内部冷却通路には、この冷却通路を通り抜ける空気の流れを制御するためにペデスタル、タービュレータ、及び回転ベーンのような様相を前記通路中に格納し、このブレード又はベーンの所望の冷却ができるようにしている、前記内部冷却式ブレードとベーンに対する需要がガスタービン製造業者に未だにある。通常、これら小さな内部鋳肌様相の形成は、溶融物を鋳込む鋳型空隙部中に複雑なセラミックコアを格納することによって行われる。ペデスタル、タービュレータ、回転ベーン、又はその他の内面様相を形成させるために寸法を小さくした表面様相を有する複雑なコアが存在すると、このコア周辺の鋳型空隙部を溶融物で充填することが一層困難になり、むらになり易い。このような場合、鋳型の充填を向上させるとともに局所化した空洞を減らすために、湿潤性セラミックスと、鋳型に作用する高い金属静圧頭とを使用してきたが、これらは高価であり、鋳造装置の物理的サイズで制限を受けることがある。
【0004】
本発明の目的は、1つ以上の鋳型空隙部の溶融物による充填を向上させる方式で鋳型中の前記溶融物を鋳造する方法を提供することにある。
【0005】
本発明のもう一つの目的は、鋳型空隙部に内設したセラミックコア周辺の充填を向上させる方式で、特に、内部冷却式タービンブレードとベーンの場合、前述したペデスタル、タービュレータ、及び回転ベーン等の微細な又は小さく定寸した肌様相を形成させるために鋳型空隙部に内設したセラミックコア周辺の充填を向上させる方式で、鋳型中の溶融物を鋳造する方法を提供することにある。
【0006】
本発明のもう一つの目的は、前記溶融物の凝固中に形成する内部ポロシテーのレベルを下げることにある。
【0007】
更に本発明のもう一つの目的は、減圧した鋳型中に溶融物を注湯し、この後に続いて、前記鋳型中に注湯した前記溶融物に圧力を迅速に印加し、前記鋳型に内設したセラミックコア周辺の充填を向上させるようにする方法を提供することにある。
【0008】
【課題を解決するための手段】
そこでこの発明は、上述不都合を除去するために、最初に相対的に減圧した鋳造チャンバの炉に存する通気性鋳型の鋳型空隙部中に溶融物を導入し、次に、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に導入した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型中への導入後、充分迅速に行うことから成ることを特徴とする。
【0009】
また、コアを内蔵した鋳造チャンバの炉に存する通気性鋳型の鋳型空隙部を減圧し、この減圧した鋳型空隙部中の前記コア周辺に溶融物を導入し、次に、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と前記コアの間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型中への注湯後、充分迅速に行うとともに、ガス加圧を行った後で前記炉からインベストメント鋳型を取り出すことから成ることを特徴とする。
【0010】
更に、コアを内蔵した鋳造チャンバの炉に存する通気性インベストメント鋳型をチル部材に載置して前記インベストメント鋳型の鋳型空隙部が前記チル部材に連通している状態のままで前記鋳型空隙部を減圧し、超合金の溶融物が前記チル部材に接触して一方向に除熱されるように前記超合金溶融物をこの減圧した鋳型空隙部中の前記コア周辺に導入し、次に、前記炉から前記インベストメント鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、インベストメント鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と前記コアの間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型空隙部中への導入後、充分迅速に行うとともに、ガス加圧を行った後で前記炉からインベストメント鋳型を取り出すことから成ることを特徴とする。
【0011】
【発明の実施の形態】
上述の如く発明したことにより、本発明は、1実施例において、減圧した鋳造チャンバの炉に存する通気性鋳型の鋳型空隙部中に溶融物を導入し、次に、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と、セラミックコア表面及び/又は鋳型表面等の鋳型の構成要素と、の間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少させるべく充分迅速に行う、鋳型中の溶融物を鋳造する方法を提供するものである。前記ガス圧力の印加は、前記鋳型を前記溶融物で充填した後、前記溶融物中の1つ以上の局所化した空洞領域を縮小させるべく充分迅速に行い、前記鋳型の通気性によって前記空洞領域内のガス圧力が均一化する前に行う。
【0012】
この発明の1実施例においては、先ず鋳造チャンバの炉に存する通気性鋳型の前記鋳型空隙部を減圧し、この減圧した鋳型空隙部中に前記溶融物を導入し、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記溶融物が前記鋳型空隙部を充填した直後にガス圧力を前記鋳型空隙部中の前記溶融物に印加する。前記鋳型空隙部の減圧は、前記鋳型を内設した真空鋳造チャンバを減圧することによって行うことができ、前記鋳造チャンバを加圧ガスで詰め戻すことによってガス圧力を、前記鋳型空隙部に導入した前記溶融物に印加することができる。このガス圧力は、前記溶融物に実質的に無反応である不活性ガス等の加圧ガスから成ることが望ましい。
【0013】
指向性凝固の鋳物を作るこの発明のもう一つの特定の実施例においては、鋳造チャンバの炉に存する通気性セラミック・インベストメント・シェル鋳型をチル部材に載置して鋳型空隙部が前記チル部材に連通している状態で、通常、減圧した鋳造チャンバに前記鋳型を内設することによって前記鋳型空隙部を減圧し、超合金の溶融物が前記チル部材に接触して一方向に除熱されるように前記超合金溶融物をこの減圧した鋳型空隙部のコア周辺に導入し、次に、前記炉から前記インベストメント鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、インベストメント鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と前記コア表面及び/又は鋳型表面との間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少(例えば、縮小)させるべく、前記鋳型空隙部中への導入後、充分迅速に行うとともに、ガス加圧を行った後で前記炉からインベストメント鋳型を取り出す。前記鋳造チャンバは、前記鋳型空隙部に導入した前記溶融物にガス圧力を印加する手段としてガスで詰め戻される。
【0014】
【実施例】
以下図面に基づいてこの発明の実施例を詳細に説明する。
【0015】
図1と図2には、複数の超合金単結晶鋳物を生成するためにこの発明の1実施例を実施する鋳造装置をこの発明の説明のために図示しているが、但し、この発明は、この図示した特定の鋳造装置に限定したり、あるいは単結晶鋳物の鋳造に限定したりするものではない。この発明は、多様な金属と合金の単結晶、柱状結晶粒又は指向性共晶のミクロ組織を有する等軸結晶の鋳物と指向性凝固の鋳物を生成するために多種多様な鋳造機器と協働して実施することができる。
【0016】
この鋳造装置は、セラミック・インベストメント・シェル鋳型アゼンブリ12を従来の方式でチル部材(プレート)14に載置した真空鋳造チャンバ10を含む。この鋳型アゼンブリ12の一部分を図2で更に詳細に図示したが、ここで明かなことは、この鋳型アゼンブリ12の一番下又は底部の鋳型空隙部開口部16aを介してこの鋳型アゼンブリ12の各々の鋳型空隙部16がチル部材14に連通していることである。この鋳型アゼンブリ12は、例えば、開示内容を範例の鋳型アゼンブリ構造に基づく引用によってここに含める米国特許第3 763 926号に記載の通り、注湯カップ30の周りに繞設した複数の鋳型空隙部16を含む。チル部材14は、可動軸17に載設しており、この可動軸17は、鋳型アゼンブリ12をニッケル基超合金又はコバルト基超合金等の溶融物で充填してこの鋳型中の溶融物を指向性凝固させるようにした後に炉20からこの鋳型アゼンブリ12の取り出しを行う。
【0017】
この炉20は、従来の構造であり、管状蓄熱器22を含むとともに、この蓄熱器22は、通常、黒鉛スリーブと、蓄熱器22の周りに繞設したインダクションコイル24と、から成り、このインダクションコイル24によって蓄熱器が加熱されて次に前記蓄熱器が鋳型アゼンブリ12を、溶融物で充填される前に加熱する。この蓄熱器のスリーブの下端には、各ヒートシールド26をチル部材14の外周近くの周辺に設けている。この蓄熱器22の上端には、着脱式ヒートシールドカバー28を載設しており、このヒートシールドカバー28は、図2の鋳型アゼンブリ12の上部注湯カップ30に導入される溶融物を受け取る開口部を含むことができる。
【0018】
この鋳型アゼンブリ12の注湯カップ30は、各々の充填通路34に連通するとともに、次に当該充填通路34が各々の鋳型空隙部16に連通し、この鋳型に溶融物を送給する。米国特許第3 763 926号に記載の如く、各々の成長空隙部36に溶融物を送給するために、点線で図示した代わりの溶融物充填通路35を注湯カップ30から各々の成長空隙部36まで設けることができる。この成長空隙部36は、ピッグテール又は螺旋状の通路等のクリスタルセレクタ通路38を介して前記鋳型空隙部に連通しており、全て周知の通り、前記チル部材から前記成長空隙部中の上方に増殖する多数の結晶又は結晶粒の内の一つが選ばれて、前記成長空隙部の上方の前記鋳型空隙部を経て更に増殖して前記鋳型空隙部の形状と相補する構造を有する単結晶鋳物を前記鋳型空隙部中に形成するようになっている。各々の鋳型空隙部16の上には、この鋳型空隙部16に溶融物のソースを提供する押湯空隙部32があり、鋳型空隙部16中で溶融物が凝固する間に溶融物に作用する金属静圧力又金属静圧頭を充満させるだけでなく凝固中の収縮も充満させるようになっている。
【0019】
通常、この鋳型アゼンブリ12は、前述した様相を有するセラミック・インベストメント・シェル鋳型アゼンブリから成るとともに、前記様相は、この鋳型アゼンブリのろう模型又はその他一過性の模型をセラミックスラリー中に繰り返し浸漬させ、水抜きし、次に粗粒のセラミックスタッコで被覆して前記模型上の所望のシェル鋳型厚さが増すようにする周知のロストワックス法で形成される。次に、前記模型をこのインベストメントで囲繞されたシェル鋳型から除去して、このシェル鋳型を高温度で焼成し、鋳造に適した鋳型強度をもたせる。
【0020】
内部冷却式のタービンブレード又はベーンの製造においては、各々の鋳型空隙部16が、所望のブレード又はベーン鋳物形状の外側構造を有する。このブレード又はベーン鋳物の内部冷却通路及び関連する肌様相は、セラミックコア45で形成され、このセラミックコア45は、中子押え、ピン、及びその他既知の技法であって本発明の一部を構成するものではない技法で各々の鋳型空隙部16に内設している。前述のように、近代的で高推力のガスタービンエンジンのタービンブレードとベーンの製造においては、複雑な内部冷却通路を有する内部冷却式のブレードとベーンであって、前記内部冷却通路には、この冷却通路を通り抜ける空気の流れを制御するためにペデスタル、タービュレータ、及び回転ベーンのような様相を前記通路中に格納し、このブレード又はベーンの所望の冷却ができるようにしている、前記内部冷却式ブレードとベーンに対する需要がガスタービン製造業者に未だにある。これら小さな内部通路鋳肌様相の形成は、各々の鋳型空隙部16中に複雑なセラミックコア45を格納することによって行われる。但し、ペデスタル、タービュレータ、回転ベーン、又はその他の内部鋳肌様相を形成させるために寸法の小さな表面様相を有する複雑なコア45が存在すると、鋳型空隙部16と小さく定寸したコア表面様相とを溶融物で完全に充填することが一層困難になり、むらになり易い。
【0021】
特に、発明者達が発見したのは、コア表面様相の小さな寸法だけでなく前記ブレード又はベーン中に形成すべき冷却通路の小さな寸法も、溶融物とコア表面及び/又は鋳型表面との間の表面張力効果を促進させる場合があり、この表面張力効果によって、局所化した空洞領域が溶融物中に生じ、したがって出来上がった凝固鋳物中に生じるということであった。即ち、溶融物は、小さく定寸した各々の空隙部のコアと隣接の鋳型表面との間を完全に充填できず、且つ、コア自体の小さく定寸した表面様相、例えば、凝固鋳物中にペデスタル、タービュレータ、及び回転ベーンを形成させるように構成したコア表面を完全に充填できない。例えば、内部冷却式の鋳造ブレード又はベーン中に外壁の厚さと内壁の厚さを形成するために、わずか0.012インチ乃至0.020インチの幅寸法(壁の厚さ)を有する小さな空隙部がコアと隣接の鋳型表面との間に存在することがある。さらに、断面が丸いペデスタル等のコア表面様相は、わずか0.020インチ乃至0.030インチの直径を有する。このように小さく定寸した空隙部とコア表面様相によって溶融物とコア表面及び/又は鋳型表面との間の表面張力効果が際立ち易くなるとともに、この表面張力効果によって溶融物で完全に充填することが妨げられ、局所化した空洞領域が溶融物中に生じ、したがって凝固鋳物中の溶融物充填の不完全な箇所に生じる。
【0022】
この局所化した表面張力効果を解消するために冶金湿潤と高い金属静圧力とを向上させるべく選ばれた特定のセラミックスのような技法を用いることは、高価であり、鋳造炉中の物理的サイズの制約で制限を受ける場合がある。
【0023】
図1に示した装置で本発明の1実施例を実施するにあたり、先ず真空鋳造チャンバ10をバキュームポンプ50で5ミクロン以下の真空レベルまで減圧する。この真空鋳造チャンバは、鋳型アゼンブリ12を内設しているので、且つ、この鋳型アゼンブリ12に通気性があるので、同様に各々の鋳型空隙部16が減圧される。また、溶融物の導入前に、黒鉛蓄熱器22の周りに繞設したインダクションコイル24を生かすことによって鋳型アゼンブリ12を高温の鋳込温度(例えば、ニッケル基超合金の溶融物の場合、華氏2800度)まで予熱する。この鋳型アゼンブリ12の予熱温度は、注湯する溶融物の種類によって異なる。
【0024】
この減圧した真空鋳造チャンバ10に設けたるつぼ54中のニッケル基超合金の装入物Cを、従来の慣行に基づいて前記るつぼ周辺のインダクションコイル56を生かして溶融させることによって、ニッケル基超合金の溶融物が得られる。このニッケル基超合金の溶融物を適切な過熱状態まで加熱して、次に、前記るつぼを既知の方式で適当に回転させてこのるつぼ54から注湯カップ30中に注湯することによって鋳型アゼンブリ12に導入する。この過熱させた溶融物は、各々の充填通路34を流れ落ちて各々の鋳型空隙部16に流れ着き、次に、各々の成長空隙部36中に流れ込む。各々の押湯空隙部32が注湯カップ30中の溶融物のレベルと同じレベルまで充満すると、充填は完了である。
【0025】
この溶融物を鋳型アゼンブリに注湯し、鋳型アゼンブリを充填して各々の押湯空隙部32に入り込ませた後に、真空鋳造チャンバ10を、一般に不活性ガス(例えば、アルゴン)又は鋳型アゼンブリ12中の超合金の溶融物に実質的に無反応な他のガス等の気体で詰め戻す。これによってガス気圧が各々の鋳型空隙部16中に導入した溶融物に印加される。このガス圧力は、前述の小さく定寸した空隙部とコア表面様相の箇所等、溶融物とコア表面及び/又は鋳型表面との間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を抑制縮小させるべく、溶融物を鋳型アゼンブリに導入充填した後、充分迅速に充分に高い圧力レベルまで上昇させる。
【0026】
通常、ガス加圧の時間は、この通気性インベストメントシェル鋳型12の通気率によって決まる。特に、ガス圧力は、溶融物中の1つ以上の局所化した空洞領域を縮小させるべく充分迅速に上昇させるとともに、鋳型12の通気によって前記空洞領域内のガス圧力の均一化が生じる前に上昇させる。このようにしないと、溶融物中の空洞領域を縮小させる前に、鋳型の壁の通気によって溶融物中の空洞領域内のガス圧力の均一化が生じる場合がある。一般に、印加したガス圧力の程度又は大きさは、溶融物で充填又は接触すべきコア様相の寸法によって決まる。単結晶のタービンブレード鋳物の生成においてニッケル基超合金の溶融物を上述した方式で鋳造するにあたり、鋳造実験中に各々の押湯空隙部が前記溶融物で充填していることを目視観察した時点から様々な間隔で(例えば、ゼロ秒よりも長い秒時間から20秒までの範囲にわたる間隔であった)前記真空鋳造チャンバを高純度のアルゴンで詰め戻した。ガス加圧したのは、溶融物を指向性凝固させるために炉20から溶融物で充填した鋳型アゼンブリ12を取り出す前であった。前述の如く、ガス加圧を行うのは、通気性鋳型壁から通気することによって溶融物の空洞領域内のガス圧力が均一化する前である。例えば、鋳造実験では、各々の押湯空隙部が溶融物で充填しているのを観察した時点から2分後にガス加圧しても効果がなく、溶融物中の空洞領域を縮小できなかった。
【0027】
前記アルゴンは、サージタンク等の圧力容器62から真空鋳造チャンバ10中に導入したが、この圧力容器62は、この発明に基づいてこのチャンバ10中に所望のアルゴン背圧が得られるように選択した適切な内部体積と(例えば、100立方フィートの真空チャンバ体積の場合、120ガロン)アルゴンガス圧力(例えば、5psig乃至50psigまでの範囲)とを内蔵する。このガス圧力は、電動式作動ボール弁64と、直径の大きな(例えば、直径3インチ)銅管又はその他の管65と、を介して圧力容器62から供給され、この作動ボール弁64は、非常に迅速に(例えば、1秒もかからずに)完全に開弁(又は閉弁)可能であり、前記管65は、真空鋳造チャンバ10に連通させている。真空鋳造チャンバ10の上端には、このチャンバ10に吸入するアルゴンガスを減速させるためにガス拡散器67(概略的に図示)を、このチャンバ10に至る前記管65の注入口に締着させている。このガス拡散器67は、十字に交差させて上下3層に重層した直径0.5インチ長さ8インチの一山のステンレス鋼ロッドから成り、上端層は、互いに平行に約0.5インチ離間させて配設した5つのロッドを含み、中間層は、互いに平行に約0.5インチ離間させて更に前記上端層の各ロッドと直交させて配設した5つのロッドを含み、下端層は、互いに平行に約0.5インチ離間させて更に前記中間層の各ロッドと直交させて配設し、前記上端層の各ロッド間の空間の真下に配設した4つのロッドを含む。
【0028】
真空鋳造チャンバ10に吸入するアルゴンガスの速度を調節するためにガス拡散器67を使用する代わりに、アルゴンガスが調速されるように管65の直径を、3インチの直径から6インチ乃至8インチの直径まで等、かなり拡径することができる。
【0029】
図1に示す前記装置を使って真空鋳造チャンバ10中を迅速に所定のアルゴン詰め戻し圧力にすることができる。押湯空隙部が充填していることを観察したときに、この装置のオペレータが作動ボール弁64を開弁させるべく電気バルブアクチュエータボタンを押すことによって、真空鋳造チャンバ10中がこの装置で殆ど即時に、例えば1秒を僅かに越える時間で、0.5気圧乃至0.9気圧の通常のアルゴン詰め戻し圧力に達する又はなることができる。
【0030】
この真空鋳造チャンバ10中の最終ガス圧力は、圧力容器62の初期のガス圧力と体積を調節することによって予め設定される。この圧力容器62は、締切弁61を介してアルゴンガスソース60から充満されるが、この圧力容器の充満は、真空鋳造チャンバ10中のガス圧力を上昇させるべくこの圧力容器62を排気管65中に排気させる前に行う。
【0031】
別の鋳造実験においては、0.1分から最長、炉20から鋳型を完全に取り出す時間までの範囲にわたる様々な時間の間、真空鋳造チャンバ10中でアルゴンガスの背圧を所定のレベルに維持した。あるいはその代わりに、鋳型の充填後、短時間(例えば1秒〜3秒)の間にアルゴン背圧を迅速に得ることができ、続いて真空鋳造チャンバ10を減圧し、この後に続く鋳型の取り出し中に初期の真空レベルに戻るようにする。
【0032】
各々の鋳造実験においては、溶融物で鋳型アゼンブリを充填した直後に上記アルゴン背圧を使って生成したコア付き単結晶ニッケル基超合金鋳物では、同じ鋳造手順ではあるが真空鋳造チャンバ中を真空に保って生成した単結晶鋳物、即ち、この発明にしたがって真空鋳造チャンバ中にアルゴン背圧を得ることをせずに生成した単結晶鋳物と比較すると、非充填が少ない直径0.020インチのペデスタルを有する単結晶鋳物が産出した。X線分析によって明らかになったことは、この発明に基づいて生成した単結晶鋳物に非充填を呈したものは一つも無かったが、アルゴン背圧を使わないで生成した単結晶鋳物は、全て非充填を呈したことであった。
【0033】
通称タービュレータと呼ばれる様々なサイズのセラミックコア細部を格納する単結晶テストパネル(図3に示す)の別の鋳造実験においては、鋳型アゼンブリを溶融物で充填した直後にこの発明による真空鋳造チャンバ10中のアルゴン背圧を使用して産出したのは、図3(A)に示す如く従来の方式で作った鋳物と比較して100%完璧な鋳物(即ち、図3(B)に示す如く、鮮明なタービュレータエッジ細部を伴ったタービュレータ様相の完璧な充填)であった。従来の鋳物と比較すると、この発明に基づいて作った鋳物の場合、コア細部の充填が向上していること及び大々的な収縮が少ないことが観察された。
【0034】
直径0.020インチ乃至0.025インチのサイズ範囲の円断面のペデスタルを備えるセラミックコアを使って柱状結晶粒構造を有するコア付き指向性凝固ニッケル基超合金鋳物を作るために、さらに鋳造実験を行った。当該実験においては、この発明による真空鋳造チャンバ中の最終背圧は、0.5気圧のアルゴンであった。当該実験の結果、最小寸法のコア・ペデスタル様相の不完全な充填による鋳損じ率は、従来の鋳造慣行で作った同様の鋳物と比較すると、わずか3%であったが、従来の鋳造慣行ではペデスタル様相の不完全な充填による鋳損じ率が17%であった。この発明によるアルゴンの最終背圧が高くなるにつれて鋳損じの割合が更に減少して殆どゼロに至るであろうと確信する。
【0035】
この発明は、例示のためにこの発明のある特定の実施例に基づいて説明したが、これに限定されるものではないことを理解する必要がある。本発明は、次の特許請求の範囲に記載する如く、この発明の精神と範囲を逸脱しない限り本発明の中で改変などを行うことができることを想定している。
【0036】
【発明の効果】
以上詳細に説明した如くこの発明によれば、1つ以上の鋳型空隙部の溶融物による充填を向上させている。また、鋳型空隙部に内設したセラミックコア周辺の充填を向上させる方式で、特に、内部冷却式タービンブレードとベーンの場合、前述したペデスタル、タービュレータ、及び回転ベーン等の微細な又は小さく定寸した肌様相を形成させるために鋳型空隙部に内設したセラミックコア周辺の充填を向上させている。更に、前記溶融物の凝固中に形成する内部ポロシテーのレベルを下げている。更にまた、減圧した鋳型中に溶融物を注湯し、この後に続いて、前記鋳型中に注湯した前記溶融物に圧力を迅速に印加し、微細な又は小さく定寸した内部鋳肌様相のような内部鋳肌様相を形成させるために前記鋳型に内設したセラミックコア周辺の充填を向上させている。
【図面の簡単な説明】
【図1】 鋳型アゼンブリを便宜上概略的に図示した、この発明の方法実施例に基づいて単結晶鋳物を作るこの発明の1実施例の装置の概略図である。
【図2】 図1のインベストメントシェル鋳型アゼンブリの拡大断面図である。
【図3】 各テストパネルの写真であり、(A)は、従来の慣行に基づいてタービュレータの様相を鋳造させた単結晶テストパネルの1.5Xの写真、(B)は、この発明に基づいてタービュレータ様相を鋳造させた単結晶テストパネルの1.5Xの写真である。
【符号の説明】
10 真空鋳造チャンバ
12 セラミック・インベストメント・シェル鋳型アゼンブリ
14 チル部材(プレート)
16 鋳型空隙部
16a 鋳型空隙部開口部
17 可動軸
20 炉
22 管状蓄熱器
24 インダクションコイル
26 ヒートシールド
28 着脱式ヒートシールドカバー
30 注湯カップ
32 押湯空隙部
34 充填通路
35 溶融物充填通路
36 成長空隙部
38 クリスタルセレクタ通路
45 セラミックコア
50 バキュームポンプ
54 るつぼ
C ニッケル基超合金の装入物
56 インダクションコイル
61 締切弁
62 圧力容器
64 電動式作動ボール弁
65 直径の大きな(例えば、直径3インチ)銅管又はその他の管
67 ガス拡散器

Claims (14)

  1. 最初に相対的に減圧した鋳造チャンバの炉に存する通気性鋳型の鋳型空隙部中に溶融物を導入し、次に、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に導入した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型中への導入後、充分迅速に行うことから成ることを特徴とする鋳型空隙部中の溶融物の鋳造方法。
  2. 耐火性コアを内設した鋳型空隙部であって、この鋳型空隙部中に前記溶融物を注湯し、前記ガス圧力の印加によって前記コア表面様相の溶融物による充填を向上させることを特徴とする請求項1に記載の鋳型空隙部中の溶融物の鋳造方法。
  3. 先ず前記鋳型空隙部を減圧し、この減圧した鋳型空隙部中に前記溶融物を注湯し、前記溶融物が前記鋳型空隙部を充填した直後に前記ガス気圧を前記鋳型空隙部中の前記溶融物に印加することを特徴とする請求項1に記載の鋳型空隙部中の溶融物の鋳造方法。
  4. 前記ガス圧力は、前記溶融物に実質的に無反応である加圧ガスから成ることを特徴とする請求項1に記載の鋳型空隙部中の溶融物の鋳造方法。
  5. 前記ガスが不活性ガスから成ることを特徴とする請求項4に記載の鋳型空隙部中の溶融物の鋳造方法。
  6. コアを内蔵した鋳造チャンバの炉に存する通気性鋳型の鋳型空隙部を減圧し、この減圧した鋳型空隙部中の前記コア周辺に溶融物を導入し、次に、前記炉から前記鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と前記コアの間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型中への注湯後、充分迅速に行うとともに、ガス加圧を行った後で前記炉からインベストメント鋳型を取り出すことから成ることを特徴とする鋳型空隙部中の溶融物のインベストメント鋳造方法。
  7. 前記ガス圧力は、前記溶融物に実質的に無反応である加圧ガスから成ることを特徴とする請求項6に記載の鋳型空隙部中の溶融物のインベストメント鋳造方法。
  8. 前記ガスが不活性ガスから成ることを特徴とする請求項7に記載の鋳型空隙部中の溶融物のインベストメント鋳造方法。
  9. 鋳型を内設した鋳造チャンバを減圧することによって前記鋳型空隙部を減圧し、前記鋳造チャンバを加圧ガスで詰め戻すことによって前記ガス圧力を印加することを特徴とする請求項6に記載の鋳型空隙部中の溶融物のインベストメント鋳造方法。
  10. コアを内蔵した鋳造チャンバの炉に存する通気性インベストメント鋳型をチル部材に載置して前記インベストメント鋳型の鋳型空隙部が前記チル部材に連通している状態のままで前記鋳型空隙部を減圧し、超合金の溶融物が前記チル部材に接触して一方向に除熱されるように前記超合金溶融物をこの減圧した鋳型空隙部中の前記コア周辺に導入し、次に、前記炉から前記インベストメント鋳型を取り出す前で前記炉に鋳型が存する間に、前記鋳型空隙部中に注湯した前記溶融物にガス圧力を印加するとともに、このガス圧力の印加は、インベストメント鋳型を経た通気によってガス圧力の均等化が生じる前に、前記溶融物と前記コアの間の表面張力効果によってこの注湯した溶融物に内在する局所化した空洞領域を減少させるべく、前記溶融物の前記鋳型空隙部中への導入後、充分迅速に行うとともに、ガス加圧を行った後で前記炉からインベストメント鋳型を取り出すことから成ることを特徴とする指向性凝固鋳物の製造方法。
  11. 前記ガス圧力は、前記溶融物に実質的に無反応である加圧ガスから成ることを特徴とする請求項10に記載の指向性凝固鋳物の製造方法。
  12. 前記ガスが不活性ガスから成ることを特徴とする請求項11に記載の指向性凝固鋳物の製造方法。
  13. 前記鋳型を内設した鋳造チャンバを減圧することによって前記鋳型空隙部を減圧し、前記鋳造チャンバを加圧ガスで詰め戻すことによって前記ガス圧力を印加することを特徴とする請求項10に記載の指向性凝固鋳物の製造方法。
  14. 前記鋳造チャンバを約0.5気圧乃至約0.9気圧の圧力まで不活性ガスで詰め戻すことを特徴とする請求項12に記載の指向性凝固鋳物の製造方法。
JP05996596A 1995-02-23 1996-02-22 鋳型空隙部中の溶融物の鋳造方法及び鋳型空隙部中の溶融物のインベストメント鋳造方法、指向性凝固鋳物の製造方法 Expired - Lifetime JP4046782B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39400595A 1995-02-23 1995-02-23
US08/394005 1995-02-23

Publications (2)

Publication Number Publication Date
JPH0910915A JPH0910915A (ja) 1997-01-14
JP4046782B2 true JP4046782B2 (ja) 2008-02-13

Family

ID=23557144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05996596A Expired - Lifetime JP4046782B2 (ja) 1995-02-23 1996-02-22 鋳型空隙部中の溶融物の鋳造方法及び鋳型空隙部中の溶融物のインベストメント鋳造方法、指向性凝固鋳物の製造方法

Country Status (1)

Country Link
JP (1) JP4046782B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767618B1 (ko) * 1999-12-11 2007-10-17 주식회사 케이티 접속점에서 케이블 금속 외피층 본딩 확인 장치
JP5642256B1 (ja) * 2013-11-08 2014-12-17 満 江口 アルミニウム合金用ホットチャンバー鋳造機及びアルミニウム合金を金属材料に用いたホットチャンバー鋳造方法

Also Published As

Publication number Publication date
JPH0910915A (ja) 1997-01-14

Similar Documents

Publication Publication Date Title
US5592984A (en) Investment casting with improved filling
US10711617B2 (en) Casting method, apparatus and product
JP3919256B2 (ja) 方向性凝固した鋳造物を製作する方法とこの方法を実施するための装置
EP2024114B1 (en) Sequential mold filling
CN104918731B (zh) 使用定向冷却的失蜡铸造法制造部件的方法
US5607007A (en) Directional solidification apparatus and method
EP1531020B1 (en) Method for casting a directionally solidified article
US4832105A (en) Investment casting method and apparatus, and cast article produced thereby
US9744587B2 (en) Mould for monocrystalline casting
US6640877B2 (en) Investment casting with improved melt filling
US6435256B1 (en) Method for producing a cooled, lost-wax cast part
US3754592A (en) Method for producing directionally solidified cast alloy articles
US4612969A (en) Method of and apparatus for casting articles with predetermined crystalline orientation
US3598172A (en) Process of casting with downward-unidirectional solidification
JP4046782B2 (ja) 鋳型空隙部中の溶融物の鋳造方法及び鋳型空隙部中の溶融物のインベストメント鋳造方法、指向性凝固鋳物の製造方法
US20230033669A1 (en) Multiple materials and microstructures in cast alloys
CN109475931B (zh) 定向凝固冷却熔炉及使用这种熔炉的冷却方法
CN109202017B (zh) 用于生产用于燃气涡轮的叶片的铸造方法
US6263951B1 (en) Horizontal rotating directional solidification
RU2153955C2 (ru) Способ изготовления толстостенных трубных отливок из жаропрочных сплавов
JPH09104932A (ja) 金属間化合物からなる製品の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term