JP4046611B2 - Method for controlling the injection of fluid into an internal combustion engine - Google Patents

Method for controlling the injection of fluid into an internal combustion engine Download PDF

Info

Publication number
JP4046611B2
JP4046611B2 JP2002578008A JP2002578008A JP4046611B2 JP 4046611 B2 JP4046611 B2 JP 4046611B2 JP 2002578008 A JP2002578008 A JP 2002578008A JP 2002578008 A JP2002578008 A JP 2002578008A JP 4046611 B2 JP4046611 B2 JP 4046611B2
Authority
JP
Japan
Prior art keywords
injection
fluid
cylinder
pressure
pause
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002578008A
Other languages
Japanese (ja)
Other versions
JP2004522899A (en
Inventor
エイスマルク,ヤン
アンデルッソン,アルネ
ヘグルンド,アンデシュ
スヴェンソン,ブー
Original Assignee
ボルボ テクニスク ユートヴェクリング アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ テクニスク ユートヴェクリング アーベー filed Critical ボルボ テクニスク ユートヴェクリング アーベー
Publication of JP2004522899A publication Critical patent/JP2004522899A/en
Application granted granted Critical
Publication of JP4046611B2 publication Critical patent/JP4046611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Method of controlling the injection of a fluid into an internal combustion engine, comprising a piston reciprocating in a cylinder between top and bottom dead center points, and a nozzle arranged in the cylinder. The method includes injecting a fluid with an initial injection pressure into the cylinder, the fluid being ignited, so that the pressure in the cylinder increases, thereby causing the piston to be displaced towards the top dead center point, and effecting at least one injection pause during injection. The injection, immediately after the injection pause, is effected so that the injection pressure has increased in an interval of more than 0 bar and up to 2000 bar relative to an injection pressure prevailing immediately prior to the injection pause, and the injection pause is effected for a duration corresponding to an angle of rotation of an engine crankshaft in the interval 1°-30°.

Description

本発明は、シリンダ中の上下死点ポイント(top and bottom dead center points)の間を往復運動するピストンと、シリンダに設けられた噴射ノズルとを備える内燃機関への流体の噴射を制御する方法であって、初期噴射圧でシリンダへの流体の噴射を実行し、該流体を発火させてシリンダ内の圧力を増加させ、これによってシリンダ中の下死点ポイントに向かってピストンを移動させる工程と、流体の噴射中に複数回の噴射休止を実行する工程とを含む方法に関するものである。 The present invention, for controlling a piston reciprocates between the upper and lower dead centers points in the cylinder (top and bottom dead center points) , an injection nozzle provided in the cylinder, the injection of fluid into an internal combustion engine having Performing injection of fluid into the cylinder at an initial injection pressure and igniting the fluid to increase the pressure in the cylinder, thereby moving the piston toward the bottom dead center point in the cylinder; to a method comprising the steps of performing multiple injections pause in fluid injection a.

燃料をシリンダ内に直接噴射し、シリンダ内の高温および高圧力によって発火させるという燃焼プロセスは、一般に直噴ディーゼルプロセスと呼ばれている。燃料を噴射して、シリンダ内で燃やすと、燃えている燃料の燃焼ガスの乱流混合がシリンダ内で生じる。シリンダで燃料/ガス混合物が燃焼すると熱が発生するので、シリンダ中のガス圧力が増加し、これによってピストンに正味に働く力が発生する。燃料の噴射圧、シリンダに戻る排気ガス量、燃料噴射のタイミング、シリンダ内に広がる乱流、シリンダ内の温度など多数のパラメータ次第で、異なる燃焼効率や排出値が得られる。   A combustion process in which fuel is directly injected into a cylinder and ignited by high temperature and high pressure in the cylinder is generally called a direct injection diesel process. When fuel is injected and burned in the cylinder, turbulent mixing of the combustion gas of the burning fuel occurs in the cylinder. As the fuel / gas mixture burns in the cylinder, heat is generated, which increases the gas pressure in the cylinder, thereby generating a net force on the piston. Depending on a number of parameters such as fuel injection pressure, amount of exhaust gas returning to the cylinder, timing of fuel injection, turbulent flow spreading in the cylinder, temperature in the cylinder, different combustion efficiencies and emission values can be obtained.

ディーゼルプロセスによって作動する従来の内燃機関は、スス粒子および窒素酸化物(NOX)などの排出値が比較的高い。爆発行程中にシリンダ内に空気の不足する領域が局所的に発生し、このためシリンダ内に噴射された燃料の不完全燃焼が生じてしまう。このため、排気行程中に排気ガスに伴って、スス粒子という形の排出物が発生する。 Conventional internal combustion engine that operates by the diesel process, soot particles and nitrogen oxides (NO X) is relatively high emission values, such as. During the explosion stroke, a region where air is insufficient is locally generated in the cylinder, which causes incomplete combustion of the fuel injected into the cylinder. For this reason, an exhaust in the form of soot particles is generated along with the exhaust gas during the exhaust stroke.

燃料がシリンダ中で蒸発しガスと十分に混ざるための時間が燃料の発火が起こる前にとれるように燃料発火の遅延をはかると同時に、爆発行程または働き行程(expansion or work stroke)中に、またはそれに先立って、早い時点で燃料を噴射することにより、スス粒子の形成を減少させることができることが以前から知られている。燃焼室に排気を戻して(EGRすなわち排気再循環)、窒素酸化物(NOX)の形成を減らすことも公知である。このように、従来のエンジンからの排出を減少させる方法は存在する。しかしながら、これら公知の方法には制限があり、極端な場合にはエンジンを動作不能にしてしまう。 Delay the fuel ignition so that the time for the fuel to evaporate in the cylinder and mix well with the gas is taken before the fuel ignition occurs, at the same time during the explosion or work stroke, or Prior to that, it has long been known that soot particle formation can be reduced by injecting fuel at an early point. Returning the exhaust to the combustion chamber (EGR i.e. exhaust gas recirculation), it is also known to reduce the formation of nitrogen oxides (NO X). Thus, there are ways to reduce emissions from conventional engines. However, these known methods are limited and in extreme cases render the engine inoperable.

ピストンが働き行程(爆発行程)中に下死点ポイントに向かって移動すると、シリンダ中の圧力および温度が降下する。また爆発行程中は、シリンダ中、特にシリンダ壁の近くの周辺領域において、ガス、燃料および形成されたスス粒子の乱流または混合が比較的少なくなることもわかっている。つまり、これは、形成されたスス粒子の酸化が爆発行程中に減少するという結果になる。ここで酸化されなかったスス粒子は、排気行程中にエンジン排気ガスに伴って排出される。   When the piston moves toward the bottom dead center point during the working stroke (explosion stroke), the pressure and temperature in the cylinder drop. It has also been found that during the explosion stroke, there is relatively little turbulence or mixing of gas, fuel and soot particles formed in the cylinder, especially in the peripheral region near the cylinder wall. That is, this results in the oxidation of the soot particles formed being reduced during the explosion stroke. The soot particles not oxidized here are discharged along with the engine exhaust gas during the exhaust stroke.

燃料噴射中に噴射圧をしだいに増加させると、NOX形成およびスス形成がともに減少することがわかっている。これは、噴射弁が開くときに燃料の噴射圧が高いと、NOX形成の増加という問題が生じるからであり、それ故、噴射開始時は低噴射圧が望まれる。一方、噴射終了時に高圧にすると、ススがさらに効率的に酸化される。したがって、噴射の初めに噴射圧を低くし、噴射の終わりに噴射圧を高くすると効果的である。 It has been found that gradually increasing the injection pressure during fuel injection reduces both NO x formation and soot formation. This is because if the fuel injection pressure is high when the injection valve is opened, a problem of increased NO x formation occurs, and therefore a low injection pressure is desired at the start of injection. On the other hand, when the pressure is increased at the end of injection, soot is more efficiently oxidized. Therefore, it is effective to lower the injection pressure at the beginning of injection and increase the injection pressure at the end of injection.

窒素酸化物は、高い燃焼温度で形成される。燃焼温度を低下させることによってNOXの形成を減らすには、排気を燃焼室へ再循環すれば可能である。しかしながら、例えば、アクセルペダルを強く踏み込んだ時などのように、燃焼室へ排気を十分に再循環させることができない場合がある。その結果、NOXの排出が増加する。 Nitrogen oxides are formed at high combustion temperatures. To reduce the formation of the NO X by lowering the combustion temperature, it is possible by recirculating the exhaust to the combustion chamber. However, there are cases where the exhaust cannot be sufficiently recirculated into the combustion chamber, for example, when the accelerator pedal is strongly depressed. As a result, emissions of the NO X increases.

欧州特許出願公開第0911511号明細書にあるように、NOXとススの低排出を達成する目的で、一定圧力下で一回の燃料噴射を複数の区分噴射に分けることが既に知られている。 European as described in Patent Application Publication No. 0911511, in order to achieve low emissions of the NO X and soot, be divided into a plurality of sections inject a single fuel injection under a constant pressure it is already known .

従来の燃料ポンプに関する問題は、噴射プロセス中の噴射圧が、エンジンrpm(毎分回転数)、および噴射プロセス中に噴射されることになる燃料の量に完全に左右されるということである。大量の噴射燃料および/または高いエンジンrpmは、噴射プロセス中の噴射圧を増加させる。反対に、小量の噴射燃料および/または低いエンジンrpmは、噴射圧を減少させることになる。これは、部分負荷下で、低負荷または低rpmでエンジンが作動する場合、噴射中の圧力増加を達成できず、したがって、NOXとススの形成を減少するという上記の効果が実現されなくなってしまうことを意味する。 The problem with conventional fuel pumps is that the injection pressure during the injection process is completely dependent on the engine rpm (rpm) and the amount of fuel that will be injected during the injection process. Large amounts of injected fuel and / or high engine rpm increase the injection pressure during the injection process. Conversely, a small amount of injected fuel and / or a low engine rpm will reduce the injection pressure. This is because when the engine is operating under partial load, at low load or low rpm, the pressure increase during injection cannot be achieved, and therefore the above effect of reducing NO x and soot formation is not realized. It means to end.

本発明の第1の目的は、先行技術の上述した欠点が回避されるように、また、エンジン排気中のNOXおよびスス粒子の含有量ができるだけ低くなるように、内燃機関への燃料噴射を制御することである。 The first object of the present invention is to inject fuel into an internal combustion engine so that the above-mentioned drawbacks of the prior art are avoided and the content of NO x and soot particles in the engine exhaust is as low as possible. Is to control.

本発明の第2の目的は、シリンダ中で形成されたスス粒子の酸化を増やし、これによって、エンジン排気中のスス粒子の数を減らすことである。   A second object of the present invention is to increase the oxidation of soot particles formed in the cylinder, thereby reducing the number of soot particles in the engine exhaust.

本発明の第3の目的は、所定のNOXレベルを得るのに必要な排気再循環(EGR)の量を減らすことである。 A third object of the present invention is to reduce the amount of required exhaust gas recirculation (EGR) to achieve a predetermined of the NO X level.

本発明の第4の目的は、エンジンがどのような作動状態にあっても、エンジンに噴射される流体の最終噴射圧を高く維持できるようにすることである。   The fourth object of the present invention is to maintain a high final injection pressure of fluid injected into the engine regardless of the operating state of the engine.

この目的は、冒頭で述べたタイプの方法であって、次第に流体の供給量が増加する、一連の後続する流体噴射パルスに先立つ最初の流体噴射パルスを含み、流体噴射休止(U i )のうち最初の流体噴射休止の直前における噴射圧(NCPiに比べて0バール以上の下限と2000バールの上限を有する範囲内の値だけ後続する流体噴射パルスのための初期噴射圧(NOP i+1 )が増加するように、後続する流体噴射パルスが実行されるとともに、内燃機関(1)に設けられたクランクシャフト(10)の回転角(α)が0°以上の下限と30°の上限を有する範囲内の値に相当する期間にわたり当該流体噴射休止は実行されることを特徴とする方法によって達成される。 The purpose is a method of the type mentioned at the outset, which comprises an initial fluid ejection pulse preceding a series of subsequent fluid ejection pulses , which gradually increase in the fluid supply rate, out of the fluid ejection pause (U i ) The initial injection pressure (NOP i + 1) for the fluid injection pulse that follows by a value within a range having a lower limit of 0 bar or more and an upper limit of 2000 bar compared to the injection pressure (NCP i ) immediately before the first fluid injection pause. ) Increases so that the subsequent fluid injection pulse is executed, and the rotation angle (α) of the crankshaft (10) provided in the internal combustion engine (1) has a lower limit of 0 ° or more and an upper limit of 30 ° . The fluid ejection pause is performed over a period corresponding to a value within a range that is achieved .

複数回の噴射休止を行うことによって、それに続く噴射が、燃料、ガス、およびスス粒子を乱流または混合動作の止まった領域へ移動させ、もう一度、循環および混合を行わせる。これにより、噴射休止の直前に示す噴射圧に対し初期噴射圧が0バール超から2000バールまでの範囲内の値だけ増加するように噴射休止直後に流体の噴射を実行すれば、スス粒子を酸化でき、酸化が促進される。さらに、シリンダ中の熱い燃焼ガスが再び混ざって冷却され、スス粒子が酸化されると同時に、NOXの形成が減ることになる。特に、エンジン・クランクシャフトの回転角度が0°超から30°までの範囲内の値に相当する期間、噴射休止を行うと、NOX形成が少なく、スス酸化の発生が高いという点で好ましい結果が得られる。 By performing multiple injection pauses, subsequent injections move fuel, gas, and soot particles to a region where turbulence or mixing action has ceased, once again causing circulation and mixing. As a result, if the fluid injection is performed immediately after the injection stop so that the initial injection pressure increases by a value within the range from over 0 bar to 2000 bar with respect to the injection pressure shown immediately before the injection stop, the soot particles are oxidized. And oxidation is promoted. Further, the hot combustion gases in the cylinder is cooled mixed again, and at the same time soot particles are oxidized, so that the formation of the NO X is reduced. In particular, when the injection stop is performed for a period corresponding to a value in the range of the engine / crankshaft rotation angle exceeding 0 ° to 30 °, NO x formation is small and soot oxidation is high. Is obtained.

本発明の一実施態様では噴射弁を使用する。該噴射弁は、噴射ノズルに設けられた少なくとも1つの噴射開口と協働するように設計された噴射針を備え、該噴射針は、高圧ポンプによって生成される高圧によって生じる流体圧力によって制御され、この流体圧力自体は、噴射弁に設けられた逃し弁(a spill valve)によって制御され、該逃し弁は、選択された噴射休止期間および選択された次の初期噴射圧に応じて可変段階で噴射弁における圧力を減らすように開弁できる。噴射針は、生成される流体圧力とは独立した制御機構によっても開閉できる。   In one embodiment of the present invention, an injection valve is used. The injection valve comprises an injection needle designed to cooperate with at least one injection opening provided in the injection nozzle, the injection needle being controlled by the fluid pressure generated by the high pressure generated by the high pressure pump; The fluid pressure itself is controlled by a spill valve provided on the injection valve, which injects in variable steps depending on the selected injection pause period and the next initial injection pressure selected. The valve can be opened to reduce the pressure at the valve. The injection needle can also be opened and closed by a control mechanism independent of the generated fluid pressure.

このような噴射弁を用いて(上述の噴射針用制御機構の助けを借りて)噴射休止を行うことによって、小量の噴射燃料および/または低rpmを引き起こす動作条件下でも、噴射プロセス時における流体の所望の圧力増加を得ることができる。この噴射休止を可能にするために、噴射プロセス中に噴射針を1回以上閉じる方法で噴射弁の噴射針を制御する。噴射針が噴射プロセス中に閉じて噴射休止が起きると、高圧ポンプは噴射弁における流体圧力を急速に増やし続ける。噴射弁が噴射休止の後に再び開くと、噴射休止が起きていなかったときと比べ高い噴射圧で流体がシリンダ内に噴射されることになる。   By using such an injection valve (with the help of the injection needle control mechanism described above), an injection pause is performed, even under operating conditions that cause a small amount of injected fuel and / or low rpm, during the injection process The desired pressure increase of the fluid can be obtained. In order to enable this injection pause, the injection needle of the injection valve is controlled by closing the injection needle one or more times during the injection process. When the injection needle closes during the injection process and an injection pause occurs, the high pressure pump continues to rapidly increase the fluid pressure at the injection valve. When the injection valve is reopened after the injection stop, the fluid is injected into the cylinder at a higher injection pressure than when the injection stop has not occurred.

以下、添付図面に示す実施形態を参照し、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the accompanying drawings.

図1は、ディーゼル燃料のような流体の噴射が本発明によって実行される内燃機関(エンジン)1の概略図である。エンジン1は、シリンダ2中の上下死点ポイントの間を往復運動するピストン3と、シリンダ2に設けられた噴射ノズル4とを備える。協働する吸気弁6とともに吸気導管5がシリンダ2内へ導かれ、協働する排気弁8とともに排気導管7がシリンダ2から外へと導かれている。ピストン3の上部の凹部9は燃焼室を形成する。図1に示す実施形態では、ピストン3はコンロッド(a connecting rod)11によってクランクシャフト10につながれているが、コンロッド11のないエンジン1に本発明を適用することもできる。   FIG. 1 is a schematic view of an internal combustion engine (engine) 1 in which injection of fluid such as diesel fuel is performed according to the present invention. The engine 1 includes a piston 3 that reciprocates between upper and lower dead center points in the cylinder 2 and an injection nozzle 4 provided in the cylinder 2. The intake conduit 5 is guided into the cylinder 2 together with the cooperating intake valve 6, and the exhaust conduit 7 is guided out of the cylinder 2 together with the cooperating exhaust valve 8. The recess 9 at the top of the piston 3 forms a combustion chamber. In the embodiment shown in FIG. 1, the piston 3 is connected to the crankshaft 10 by a connecting rod 11, but the present invention can also be applied to an engine 1 without the connecting rod 11.

図1に示すように、流体がシリンダ2内に噴射されるときは、ピストン3は上死点にある。しかしながら、ピストン3は、流体がシリンダ2に噴射され始めるときに、上死点の前、または上死点の後に位置することもできる。少なくとも1回の噴射休止Uiを行いつつ、流体の全量をピストン3に形成された凹部9内に直接噴射することが好ましい。つまり、基本的には噴射シーケンス全体を通じて、縁部12またはそこから少し下のところに流体噴霧16,20を直接向けるようにする。ここで、円錐角βは、噴射ノズル4から噴出された流体噴霧16とシリンダ2の中心線15との間で形成される角度である。円錐角βも、噴射中の流体がほぼピストン3の凹部9内に噴射され、その結果、流体は凹部9の縁部12より上に流れず、シリンダ2の周辺領域13に達しないように、選択する必要がある。図1および図2では、2つの流体噴霧16のみが噴射ノズル4から来るものとして示されている。しかし、実際は複数のホール17が噴射ノズル4に設けられているので、噴射ノズル4から噴射された流体噴霧16は円錐状または傘状の形を描く。流体がシリンダ2に噴射されると同時に、流体の一部が、空気とシリンダ2に再循環されてくる可能性のある排気とからなったシリンダ2に導入されるガスであって、圧縮行程で圧縮され、その結果加熱されたガスと混合する。ガスと混合した流体の一部は、シリンダ2内の温度が高いために発火し燃焼する。 As shown in FIG. 1, when fluid is injected into the cylinder 2, the piston 3 is at top dead center. However, the piston 3 can also be located before top dead center or after top dead center when fluid begins to be injected into the cylinder 2. It is preferable to inject the entire amount of fluid directly into the recess 9 formed in the piston 3 while performing at least one injection pause U i . That is, basically, the fluid sprays 16, 20 are directed directly to the edge 12 or slightly below it throughout the entire injection sequence. Here, the cone angle β is an angle formed between the fluid spray 16 ejected from the ejection nozzle 4 and the center line 15 of the cylinder 2. The cone angle β is also such that the fluid being injected is injected almost into the recess 9 of the piston 3 so that the fluid does not flow above the edge 12 of the recess 9 and reach the peripheral region 13 of the cylinder 2. Must be selected. 1 and 2, only two fluid sprays 16 are shown as coming from the injection nozzle 4. However, in reality, since the plurality of holes 17 are provided in the injection nozzle 4, the fluid spray 16 injected from the injection nozzle 4 has a conical or umbrella shape. At the same time that the fluid is injected into the cylinder 2, a part of the fluid is a gas introduced into the cylinder 2 consisting of air and exhaust that may be recirculated to the cylinder 2, in the compression stroke Compressed and consequently mixed with heated gas. A part of the fluid mixed with the gas ignites and burns because the temperature in the cylinder 2 is high.

シリンダ2でガスと混合された流体の一部が、酸素が不足している状態で燃えると、燃焼中にスス粒子が形成するおそれがある。本明細書中では、ガス/流体混合物に対してラムダ値を定義する。ラムダ値は過剰空気係数ともいい、実際に供給された空気量を完全燃焼に必要な理論空気量で割った値と定義する。ラムダ係数が1を超えればガス/流体混合物は希薄で、ラムダ係数が1未満であればガス/流体混合物は濃厚である。ガス/流体混合物が濃厚であれば、ガス/流体混合物の不完全燃焼が生じ、スス粒子が形成可能になってしまう。できるだけスス粒子の形成を抑えるためには、ラムダ係数が1以上の流体およびガスの混合物を得るように努めることである。流体がシリンダ内に直接噴射され、圧縮行程中に生じる熱によって発火するディーゼルエンジンなどの内燃機関では、流体の混合を制御して燃焼させるものが多く、これはつまり噴射中の流体を化学量論的な範囲で燃焼させるものである。流体/ガス混合物が濃厚な化学量論的な範囲に近いところでは、燃焼中にスス粒子が形成される可能性がある。   If a part of the fluid mixed with the gas in the cylinder 2 burns in a state where oxygen is insufficient, soot particles may be formed during combustion. In this specification, lambda values are defined for gas / fluid mixtures. The lambda value is also called the excess air coefficient, and is defined as a value obtained by dividing the actually supplied air amount by the theoretical air amount necessary for complete combustion. If the lambda coefficient is greater than 1, the gas / fluid mixture is lean, and if the lambda coefficient is less than 1, the gas / fluid mixture is rich. If the gas / fluid mixture is rich, incomplete combustion of the gas / fluid mixture occurs and soot particles can be formed. In order to suppress the formation of soot particles as much as possible, an effort is made to obtain a mixture of fluid and gas having a lambda coefficient of 1 or more. In an internal combustion engine such as a diesel engine in which fluid is directly injected into a cylinder and ignited by heat generated during a compression stroke, many of the engines are controlled to mix and burn, which means that the fluid being injected is stoichiometric. It is made to burn within a certain range. Where the fluid / gas mixture is close to a rich stoichiometric range, soot particles can form during combustion.

シリンダ2中で酸素とスス粒子の乱流および混合を高めるための必須条件として、本発明によれば、ピストン3がシリンダ2の下死点へ向かって移動しているときに、噴射休止U1が設けられる。ピストン3が図2に示す位置にある時に、シリンダ2内に流体が少しも噴射されないというような噴射休止U1を行う。最初の噴射中に噴射された流体20は、シリンダ2中で生成された圧縮熱によって、この段階では少なくとも部分的に発火している。このため流体は燃え、これによってシリンダ2中の圧力がさらに増加し、その結果、ピストン3は下死点に向かって下方へと押し進められる。 As an essential condition for increasing the turbulence and mixing of oxygen and soot particles in the cylinder 2, according to the invention, when the piston 3 is moving towards the bottom dead center of the cylinder 2, the injection pause U 1 Is provided. When the piston 3 is in the position shown in FIG. 2, the injection pause U 1 is performed such that no fluid is injected into the cylinder 2. The fluid 20 injected during the first injection is ignited at least partially at this stage by the heat of compression generated in the cylinder 2. As a result, the fluid burns, thereby further increasing the pressure in the cylinder 2 and, as a result, the piston 3 is pushed downward toward the bottom dead center.

図2は、最初の噴射休止U1の直前で流体の噴射がどのように行われるのかについて示している。噴射休止U1に先立って噴射された流体20の燃焼が続くが、シリンダ2中の乱流および混合が低下しているので勢いは弱まっている。噴射休止後に噴射された流体16によって、乱流または混合動作の停止していた領域、またはかなり弱まっていた領域で、流体、ガス、およびスス粒子をもう一度循環させて混合し、または循環および混合の程度を上げ、これによって、残留スス粒子の酸化を可能にしたり、および/または促進したりする。 Figure 2 illustrates the how the injection of fluid is how done just before the first injection pause U 1. Combustion of the fluid 20 injected prior to the injection pause U 1 continues, but the momentum is weakening because the turbulence and mixing in the cylinder 2 are reduced. Fluid, gas, and soot particles are circulated once again in the area where turbulence or mixing action has stopped or significantly weakened by the injected fluid 16 after the injection pause, or To a greater extent, this enables and / or facilitates the oxidation of residual soot particles.

初期噴射圧NOP1は、NOX形成が少なくなるように、比較的低レベルに設定することが好ましい。初期噴射圧が高すぎると、混合エネルギーが多く導入されすぎて、その結果、あまりにも急速に燃焼が起こり、燃焼時間が長くなりすぎて、燃料があまりにも多く費やされてしまう。これによって、燃焼温度が高くなるので、NOXの排出が増加する。 The initial injection pressure NOP 1 is preferably set to a relatively low level so that NO x formation is reduced. If the initial injection pressure is too high, too much mixing energy is introduced, resulting in combustion too quickly, too long combustion time, and too much fuel. Thus, since the combustion temperature becomes higher, the discharge of the NO X increases.

噴射休止直後の流体の初期噴射圧NOP2を、噴射休止の直前に示していた噴射圧NCP1に対し、0バール超から2000バールまでの範囲内の値だけ増加させると、有利であることが分かった。さらに、0°超から30°までの範囲内の値、好ましくは1°〜20°の範囲内の値の、エンジン・クランクシャフト10の回転角度αに相当する期間、噴射休止U1が続くと有利であることも分かった。 It may be advantageous to increase the initial injection pressure NOP 2 of the fluid immediately after the injection stop to a value in the range from above 0 bar to 2000 bar with respect to the injection pressure NCP 1 shown immediately before the injection stop. I understood. Furthermore, when the injection pause U 1 continues for a period corresponding to the rotation angle α of the engine crankshaft 10 with a value in the range of more than 0 ° to 30 °, preferably in the range of 1 ° to 20 °. It also proved advantageous.

噴射休止Uiを1回以上伴う流体の噴射プロセス全体は、クランクシャフト10の回転角度αで言えば上死点前40°から上死点後60°までの範囲、好ましくは上死点前20°から上死点後40°までの範囲で行うものとする。流体の噴射圧、NOPとNCP(それぞれ開始時圧力、終了時圧力)は、好ましくはシリンダの圧縮圧より大きく3000バールまでの範囲内の値に制御される。 The entire fluid injection process involving one or more injection pauses U i is in the range from 40 ° before top dead center to 60 ° after top dead center in terms of the rotation angle α of the crankshaft 10, preferably 20 before top dead center. It shall be performed in the range from ° to 40 ° after top dead center. The fluid injection pressure, NOP and NCP (starting pressure and ending pressure, respectively) are preferably controlled to values in the range of greater than the compression pressure of the cylinder and up to 3000 bar.

一度の噴射プロセス中で複数の噴射休止Uiを次々と行う場合、複数回流体を各回短時間で噴射することになる。これは、ごく短い期間に流体がパルスのようになってシリンダ2内に噴射されることを意味する。同時に、流体に対する初期噴射圧NOPは、各回を追うごと増加することになる。期間を短くして圧力を高くすると、大きな衝撃となり、混合度が増す。ピストン3、凹部9、シリンダ2、およびシリンダーヘッド14を適切な方法で形成し、流体が噴射されることになるホール17を噴射ノズル4に設けることによって、最初の噴射休止U1の後に噴射される流体による作用を受けるように、最初の噴射の間およびその噴射後に発生する濃厚な燃料/ガス混合物が存在する領域を制御できる。最初の流体噴出時の初期噴射圧NOP1、および最初の噴射の開始時点も、後続の噴射(1回以上)時のシリンダ2内での上述の領域の存在位置に対し影響を及ぼすパラメータである。 When a plurality of injection pauses U i are performed one after another in one injection process, the fluid is injected a plurality of times in a short time each time. This means that the fluid is injected into the cylinder 2 in a very short period of time. At the same time, the initial injection pressure NOP for the fluid will increase each time. Shortening the period and increasing the pressure results in a large impact and increases the degree of mixing. Piston 3, the recess 9, to form a cylinder 2, and the cylinder head 14 in a suitable manner, by providing the hole 17 so that the fluid is injected into the injection nozzle 4, is injected after the first injection pause U 1 The region in which there is a rich fuel / gas mixture generated during and after the first injection can be controlled to be acted upon by the fluid. The initial injection pressure NOP 1 at the time of the first fluid ejection and the start time of the first injection are also parameters that affect the existence position of the above-described region in the cylinder 2 at the time of subsequent injection (one or more times). .

図3は、エンジン・クランクシャフトの回転角度αを変数とする噴射圧Pinj、流体の流量ff、および噴射針のリフト高さdnの曲線を示す。例示によれば、上死点TDC前のクランクシャフト角度α1の時点で第1の噴射を開始する。このときの流体圧力はNOP1である。第1の噴射は、期間DUR1の間に行われる。曲線dnからわかるように、クランクシャフト角度α2の時点で噴射弁の針が閉じる。この時点での流体圧力はNCP1である。流量曲線ffから明らかなように、噴射弁の針が閉じているときに噴射休止U1が設けられている。この間、噴射弁から流れる流体はない。噴射休止が時間U1の間続いた後、流体の第2の噴射がクランクシャフト角度α3の時点で開始する。噴射休止U1の間、流体圧力が噴射弁の内側で増え続けてきており、噴射針がクランクシャフト角度α3の時点で開いたとき、流体の圧力は、クランクシャフト角度α2の時点での終了時圧力NCP1より大きい圧力NOP2となっている。クランクシャフト角度α4の時点で噴射弁の噴射針が閉鎖することで、噴射プロセスが終了する。図3に示すシーケンスは、噴射休止を複数回設けるように構成することができる。 Figure 3 shows the injection pressure P inj for the rotation angle α of the engine crankshaft and a variable, fluid flow f f, and the curve of the lift height d n of an injection needle. According to the example, the first injection is started at the time of the crankshaft angle α 1 before the top dead center TDC. Fluid pressure at this time is NOP 1. The first injection is performed during the period DUR 1 . As can be seen from the curve d n, the needle of the injection valve closes at the time of the crankshaft angle α 2 . The fluid pressure at this point is NCP 1 . As is apparent from the flow curve f f , the injection pause U 1 is provided when the needle of the injection valve is closed. During this time, no fluid flows from the injector. After the injection pause lasts for time U 1, a second injection of fluid begins at the crankshaft angle α 3 . During the injection pause U 1 , the fluid pressure continues to increase inside the injection valve, and when the injection needle opens at the crankshaft angle α 3 , the fluid pressure is at the crankshaft angle α 2 time. The pressure NOP 2 is greater than the end-time pressure NCP 1 . When the crankshaft angle α 4 is reached, the injection needle of the injection valve is closed, and the injection process ends. The sequence shown in FIG. 3 can be configured to provide a plurality of injection pauses.

図3に示す噴射シーケンスは、図6を用いて詳細に後述するユニットインジェクタ・タイプの噴射弁によって達成できる。   The injection sequence shown in FIG. 3 can be achieved by a unit injector type injection valve, which will be described in detail later with reference to FIG.

図4はエンジン・クランクシャフト10の回転角度αを変数とする流体の流量fを示している。図4の曲線からわかるように、噴射シーケンス中に噴射休止Uiを複数回行っている。この方法では、噴射シーケンスが断続的なものになる。各噴射休止Uiの後の開始時圧力NOPi+1は、噴射休止Ui前に示されていた終了時圧力NCPiより大きい。図4に示されるように、噴射圧を増加させれば、新しい噴射段階になるごとに量の増えた流体を所定期間噴射する時間が得られることを意味する。冒頭に述べたように、従来の燃料ポンプに関する問題は、噴射シーケンス中の噴射圧が、エンジンrpm、および噴射シーケンス中に噴射されることになっている燃料量へ大きく依存しているということである。少量の噴射燃料および/または低rpm下で作動を行う場合、噴射中に休止を複数回設けることによって、噴射シーケンス中に流体の所望の圧力増加を得ることになる。 FIG. 4 shows the flow rate f of the fluid with the rotation angle α of the engine crankshaft 10 as a variable. As can be seen from the curve in FIG. 4, the injection pause U i is performed a plurality of times during the injection sequence. In this method, the injection sequence is intermittent. The starting pressure NOP i + 1 after each injection pause U i is greater than the end pressure NCP i shown before the injection pause U i . As shown in FIG. 4, if the injection pressure is increased, it means that a time for injecting the increased amount of fluid for a predetermined period can be obtained every time a new injection stage is started. As mentioned at the beginning, the problem with conventional fuel pumps is that the injection pressure during the injection sequence is highly dependent on the engine rpm and the amount of fuel that is to be injected during the injection sequence. is there. When operating under small amounts of injected fuel and / or low rpm, providing multiple pauses during injection will result in the desired increase in fluid pressure during the injection sequence.

図5はエンジン排気中のNOX含有量を変数としたスス粒子含有量を示している。破線の曲線は、従来の内燃機関でのNOX含有量を変数としたスス粒子含有量を表わし、実線の曲線は、流体の噴射を本発明によるプロセスによって制御している内燃機関でのNOX含有量を変数としたスス粒子含有量に関するものである。図5からわかるように、本発明によるプロセスによって流体の噴射を制御すれば、エンジン排気のNOX含有量がどの値であっても、スス粒子含有量は著しく低いものとなる。 FIG. 5 shows the soot particle content with the NO x content in the engine exhaust as a variable. The dashed curve represents the soot particle content with the NO x content in the conventional internal combustion engine as a variable, and the solid curve represents the NO x in the internal combustion engine in which fluid injection is controlled by the process according to the invention. It relates to the soot particle content with the content as a variable. As can be seen from FIG. 5, if the injection of fluid is controlled by the process according to the present invention, the soot particle content is remarkably low regardless of the value of the NO x content of the engine exhaust.

図6は、内燃機関1の燃焼室21内に圧縮燃料の量の一部を噴射するようになっている噴射弁20を概略的に示す。高圧ポンプ22が噴射弁20に接続されている。高圧ポンプ22は、シリンダ部分23の中で往復運動するプランジャ24を備え、カム軸25によってプランジャ24に力を加えることによって、該プランジャ24は流体を圧縮する。流体は、タンク26からのシリンダ部分23に供給される。   FIG. 6 schematically shows an injection valve 20 adapted to inject a part of the amount of compressed fuel into the combustion chamber 21 of the internal combustion engine 1. A high pressure pump 22 is connected to the injection valve 20. The high-pressure pump 22 includes a plunger 24 that reciprocates in the cylinder portion 23, and the plunger 24 compresses fluid by applying a force to the plunger 24 by a cam shaft 25. Fluid is supplied to the cylinder portion 23 from the tank 26.

噴射弁20は、噴射弁20の噴射ノズル4の少なくとも1つの噴射開口17と協働するようになっている噴射針27を備える。噴射針27には、流体からの圧力を受ける第1および第2の面28、29が備えられている。針スプリングなどの弾力性要素30が、噴射開口17へ向かって噴射針27を押している。第2の受圧面29に作用している燃料圧力からの力が、第1の受圧面28に作用している流体圧力からの力および弾力性要素30からの力の合計より大きいと、噴射針27が開き、すぐに燃料が燃焼室21内に噴射されることになる。噴射針27は、制御ユニット32に接続されている逃し弁31から作用を受ける。更に、噴射針27は、噴射針の強制閉鎖を行う機構と協働するようになっている。図6にこの機構を35で示す。機構35は、圧力が針スプリングの通常の開口/閉鎖圧力を超過したときでも、プランジャ24および/または針スプリング30からの圧力とは関係なく噴射針27を開閉できるものである。なお、噴射が断続的に行われる噴射シーケンスの基本的な態様は、噴射弁20の高圧側から低圧側への内部漏れのほか、プランジャ24の直径、プランジャ24の動作速度(すなわちカム軸/ロッカーアーム25がどのように設計されているのか)、および有効なホールの全面積によって制約を受けるものである。   The injection valve 20 comprises an injection needle 27 adapted to cooperate with at least one injection opening 17 of the injection nozzle 4 of the injection valve 20. The injection needle 27 is provided with first and second surfaces 28 and 29 that receive pressure from the fluid. A resilient element 30 such as a needle spring pushes the injection needle 27 toward the injection opening 17. When the force from the fuel pressure acting on the second pressure receiving surface 29 is greater than the sum of the force from the fluid pressure acting on the first pressure receiving surface 28 and the force from the elastic element 30, the injection needle 27 opens, and fuel is immediately injected into the combustion chamber 21. The injection needle 27 receives an action from the relief valve 31 connected to the control unit 32. Further, the injection needle 27 cooperates with a mechanism for forcibly closing the injection needle. This mechanism is shown at 35 in FIG. The mechanism 35 is capable of opening and closing the injection needle 27 regardless of the pressure from the plunger 24 and / or the needle spring 30 even when the pressure exceeds the normal opening / closing pressure of the needle spring. The basic mode of the injection sequence in which injection is intermittently performed includes internal leakage from the high pressure side to the low pressure side of the injection valve 20, the diameter of the plunger 24, the operating speed of the plunger 24 (that is, the camshaft / rocker). It is constrained by how the arm 25 is designed) and the total effective hole area.

図7は、どのような機能が制御機構35によって得られるのかを示している。図7は、三つの異なる噴射シーケンスを示し、各シーケンスはそれぞれ圧力シーケンスA、B、およびCを有し、噴射圧NOP2は全て同じであるが、噴射休止(図7では1回のみ)の直前の噴射圧NCP1と噴射休止直後の初期噴射圧NOP2との間にある噴射休止を、逃し弁31および噴射針27の制御の仕方によって変化させている。なお、噴射システムによって可能な最大噴射圧をPmaxとする。図7には、所定の噴射圧に増えるまで噴射針27を閉じておくときにできることが示されている。図7では所定圧力レベルをNOP1およびNOP2としている。噴射休止は自由に変えることができる。 FIG. 7 shows what functions are obtained by the control mechanism 35. FIG. 7 shows three different injection sequences, each sequence having its own pressure sequence A, B, and C, all of the injection pressure NOP 2 being the same, but with an injection pause (only once in FIG. 7). The injection pause between the immediately preceding injection pressure NCP 1 and the initial injection pressure NOP 2 immediately after the injection pause is changed according to the control method of the relief valve 31 and the injection needle 27. Note that the maximum injection pressure possible by the injection system is P max . FIG. 7 shows what can be done when the injection needle 27 is closed until it increases to a predetermined injection pressure. In FIG. 7, the predetermined pressure levels are NOP 1 and NOP 2 . The injection pause can be changed freely.

噴射シーケンスA(図7を参照)では、逃し弁31(図6を参照)が常時閉じたままである。シリンダ部分23でNOP1に達すると、噴射針27が押し戻され、これによって流体が燃焼室21内へ噴霧される。圧力NCP1のときに制御機構35の助けを借りて噴射針27を強制的に閉じ、噴射圧が所定圧力レベルNOP2に増えるまで待つ。圧力レベルNOP2に達すると、噴射針を開き、次の投入量分の流体を噴霧する。このときの噴射休止をDUR Aで示す。 In the injection sequence A (see FIG. 7), the relief valve 31 (see FIG. 6) is always closed. When NOP 1 is reached in the cylinder portion 23, the injection needle 27 is pushed back, whereby the fluid is sprayed into the combustion chamber 21. Closing the injection needle 27 with the aid of the control mechanism 35 when forced pressure NCP 1, it waits until the injection pressure is increased to a predetermined pressure level NOP 2. When the pressure level NOP 2 is reached, the injection needle is opened and the fluid for the next input amount is sprayed. The injection stop at this time is indicated by DUR A.

噴射シーケンスB(図7を参照)では、まず、NOP1、NCP1、および逃し弁31に対し上述の圧力シーケンスを繰り返す(噴射シーケンスAを参照)。NCP1に達した後、逃し弁31を開閉してシステム内の圧力を一時的に低下させる。逃し弁31が閉じると、噴射針27が閉じ、噴射圧が所定圧力レベルNOP2に増えるまで待つ。圧力レベルNOP2に達すると、噴射針27を開き、次の投入量分の流体を噴霧する。このときの噴射休止をDUR Bで示す。 In the injection sequence B (see FIG. 7), first, the above pressure sequence is repeated for NOP 1 , NCP 1 and the relief valve 31 (see the injection sequence A). After reaching NCP 1 , the relief valve 31 is opened and closed to temporarily reduce the pressure in the system. When relief valve 31 is closed, the injection needle 27 is closed, the injection pressure waits until increase to a predetermined pressure level NOP 2. When the pressure level NOP 2 is reached, the injection needle 27 is opened to spray the next amount of fluid. The injection stop at this time is indicated by DUR B.

噴射シーケンスC(図7を参照)では、まず、NOP1、NCP1、および逃し弁31に対し上述の圧力シーケンスを繰り返す(噴射シーケンスAを参照)。NCP1に達した後、逃し弁31を開いて、圧力を最小限にまで低下させ、すぐに逃し弁31を閉じる。逃し弁31を閉じると同時に噴射針27を閉じ、初期噴射圧NOP2レベルに達するまで閉じたままにする。圧力レベルNOP2に達すると、噴射針27を開き、次の投入量分の流体を噴霧する。ここでの噴射休止をDUR Cで示す。噴射休止の間、逃し弁31を開いておく期間をさらに長くすれば、噴射休止の延長ができるものと考えられ、圧力増加の開始時間が先送りされる。このため、噴射を起こすタイミングを制御できる。図7では、噴射圧NOP1およびNOP2をあるレベルの値として選択している。噴射針27を閉じておく期間を変えることにより別のレベルの噴射圧を選択し、これによって異なる圧力増加曲線が得られることはいうまでもない。さらに、図4に例示するように、噴射休止を複数回にして流体を噴射することもできる。 Injection sequence C (see Figure 7), (see injection sequence A) First, the NOP 1, NCP 1, and relief valve 31 to repeat the pressure sequence described above. After reaching NCP 1 , the relief valve 31 is opened, the pressure is reduced to a minimum, and the relief valve 31 is immediately closed. At the same time as the relief valve 31 is closed, the injection needle 27 is closed and remains closed until the initial injection pressure NOP 2 level is reached. When the pressure level NOP 2 is reached, the injection needle 27 is opened to spray the next amount of fluid. The injection stop here is indicated by DUR C. If the period during which the relief valve 31 is opened during the injection stop is further extended, it is considered that the injection stop can be extended, and the start time of the pressure increase is postponed. For this reason, the timing which raise | generates injection can be controlled. In FIG. 7, the injection pressures NOP 1 and NOP 2 are selected as values of a certain level. It goes without saying that a different pressure increase curve can be obtained by selecting another level of injection pressure by changing the period during which the injection needle 27 is closed. Furthermore, as illustrated in FIG. 4, the fluid can be ejected with a plurality of ejection pauses.

図8は、二つの噴射ノズルがシリンダ2に設けられている本発明の別の実施形態を示す。これは、最初の噴射およびその次の噴射を行うときに、第1および第2の円錐角β1,β2という異なる角度で流体を噴射できるようにするものである。好ましくは、最初の噴射中に流体を噴射するときの第1の円錐角β1は、前記の円錐角βとおなじものが選択される。後続の噴射中に流体を噴射するときの第2の円錐角β2は、後続の噴射時に噴射される流体が濃厚な流体/ガス混合物の領域に届き、この領域を混合するように選択される。   FIG. 8 shows another embodiment of the present invention in which two injection nozzles are provided in the cylinder 2. This enables fluid to be ejected at different angles of the first and second cone angles β1 and β2 when performing the first injection and the subsequent injection. Preferably, the first cone angle β1 when the fluid is ejected during the first ejection is selected to be the same as the cone angle β. The second cone angle β2 when injecting fluid during the subsequent injection is selected such that the fluid injected during the subsequent injection reaches the region of the rich fluid / gas mixture and mixes this region.

別の可能性として、二つの異なる角度βを作る可変スプレッダ構造物を備えた単一の噴射ノズルを設けて、噴射の段階毎に円錐角を変えてもよい。これ自体は公知技術である。   Another possibility is to provide a single injection nozzle with a variable spreader structure that creates two different angles β, with the cone angle varying at each stage of injection. This is a known technique.

本発明に係る内燃機関(エンジン)1の燃料噴射を制御するプロセスは、エンジン1のすべての操作モードに適用できる。好ましくは、流体燃焼中にシリンダ2内でススが過剰に発生するときにのみ噴射休止を実施するように噴射を制御する。また、高度の高いところでエンジン1を操作する場合、または空気が薄い、すなわち空気濃度が低いときに、高い周辺温度下でエンジンを操作する場合など、空気欠乏が予想される場合、つまりシリンダに取り込まれた空気の総量に含まれる酸素分子の量が取り込み体積単位あたり少ない場合にのみ、噴射休止を実行することもできる。これは、スロットルを開けるなどの過渡的なシーケンス中で実行することもできる。エンジンが排気で駆動されるターボを備えている場合、スロットルが開いてもターボはゆっくり反応し、その結果、シリンダ2に導入される空気は比較的少なくなる。つまり、流体/ガス混合物の濃厚な領域がシリンダ2内に生じ、このためススの形成が増加することになってしまう。そこで、本プロセスに従い、噴射休止の後、続けて次の流体の噴射を実行すれば、スス粒子の酸化が十分行われるようになる。以下、このことについてさらに詳細に説明する。   The process for controlling the fuel injection of the internal combustion engine (engine) 1 according to the present invention can be applied to all operation modes of the engine 1. Preferably, the injection is controlled so that the injection pause is performed only when soot is excessively generated in the cylinder 2 during fluid combustion. When the engine 1 is operated at a high altitude, or when the engine is operated at a high ambient temperature when the air is thin, that is, when the air concentration is low, the air is expected to be taken into the cylinder. The injection pause can be executed only when the amount of oxygen molecules contained in the total amount of air is small per intake volume unit. This can also be done in a transient sequence such as opening the throttle. If the engine has a turbo driven by exhaust, the turbo reacts slowly even when the throttle is open, so that relatively little air is introduced into the cylinder 2. That is, a rich region of fluid / gas mixture is created in the cylinder 2, which increases the soot formation. Therefore, according to this process, if the injection of the next fluid is continuously executed after the stop of the injection, the soot particles are sufficiently oxidized. This will be described in more detail below.

排気をシリンダ2に戻す、いわゆる排気再循環すなわちEGRによって、NOXの形成を減らすことができるが、これはスス粒子形成と引き換えに起きる。本プロセスに従って噴射休止と排気再循環とを組み合わせることによって、エンジン排気中のスス粒子含有量を法定制限値未満に維持できる。同時に、初期噴射圧を直前の噴射圧と比較して低レベルに保てるので、必要な再循環排気量が減る。初期噴射圧のレベルが低いほど、燃焼のために供給される混合エネルギーが少なくなるので、燃焼温度が低下し、これによってNOXの形成も低下する。噴射休止はそれ自体で局所的な効果をもたらし、NOXの排出を減らすこともできる。 Returning the exhaust to the cylinder 2, by means of a so-called exhaust gas recirculation i.e. EGR, but can reduce the formation of NO X, which occurs in exchange for soot particle formation. By combining injection pause and exhaust recirculation according to this process, the soot particle content in the engine exhaust can be maintained below the legal limit. At the same time, the initial injection pressure can be kept at a low level compared to the immediately preceding injection pressure, so that the required recirculation exhaust amount is reduced. Higher the level of initial injection pressure is low, since the mixing energy to be supplied for combustion decreases, the combustion temperature is lowered, thereby also lowering the formation of NO X. The injection pause itself has a local effect and can also reduce NO x emissions.

ある動作条件下では、本発明に従って1回以上の噴射休止Uiを行って噴射すると、燃料消費量の増加という結果になる可能性もある。このような結果を最小限に抑えるために、噴射休止を最適化し、噴射に用いる流体をできるだけ少なくし、流体をできるだけ急速に燃焼できるようにする必要がある。また、特に、噴射休止の効果がシリンダおよびピストンの構造によって制御されることもわかった。噴射休止後の噴射開始時点で噴射圧をさらに高くすれば、必要な混合の達成に要する燃料はさらに少なくなる。噴射休止後の噴射開始時点で噴射圧をさらに高くすれば、噴射流体の燃焼がさらに迅速になる。しかし、この場合、上述したように、NOX形成について考慮する必要がある。 Under certain operating conditions, injection with one or more injection pauses U i according to the present invention may result in increased fuel consumption. In order to minimize such consequences, it is necessary to optimize injection pauses, use as little fluid as possible for injection, and allow the fluid to burn as quickly as possible. It has also been found that in particular, the effect of the injection pause is controlled by the structure of the cylinder and piston. If the injection pressure is further increased at the injection start time after the injection stop, the fuel required to achieve the necessary mixing is further reduced. If the injection pressure is further increased at the injection start time after the injection suspension, the combustion of the injection fluid becomes faster. However, in this case, it is necessary to consider NO x formation as described above.

さらに、様々な負荷状況を考慮しつつ本発明に従ってエンジンを最適化できる。例えば、低負荷時には普通の単独噴射を用い、高負荷時に少なくとも1回休止を行う噴射を用いてもよい。   Furthermore, the engine can be optimized according to the present invention while taking into account various load situations. For example, normal single injection may be used when the load is low, and injection may be used that pauses at least once when the load is high.

急激にNOXの形成を増やさずにエンジン効率を高める1つの方法として、流体の噴射時期を早めると同時に、再循環される排気量を増やす方法がある。しかし、このプロセスは排気中のスス粒子増加に結びつく。このようにスス粒子の含有量が高くなることを避けるためには、燃料消費量は無視できる程度、または全く増やさないで、よりクリーンな排気を達成するように流体の噴射中に噴射休止を設けることである。しかし、大量の再循環排気は、エンジンおよび燃焼プロセスをさらに複雑なものにしてしまう。さらに、低燃料消費量を達成するために噴射休止を最適化すると、スス排出の増加という結果になる可能性もある。したがって、燃料消費量があまり重要でない動作ポイントのみで噴射休止を利用することが効果的であると考えられる。 One method of increasing engine efficiency without rapidly increasing NO x formation is to increase the amount of exhaust gas recirculated at the same time as the fluid injection timing is advanced. However, this process leads to increased soot particles in the exhaust. In order to avoid such high soot particle content, fuel consumption is negligible or not increased at all, and an injection pause is provided during fluid injection to achieve cleaner exhaust. That is. However, the large amount of recirculated exhaust complicates the engine and combustion process. Furthermore, optimizing the injection pause to achieve low fuel consumption can result in increased soot emissions. Therefore, it is considered effective to use injection suspension only at operating points where fuel consumption is not very important.

高度の高いところで駆動すると、空気が薄いために煙が出るという問題が発生する。これはめったに生じない動作状況であるので、このような場合、噴射休止を1回以上設けることによってスス粒子形成を抑えることができる。このやり方は、スス粒子形成の抑制を最大限に引き出すようにすでに最適化されたものと同じである。   When driving at a high altitude, there is a problem that smoke is generated due to the thin air. Since this is an operation situation that rarely occurs, in such a case, soot particle formation can be suppressed by providing one or more injection pauses. This approach is the same as that already optimized to maximize the suppression of soot particle formation.

スロットルを一時的に、特に迅速に開くと、排気中のスス粒子含有量が高くなるという問題が生じる。このような問題は、ターボで過給を高負荷レベルに増やすための時間がとれないために起きる。新しい負荷条件に合った十分なレベルの過給が達成されるまで比較的長い時間が経過することになる。一方、エンジンは必要な分よりもより低い給気で作動する。空気過剰をあまり低くしすぎないように、負荷の変動はエンジン制御システムによって制限され、その結果、ターボで所望のrpmを得るための時間ができる。   If the throttle is opened temporarily, particularly quickly, the problem arises that the soot particle content in the exhaust gas becomes high. Such a problem occurs because there is no time for turbocharging to increase to a high load level. A relatively long time will elapse until a sufficient level of supercharging is achieved to meet the new load conditions. On the other hand, the engine operates at a lower charge than needed. The load variation is limited by the engine control system so that the excess air is not too low, so that the turbo has time to get the desired rpm.

噴射休止Uiによって、スロットルの開放に対する利点が多くもたらされる。噴射休止Uiの後、続いて噴射を行うと、スス粒子の酸化を増大させることができるので、空気過剰が低くなってもそれを補うことができる。また、エンジン制御システムは、必要なさらに高いレベルにより迅速に負荷を補うことができる。その結果、スロットルを開いたときに、より迅速に反応できるエンジンとなる。噴射休止Uiをその基本の形で設けたとき、この効果が低下するに伴って、ターボに付与されるエネルギーが多くなり、これによって、さらに迅速に所望のrpmが得られ、スロットルの開放により迅速にエンジンが反応するという結果が得られる。 The injection pause U i provides many advantages for opening the throttle. Subsequent injections after the injection pause U i can increase the oxidation of the soot particles, which can be compensated for when the excess air is low. Also, the engine control system can quickly compensate for the load with the required higher level. The result is an engine that can react more quickly when the throttle is opened. When the injection pause U i is provided in its basic form, as this effect decreases, more energy is imparted to the turbo, thereby obtaining the desired rpm more quickly, and by opening the throttle. The result is that the engine reacts quickly.

本発明によるプロセスは、2ストロークエンジンおよび4ストロークエンジンに、またさらに多くのストロークを備えたエンジンに適用可能である。エンジンがフリーピストンエンジンである場合、上述の角度は、ピストンがシリンダ中で移動する距離あるいは相当する特定の時点に関する値にしてもよい。   The process according to the invention is applicable to two-stroke and four-stroke engines and to engines with more strokes. If the engine is a free piston engine, the angle described above may be a value relating to the distance that the piston travels in the cylinder or to a corresponding particular point in time.

流体としてディーゼル燃料のみについて述べてきたが、ガソリンおよび/または水といった他の燃焼性流体および不燃性流体の使用もできる。さらに、噴射ノズル4によって流体を気体状態で導入することも考えられる。   Although only diesel fuel has been described as the fluid, other flammable and non-flammable fluids such as gasoline and / or water may be used. Furthermore, it is also conceivable to introduce a fluid in a gaseous state by the injection nozzle 4.

本発明に従って流体をシリンダ内に噴射する内燃機関の概略図である。1 is a schematic view of an internal combustion engine for injecting fluid into a cylinder according to the present invention. 噴射休止後に噴射を行っているときの図1の内燃機関の概略図である。FIG. 2 is a schematic diagram of the internal combustion engine of FIG. 1 when injection is performed after injection stop. エンジン・クランクシャフトの回転角度を変数として、噴射圧、流体の流量、および噴射針のリフト高さを示す図である。It is a figure which shows the injection pressure, the flow volume of a fluid, and the lift height of an injection needle by making the rotation angle of an engine crankshaft into a variable. エンジン・クランクシャフトの回転角度を変数とする流体の流量を示す図である。It is a figure which shows the flow volume of the fluid which makes the rotation angle of an engine crankshaft a variable. エンジン排気中のNOX含有量を変数とするスス粒子含有量を示す。It shows the soot particle content with the NO x content in the engine exhaust as a variable. 動力制御式噴射針を備えた噴射弁の概略図である。It is the schematic of the injection valve provided with the power control type injection needle. 噴射針がどのように制御されて噴射休止および噴射時の噴射圧を変えるのかを示す図である。It is a figure which shows how an injection needle is controlled and the injection pressure at the time of injection stop and injection is changed. 流体の噴射をさまざまな円錐角で実行できる内燃機関の概略図である。1 is a schematic view of an internal combustion engine capable of performing fluid injection at various cone angles. FIG.

符号の説明Explanation of symbols

1 エンジン
2 シリンダ
3 ピストン
4 噴射ノズル
5 吸気導管
6 吸気弁
7 排気導管
8 排気弁
9 凹部
10 クランクシャフト
11 コンロッド
12 縁部
13 周辺領域
14 シリンダーヘッド
15 中心線
16 流体噴霧
17 ホール(噴射開口)
20 流体噴霧
21 燃焼室
22 高圧ポンプ
23 シリンダ部分
24 プランジャ
25 カム軸
26 タンク
27 噴射弁
28 第1の面
29 第2の面
30 弾力性要素(針スプリング)
31 逃し弁
32 制御ユニット
35 制御機構
DESCRIPTION OF SYMBOLS 1 Engine 2 Cylinder 3 Piston 4 Injection nozzle 5 Intake conduit 6 Intake valve 7 Exhaust conduit 8 Exhaust valve 9 Concavity 10 Crankshaft 11 Connecting rod 12 Edge 13 Peripheral area 14 Cylinder head 15 Center line 16 Fluid spray 17 Hole (injection opening)
DESCRIPTION OF SYMBOLS 20 Fluid spray 21 Combustion chamber 22 High pressure pump 23 Cylinder part 24 Plunger 25 Cam shaft 26 Tank 27 Injection valve 28 1st surface 29 2nd surface 30 Elastic element (needle spring)
31 Relief valve 32 Control unit 35 Control mechanism

Claims (14)

シリンダ(2)中の上下死点ポイントの間を往復運動するピストン(3)と、シリンダ(2)に設けられた噴射ノズル(4)とを備える内燃機関(1)への流体の噴射を制御する方法であって、
初期噴射圧(NOPi)でシリンダ(2)への流体の噴射を実行し、該流体を発火させてシリンダ(2)内の圧力を増加させ、これによってシリンダ(2)中の下死点ポイントに向かってピストン(3)を移動させる工程と、
流体の噴射中に複数回の噴射休止(Ui)を実行する工程と
を含む方法において、
次第に流体の供給量が増加する、一連の後続する流体噴射パルスに先立つ最初の流体噴射パルスを含み、流体噴射休止(U i )のうち最初の流体噴射休止の直前における噴射圧(NCPiに比べて0バール以上の下限と2000バールの上限を有する範囲内の値だけ後続する流体噴射パルスのための初期噴射圧(NOP i+1 )が増加するように、後続する流体噴射パルスが実行されるとともに、内燃機関(1)に設けられたクランクシャフト(10)の回転角(α)が0°以上の下限と30°の上限を有する範囲内の値に相当する期間にわたり当該流体噴射休止は実行されることを特徴とする方法。
A cylinder (2) piston (3) to reciprocate between top and bottom dead centers points in a cylinder injection nozzles provided in (2) (4), the injection of fluid into the internal combustion engine (1) comprising a A method of controlling,
The fluid is injected into the cylinder (2) at the initial injection pressure (NOP i ), and the fluid is ignited to increase the pressure in the cylinder (2), thereby causing a bottom dead center point in the cylinder (2). Moving the piston (3) toward
Performing multiple injection pauses (U i ) during fluid injection ;
In a method comprising:
Including a first fluid ejection pulse prior to a series of subsequent fluid ejection pulses, with gradually increasing fluid supply, to the ejection pressure (NCP i ) of the fluid ejection pause (U i ) just prior to the first fluid ejection pause. The subsequent fluid injection pulse is executed such that the initial injection pressure (NOP i + 1 ) for the subsequent fluid injection pulse is increased by a value within a range having a lower limit of 0 bar or more and an upper limit of 2000 bar. In addition, the fluid injection suspension is stopped over a period corresponding to a value within a range in which the rotation angle (α) of the crankshaft (10) provided in the internal combustion engine (1) has a lower limit of 0 ° or more and an upper limit of 30 °. A method characterized in that it is performed .
当該噴射休止(UThe injection stop (U ii )がクランクシャフト(10)の回転角度(α)において1°から20°までの範囲で実行されることを特徴とする請求項1に記載の方法。2) is carried out in the range from 1 ° to 20 ° at the rotation angle (α) of the crankshaft (10). 当該噴射休止(Uiについて、流体の噴射シークエンス全体は、クランクシャフト(10)の回転角度(α)に関して上死点前40°から上死点後60°までの範囲で実行されることを特徴とする請求項1に記載の方法。 For the injection pause (U i), the injection sequence entire fluid is performed in a range from the top dead center 40 ° to 60 ° after top dead center relates to the rotation angle of the crankshaft (10) (α) The method according to claim 1. 当該噴射休止(UThe injection stop (U ii )について、流体の噴射シークエンス全体は、クランクシャフト(10)の回転角度(α)に関して上死点前20°から上死点後40°までの範囲で実行されることを特徴とする請求項3に記載の方法。), The entire fluid injection sequence is carried out in the range from 20 ° before top dead center to 40 ° after top dead center with respect to the rotation angle (α) of the crankshaft (10). The method described in 1. 流体の噴射圧(NOPi、NCPi)は、シリンダ(2)の圧縮圧より3000バールまで大きな範囲内の値に制御されることを特徴とする請求項1に記載の方法。Injection pressure of the fluid (NOP i, NCP i) A method according to claim 1, characterized in that it is controlled to a value within the large range up to 3000 bar than the compression pressure of the cylinder (2). 噴射弁(20)は噴射ノズル(4)に設けられた少なくとも1つの噴射開口(17)と協働するように設計された噴射針(27)を備え、該噴射針(27)は高圧ポンプ(22)によって生成される流体圧力によって制御され、該流体圧力自体は噴射弁(20)に設けられた逃し弁(31)からの作用を受け、該逃し弁(31)は開弁時に噴射弁(20)の圧力を減らし、該噴射針(27)は生成された流体圧力とは独立して制御機構(35)によっても開閉可能であることを特徴とする請求項1に記載の方法。Injection valve (20) is provided with a designed injection needle to at least one injection cooperate with opening (17) provided in the injection nozzle (4) (27), those wherein the injection needle (27) is a high-pressure pump (22) is controlled by the fluid pressure generated by, under the action of the person fluid pressure itself injector (20) provided with relief valve (31), those該逃and valve (31) when the valve is opened reducing the pressure of the injection valve (20), according to claim 1, those wherein the injection needle (27) is characterized in that the generated fluid pressure can be opened and closed by independently controlling mechanism (35) Method. 当該噴射弁(20)はユニットインジェクタ・タイプであることを特徴とする請求項に記載の方法。The method according to claim 6 , characterized in that the injection valve (20) is of unit injector type. 噴射休止(Ui)は、シリンダ(2)内で流体の燃焼中に過剰な量のススが発生した場合にのみ実行することを特徴とする請求項1に記載の方法。Injection pause (U i) A method according to claim 1, characterized in that run only when the cylinder (2) in excess amounts in the combustion of the fluid in the soot is generated. 噴射休止(Ui)は、高度の高い場所で内燃機関(1)を作動させる場合や、周囲温度が高い場合など、内燃機関(1)に取り込まれた空気の総量に含まれる酸素分子の量が取り込み体積単位あたり相対的に少ない場合にのみ実行することを特徴とする請求項1に記載の方法。Injection pause (U i) is, or if operating the internal combustion engine (1) at high altitudes, such as when the ambient temperature is high, the amount of oxygen molecules included in the total amount of air taken in the internal combustion engine (1) The method of claim 1, wherein the method is performed only when is relatively low per captured volume unit. 噴射休止(Ui)は、過渡的なシーケンスで内燃機関(1)を作動させる場合にのみ実行することを特徴とする請求項1に記載の方法。2. The method according to claim 1, wherein the injection pause (U i ) is performed only when the internal combustion engine (1) is operated in a transient sequence. シリンダ(2)に供給される流体は、ディーゼル燃料などの燃料であることを特徴とする請求項1に記載の方法。The method according to claim 1, characterized in that the fluid supplied to the cylinder (2) is a fuel such as diesel fuel. ピストン(3)はその上部側に燃焼室を形成する凹部(9)を備え、流体はシリンダ(2)の中心線(15)に対し円錐角(β)を有する円錐の形状でシリンダ(2)内に噴射され、噴射休止(Ui)後に噴射される流体は、実質上ピストン(3)の凹部(9)内に直接噴射することを特徴とする請求項1に記載の方法。The piston (3) is provided with a recess (9) forming a combustion chamber on its upper side, and the fluid is in the shape of a cone having a cone angle (β) with respect to the center line (15) of the cylinder (2). 2. The method according to claim 1, characterized in that the fluid that is injected in and after the injection pause (U i ) is injected directly directly into the recess (9) of the piston (3). 最初の噴射休止(Ui)の前では、流体は、シリンダ(2)の中心線(15)に対し第1の円錐角(β1)を有する円錐の形状でシリンダ(2)内へ噴射され、シリンダ(2)内への後続の流体の噴射は、シリンダ(2)の中心線(15)に対し第2の円錐角(β2)を有する円錐の形状で行われることを特徴とする請求項1に記載の方法。Prior to the first injection pause (U i ), the fluid is injected into the cylinder (2) in the form of a cone having a first cone angle (β1) with respect to the centerline (15) of the cylinder (2), Subsequent injection of fluid into the cylinder (2) takes place in the form of a cone having a second cone angle (β2) with respect to the center line (15) of the cylinder (2). The method described in 1. 複数の燃料噴射休止が実行されない場合には、NOX排出の量を所定レベルに減らすのに通常必要とされる量よりも少ない量の再循環排気が内燃機関(1)に供給される工程を含んでいることを特徴とする請求項1に記載の方法。When a plurality of fuel injection pause is not performed, the step of recirculating exhaust gas amount smaller than the amount normally required to reduce the amount of the NO X discharged to a predetermined level is supplied to the internal combustion engine (1) The method of claim 1, comprising:
JP2002578008A 2001-03-29 2002-03-27 Method for controlling the injection of fluid into an internal combustion engine Expired - Fee Related JP4046611B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0101135A SE522624C2 (en) 2001-03-29 2001-03-29 A method for controlling the injection of a fluid into an internal combustion engine
PCT/SE2002/000615 WO2002079623A1 (en) 2001-03-29 2002-03-27 Method of controlling the injection of fluid into an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004522899A JP2004522899A (en) 2004-07-29
JP4046611B2 true JP4046611B2 (en) 2008-02-13

Family

ID=20283603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002578008A Expired - Fee Related JP4046611B2 (en) 2001-03-29 2002-03-27 Method for controlling the injection of fluid into an internal combustion engine

Country Status (7)

Country Link
US (1) US6935303B2 (en)
EP (1) EP1373694B1 (en)
JP (1) JP4046611B2 (en)
AT (1) ATE384862T1 (en)
DE (1) DE60224788T2 (en)
SE (1) SE522624C2 (en)
WO (1) WO2002079623A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213025B4 (en) 2002-03-22 2014-02-27 Daimler Ag Auto-ignition internal combustion engine
FR2853356B1 (en) * 2003-04-04 2006-06-30 Peugeot Citroen Automobiles Sa INTERNAL COMBUSTION ENGINE WITH GASOLINE AND IGNITION CONTROL COMPRISING A VERY HIGH PRESSURE INJECTION SYSTEM
JP4767775B2 (en) * 2006-07-04 2011-09-07 本田技研工業株式会社 Direct fuel injection diesel engine
SE530875C2 (en) * 2007-02-15 2008-09-30 Scania Cv Ab Arrangement and procedure of an internal combustion engine
US7464690B1 (en) * 2007-05-29 2008-12-16 Wisconsin Alumni Research Foundation Adaptive engine injection for emissions reduction
US8195378B2 (en) * 2008-07-28 2012-06-05 Cummins Inc. Emissions reductions through multiple fuel injection events
FR2942639A1 (en) * 2009-02-27 2010-09-03 Inst Francais Du Petrole METHOD FOR CONTROLLING THE INJECTION OF A FUEL IN A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
CN102575550B (en) * 2009-09-30 2014-10-22 康明斯有限公司 Fuel injection system and method for enhancing aftertreatment regeneration capability
CN103597182B (en) * 2011-04-29 2017-03-15 万国引擎知识产权有限责任公司 The method of operation compression ignition engine and compression ignition engine
US8869770B2 (en) * 2011-06-17 2014-10-28 Caterpillar Inc. Compression ignition engine having fuel system for non-sooting combustion and method
GB2592880B (en) * 2019-11-22 2022-12-07 Caterpillar Motoren Gmbh & Co Method and gas fuel injection unit for operating an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605055B1 (en) * 1986-10-08 1991-09-27 Daimler Benz Ag METHOD FOR DIRECT FUEL INJECTION FOR A DIESEL ENGINE
US5954029A (en) * 1995-01-25 1999-09-21 Cummins Engine Company, Inc. Unit fuel injector having constant start of injection
US5839275A (en) * 1996-08-20 1998-11-24 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for a direct injection type engine
DE19642441A1 (en) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Method for actuating a fuel injection valve for internal combustion engines
DE19747231A1 (en) * 1997-10-25 1999-04-29 Bosch Gmbh Robert Method for injecting fuel into the combustion chambers of an air-compressing, self-igniting internal combustion engine
US6082331A (en) * 1997-12-19 2000-07-04 Caterpillar Inc. Electronic control and method for consistently controlling the amount of fuel injected by a hydraulically activated, electronically controlled injector fuel system to an engine
BR9911127A (en) * 1998-09-10 2001-02-20 Int Truck & Engine Corp Fuel injector
US6119959A (en) * 1999-02-10 2000-09-19 Caterpillar Inc. Fuel injector with controlled spill to produce split injection
DE19910970A1 (en) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Fuel injector
SE9903525D0 (en) * 1999-09-29 1999-09-29 Volvo Ab Procedure for an internal combustion engine
DE19953932C2 (en) * 1999-11-10 2002-04-18 Daimler Chrysler Ag Method for operating a reciprocating piston internal combustion engine
DE10113654A1 (en) * 2001-03-21 2002-09-26 Bosch Gmbh Robert Fuel fine injection device for internal combustion engines
US6526939B2 (en) * 2001-04-27 2003-03-04 Wisconsin Alumni Research Foundation Diesel engine emissions reduction by multiple injections having increasing pressure
DE10159479A1 (en) * 2001-12-04 2003-06-18 Daimler Chrysler Ag Method for operating an internal combustion engine

Also Published As

Publication number Publication date
JP2004522899A (en) 2004-07-29
WO2002079623A8 (en) 2004-05-13
US20040154580A1 (en) 2004-08-12
US6935303B2 (en) 2005-08-30
SE522624C2 (en) 2004-02-24
DE60224788D1 (en) 2008-03-13
EP1373694B1 (en) 2008-01-23
ATE384862T1 (en) 2008-02-15
EP1373694A1 (en) 2004-01-02
WO2002079623A1 (en) 2002-10-10
SE0101135D0 (en) 2001-03-29
SE0101135L (en) 2002-09-30
DE60224788T2 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US6874453B2 (en) Two stroke internal combustion engine
EP1216346B1 (en) Method of controlling the fuel injection in an internal combustion engine
US5535716A (en) Compression ignition type gasoline engine injecting fuel inside intake port during exhaust stroke
EP2826978A1 (en) A two-stroke internal combustion engine, method operating a two-stroke internal combustion engine and method of converting a two-stroke engine
US20060037563A1 (en) Internal combustion engine with auto ignition
US9127615B2 (en) Engine control system implementing lean burn 6-stroke cycle
US7059295B2 (en) Self-igniting internal combustion engine
AU2002363662B2 (en) An internal combusion engine with divided combustion chamber
JP2004522050A (en) 4-stroke self-ignition engine
JP4046611B2 (en) Method for controlling the injection of fluid into an internal combustion engine
WO2007105103A3 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
US10422291B2 (en) Method and device for controlling an internal combustion engine
US20080257302A1 (en) Compression ignition engine having fuel injection devices and processes for promoting cleaner burning lifted flame combustion
US20050224044A1 (en) Injection strategy for low noise and soot combustion
US20080314363A1 (en) Actuated cool combustion emissions solution for auto-igniting internal combustion engine
JP2002349267A (en) Combustion system of diesel engine
JP4274063B2 (en) Control device for internal combustion engine
JP2003247437A (en) Internal combustion engine
RU2435065C2 (en) Engines with high performance characteristics and low emissions, multi-cylinder engines and methods of their operation
JP2003254063A (en) Combustion chamber of engine and combustion method of engine
JP2005291161A (en) Compression ignition type internal combustion engine and its fuel injection control device
JP2003232252A (en) Premixture compression self-ignition engine and its starting operation method
JPH11182311A (en) Pressure accumulation type fuel injection device
WO2012125151A1 (en) Method and system of controlling combustion in a cylinder of an engine
JPH0754656A (en) Engine combustion chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees