JP4046477B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4046477B2
JP4046477B2 JP2001026275A JP2001026275A JP4046477B2 JP 4046477 B2 JP4046477 B2 JP 4046477B2 JP 2001026275 A JP2001026275 A JP 2001026275A JP 2001026275 A JP2001026275 A JP 2001026275A JP 4046477 B2 JP4046477 B2 JP 4046477B2
Authority
JP
Japan
Prior art keywords
ice
heat source
heat
source side
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026275A
Other languages
Japanese (ja)
Other versions
JP2002228205A (en
Inventor
正志 ▲高▼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001026275A priority Critical patent/JP4046477B2/en
Publication of JP2002228205A publication Critical patent/JP2002228205A/en
Application granted granted Critical
Publication of JP4046477B2 publication Critical patent/JP4046477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱ユニットを備えた空気調和装置に関する。
【0002】
【従来の技術】
一般に、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、レシーバタンク、配管等を収納する機械室、及び氷蓄熱槽、並びにコイルを備えた氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有した空気調和装置が知られている。この種の空気調和装置では、熱源側ユニットと氷蓄熱ユニットとが、屋上等の狭いスペースに配置されることが多く、設置スペースを小さくすることが重要な開発テーマとなっている。
【0003】
【発明が解決しようとする課題】
従来の氷蓄熱ユニットは、その内部に氷蓄熱槽とこの槽中に水没状態で配設されたコイルを備え、さらにその他に大型のレシーバタンクや配管等を収納して構成されるため、大型化するという問題がある。
【0004】
その一方で、熱源側ユニットは、その略中央に圧縮機を配置し、その左右に圧縮機を囲むように略コ字状の熱源側熱交換器を向かい合わせに配置するのが一般的である。この場合、一方の熱源側熱交換器の内側空間にはアキュムレータを含む冷媒配管等がほとんど隙間無くぎっしりと収容されるものの、他方の熱源側熱交換器の内側空間にはほとんど何も収容されないのが現状である。そのため、従来の熱源側ユニットでは、一方の熱源側熱交換器を配置した側が重くなり、重量バランスが悪くなり、熱源側ユニットの搬送時に、吊り上げる場合、その吊り上げ搬送等が困難になるという問題がある。
【0005】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、屋上等における設備類の設置スペースが低減される空気調和装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機、及び熱源側熱交換器を備えた熱源側ユニットと、レシーバタンク、配管等を収納する機械室、及び蓄熱槽、並びにコイルを備えた蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有した空気調和装置において、前記蓄熱ユニットは上下二段の室を有し、下段の室には蓄熱槽及びコイルが配置され、上段の室は前記機械室として構成され、前記上段の室の幅寸法は前記下段の室の幅寸法より小さく形成され、前記下段の室の上面まで達するはしごが配設され、さらに、前記下段の室の上面には前記蓄熱槽の内部点検口が形成され、この内部点検口に天蓋が配設されたことを特徴とする。
【0007】
本発明では、氷蓄熱ユニットが上下二段に形成されるため、横並びのものに比べ、設置スペースが削減される。従って、熱源側ユニットと氷蓄熱ユニットとが、例えば屋上等の狭いスペースに配置された場合でも、その設置スペースは少なくて済み、ユニット間に広い空間が得られる。よって、空冷式の場合、熱交換効率を向上させることができる。
【0008】
請求項2記載の発明は、請求項1記載のものにおいて、前記熱源側ユニットはその略中央に圧縮機を配置し、その左右に圧縮機を囲むように略コ字状の熱源側熱交換器を向かい合わせに配置し、一方の熱源側熱交換器の内側空間にアキュムレータを含む冷媒配管を配置し、他方の熱源側熱交換器の内側空間に前記機械室に配置されるべきレシーバタンクを配置したことを特徴とするものである。
【0009】
本発明では、一方の熱源側熱交換器の内側空間に冷媒配管等を配置し、他方の熱源側熱交換器の内側空間に、機械室に配置されるべきレシーバタンクを配置したため、熱源側ユニットの重量バランスがとれる。
【0010】
従って、熱源側ユニットの搬送時に、それを吊り上げる場合、その吊り上げ搬送等を容易におこなうことができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0012】
図1は、本発明に係る空気調和装置の一実施の形態が適用された氷蓄熱ユニットを備えた空気調和装置を示し、製氷運転時の管路図である。図2は、図1の一実施の形態における冷房運転時の管路図である。
【0013】
図1及び図2に示す空気調和装置10は、熱源側ユニット11、蓄熱ユニットとしての氷蓄熱ユニット12及び利用側ユニット13を有して構成される。熱源側ユニット11の冷媒配管14と、利用側ユニット13の並列配置された冷媒配管30,31及び32を接続する冷媒配管15A及び15Bとが、氷蓄熱ユニット12の冷媒配管16,17により接続される。冷媒配管15Aが冷媒配管16に、冷媒配管15Bが冷媒配管17に接続される。
【0014】
熱源側ユニット11は、冷媒配管14に容量可変型の圧縮機18A,18B,18Cが並列に配設され、これらの圧縮機18A,18B及び18Cの吸込側にアキュムレータ19が、吐出側に四方弁20がそれぞれ配設され、この四方弁20に熱源側熱交換器21、電動膨張弁22及びレシーバタンク23A,23が冷媒配管14を介して順次接続される。
【0015】
前記レシーバタンク23は、従来、氷蓄熱ユニット12の冷媒配管16に接続されていたものを、この熱源側ユニット11内に移設したものであり、元々存在したレシーバタンク23Aと直列に接続される。
【0016】
利用側ユニット13は、冷媒配管30,31,32のそれぞれに利用側熱交換器24,25,26が配設され、これら冷媒配管30,31,32において利用側熱交換器24,25,26近傍に電動膨張弁27,28,29が配設されて構成される。これらの電動膨張弁27,28,29は、空調負荷に応じて開度が調整される。
【0017】
前記氷蓄熱ユニット12は、コイル35を収容した蓄熱槽としての氷蓄熱槽36を備えるとともに、冷媒配管16に電動膨張弁38及び第1電動開閉弁41が、熱源側ユニット11側から利用側ユニット13へ向かい順次配設される。また、冷媒配管16には、電動膨張弁38と第1電動開閉弁41との間に、接続配管39を介してコイル35の一端が接続される。コイル35の他端は、接続配管40を介して氷蓄熱ユニット12の冷媒配管17に接続され、この接続配管40に第2電動開閉弁42が配設される。更に、冷媒配管16には、レシーバタンク23と電動膨張弁38との間に、第3電動開閉弁43を備えた接続配管44の一端が接続される。この接続配管44の他端は、接続配管40における第2電動開閉弁42とコイル35との間に接続される。
【0018】
前記氷蓄熱槽36内には二次媒体としての水が充填され、コイル35は水没状態で配設される。空気調和装置10の蓄熱運転としての製氷運転時には、コイル35内に、熱源側熱交換器21からの一次媒体としての液冷媒が流入して蒸発し、これにより、コイル35の外周に氷が付着して形成されて、この氷に冷熱が蓄熱される。空気調和装置10の放熱運転としての解氷冷房運転時には、コイル35内に、熱源側熱交換器21からの液冷媒が満杯状態で流入し、この液冷媒は、コイル35外周に付着した氷を融解し、この氷に蓄熱された冷熱の放熱により過冷却状態となる。
【0019】
[A]製氷運転(図1)
図1に示す空気調和装置10の製氷運転は、例えば、夜間10時から翌朝8時までの電力料金が安い時間帯に、熱源側ユニット11における熱源側熱交換器21からの液冷媒を氷蓄熱ユニット12における氷蓄熱槽36内のコイル35へ供給し、氷蓄熱槽36内に氷を作る運転である。
【0020】
この場合には、氷蓄熱ユニット12において、第1電動開閉弁41及び第3電動開閉弁43が閉弁され、電動膨張弁38及び第2電動開閉弁42が開弁操作される。また、利用側ユニット13の電動膨張弁27,28及び29は閉弁する。
【0021】
この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の電動膨張弁38を経て減圧され、氷蓄熱槽36内のコイル35へ流入する。このコイル35内に流入した冷媒は蒸発されて、コイル35の外周に氷を付着した状態で形成する。その後、コイル35内のガス冷媒は、接続配管40及び第2電動開閉弁42並びに冷媒配管17を経て四方弁20へ至り、アキュムレータ19を経て圧縮機18A,18B,18Cに戻される。
【0022】
この製氷運転によって氷蓄熱槽36内に氷が形成され、この氷に蓄熱された冷熱が、次の解氷冷房運転に利用される。
【0023】
[B]解氷冷房運転(図2)
図2に示す空気調和装置10の解氷冷房運転は、例えば、昼間、気温が上昇する時間帯に、熱源側ユニット11における熱源側熱交換器21からの液冷媒を、氷蓄熱ユニット12における氷蓄熱槽36内のコイル35へ供給させて過冷却状態とし、この過冷却状態の液冷媒を利用側ユニット13の利用側熱交換器24,25,26へ供給して実施される。
【0024】
この場合には、氷蓄熱ユニット12において、第2電動開閉弁42が閉弁され、第1電動開閉弁41及び第3電動開閉弁43が開弁され、電動膨張弁38の開度が後述の如く調整される。また、利用側ユニット13の電動膨張弁27,28及び29が開弁される。
【0025】
この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の冷媒配管16、接続配管44及び第3電動開閉弁43を経て氷蓄熱槽36内のコイル35へ流入する。このコイル35内に流入した液冷媒は、コイル35内を満杯状態で流れ、コイル35の外周に付着した氷を解氷し、この氷に蓄熱された冷熱により過冷却状態となる。その後、コイル35内の過冷却状態の液冷媒は、接続配管39、第1電動開閉弁41及び冷媒配管16、並びに利用側ユニット13の冷媒配管15A及び電動膨張弁27,28,29を経て利用側熱交換器24,25,26へそれぞれ流入し、これらの利用側熱交換器24,25,26のそれぞれにより蒸発して室内を冷房する。
【0026】
その後、ガス冷媒は、冷媒配管30,31,32及び冷媒配管15Bを通り、氷蓄熱ユニット12の冷媒配管17を経、四方弁20及びアキュムレータ19を経た後圧縮機18A,18B,18Cへ戻される。
【0027】
従って、この解氷冷房運転時では、前述の製氷運転で氷蓄熱槽36内の氷に蓄熱された冷熱を利用し、氷蓄熱槽36のコイル35内で液冷媒を過冷却状態として利用側熱交換24,25,26へ供給するので、これら利用側熱交換器24,25,26における冷房運転の効率を向上させることができる。
【0028】
また、上述の解氷冷房運転においては、氷蓄熱ユニット12において、コイル35から接続配管39を介し第1電動開閉弁41側の冷媒配管16へ流入した液冷媒温度E1が、利用側ユニット13における利用側熱交換器24,25,26内の液冷媒温度E2よりも低いときに、電動膨張弁38の開度が調整されて、氷蓄熱槽36内のコイル35で過冷却された液冷媒に、熱源側熱交換器21及び電動膨張弁22からの液冷媒を合流させ、この合流した液冷媒を利用側熱交換器24,25,26へ供給する。このような解氷冷房運転は、熱源側熱交換器21及び電動膨張弁22からの液冷媒が、コイル35内で過冷却された液冷媒よりも温度が高いことから、利用側熱交換器24,25,26へ流れる液冷媒の温度を上昇させて、これら利用側熱交換器24,25,26による室内の冷房運転を適正化するものである。
【0029】
「C」通常冷房運転(図2)
図2に示す空気調和装置10における通常冷房運転は、氷蓄熱ユニット12における氷蓄熱槽36内の氷に蓄熱された冷熱を利用しないで実施される冷房運転であり、第2電動開閉弁42及び第3電動開閉弁43が閉弁され、電動膨張弁38及び第1電動開閉弁41が開弁される。また、利用側ユニット13における電動膨張弁27,28及び29は開弁される。
【0030】
この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の冷媒配管16、電動膨張弁38及び第1電動開閉弁41を通り、利用側ユニット13の冷媒配管15A及び電動膨張弁27,28,29を経て利用側熱交換器24,25,26へそれぞれ流入し、これらの利用側熱交換器24,25,26のそれぞれにより蒸発して室内を冷房した後、冷媒配管15Bを通り、氷蓄熱ユニット12の冷媒配管17を経、四方弁20及びアキュムレータ19を経た後、圧縮機18A,18B,18Cへ戻される。
【0031】
本実施形態では、図3に示すように、氷蓄熱ユニット12が上下二段に形成されている。下段の室Aには氷蓄熱槽36、この槽中に水没状態で配置されたコイル35等の水回りが配置されている。
【0032】
前記コイル35は、4つの分配器75や集合管76によって多パス状態に形成され、槽中では、フレーム73によって支持されている。このフレーム73はコイル35の上部を水平に保持する上フレーム77と、コイル35の下部のU字状屈曲部78を水平に保持する下フレーム79と、上下のフレーム77,79をつなぐ垂直フレーム80とで構成されている。
【0033】
また、上段には機械室Bが配置され、この機械室Bには、図示は省略したが、図1の電動膨張弁38、第1電動開閉弁41、接続配管39、接続配管40、冷媒配管17、第2電動開閉弁42、冷媒配管16、第3電動開閉弁43及び接続配管44等を含んだ配管類が配置されている。
【0034】
この機械室Bは幅寸法が下段の室Aよりも小さく形成され、この室Aの天板の一部には、氷蓄熱槽の内部点検口が形成され、そこには天蓋68が配置されている。100ははしごである。
【0035】
前記構成によれば、氷蓄熱ユニット12が上下二段に形成されるため、横並びのものに比べ、設置スペースが削減される。従って、熱源側ユニット11と氷蓄熱ユニット12とが、例えば屋上等の狭いスペースに配置された場合でも、その設置スペースは少なくて済み、ユニット間に広い空間が得られる。よって、空冷式の場合、熱交換効率を向上させることができる。
【0036】
また、本実施形態では、図1を参照して、2つのレシーバタンク23A,23が熱源側ユニット11内に集約して配置される。
【0037】
この種の氷蓄熱ユニット12を利用した空気調和装置では、多量の冷媒が必要になり、運転状態によって余剰となった冷媒を一時的に貯えるため、大型のレシーバタンク23A,23が必要になる。従来、一方のレシーバタンク23は氷蓄熱ユニット12内に配置していたが、本実施形態では、上述のように、熱源側ユニット11内に集約して配置される。
【0038】
この熱源側ユニット11は、図4及び図5に示すように、ユニット略中央に3つの圧縮機18A,18B,18C等を収納した機械室11Aが設けられ、その両側に、略コ字状の熱源側熱交換器21を向かい合わせに収納した熱交換室11Bとを備えて構成されている。7は送風機である。
【0039】
一方の熱源側熱交換器21の内側空間には、図示は省略したが、アキュムレータ19を含む冷媒配管等がぎっしりと、ほとんど隙間無く配置されており、他方の熱源側熱交換器21の広い内側空間には、前記レシーバタンク23A,23が配置されている。8は電装箱である。
【0040】
この構成では、アキュムレータ19を含む冷媒配管等の重量と、レシーバタンク23A,23の重量とが釣り合って、熱源側ユニット11全体として重量バランスがとれる。従って、熱源側ユニット11の搬送時に、吊り上げたりする場合、その吊り上げ搬送等が容易になる。
【0041】
以上、本発明を前記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0042】
【発明の効果】
請求項1記載の発明では、氷蓄熱ユニットが上下二段に形成されるため、横並びのものに比べ、設置スペースが削減される。従って、熱源側ユニットと氷蓄熱ユニットとが、例えば屋上等の狭いスペースに配置された場合でも、その設置スペースは少なくて済み、ユニット間に広い空間が得られる。よって、空冷式の場合、熱交換効率を向上させることができる。
【0043】
請求項2記載の発明では、熱源側ユニット全体として重量バランスがとれる。従って、熱源側ユニットの搬送時に、吊り上げたりする場合、その吊り上げ搬送等が容易になる。
【図面の簡単な説明】
【図1】本発明に係る氷蓄熱ユニットを備えた空気調和装置を示し、製氷運転時の管路図である。
【図2】図1の一実施形態における冷房運転時の管路図である。
【図3】蓄熱ユニットの断面図である。
【図4】熱源側ユニットの側面断面図である。
【図5】熱源側ユニットの平面断面図である。
【符号の説明】
10 空気調和装置
11 熱源側ユニット
12 氷蓄熱ユニット
13 利用側ユニット
21 熱源側熱交換器
24 利用側熱交換器
35 コイル
36 氷蓄熱槽
A 下段の室
B 機械室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including a heat storage unit.
[0002]
[Prior art]
Generally, a heat source side unit provided with a compressor and a heat source side heat exchanger, a machine room containing a receiver tank, piping, etc., an ice heat storage tank, an ice heat storage unit provided with a coil, and a use side heat exchanger 2. Description of the Related Art An air conditioner having a use side unit provided is known. In this type of air conditioner, the heat source side unit and the ice heat storage unit are often arranged in a narrow space such as a rooftop, and it is an important development theme to reduce the installation space.
[0003]
[Problems to be solved by the invention]
The conventional ice heat storage unit is equipped with an ice heat storage tank and a coil placed in a submerged state in this tank, and further accommodates a large receiver tank, piping, etc. There is a problem of doing.
[0004]
On the other hand, in the heat source side unit, the compressor is generally disposed at the center thereof, and generally U-shaped heat source side heat exchangers are disposed facing each other so as to surround the compressor on the left and right sides thereof. . In this case, the refrigerant pipe including the accumulator is tightly accommodated in the inner space of one heat source side heat exchanger with almost no gap, but almost nothing is accommodated in the inner space of the other heat source side heat exchanger. Is the current situation. Therefore, in the conventional heat source side unit, the side on which one heat source side heat exchanger is arranged becomes heavy, the weight balance becomes worse, and when lifting when transporting the heat source side unit, it is difficult to lift and transport it. is there.
[0005]
An object of the present invention is to eliminate the problems with the prior art described above, provides an air conditioning system installation space of equipment such that Ru is reduced in the roof or the like.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a heat source side unit including a compressor and a heat source side heat exchanger, a machine room storing a receiver tank, piping, and the like, a heat storage tank, and a heat storage unit including a coil, and use In the air conditioner having a use side unit equipped with a side heat exchanger, the heat storage unit has two upper and lower chambers, a heat storage tank and a coil are arranged in the lower chamber, and the upper chamber is the It is configured as a machine room, the width dimension of the upper chamber is formed smaller than the width dimension of the lower chamber, a ladder reaching the upper surface of the lower chamber is disposed, and further, on the upper surface of the lower chamber An internal inspection port of the heat storage tank is formed, and a canopy is disposed in the internal inspection port.
[0007]
In the present invention, since the ice heat storage units are formed in two upper and lower stages, the installation space is reduced as compared with the side by side. Therefore, even when the heat source side unit and the ice heat storage unit are arranged in a narrow space such as a rooftop, the installation space is small and a wide space is obtained between the units. Therefore, in the case of an air cooling type, heat exchange efficiency can be improved.
[0008]
A second aspect of the present invention is the heat source side heat exchanger according to the first aspect, wherein the heat source side unit has a substantially U-shaped heat exchanger disposed so that a compressor is disposed at a substantially central portion and the compressors are surrounded on the left and right sides thereof. placed face to face, the refrigerant piping including accumulator inside space of one of the heat source side heat exchanger is disposed, the receiver tank to be disposed in the machine room to the inside space of the other of the heat source-side heat exchanger It is characterized by the arrangement.
[0009]
In the present invention, the refrigerant pipe or the like is arranged in the inner space of one heat source side heat exchanger, and the receiver tank to be arranged in the machine room is arranged in the inner space of the other heat source side heat exchanger. Can be balanced.
[0010]
Therefore, when the heat source side unit is lifted when it is transported, the lifting and transporting can be easily performed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 shows an air conditioner including an ice heat storage unit to which an embodiment of an air conditioner according to the present invention is applied, and is a pipe diagram during ice making operation. FIG. 2 is a pipeline diagram during the cooling operation in the embodiment of FIG.
[0013]
The air conditioner 10 shown in FIGS. 1 and 2 includes a heat source side unit 11, an ice heat storage unit 12 as a heat storage unit, and a use side unit 13. The refrigerant pipes 14 of the heat source unit 11 and the refrigerant pipes 15A and 15B connecting the refrigerant pipes 30, 31 and 32 arranged in parallel of the use side unit 13 are connected by the refrigerant pipes 16 and 17 of the ice heat storage unit 12. The The refrigerant pipe 15 </ b> A is connected to the refrigerant pipe 16, and the refrigerant pipe 15 </ b> B is connected to the refrigerant pipe 17.
[0014]
In the heat source side unit 11, variable capacity compressors 18A, 18B, 18C are arranged in parallel with the refrigerant pipe 14, an accumulator 19 is provided on the suction side of these compressors 18A, 18B, and 18C, and a four-way valve is provided on the discharge side. The heat source side heat exchanger 21, the electric expansion valve 22, and the receiver tanks 23A, 23 are sequentially connected to the four-way valve 20 via the refrigerant pipe 14.
[0015]
The receiver tank 23 is the one that has been connected to the refrigerant pipe 16 of the ice heat storage unit 12 in the past and transferred to the heat source side unit 11, and is connected in series with the receiver tank 23A that originally existed.
[0016]
In the usage-side unit 13, usage-side heat exchangers 24, 25, and 26 are disposed in the refrigerant pipes 30, 31, and 32, respectively, and the usage-side heat exchangers 24, 25, and 26 are provided in the refrigerant pipes 30, 31, and 32. Electric expansion valves 27, 28, and 29 are arranged in the vicinity. The opening degree of these electric expansion valves 27, 28, and 29 is adjusted according to the air conditioning load.
[0017]
The ice heat storage unit 12 includes an ice heat storage tank 36 as a heat storage tank containing the coil 35, and an electric expansion valve 38 and a first electric opening / closing valve 41 are provided on the refrigerant pipe 16 from the heat source side unit 11 side to the use side unit. 13 are arranged sequentially. In addition, one end of a coil 35 is connected to the refrigerant pipe 16 via a connection pipe 39 between the electric expansion valve 38 and the first electric open / close valve 41. The other end of the coil 35 is connected to the refrigerant pipe 17 of the ice heat storage unit 12 via the connection pipe 40, and the second electric opening / closing valve 42 is disposed in the connection pipe 40. Furthermore, one end of a connection pipe 44 having a third electric on-off valve 43 is connected to the refrigerant pipe 16 between the receiver tank 23 and the electric expansion valve 38. The other end of the connection pipe 44 is connected between the second electric on-off valve 42 and the coil 35 in the connection pipe 40.
[0018]
The ice heat storage tank 36 is filled with water as a secondary medium, and the coil 35 is disposed in a submerged state. At the time of ice making operation as the heat storage operation of the air conditioner 10, the liquid refrigerant as the primary medium from the heat source side heat exchanger 21 flows into the coil 35 and evaporates, whereby ice adheres to the outer periphery of the coil 35. In this way, cold energy is stored in this ice. During the ice-free cooling operation as the heat dissipation operation of the air conditioner 10, the liquid refrigerant from the heat source side heat exchanger 21 flows into the coil 35 in a full state, and this liquid refrigerant removes ice adhering to the outer periphery of the coil 35. It is melted and becomes supercooled by the heat radiation of the cold stored in the ice.
[0019]
[A] Ice making operation (Figure 1)
In the ice making operation of the air conditioner 10 shown in FIG. 1, for example, the liquid refrigerant from the heat source side heat exchanger 21 in the heat source side unit 11 is stored in ice during a time when the electricity rate from 10:00 to 8:00 the next morning is low. This is an operation for supplying ice to the coil 35 in the ice heat storage tank 36 in the unit 12 and making ice in the ice heat storage tank 36.
[0020]
In this case, in the ice heat storage unit 12, the first electric on-off valve 41 and the third electric on-off valve 43 are closed, and the electric expansion valve 38 and the second electric on-off valve 42 are opened. Further, the electric expansion valves 27, 28 and 29 of the use side unit 13 are closed.
[0021]
In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, The pressure is reduced through the electric expansion valve 22 and the electric expansion valve 38 of the ice heat storage unit 12 and flows into the coil 35 in the ice heat storage tank 36. The refrigerant flowing into the coil 35 is evaporated and formed in a state where ice is attached to the outer periphery of the coil 35. Thereafter, the gas refrigerant in the coil 35 reaches the four-way valve 20 through the connection pipe 40, the second electric opening / closing valve 42 and the refrigerant pipe 17, and is returned to the compressors 18A, 18B, 18C through the accumulator 19.
[0022]
Ice is formed in the ice heat storage tank 36 by this ice making operation, and the cold energy stored in the ice is used for the next ice-freezing and cooling operation.
[0023]
[B] Ice-free cooling operation (Figure 2)
The ice-freezing and cooling operation of the air conditioner 10 shown in FIG. 2 is performed by, for example, liquid refrigerant from the heat source side heat exchanger 21 in the heat source side unit 11 and ice in the ice heat storage unit 12 during the daytime when the temperature rises. This is performed by supplying the coil 35 in the heat storage tank 36 to a supercooled state and supplying the supercooled liquid refrigerant to the use side heat exchangers 24, 25, 26 of the use side unit 13.
[0024]
In this case, in the ice heat storage unit 12, the second electric on-off valve 42 is closed, the first electric on-off valve 41 and the third electric on-off valve 43 are opened, and the opening degree of the electric expansion valve 38 is described later. It is adjusted as follows. Further, the electric expansion valves 27, 28 and 29 of the use side unit 13 are opened.
[0025]
In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, It flows into the coil 35 in the ice heat storage tank 36 through the electric expansion valve 22, the refrigerant pipe 16 of the ice heat storage unit 12, the connection pipe 44, and the third electric opening / closing valve 43. The liquid refrigerant that has flowed into the coil 35 flows in the coil 35 in a full state, defrosts the ice adhering to the outer periphery of the coil 35, and becomes supercooled by the cold heat stored in the ice. Thereafter, the supercooled liquid refrigerant in the coil 35 is used via the connection pipe 39, the first electric opening / closing valve 41 and the refrigerant pipe 16, and the refrigerant pipe 15 </ b> A and the electric expansion valves 27, 28, 29 of the use side unit 13. The refrigerant flows into the side heat exchangers 24, 25, and 26, and evaporates by each of the use side heat exchangers 24, 25, and 26 to cool the room.
[0026]
Thereafter, the gas refrigerant passes through the refrigerant pipes 30, 31, 32 and the refrigerant pipe 15B, passes through the refrigerant pipe 17 of the ice heat storage unit 12, passes through the four-way valve 20 and the accumulator 19, and then is returned to the compressors 18A, 18B and 18C. .
[0027]
Therefore, during this ice-freezing cooling operation, the cold heat stored in the ice in the ice heat storage tank 36 in the ice making operation described above is used, and the liquid refrigerant is supercooled in the coil 35 of the ice heat storage tank 36 to use side heat. Since it supplies to replacement | exchange 24,25,26, the efficiency of the cooling operation in these utilization side heat exchangers 24,25,26 can be improved.
[0028]
Further, in the ice-freezing cooling operation described above, in the ice heat storage unit 12, the liquid refrigerant temperature E <b> 1 flowing into the refrigerant pipe 16 on the first electric on-off valve 41 side from the coil 35 via the connection pipe 39 is When the liquid refrigerant temperature E2 in the use side heat exchangers 24, 25, 26 is lower than the liquid refrigerant temperature E2, the opening degree of the electric expansion valve 38 is adjusted, and the liquid refrigerant supercooled by the coil 35 in the ice heat storage tank 36 is obtained. The liquid refrigerant from the heat source side heat exchanger 21 and the electric expansion valve 22 is merged, and the merged liquid refrigerant is supplied to the use side heat exchangers 24, 25, and 26. In such an ice-free cooling operation, the liquid refrigerant from the heat source side heat exchanger 21 and the electric expansion valve 22 has a higher temperature than the liquid refrigerant supercooled in the coil 35, and therefore the use side heat exchanger 24. , 25, 26, the temperature of the liquid refrigerant flowing to the interior, 25, 26 is raised to optimize the indoor cooling operation by the use side heat exchangers 24, 25, 26.
[0029]
"C" normal cooling operation (Fig. 2)
The normal cooling operation in the air conditioner 10 shown in FIG. 2 is a cooling operation that is performed without using the cold energy stored in the ice in the ice heat storage tank 36 in the ice heat storage unit 12, and the second electric on-off valve 42 and The third electric on-off valve 43 is closed, and the electric expansion valve 38 and the first electric on-off valve 41 are opened. Further, the electric expansion valves 27, 28 and 29 in the use side unit 13 are opened.
[0030]
In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, The use side heat passes through the electric expansion valve 22, the refrigerant pipe 16 of the ice heat storage unit 12, the electric expansion valve 38 and the first electric opening / closing valve 41, and through the refrigerant pipe 15 </ b> A of the use side unit 13 and the electric expansion valves 27, 28 and 29. The refrigerant flows into the exchangers 24, 25, and 26, evaporates by each of the use-side heat exchangers 24, 25, and 26, cools the room, passes through the refrigerant pipe 15B, and passes through the refrigerant pipe 17 of the ice heat storage unit 12. After passing through the four-way valve 20 and the accumulator 19, it is returned to the compressors 18A, 18B, 18C.
[0031]
In the present embodiment, as shown in FIG. 3, the ice heat storage unit 12 is formed in two upper and lower stages. In the lower chamber A, an ice heat storage tank 36 and a water circumference such as a coil 35 disposed in a submerged state are arranged.
[0032]
The coil 35 is formed in a multi-pass state by four distributors 75 and a collecting pipe 76 and is supported by a frame 73 in the tank. The frame 73 includes an upper frame 77 that holds the upper portion of the coil 35 horizontally, a lower frame 79 that holds the U-shaped bent portion 78 below the coil 35 horizontally, and a vertical frame 80 that connects the upper and lower frames 77, 79. It consists of and.
[0033]
In addition, a machine room B is arranged in the upper stage, and although not shown in this machine room B, the electric expansion valve 38, the first electric on-off valve 41, the connection pipe 39, the connection pipe 40, the refrigerant pipe of FIG. 17, pipes including the second electric on-off valve 42, the refrigerant pipe 16, the third electric on-off valve 43, the connection pipe 44, and the like are arranged.
[0034]
This machine room B is formed smaller in width than the lower room A, and an internal inspection port of the ice heat storage tank is formed in a part of the top plate of the room A, and a canopy 68 is disposed there. Yes. 100 is a ladder.
[0035]
According to the said structure, since the ice thermal storage unit 12 is formed in two steps of upper and lower sides, an installation space is reduced compared with the side-by-side thing. Therefore, even when the heat source side unit 11 and the ice heat storage unit 12 are arranged in a narrow space such as a rooftop, the installation space is small and a wide space is obtained between the units. Therefore, in the case of an air cooling type, heat exchange efficiency can be improved.
[0036]
In the present embodiment, with reference to FIG. 1, the two receiver tanks 23 </ b> A and 23 are collectively arranged in the heat source unit 11.
[0037]
In the air conditioner using this kind of ice heat storage unit 12, a large amount of refrigerant is required, and large-sized receiver tanks 23A and 23 are necessary to temporarily store the surplus refrigerant due to the operating state. Conventionally, one receiver tank 23 is arranged in the ice heat storage unit 12, but in the present embodiment, it is arranged in the heat source side unit 11 as described above.
[0038]
As shown in FIGS. 4 and 5, the heat source side unit 11 is provided with a machine room 11A containing three compressors 18A, 18B, 18C, etc. in the approximate center of the unit, and substantially U-shaped on both sides thereof. And a heat exchange chamber 11B in which the heat source side heat exchanger 21 is stored facing each other. 7 is a blower.
[0039]
Although not shown, the refrigerant pipe including the accumulator 19 is closely arranged in the inner space of one heat source side heat exchanger 21 with almost no gap, and the other heat source side heat exchanger 21 has a wide inner side. The receiver tanks 23A and 23 are disposed in the space. 8 is an electrical equipment box.
[0040]
In this configuration, the weight of the refrigerant pipe including the accumulator 19 and the weight of the receiver tanks 23 </ b> A and 23 are balanced to achieve a weight balance as a whole of the heat source side unit 11. Accordingly, when the heat source side unit 11 is lifted during the transfer, the lifting transfer and the like are facilitated.
[0041]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0042]
【The invention's effect】
In the invention according to claim 1, since the ice heat storage units are formed in two stages, upper and lower, the installation space is reduced as compared with the horizontally arranged units. Therefore, even when the heat source side unit and the ice heat storage unit are arranged in a narrow space such as a rooftop, the installation space is small and a wide space is obtained between the units. Therefore, in the case of an air cooling type, heat exchange efficiency can be improved.
[0043]
In the invention according to the second aspect, the weight balance can be achieved as the whole heat source side unit. Accordingly, when the heat source side unit is lifted during the transfer, the lifting transfer is facilitated.
[Brief description of the drawings]
FIG. 1 shows an air conditioner equipped with an ice heat storage unit according to the present invention, and is a pipeline diagram during ice making operation.
FIG. 2 is a pipeline diagram during cooling operation in the embodiment of FIG. 1;
FIG. 3 is a cross-sectional view of a heat storage unit.
FIG. 4 is a side cross-sectional view of a heat source side unit.
FIG. 5 is a plan sectional view of a heat source side unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 11 Heat source side unit 12 Ice heat storage unit 13 Use side unit 21 Heat source side heat exchanger 24 Use side heat exchanger 35 Coil 36 Ice heat storage tank A Lower chamber B Machine room

Claims (2)

圧縮機、及び熱源側熱交換器を備えた熱源側ユニットと、配管等を収納する機械室、及び蓄熱槽、並びにコイルを備えた蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有した空気調和装置において、
前記蓄熱ユニットは上下二段の室を有し、下段の室には蓄熱槽及びコイルが配置され、上段の室は前記機械室として構成され、
前記上段の室の幅寸法は前記下段の室の幅寸法より小さく形成され、
前記下段の室の上面まで達するはしごが配設され、さらに、前記下段の室の上面には前記蓄熱槽の内部点検口が形成され、この内部点検口に天蓋が配設されたことを特徴とする空気調和装置。
A heat source unit provided with a compressor and a heat source side heat exchanger, a machine room containing piping and the like, a heat storage tank, a heat storage unit provided with a coil, and a use side unit provided with a use side heat exchanger; In an air conditioner having
The heat storage unit has two upper and lower chambers, a heat storage tank and a coil are disposed in the lower chamber, and the upper chamber is configured as the machine chamber,
The width dimension of the upper chamber is formed smaller than the width dimension of the lower chamber,
A ladder reaching the upper surface of the lower chamber is disposed, and further, an internal inspection port of the heat storage tank is formed on the upper surface of the lower chamber, and a canopy is disposed in the internal inspection port. Air conditioner to do.
前記熱源側ユニットはその略中央に前記圧縮機を配置し、その左右に前記圧縮機を囲むように略コ字状の前記熱源側熱交換器を向かい合わせに配置し、一方の熱源側熱交換器の内側空間にアキュムレータを含む冷媒配管を配置し、他方の熱源側熱交換器の内側空間に前記機械室に配置されるべき前記レシーバタンクを配置したことを特徴とする請求項1記載の空気調和装置。The heat source side unit has the compressor arranged at substantially the center thereof, and the left and right sides of the heat source side heat exchanger are arranged facing each other so as to surround the compressor, and one heat source side heat exchange is arranged. vessels refrigerant piping disposed including accumulator inside space, according to claim 1, characterized in that a said receiver tank to be disposed in the machine room to the inside space of the other of the heat source-side heat exchanger Air conditioner.
JP2001026275A 2001-02-02 2001-02-02 Air conditioner Expired - Fee Related JP4046477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026275A JP4046477B2 (en) 2001-02-02 2001-02-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026275A JP4046477B2 (en) 2001-02-02 2001-02-02 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002228205A JP2002228205A (en) 2002-08-14
JP4046477B2 true JP4046477B2 (en) 2008-02-13

Family

ID=18891116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026275A Expired - Fee Related JP4046477B2 (en) 2001-02-02 2001-02-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP4046477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765570B1 (en) * 2006-02-08 2007-10-09 엘지전자 주식회사 Outdoor unit for air conditioner

Also Published As

Publication number Publication date
JP2002228205A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
CN107110570A (en) Heat storage type air conditioner
JP2012132586A (en) Refrigeration cycle device
JP4046477B2 (en) Air conditioner
JPH09250839A (en) Heat pump hot water supply apparatus
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP3986231B2 (en) Heat storage tank
KR100907749B1 (en) Air conditioner
JP3953251B2 (en) Heat storage tank
JP3920540B2 (en) Air conditioner
JP2772851B2 (en) Installation and delivery of absorption chillers and water heaters
JP3643687B2 (en) Air conditioner with ice heat storage unit
JP2001221467A (en) Air conditioning system
JP2003202135A (en) Regenerative air-conditioning device
JP3790207B2 (en) Air conditioner
JP3467407B2 (en) Refrigeration equipment
JP3802237B2 (en) Air conditioner with ice storage tank
JP3814570B2 (en) Air conditioner
JP3492912B2 (en) Refrigeration equipment
JPH0849924A (en) Heat storage type air-conditioner
JP2001235293A (en) Heat storage tank
JP2007147133A (en) Air conditioner
JP3511210B2 (en) Heat storage method for air conditioning
JP4189958B2 (en) Ice storage air conditioning system
JPS6017642Y2 (en) air conditioner
JPH0835732A (en) Heat storage type air conditioner and controlling method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Effective date: 20070628

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101130

LAPS Cancellation because of no payment of annual fees