JP4046377B2 - Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method - Google Patents

Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method Download PDF

Info

Publication number
JP4046377B2
JP4046377B2 JP23714596A JP23714596A JP4046377B2 JP 4046377 B2 JP4046377 B2 JP 4046377B2 JP 23714596 A JP23714596 A JP 23714596A JP 23714596 A JP23714596 A JP 23714596A JP 4046377 B2 JP4046377 B2 JP 4046377B2
Authority
JP
Japan
Prior art keywords
fvii
blood coagulation
coagulation factor
fviia
factor vii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23714596A
Other languages
Japanese (ja)
Other versions
JPH1059867A (en
Inventor
和彦 友清
寿 矢野
匡伸 今村
祥晃 中野
真一 丸野
洋一 緒方
剛 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP23714596A priority Critical patent/JP4046377B2/en
Publication of JPH1059867A publication Critical patent/JPH1059867A/en
Application granted granted Critical
Publication of JP4046377B2 publication Critical patent/JP4046377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本願発明は、血漿蛋白質の分野に関する。より詳細には、活性化血液凝固第VII因子(以下、FVIIaと称することがある)の製造方法に関し、FVIIを含有する血漿画分または遺伝子組換え技術に基づいて作出されたFVII産生細胞培養上清から、陰イオン交換クロマトグラフィーによる処理及びそれに連続した液相中での活性化によって、夾雑蛋白質含量が低減されたFVIIaを、極めて簡便に生産し得るFVIIaの製造方法を提供するものである。
【0002】
【従来の技術並びに発明が解決しようとする課題】
FVIIはビタミンK依存性の血液凝固因子であり、外因系血液凝固の開始因子であることは広く知られている。他のビタミンK依存性凝固因子と同様にN末端から35残基までのアミノ酸配列に10個のγカルボキシグルタミン酸(以下、Glaと称することがある)からなるGla領域を有している(Proc.Natl.Acad.Sci.USA,vol.83,p.2412−2416,1986)。FVIIは、in vitroにおいて、活性化血液凝固第X因子(以下、FXaと称することがある)、活性化血液凝固第IX因子(以下、FIXaと称することがある)またはトロンビン(以下、FIIaと称することがある)によって、152Arg−153Ileが加水分解され、一個のS−S結合で架橋されたH鎖とL鎖から構成される活性型FVIIすなわちFVIIaに変換されることが知られている(J.Biol.Chem.,vol.251,p.4797−4802,1976)。また、最近、Saulius等は生理的なFVII活性化酵素が活性化血液凝固第X因子であると報告した(Biochemistry,vol.35,p.1904−1910,1996)。
【0003】
血友病A及び血友病B患者に対する補充療法として、血液凝固第VIII因子(以下、FVIIIと称することがある)及び血液凝固第IX因子(以下、FIXと称することがある)製剤の投与が行なわれている。しかし、当該治療法に伴いFVIII及びFIXに対する中和抗体(インヒビターと呼ばれることもある)の出現が問題視されている。このようなインヒビター患者の治療にFVIIaが有効であることは既に報告されており、現在、血漿由来FVIIa及び遺伝子組換え技術を応用した遺伝子組換え型FVIIaの開発が進められている(基礎と臨床,vol.30,p.315−325,1996;Haemostasis,vol.19,p.335−343,1989)
【0004】
酵素前駆体であるFVIIからFVIIaへの変換に関しては各種の試験が行なわれ、FVII活性化酵素であるFXa、FIXa及びFIIaが存在しない場合、FVIIaの関与によるFVIIの自己活性化反応が生じること、即ち次式で示される反応"FVII + FVIIa → 2FVIIa"で進行することが明らかにされている(Biochemistry,vol.28,p.9331−9336,1989)。
ところで、FVIIaの調製方法として、陰イオン交換樹脂を使用した活性化方法がある(Res.Discl.,vol.269,p.564−565,1986)。この方法は、反応の詳細は明らかにされていないが、FVIIaを工業規模で生産するうえで極めて有効な方法である。しかしながら、陰イオン交換樹脂を使用したFVIIの活性化において問題となるのは、副産物としてFVIIのL鎖のN末端から38残基のアミノ酸が欠失したGla領域欠失FVIIa(以下、GD-lessFVIIaと称することがある)が生成することにある。FVIIaの生体内での活性発現にはリン脂質及び組織因子との結合が必要であり、Gla領域はそのためには必須である。従って、Gla領域の存在しないGD-lessFVIIaはリン脂質及び組織因子との結合が極めて弱く、生物学的活性を有さずその存在の生理的意義はないものと考えられている(J.Biol.Chem.,vol.265,p.1890−1894,1990;Thrombosis and Haemostasis.,vol.67,p.679−685,1992)。
【0005】
これまで、陰イオン交換樹脂上での活性化はゲルにFVIIを展開した後、完全活性化させ、グラジエント溶出することにより、溶出段階で副産物のGD-lessFVIIaとFVIIaの等電点の差異を利用して分離する方法が報告されており、Thim等はMonoQを使用した陰イオン交換クロマトグラフィーによる活性化反応においては産生されたGD-lessFVIIaは分離可能と述べている(Biochemistry,vol.27,p.7785−7793,1988)。しかしながら、実際上その完全分離は極めて難しく、分離を厳密に行なえば工程間収率は著しく低減する。さらに、これまでに陰イオン交換樹脂上でのGD-lessFVIIaの産生機構に関する報告はなく、その制御を陰イオン交換樹脂上で行なうことは極めて困難であった。
【0006】
【課題を解決するための手段】
本願発明者等は活性化反応における上記問題点に鑑み、陰イオン交換樹脂上での活性化反応における副産物であるGD-lessFVIIaの産生を抑制するべく鋭意研究を重ね種々の検討を行なった結果、本願発明を完成するに至った。
本願発明は、陰イオン交換樹脂上における活性化反応を60%未満に抑制し、溶出したFVII/FVIIa混合溶液を0.5mM以上のCa2+が存在する溶液中での液相中で熟成させ95%以上活性化させる方法をその技術の骨子とする。本願発明を適用すれば、活性化工程におけるFVIIからFVIIaの変換において生ずるGD-lessFVIIaの産生が抑制され、著しい工程間収率の上昇が可能となる。
【0007】
以下、本願発明の詳細について説明する。
本願発明で用いられる出発物質は、▲1▼血漿または血漿を適当なクロマトグラフィー操作またはコーンのエタノール分離法もしくはその改良法を用いて調製されたFVII含有溶液または、▲2▼遺伝子組換え技術に基づいて作出されたFVII産生形質転換細胞より調製されるFVII及び/もしくはFVII誘導体含有溶液が対象となるが、最適な出発原料としては、血漿を陰イオンクロマトグラフィーで粗精製したGla領域を有する蛋白溶液(PPSB画分)を抗FVIIモノクローナル抗体固定化アフィニティーゲルに展開し溶出したほぼFVIIのみを含有する溶液である。FVIIの精製は特に免疫吸着の原理に基づく方法に限定されるものではなく、FVIIを純化可能な方法であればいずれでもよい。
【0008】
前記FVII画分を、陰イオン交換樹脂クロマトグラフィーに供する。陰イオン交換樹脂は陰イオン交換樹脂であれば特に限定されるものではないが、好適にはDEAEセファロースファーストフロウ(ファルマシア社)及びQセファロースファーストフロウ(ファルマシア社)等が使用され、FVII画分を樹脂と接触させる。この工程では種々の条件を採用することができ、上記リガンドとの接触はバッチ法または連続カラム法で実施することができるが、最適な態様としては、前記の陰イオン交換樹脂をクロマトグラフィーのカラムに充填し、試料を通液後、吸着した所望のFVIIを溶出させる。陰イオン交換樹脂からの溶出は0.5mM以上のCa2+を含む緩衝液を用いて段階的溶出法(ステップワイズ溶出法)により、溶出液中のFVII/FVIIa混合溶液のFVIIaへの活性化率が60%以下になるように溶出する。
溶出液中の活性化率を制御するためには、陰イオン交換樹脂へのFVII展開量と樹脂内での滞留時間を調整すればよい。すなわち、樹脂へのFVII展開量及び樹脂内での滞留時間の増加は活性化率を増大させ、樹脂へのFVII展開量及び樹脂内での滞留時間の減少は活性化率を低下せしめる。
【0009】
溶出後の熟成時間は、▲1▼溶出時のFVII/FVIIaの混合比率、▲2▼FVII/FVIIaの蛋白濃度によって決定される。溶出液中の蛋白濃度は陰イオン交換樹脂へのFVII展開量及びカラムサイズが決定されれば一定になる。好適には1.0〜3.0mg/mlが望ましく、そのように陰イオン交換樹脂への展開量及びカラムサイズを決定する。また、溶出時の活性化率は陰イオン交換樹脂へのFVII展開量が決定されれば、上述のごとく樹脂内での滞留時間を制御すればよい。また、熟成開始時のCa2+濃度は0.5mM以上が要求され、それ以下の濃度ではGD-lessFVIIaの産生が顕著になり、適正ではない。好適には1.0〜10mMの濃度範囲が使用される。熟成の終了は、FVII/FVIIaの混合溶液のFVIIaの活性化率が95%を越えた時点で、希釈操作によって蛋白濃度を減じ活性化反応速度を遅延させるか、またはpHを低下させ酵素反応を一時停止せしめることによって行なう。得られたFVIIa溶液は透析操作によって所望の製薬学的調合剤に処方すればよい。
【0010】
静脈内投与のための調合剤に対しては、組成物を、通常、生理学的に適合し得る物質例えば塩化ナトリウム、グリシン等を含み且つ生理学的条件に適合し得る緩衝されたpHを有する水溶液中に溶解する。また、長期安定性の確保の観点から、最終的剤型として凍結乾燥製剤の形態を採ることも考慮され得る。なお、静脈内に投与される組成物のガイドラインは政府の規則、例えば「生物学的製剤基準」によって確立されている。
以下に、実施例を挙げて本願発明を具体的に説明するが、本願発明は何等これらに限定されるものではない。
【0011】
【実施例】
実施例の記述に先立ち、本願発明において使用されたFVII活性及びFVIIa含量の測定方法について概説する。
1) FVIIの生物学的活性
FVIIは血液凝固の開始因子である組織因子と結合し血液凝固を開始する。FVIIの定量方法は、検体をFVII欠乏血漿に添加後、一定時間インキュベーションした後、組織因子、リン脂質及びCa2+を含有したPT試薬を添加しその凝固時間から算出する。
2) FVIIa含量の測定
FVIIa含量の測定にはSDS−PAGEを使用する。FVII(分子量50kda)は活性化すると1個のS−S結合で結合した2本鎖に分かれる。H鎖は分子量30kda、L鎖は分子量20kda。還元系のSDS−PAGEでは未活性体は分子量50kdaの位置に、H鎖は30kda、L鎖は20kdaの位置に確認される。検出されるバンドをデンシトメーターで読み取り、分子量50kdaのバンドを未活性化FVII含量%、H鎖とL鎖の含量の和をFVIIa含量%とした。活性化率はFVIIa含量をFVII含量とFVIIa含量の和で除した値を百分率(%)で表した。
【0012】
実施例1
新鮮凍結血漿100リットルを冷融解し沈澱画分を遠心分離した上清を、陰イオン交換体(DEAE−セファデックス A−50:ファルマシア社)カラムに通液し、20mMクエン酸/0.1MNaCl緩衝液(pH7.0)にて充分に洗浄し、20mMクエン酸/0.5MNaCl緩衝液(pH7.0)にてGlaドメインを有するPPSB画分を溶出した。
溶出液10リットルを50mMTris/150mMNaCl/5.0mMCaCl2緩衝液(pH8.0)で予め平衡化した抗FVIIモノクローナル抗体固定化アフィニティーゲルに展開し、50mMTris/2.5MNaCl/5.0mMCaCl2緩衝液(pH8.0)で洗浄後、50mMTris/30mMNaCl/5.0mMCaCl2緩衝液(pH8.0)でさらに洗浄し、50mMTris/30mMNaCl/10mMEDTA緩衝液(pH7.4)で溶出してFVII画分を得た。該FVII画分を予め50mMTris/30mMNaCl緩衝液(pH8.0)で充填されているウイルス除去膜(ベンベルグマイクロポーラスメンブレン、旭化成)に展開し濾液を得た。得られた濾液のFVII純度は85%であった。
【0013】
上記0.2mg/mlのFVII溶液50mlを、予め50mMTris/30mMNaCl緩衝液(pH8.0)で平衡化した内径5.0mm、高さ5.0cmのDEAE−セファロースファーストフロウ(ファルマシア社)カラムに線速300cm/hrで展開し、さらに同線速下、上記緩衝液で所定の各種カラム容量洗浄し、吸着したFVII/FVIIaを失活させるために50mM酢酸緩衝液(pH3.5)で溶出した。溶出したFVII/FVIIa画分のSDS−PAGE解析を行ない、表1の結果を得た。本結果は洗浄カラム容量が70カラム容量を越えるとFVIIaの活性化率が66.4%を越え、GD-lessFVIIaの産生が始まることを示している。
【0014】
【表1】

Figure 0004046377
【0015】
実施例2
実施例1と同様な操作でウイルス除去膜濾液として調製した0.2mg/mlのFVII溶液50mlを、予め50mMTris/30mMNaCl緩衝液(pH8.0)で平衡化した内径5.0mm、高さ5.0cmのDEAE−セファロースファーストフロウ(ファルマシア社)カラムに線速300cm/hrで展開し、さらに同線速下、上記緩衝液で10倍カラム容量洗浄し、50mMTris/30mMNaCl/2.0mMCaCl2緩衝液(pH8.0)を用い各種線速で溶出した。溶出したFVII/FVIIa画分のSDS−PAGE解析を行ない、表2の結果を得た。本結果は溶出線速が100cm/hrを下回るとFVIIaの活性化率が62.8%を越え、GD-lessFVIIaの産生が始まることを示している。
【0016】
【表2】
Figure 0004046377
【0017】
実施例3
実施例1と同様な操作でウイルス除去膜濾液として調製した0.2mg/mlのFVII溶液70mlを、予め50mMTris/30mMNaCl緩衝液(pH8.0)で平衡化した内径5.0mm、高さ3.3cmのDEAE−セファロースファーストフロウ(ファルマシア社)カラムに線速200cm/hrで展開し、さらに同線速下、上記緩衝液で10カラム容量洗浄後、50mMTris/30mMNaCl/1.75mMCaCl2緩衝液(pH8.0)を用い線速150cm/hrで溶出した。溶出した濃度2.0mg/mlのFVII/FVIIa混合溶液をさらに液相中で10時間熟成させた。カラム溶出直後(熟成前)及び熟成後の成績を表3に示す。
結果は、実施例1、2とは陰イオン交換樹脂への展開量及びカラムサイズの異なる条件においても、溶出後の活性化率が60%以下ではGD-lessFVIIaが産生されず、且つ熟成後もその産生が極めて抑制されていることを示している。
【0018】
【表3】
Figure 0004046377
【0019】
実施例4
実施例1と同様な操作でウイルス除去膜濾液として調製された0.2mg/mlのFVII溶液35mlを予め10mMTris/100mMNaCl緩衝液(pH8.5)で平衡化した内径5.0mm、高さ5.0cmのQ−セファロースファーストフロウ(ファルマシア社)カラムに線速300cm/hrで展開し、さらに同線速下、上記緩衝液で各種カラム容量洗浄後、吸着したFVIIaを失活させるために50mM酢酸緩衝液(pH3.5)で溶出した。溶出したFVII/FVIIa画分のSDS−PAGE解析を行ない、表4の結果を得た。本結果は洗浄カラム容量が40カラム容量を越えるとFVIIaの活性化率が61.3%を越え、GD-lessFVIIaの産生が始まることを示している。
【0020】
【表4】
Figure 0004046377
【0021】
実施例5
実施例1と同様な操作でウイルス除去膜濾液として調製した0.2mg/mlのFVII溶液35mlを、予め10mMTris/100mMNaCl緩衝液(pH8.5)で平衡化した内径5.0mm、高さ5.0cmのQ−セファロースファーストフロウ(ファルマシア社)カラムに線速300cm/hrで展開し、さらに同線速下、上記緩衝液で10倍カラム容量洗浄し、10mMTris/100mMNaCl/4.0mMCaCl2緩衝液(pH8.5)を用い各種線速で溶出した。溶出したFVII/FVIIa画分のSDS−PAGE解析を行ない、表5の結果を得た。本結果は溶出線速が108cm/hr以下になるとFVIIaの活性化率が62.7%を越え、GD-lessFVIIaの産生が始まることを示している。
【0022】
【表5】
Figure 0004046377
【0023】
実施例6
実施例1と同様な操作でウイルス除去膜濾液として調製した0.2mg/mlのFVII溶液35mlを、予め10mMTris/100mMNaCl緩衝液(pH8.5)で平衡化した内径5.0mm、高さ5.0cmのQ−セファロースファーストフロウ(ファルマシア社)カラムに線速300cm/hrで展開し、さらに同線速下、上記緩衝液で10カラム容量洗浄後、10mMTris/100mMNaCl/4.0mMCaCl2緩衝液(pH8.5)で線速180cm/hrで溶出した。溶出した濃度1.0mg/mlのFVII/FVIIa混合溶液を液相中で25時間熟成させた。カラム溶出直後(熟成前)及び熟成後の成績を表6に示す。
結果は、実施例3と同様に陰イオン交換樹脂としてQ−セファロースファーストフロウ(ファルマシア社)を使用しても、溶出後の活性化率が60%以下ではGD-lessFVIIaが産生されず、且つ溶出液熟成後もその産生が極めて抑制されていることを示している。
【0024】
【表6】
Figure 0004046377
【0025】
実施例7
実施例3と同様な操作で、DEAE−セファロースファーストフロウ(ファルマシア社)を使用し部分活性化後、液相で熟成し完全活性化させたCa2+濃度2.0mMを含む5.0mg/ml濃度のFVIIa混合溶液を、Ca2+濃度が0.17mM、0.50mM、0.75mM、1.0mM、2.0mM、蛋白質濃度が0.4mg/mlになるように50mMTris/30mMNaCl緩衝液(pH8.1)で希釈し、9℃で88時間インキュベートした。
インキュベート後の成績を表7に記載する。表7の成績はGD-lessFVIIa産生の至適Ca2+濃度が0.5mM未満であることを示すと共に、FVIIaのGD-lessFVIIaへの分解反応が0.75mM以上のCa2+濃度下で抑制されることをも示している。この結果は液相におけるGD-lessFVIIa産生反応のCa2+濃度の閾値を示すと共に、陰イオン交換樹脂からの溶出をCa2+を含む緩衝液で行なう場合、溶出時のGD-lessFVIIaの産生を抑制するためには溶出緩衝液のCa2+濃度は0.5mM以上必要であることを示している。
【0026】
【表7】
Figure 0004046377
[0001]
[Industrial application fields]
The present invention relates to the field of plasma proteins. More specifically, the present invention relates to a method for producing activated blood coagulation factor VII (hereinafter sometimes referred to as FVIIa) on a plasma fraction containing FVII or an FVII-producing cell culture produced based on a gene recombination technique. The present invention provides a method for producing FVIIa, which can produce FVIIa with a reduced content of contaminating proteins very simply by treatment with anion exchange chromatography and activation in the liquid phase.
[0002]
[Background Art and Problems to be Solved by the Invention]
FVII is a vitamin K-dependent blood coagulation factor and is widely known to be an initiation factor for exogenous blood coagulation. Like other vitamin K-dependent coagulation factors, the amino acid sequence from the N-terminal to 35 residues has a Gla region consisting of 10 gamma carboxyglutamic acids (hereinafter sometimes referred to as Gla) (Proc. Natl. Acad. Sci. USA, vol. 83, p. 2412-2416, 1986). FVII is in vitro activated blood coagulation factor X (hereinafter sometimes referred to as FXa), activated blood coagulation factor IX (hereinafter sometimes referred to as FIXa) or thrombin (hereinafter referred to as FIXa). It is known that 152Arg-153Ile is hydrolyzed and converted into an active FVII or FVIIa composed of an H chain and an L chain cross-linked by a single S—S bond (J Biol. Chem., Vol. 251, p. 4797-4802, 1976). Recently, Saulius et al. Reported that the physiological FVII activating enzyme is activated blood coagulation factor X (Biochemistry, vol. 35, p. 1904-1910, 1996).
[0003]
As replacement therapy for hemophilia A and hemophilia B patients, administration of a blood coagulation factor VIII (hereinafter sometimes referred to as FVIII) and blood coagulation factor IX (hereinafter sometimes referred to as FIX) preparation is performed. It is done. However, the emergence of neutralizing antibodies against FVIII and FIX (sometimes referred to as inhibitors) has been regarded as a problem with the treatment methods. It has already been reported that FVIIa is effective in the treatment of such inhibitor patients. Currently, development of plasma-derived FVIIa and genetically modified FVIIa using genetic recombination technology is underway (basic and clinical). , vol. 30, p. 315-325, 1996; Haemostasis, vol. 19, p. 335-343, 1989)
[0004]
Various tests were performed on the conversion of the enzyme precursor FVII to FVIIa, and in the absence of FVII activating enzymes FXa, FIXa and FVIIa, FVII self-activation reaction occurs due to the involvement of FVIIa, That is, it has been clarified that the reaction proceeds by the reaction “FVII + FVIIa → 2FVIIa” represented by the following formula (Biochemistry, vol. 28, p.9331-9336, 1989).
By the way, as a method for preparing FVIIa, there is an activation method using an anion exchange resin (Res. Discl., Vol. 269, p. 564-565, 1986). Although details of the reaction are not clarified, this method is extremely effective for producing FVIIa on an industrial scale. However, a problem in the activation of FVII using an anion exchange resin is that a Gla region-deleted FVIIa (hereinafter referred to as GD-lessFVIIa) in which 38 amino acids have been deleted from the N-terminus of the L chain of FVII as a byproduct. May be called). FVIIa activity in vivo requires binding to phospholipids and tissue factors, and the Gla region is essential for this purpose. Therefore, GD-lessFVIIa, which does not have a Gla region, has very weak binding to phospholipids and tissue factors, and has no biological activity, and is considered to have no physiological significance (J. Biol. Chem., Vol. 265, p. 1890-1894, 1990; Thrombosis and Haemostasis., Vol. 67, p. 679-685, 1992).
[0005]
Up to now, activation on anion exchange resin has been achieved by developing FVII on the gel, then completely activating it, and elution with a gradient, thereby utilizing the difference in isoelectric point between GD-lessFVIIa and FVIIa as a by-product at the elution stage. In the activation reaction by anion exchange chromatography using MonoQ, Thim et al. Stated that produced GD-lessFVIIa can be separated (Biochemistry, vol. 27, p. .7785-7793, 1988). However, in practice, the complete separation is extremely difficult, and the yield between processes is significantly reduced if the separation is performed strictly. Furthermore, there has been no report on the production mechanism of GD-lessFVIIa on an anion exchange resin so far, and it has been extremely difficult to control the production on an anion exchange resin.
[0006]
[Means for Solving the Problems]
In view of the above problems in the activation reaction, the present inventors have conducted extensive studies to suppress the production of GD-lessFVIIa, which is a by-product in the activation reaction on the anion exchange resin, The present invention has been completed.
In the present invention, the activation reaction on the anion exchange resin is suppressed to less than 60%, and the eluted FVII / FVIIa mixed solution is aged in a liquid phase in a solution containing 0.5 mM or more of Ca 2+. The method of activating 95% or more is the gist of the technology. When the present invention is applied, production of GD-lessFVIIa generated in the conversion of FVII to FVIIa in the activation process is suppressed, and a remarkable increase in inter-process yield is possible.
[0007]
Hereinafter, the details of the present invention will be described.
The starting material used in the present invention is: (1) FVII-containing solution prepared by using an appropriate chromatographic operation or corn ethanol separation method or an improved method thereof, or (2) gene recombination technology. FVII and / or FVII derivative-containing solutions prepared from FVII-producing transformed cells produced based on the above are targeted, but the optimal starting material is a protein having a Gla region obtained by roughly purifying plasma by anion chromatography The solution (PPSB fraction) is developed on an anti-FVII monoclonal antibody-immobilized affinity gel and contains almost only FVII eluted. The purification of FVII is not particularly limited to a method based on the principle of immunoadsorption, and any method that can purify FVII may be used.
[0008]
The FVII fraction is subjected to anion exchange resin chromatography. The anion exchange resin is not particularly limited as long as it is an anion exchange resin, but preferably DEAE Sepharose Fast Flow (Pharmacia) and Q Sepharose Fast Flow (Pharmacia) are used, and the FVII fraction is used. Contact with resin. In this step, various conditions can be adopted, and the contact with the ligand can be carried out by a batch method or a continuous column method. As an optimal aspect, the above anion exchange resin is used in a chromatography column. And the adsorbed desired FVII is eluted. Elution from anion exchange resin is activated to FVIIa by using stepwise elution method (stepwise elution method) with a buffer containing Ca 2+ of 0.5 mM or more. Elute so that the rate is 60% or less.
In order to control the activation rate in the eluate, the amount of FVII developed on the anion exchange resin and the residence time in the resin may be adjusted. That is, the increase in the FVII development amount in the resin and the residence time in the resin increases the activation rate, and the decrease in the FVII development amount in the resin and the residence time in the resin decreases the activation rate.
[0009]
The aging time after elution is determined by (1) the mixing ratio of FVII / FVIIa at the time of elution and (2) the protein concentration of FVII / FVIIa. The protein concentration in the eluate becomes constant if the amount of FVII developed on the anion exchange resin and the column size are determined. The amount is preferably 1.0 to 3.0 mg / ml, and the amount developed on the anion exchange resin and the column size are determined as such. Further, the activation rate at the time of elution may be controlled by the residence time in the resin as described above if the amount of FVII developed on the anion exchange resin is determined. Further, the Ca 2+ concentration at the start of ripening is required to be 0.5 mM or more, and at a concentration lower than that, production of GD-lessFVIIa becomes remarkable, which is not appropriate. Preferably a concentration range of 1.0 to 10 mM is used. When the activation rate of FVIIa in the mixed solution of FVII / FVIIa exceeds 95%, the protein concentration is decreased by dilution operation to delay the activation reaction rate, or the pH is lowered to reduce the enzyme reaction. This is done by pausing. The obtained FVIIa solution may be formulated into a desired pharmaceutical preparation by dialysis.
[0010]
For formulations for intravenous administration, the composition is usually in an aqueous solution containing a physiologically compatible substance such as sodium chloride, glycine and the like and having a buffered pH that is compatible with physiological conditions. Dissolve in Further, from the viewpoint of ensuring long-term stability, it may be considered to take the form of a lyophilized preparation as the final dosage form. It should be noted that guidelines for intravenously administered compositions are established by government regulations, such as “Biological Formulation Standards”.
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0011]
【Example】
Prior to the description of the examples, the method for measuring FVII activity and FVIIa content used in the present invention will be outlined.
1) Biological activity of FVII FVII binds to tissue factor, which is an initiation factor of blood coagulation, and initiates blood coagulation. In the FVII quantification method, a specimen is added to FVII-deficient plasma, incubated for a certain period of time, a PT reagent containing tissue factor, phospholipid, and Ca 2+ is added, and the clotting time is calculated.
2) Measurement of FVIIa content SDS-PAGE is used for the measurement of FVIIa content. When activated, FVII (molecular weight 50 kda) divides into two strands linked by one SS bond. The H chain has a molecular weight of 30 kda, and the L chain has a molecular weight of 20 kda. In the reduced SDS-PAGE, the inactive substance is confirmed at a molecular weight of 50 kda, the H chain at 30 kda, and the L chain at 20 kda. The detected band was read with a densitometer, the band having a molecular weight of 50 kda was defined as unactivated FVII content%, and the sum of the H chain and L chain contents was defined as FVIIa content%. The activation rate was expressed as a percentage (%) obtained by dividing the FVIIa content by the sum of the FVII content and the FVIIa content.
[0012]
Example 1
The supernatant obtained by cold thawing 100 liters of fresh frozen plasma and centrifuging the precipitate fraction was passed through an anion exchanger (DEAE-Sephadex A-50: Pharmacia) column, and 20 mM citric acid / 0.1 M NaCl buffer. The solution was sufficiently washed with a solution (pH 7.0), and the PPSB fraction having the Gla domain was eluted with 20 mM citric acid / 0.5 M NaCl buffer (pH 7.0).
Ten liters of the eluate was developed on an anti-FVII monoclonal antibody immobilized affinity gel pre-equilibrated with 50 mM Tris / 150 mM NaCl / 5.0 mM CaCl 2 buffer (pH 8.0), and 50 mM Tris / 2.5 M NaCl / 5.0 mM CaCl 2 buffer ( After washing with pH 8.0), it was further washed with 50 mM Tris / 30 mM NaCl / 5.0 mM CaCl 2 buffer (pH 8.0) and eluted with 50 mM Tris / 30 mM NaCl / 10 mM EDTA buffer (pH 7.4) to obtain the FVII fraction. . The FVII fraction was developed on a virus removal membrane (Bemberg microporous membrane, Asahi Kasei) that was previously filled with 50 mM Tris / 30 mM NaCl buffer (pH 8.0) to obtain a filtrate. The FVII purity of the obtained filtrate was 85%.
[0013]
50 ml of the above 0.2 mg / ml FVII solution was lined on a DEAE-Sepharose Fast Flow (Pharmacia) column having an inner diameter of 5.0 mm and a height of 5.0 cm, which had been equilibrated in advance with 50 mM Tris / 30 mM NaCl buffer (pH 8.0). The plate was developed at a speed of 300 cm / hr, washed with various column volumes with the above buffer under the same linear speed, and eluted with 50 mM acetate buffer (pH 3.5) to deactivate the adsorbed FVII / FVIIa. SDS-PAGE analysis of the eluted FVII / FVIIa fraction was performed and the results shown in Table 1 were obtained. This result shows that when the washing column volume exceeds 70 column volumes, the activation rate of FVIIa exceeds 66.4% and production of GD-lessFVIIa starts.
[0014]
[Table 1]
Figure 0004046377
[0015]
Example 2
50 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was equilibrated in advance with 50 mM Tris / 30 mM NaCl buffer (pH 8.0), and the inner diameter was 5.0 mm and the height was 5. The column was developed on a 0 cm DEAE-Sepharose Fast Flow (Pharmacia) column at a linear velocity of 300 cm / hr, and further washed 10 times with the above buffer solution at the same linear velocity, and 50 mM Tris / 30 mM NaCl / 2.0 mM CaCl 2 buffer ( The solution was eluted at various linear speeds using pH 8.0). SDS-PAGE analysis of the eluted FVII / FVIIa fraction was performed and the results shown in Table 2 were obtained. This result indicates that when the elution linear velocity is less than 100 cm / hr, the activation rate of FVIIa exceeds 62.8%, and production of GD-lessFVIIa starts.
[0016]
[Table 2]
Figure 0004046377
[0017]
Example 3
70 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was equilibrated in advance with 50 mM Tris / 30 mM NaCl buffer (pH 8.0), and the inner diameter was 5.0 mm and the height was 3. The column was developed on a 3 cm DEAE-Sepharose Fast Flow (Pharmacia) column at a linear speed of 200 cm / hr, and further washed with 10 column volumes with the above buffer under the same linear speed, and then 50 mM Tris / 30 mM NaCl / 1.75 mM CaCl 2 buffer (pH 8). 0.0) at a linear velocity of 150 cm / hr. The eluted FVII / FVIIa mixed solution having a concentration of 2.0 mg / ml was further aged in the liquid phase for 10 hours. The results immediately after column elution (before aging) and after aging are shown in Table 3.
As a result, GD-lessFVIIa was not produced when the activation rate after elution was 60% or less even under conditions where the development amount to an anion exchange resin and the column size were different from those of Examples 1 and 2, and even after aging. It shows that its production is extremely suppressed.
[0018]
[Table 3]
Figure 0004046377
[0019]
Example 4
35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate in the same manner as in Example 1 was equilibrated in advance with 10 mM Tris / 100 mM NaCl buffer (pH 8.5), and the inner diameter was 5.0 mm and the height was 5. Developed on a 0-cm Q-Sepharose Fast Flow (Pharmacia) column at a linear speed of 300 cm / hr, and further washed with various column volumes with the above buffer at the same linear speed, and then washed with 50 mM acetate buffer to deactivate the adsorbed FVIIa. Elute with liquid (pH 3.5). SDS-PAGE analysis of the eluted FVII / FVIIa fraction was performed and the results shown in Table 4 were obtained. This result shows that the activation rate of FVIIa exceeds 61.3% and the production of GD-lessFVIIa starts when the washing column volume exceeds 40 column volumes.
[0020]
[Table 4]
Figure 0004046377
[0021]
Example 5
35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was equilibrated in advance with 10 mM Tris / 100 mM NaCl buffer (pH 8.5), an inner diameter of 5.0 mm, and a height of 5. The column was developed on a 0-cm Q-Sepharose Fast Flow (Pharmacia) column at a linear velocity of 300 cm / hr, and further washed with 10 times the column volume with the above buffer solution at the same linear velocity, and 10 mM Tris / 100 mM NaCl / 4.0 mM CaCl 2 buffer solution ( Elution was performed at various linear speeds using pH 8.5). SDS-PAGE analysis of the eluted FVII / FVIIa fraction was performed, and the results shown in Table 5 were obtained. This result shows that when the elution linear velocity is 108 cm / hr or less, the activation rate of FVIIa exceeds 62.7% and the production of GD-lessFVIIa starts.
[0022]
[Table 5]
Figure 0004046377
[0023]
Example 6
35 ml of a 0.2 mg / ml FVII solution prepared as a virus removal membrane filtrate by the same operation as in Example 1 was equilibrated in advance with 10 mM Tris / 100 mM NaCl buffer (pH 8.5), an inner diameter of 5.0 mm, and a height of 5. The column was developed on a 0 cm Q-Sepharose Fast Flow (Pharmacia) column at a linear velocity of 300 cm / hr, and further washed with 10 column volumes with the above buffer under the same linear velocity, and then 10 mM Tris / 100 mM NaCl / 4.0 mM CaCl 2 buffer (pH 8). And elution at a linear velocity of 180 cm / hr. The eluted FVII / FVIIa mixed solution having a concentration of 1.0 mg / ml was aged in the liquid phase for 25 hours. The results immediately after column elution (before aging) and after aging are shown in Table 6.
As a result, even when Q-Sepharose Fast Flow (Pharmacia) was used as an anion exchange resin as in Example 3, GD-lessFVIIa was not produced when the activation rate after elution was 60% or less. It shows that its production is extremely suppressed even after liquid aging.
[0024]
[Table 6]
Figure 0004046377
[0025]
Example 7
In the same manner as in Example 3, after partial activation using DEAE-Sepharose Fast Flow (Pharmacia), 5.0 mg / ml containing 2.0 mM of Ca 2+ concentration aged in the liquid phase and fully activated. The FVIIa mixed solution at a concentration was adjusted to 50 mM Tris / 30 mM NaCl buffer so that the Ca 2+ concentration was 0.17 mM, 0.50 mM, 0.75 mM, 1.0 mM, 2.0 mM, and the protein concentration was 0.4 mg / ml. The mixture was diluted with pH 8.1) and incubated at 9 ° C. for 88 hours.
The results after incubation are listed in Table 7. The results in Table 7 indicate that the optimal Ca 2+ concentration for GD-lessFVIIa production is less than 0.5 mM, and the degradation reaction of FVIIa to GD-lessFVIIa is inhibited under a Ca 2+ concentration of 0.75 mM or more. It also shows that This result shows the threshold of Ca 2+ concentration of GD-lessFVIIa production reaction in the liquid phase, and when elution from an anion exchange resin is carried out with a buffer containing Ca 2+ , production of GD-lessFVIIa at the time of elution is shown. This indicates that the Ca 2+ concentration in the elution buffer is required to be 0.5 mM or more for inhibition.
[0026]
[Table 7]
Figure 0004046377

Claims (3)

(a) 血液凝固第VII因子(以下、FVIIと称することがある)を含有する溶液を陰イオン交換樹脂に展開し接触させ、(b)FVIIを活性化率が60%未満を維持しつつ活性化血液凝固第VII因子(以下、FVIIaと称することがある)へ活性化し、(c)0.5mM以上の濃度のCa2+を含有する溶出緩衝液を用いて溶出して、(d)該溶出液を溶液状態で静置(熟成)し未活性体分子を完全に活性化させる工程を経てなる血液凝固第VII因子の活性化血液凝固第VII因子への活性化方法。  (a) A solution containing blood coagulation factor VII (hereinafter sometimes referred to as FVII) is developed and brought into contact with an anion exchange resin, and (b) FVII is active while maintaining an activation rate of less than 60%. Activated to coagulated blood coagulation factor VII (hereinafter sometimes referred to as FVIIa), and (c) eluted with an elution buffer containing Ca2 + at a concentration of 0.5 mM or more, (d) the eluate A method of activating blood coagulation factor VII to activated blood coagulation factor VII through a step of leaving (aging) the solution in a solution state to completely activate the inactive molecules. 上記陰イオン交換樹脂からの溶出時の溶出方法が段階的溶出法(ステップワイズ溶出法)である請求項1に記載のFVIIの活性化方法。  The method for activating FVII according to claim 1, wherein the elution method at the time of elution from the anion exchange resin is a stepwise elution method (stepwise elution method). 請求項1もしくは請求項2のいずれかに記載のFVIIの活性化方法に基づく工程を含むことを特徴とする活性化血液凝固第VII因子の製造方法。
以上
A method for producing activated blood coagulation factor VII, comprising a step based on the method for activating FVII according to claim 1.
more than
JP23714596A 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method Expired - Lifetime JP4046377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23714596A JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23714596A JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Publications (2)

Publication Number Publication Date
JPH1059867A JPH1059867A (en) 1998-03-03
JP4046377B2 true JP4046377B2 (en) 2008-02-13

Family

ID=17011081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23714596A Expired - Lifetime JP4046377B2 (en) 1996-08-19 1996-08-19 Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method

Country Status (1)

Country Link
JP (1) JP4046377B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348044A1 (en) * 1999-03-15 2011-07-27 Novo Nordisk A/S Ion exchange chromatography of GLP-1, analogs and derivatives thereof
JP4676585B2 (en) 1999-12-24 2011-04-27 一般財団法人化学及血清療法研究所 Pharmaceutical composition for treatment / prevention of diseases based on abnormal blood coagulation
KR20060106812A (en) 2003-08-21 2006-10-12 노보 노르디스크 에이/에스 Separation of polypeptides comprising a racemized amino acid
EP2652491B1 (en) 2010-12-15 2017-11-29 Baxalta GmbH Eluate collection using conductivity gradient

Also Published As

Publication number Publication date
JPH1059867A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP3330932B2 (en) Anticoagulant protein
US5580560A (en) Modified factor VII/VIIa
JP4317976B2 (en) Factor X analogue having a modified protease cleavage site
Paborsky et al. Purification of recombinant human tissue factor
JP4451514B2 (en) Blood coagulation factor VII variant
KR101827569B1 (en) Compositions and methods for modulating hemostasis
US20080214462A1 (en) FIX-Mutant Proteins for Hemophilia B Treatment
US8513386B2 (en) FVIII-independent FIX-mutant proteins for hemophilia a treatment
JPS6291187A (en) Dna sequence encoding human tissue plasminogen activating factor
HU225247B1 (en) Factor x deletion mutants and analogues thereof
WO1996013274A1 (en) Process for production of inhibited forms of activated blood factors
JPH1059866A (en) Production of blood coagulation factor vii and/or activated blood coagulation factor vii
US6063909A (en) Preparation of factor IX
JP4046377B2 (en) Method for activating blood coagulation factor VII and method for producing activated blood coagulation factor VII based on the method
EP0139447B1 (en) A process for preparing urokinase zymogen
WO1991012320A1 (en) Activated protein c with truncated light chain
JPH0736755B2 (en) Composition containing plasminogen activator precursor
JP3153236B2 (en) Recombinant protein C with truncated light chain
WO1991002065A1 (en) Cell culture methods for producing activated protein c
JPH01165379A (en) Novel compound, method for its preparation and drug composition composition containing it
JPH0527607B2 (en)
WO1996017928A1 (en) Use of the protease domain of human plasminogen activator for the treatment of thromboembolic diseases
EP0272315A1 (en) Recombinant human tissue plasminogen activator composition
JPH04218368A (en) Production of plasminogen activator precursor
MXPA99007817A (en) Factor x deletion mutants and analogues thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term