JP4046110B2 - Hole positioning method - Google Patents

Hole positioning method Download PDF

Info

Publication number
JP4046110B2
JP4046110B2 JP2004207394A JP2004207394A JP4046110B2 JP 4046110 B2 JP4046110 B2 JP 4046110B2 JP 2004207394 A JP2004207394 A JP 2004207394A JP 2004207394 A JP2004207394 A JP 2004207394A JP 4046110 B2 JP4046110 B2 JP 4046110B2
Authority
JP
Japan
Prior art keywords
hole
positioning
center
visual device
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004207394A
Other languages
Japanese (ja)
Other versions
JP2006031258A (en
Inventor
健一 桂川
政久 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004207394A priority Critical patent/JP4046110B2/en
Publication of JP2006031258A publication Critical patent/JP2006031258A/en
Application granted granted Critical
Publication of JP4046110B2 publication Critical patent/JP4046110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半球面に形成された穴の中心位置を位置決めし、穴の軸方向をθ軸の方向と一致させる穴の位置決め方法に関する。   The present invention relates to a hole positioning method in which the center position of a hole formed in a hemispherical surface is positioned and the axial direction of the hole coincides with the direction of the θ axis.

図1に示されるように、被位置決め物5の半球面を画像で捉える視覚装置1と、被位置決め物5を保持し、θ方向のみに回転移動するθ位置決め部2と、θ位置決め部を支持し、φ方向のみに回転移動するφ位置決め部3と、φ位置決め部を支持し、水平と垂直方向に移動するX−Yテーブル4とより構成される穴の位置決め装置を使用して、被位置決め物5の半球面に形成された穴51の中心位置を位置決めし、穴51の軸方向をθ軸の方向と一致させている。   As shown in FIG. 1, a visual device 1 that captures an image of the hemispherical surface of the object 5 to be positioned, a θ positioning part 2 that holds the object 5 and rotates only in the θ direction, and supports the θ positioning part. Using a hole positioning device composed of a φ positioning part 3 that rotates and moves only in the φ direction, and an XY table 4 that supports the φ positioning part and moves in the horizontal and vertical directions, The center position of the hole 51 formed on the hemispherical surface of the object 5 is positioned, and the axial direction of the hole 51 is made to coincide with the direction of the θ axis.

しかしながら、従来の穴の位置決め方法は、図5に示されるように、視覚装置1の画像で捕えられた全体形状から、画像中心を求め、その画像中心に対する穴中心の角度と画像中心と穴中心との距離から、穴51のφ軸での角度を理想球面で求め、φ軸で求めた角度を回転し、穴を視覚装置の正面に位置決めしていた。
しかし、実際には表面は理想球面からずれているため、高精度な位置決めが出来ず、15μmの取代の加工を行なった場合、加工できない面が残るという問題があった。
また、従来技術として特許文献1の3次元形状測定機及び測定方法が知られている。この特許文献1では、球面を備えた被測定物を回転軸まわりに回転可能なテーブル上に載置し、回転軸に直角な平面上で回転軸に向かって進退する方向における被測定物の変位をセンサで検出しつつ、センサを回転軸と平行な方向に移動し、最大変位を与える位置でセンサを静止し、この静止状態のセンサで被測定物の変位を検出しつつテーブルを回転させ、この回転する間の検出変位量が一定となるように被測定物のテーブル上での載置位置を調整し、この調整後の一定となったセンサ検出変位量を基に、被測物の球面の曲率半径を求めることによって、機械的な作動誤差による影響を少なくして曲率半径の測定精度を向上させることにある。
特開2000−74606号公報
However, in the conventional hole positioning method, as shown in FIG. 5, the image center is obtained from the entire shape captured by the image of the visual device 1, and the angle of the hole center with respect to the image center, the image center, and the hole center are obtained. The angle on the φ axis of the hole 51 is obtained from the ideal spherical surface, and the angle obtained on the φ axis is rotated to position the hole in front of the visual device.
However, since the surface is actually deviated from the ideal spherical surface, high-precision positioning cannot be performed, and when machining with a machining allowance of 15 μm is performed, a surface that cannot be machined remains.
Moreover, the three-dimensional shape measuring machine and measuring method of patent document 1 are known as a prior art. In this Patent Document 1, the object to be measured having a spherical surface is placed on a table that can rotate around the rotation axis, and the displacement of the object to be measured in the direction of moving back and forth toward the rotation axis on a plane perpendicular to the rotation axis. The sensor is moved in a direction parallel to the rotation axis while the sensor is detected, the sensor is stopped at a position where the maximum displacement is given, the table is rotated while detecting the displacement of the object to be measured by the sensor in the stationary state, The mounting position of the object to be measured on the table is adjusted so that the detected displacement amount during the rotation is constant, and the spherical surface of the object to be measured is based on the constant sensor detected displacement amount after the adjustment. By determining the radius of curvature, it is intended to improve the measurement accuracy of the radius of curvature by reducing the influence of mechanical operating errors.
JP 2000-74606 A

本発明は、上記問題に鑑みてなされたものであり、その目的は、被位置決め物の球面に形成された穴を、球面にずれがあっても高精度に位置決め可能な穴の位置決め方法を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide a hole positioning method capable of positioning a hole formed on a spherical surface of an object to be positioned with high accuracy even if the spherical surface is displaced. It is to be.

本発明は、前記課題を解決するための手段として、特許請求の範囲の請求項に記載の穴の位置決め方法を提供する。
請求項1に記載の穴の位置決め方法は、被位置決め物半球面に形成された穴が視覚装置の正面位置に来るように位置決めする被位置決め物の穴の位置決め方法であって、
被位置決め物を保持部によりチャックし、θ回転軸を中心に120°回転毎に、視覚装置で半球面に形成された穴の画像を捉え、被位置決め物の穴の3つの画像から被位置決め物の視覚装置方向から見たθ回転軸中心を求め、被位置決め物の穴の視覚装置方向から見た中心をθ位置決め部により原点位置まで回転し、かつφ位置決め部により、被位置決め物の穴の視覚装置方向から見た中心がθ回転軸中心の真上の位置に来るように回転するようにしたものである。
このように、θ回転軸を中心に120°回転毎に半球面を視覚装置で画像を捉え、3つの画像から被位置決め物のθ回転軸中心を求めることにより、被位置決め物の回転中心(θ軸)を高精度に求めることができ、また、θ回転軸中心と穴との距離から理想球径での穴のφ軸角度を求め、回転位置決めした後、穴の中心をθ回転軸中心と一致させることにより、被位置決め物の半球面の形状誤差などに影響されず、高精度に穴を位置決めできるようになる。
The present invention provides a hole positioning method according to the claims as a means for solving the problems.
The hole positioning method according to claim 1, wherein the hole formed on the hemispherical surface of the object to be positioned is positioned so that the hole is located at a front position of the visual device .
The object to be positioned is chucked by the holding portion , and the image of the hole formed in the hemispherical surface is captured by the visual device every 120 ° rotation about the θ rotation axis, and the object to be positioned is determined from the three images of the hole of the object to be positioned. Determination of θ rotation axis center as seen from the visual device direction, and rotated to the home position to the center of θ positioning portion when viewed from the visual device direction of the hole to be positioned object, and the φ positioning portion, the hole to be positioned object The rotation is such that the center viewed from the direction of the visual device is at a position directly above the center of the θ rotation axis .
In this way, by capturing an image of the hemisphere with a visual device every 120 ° rotation around the θ rotation axis, and obtaining the θ rotation axis center of the object to be positioned from the three images, the rotation center of the object to be positioned (θ axis) can be a determined with high accuracy, also determine the φ axis angle of the holes in an ideal spherical diameter from a distance of between θ rotation center and the hole, after rotational positioning, and about the θ rotation axis center of the hole By matching, the hole can be positioned with high accuracy without being affected by the shape error of the hemispherical surface of the object to be positioned.

以下、図面に従って本発明の実施の形態の穴の位置決め方法について説明する。図1は、本発明の実施の形態の穴の位置決め方法を実施するための穴の位置決め装置の全体構成を示す模式図である。本発明の穴の位置決め装置は、基本的に、視覚装置1,θ位置決め部2,φ位置決め部3及びX−Yテーブル4とより構成されている。   Hereinafter, a hole positioning method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration of a hole positioning device for carrying out a hole positioning method according to an embodiment of the present invention. The hole positioning device of the present invention basically includes a visual device 1, a θ positioning portion 2, a φ positioning portion 3, and an XY table 4.

視覚装置1は、保持された被位置決め物5の半球面を画像で捉えるものであり、この捉えられた画像は、後述の画像処理装置11に送られ、ここに視覚データとして記憶される。
θ位置決め部2は、被位置決め物5をチャック等により保持し、θ方向のみに回転移動することができる。
φ位置決め部3は、θ位置決め部2を支持しており、φ方向のみに回転移動することができる。
また、X−Yテーブル4は、θ位置決め部2を支持しているφ位置決め部3を支持していて、水平と垂直方向に移動することができる。
The visual device 1 captures the held hemispherical surface of the object to be positioned 5 as an image, and the captured image is sent to an image processing device 11 described later and stored therein as visual data.
The θ positioning unit 2 holds the object to be positioned 5 with a chuck or the like and can rotate and move only in the θ direction.
The φ positioning unit 3 supports the θ positioning unit 2 and can rotate and move only in the φ direction.
The XY table 4 supports the φ positioning unit 3 that supports the θ positioning unit 2 and can move in the horizontal and vertical directions.

上記構成よりなる本発明の穴の位置決め装置の作動(穴の位置決め方法)について説明する。図2は、本発明の実施の形態の穴の位置決め方法を説明する図であり、図3は、本発明の穴の位置決め装置の作動を説明するブロック図であり、図4は、そのフローチャートである。即ち、本実施形態においては、図3に示すように、視覚装置1で捉えた画像は、画像処理装置11に送られて視覚データとして記憶されると共に、この記憶された視覚データから、θ軸中心からのφ軸の角度と水平と垂直方向のずれ量を算出して、このデータを制御装置12に送る。制御装置12では、このデータに基づいて、θ,φ,X,Y軸の移動量を算出し、θ,φ,X,Y軸の各軸に移動指令を出している。   The operation (hole positioning method) of the hole positioning device of the present invention having the above configuration will be described. 2 is a diagram for explaining a hole positioning method according to an embodiment of the present invention, FIG. 3 is a block diagram for explaining the operation of the hole positioning device of the present invention, and FIG. 4 is a flowchart thereof. is there. That is, in this embodiment, as shown in FIG. 3, the image captured by the visual device 1 is sent to the image processing device 11 and stored as visual data, and from this stored visual data, the θ axis The angle of the φ axis from the center and the amount of deviation in the horizontal and vertical directions are calculated, and this data is sent to the control device 12. Based on this data, the control device 12 calculates the movement amounts of the θ, φ, X, and Y axes, and issues a movement command to each of the θ, φ, X, and Y axes.

図4のフローチャートに示すように、まず、ステップS1で穴の位置決め装置のθ位置決め部2に被位置決め物5をチャックし取り付ける。次に、ステップS2で被位置決め物5の穴51の画像を視覚装置1で捉らえ、ステップS3でこの捉らえた画像を画像処理装置11で1回目の画像として記憶する(図2の画像1)。次いで、ステップS4でθ位置決め部2に保持された被位置決め物5をθ方向に120°回転させ、ステップS5でこの120°回転した被位置決め物5の穴51の画像を視覚装置1で捉らえ、同様にステップS6でこの捉えられた画像を画像処理装置11で2回目の画像として記憶する(図2の画像2)。更に、ステップS7でθ位置決め部2に保持された被位置決め物5をθ方向に更に120°回転させ、ステップS8でこの更に120°回転した被位置決め物5の穴51の画像を視覚装置1で捉らえ、同じくステップS9でこの捉えられた画像を画像処理装置11で3回目の画像として記憶する(図2の画像3)。   As shown in the flowchart of FIG. 4, first, in step S1, the object to be positioned 5 is chucked and attached to the θ positioning portion 2 of the hole positioning device. Next, in step S2, an image of the hole 51 of the object to be positioned 5 is captured by the visual device 1, and in step S3, the captured image is stored as a first image by the image processing device 11 (image of FIG. 2). 1). Next, in step S4, the object to be positioned 5 held by the θ positioning unit 2 is rotated by 120 ° in the θ direction, and in step S5, the image of the hole 51 of the object to be positioned 5 rotated by 120 ° is captured by the visual device 1. Similarly, in step S6, the captured image is stored as the second image in the image processing apparatus 11 (image 2 in FIG. 2). Further, in step S7, the object to be positioned 5 held by the θ positioning unit 2 is further rotated by 120 ° in the θ direction. In step S9, the captured image is stored as the third image in the image processing apparatus 11 (image 3 in FIG. 2).

次に、ステップS10で画像処理装置11が記憶した3回分の画像データ(画像1〜3)から、3つの穴51の画像の中心を求め、θの回転軸を求め、θの回転軸の位置を記憶する(θ軸中心)。次いで、ステップS11では、画像処理装置11でθ軸中心と被位置決め物5の穴51との距離から理想球径での穴51のφ軸角度を算出し、これを記憶する。ステップS12では、画像処理装置11から制御装置12へθ軸とφ軸角度を出力し、ステップS13で制御装置12がθ,φ軸の移動量を算出し、ステップS14で制御装置12がこの移動量に基づいてθ,φ軸に移動指令を出力する。   Next, from the three times of image data (images 1 to 3) stored in the image processing apparatus 11 in step S10, the centers of the images of the three holes 51 are obtained, the θ rotation axis is obtained, and the θ rotation axis position is obtained. Is stored (θ axis center). Next, in step S11, the image processing apparatus 11 calculates the φ axis angle of the hole 51 at the ideal spherical diameter from the distance between the center of the θ axis and the hole 51 of the object to be positioned 5, and stores this. In step S12, the θ-axis and φ-axis angles are output from the image processing apparatus 11 to the control apparatus 12. In step S13, the control apparatus 12 calculates the movement amounts of the θ and φ axes, and in step S14, the control apparatus 12 performs this movement. Based on the amount, a movement command is output to the θ and φ axes.

次に、ステップS15でθ位置決め部2で被位置決め物5を回転し、穴51の中心位置がθ軸中心に対し所定位置(原点位置)まで回転する。次いで、同様にステップS16でφ位置決め部3で被位置決め物5を回転し、穴51の中心位置がθ軸中心の真上の位置まで回転し、ステップS17でこのときの穴51の画像を視覚装置1で捉らえ、ステップS18でこの捉らえられた画像を画像処理装置11で記憶する(図2の画像4)。   Next, in step S15, the to-be-positioned object 5 is rotated by the θ positioning unit 2, and the center position of the hole 51 is rotated to a predetermined position (origin position) with respect to the θ axis center. Next, similarly, in step S16, the object to be positioned 5 is rotated by the φ positioning unit 3, the center position of the hole 51 is rotated to a position directly above the center of the θ axis, and the image of the hole 51 at this time is visually viewed in step S17. The image is captured by the apparatus 1, and the captured image is stored in the image processing apparatus 11 in step S18 (image 4 in FIG. 2).

次に、ステップS19では、画像処理装置11で画像4からθ、水平(X)、垂直(Y)方向のずれを算出し、ステップS20で、このずれに基づいて制御装置12がθ,X,Y軸の移動量を算出して移動指令を出力する。ステップS21では、被位置決め物5をθ位置決め部2とX−Yテーブル4とで穴51の中心位置を所定位置へ補正移動する。このようにして、ステップS22で被位置決め物5の穴51の位置決めを完了する。
このように被位置決め物5の穴51の位置決めをすることにより、球面の形状誤差に左右されずに穴51の中心を正確に位置決めできるようになる。しかも穴の球面の中心に向う方向がθ軸中心に一致させることができる。
Next, in step S19, the image processing device 11 calculates θ, horizontal (X), and vertical (Y) direction deviations from the image 4, and in step S20, the control device 12 determines θ, X, The movement amount of the Y axis is calculated and a movement command is output. In step S21, the center position of the hole 51 is corrected and moved to a predetermined position by the θ positioning unit 2 and the XY table 4 with respect to the positioning object 5. In this way, the positioning of the hole 51 of the object to be positioned 5 is completed in step S22.
By positioning the hole 51 of the positioning object 5 in this way, the center of the hole 51 can be accurately positioned without being influenced by the shape error of the spherical surface. In addition, the direction toward the center of the spherical surface of the hole can coincide with the center of the θ axis.

以上説明したように、本発明では、θ軸を中心に120°回転毎に被位置決め物の半球面を視覚装置で画像として捉え、3つの画像から被位置決め物のθ軸中心を求め、θ軸中心と半球面に形成された穴との距離から理想球径での穴のφ軸角度を求め、回転位置決めした後、穴の中心をθ軸中心と一致させることにより、球面に形成された穴を球面にずれがあっても高精度に位置決めすることができる。   As described above, in the present invention, the hemispherical surface of the object to be positioned is captured as an image by the visual device every 120 ° rotation around the θ axis, and the θ axis center of the object to be positioned is obtained from the three images, and the θ axis The hole formed in the spherical surface is obtained by determining the φ-axis angle of the hole at the ideal spherical diameter from the distance between the center and the hole formed in the hemispherical surface, rotating and positioning, and then aligning the center of the hole with the θ-axis center Can be positioned with high accuracy even if the spherical surface is displaced.

本発明の実施の形態の穴の位置決め方法を実施するのに使用する穴の位置決め装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the hole positioning device used in enforcing the hole positioning method of embodiment of this invention. 本発明の実施の形態の穴の位置決め方法を説明する図である。It is a figure explaining the positioning method of the hole of embodiment of this invention. 図1の穴の位置決め装置の作動を説明するブロック図である。It is a block diagram explaining the action | operation of the positioning device of the hole of FIG. 図1の穴の位置決め装置の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of the positioning device of the hole of FIG. 従来の穴の位置決め方法を説明する図である。It is a figure explaining the positioning method of the conventional hole.

符号の説明Explanation of symbols

1 視覚装置
11 画像処理装置
12 制御装置
2 θ位置決め部
3 φ位置決め部
4 X−Yテーブル
5 被位置決め物
51 穴
DESCRIPTION OF SYMBOLS 1 Visual apparatus 11 Image processing apparatus 12 Control apparatus 2 (theta) positioning part 3 (phi) positioning part 4 XY table 5 Positioning object 51 hole

Claims (1)

穴が形成された半球面を備える被位置決め物をチャックする保持部と、
前記保持部によって保持された前記被位置決め物の前記半球面を画像で捉える視覚装置と、
前記視覚装置方向のθ回転軸周りに前記被位置決め物を回転させるθ位置決め部と、
前記θ回転軸と直交する方向であって、前記半球面の中心を通る方向のφ回転軸周りに前記被位置決め物を回転させるφ位置決め部と、を用いて
前記被位置決め物の前記半球面に形成された穴が前記視覚装置の正面位置に来るように位置決めする被位置決め物の穴の位置決め方法であって、
前記被位置決め物を前記保持部によりチャックし、前記θ位置決め部と前記視覚装置によって前記θ回転軸を中心に120°回転毎に、前記半球面の画像を3つ捉え、前記3つの画像から前記被位置決め物の前記視覚装置方向から見たθ回転軸中心を求める段階と、
前記θ位置決め部により、前記被位置決め物の前記穴の前記視覚装置から見た中心を、前記φ位置決め部により、前記視覚装置方向から見たθ回転軸中心の真上位置まで回転できるような原点位置まで回転する段階と、
前記φ位置決め部により、前記被位置決め物を回転させ、前記穴の前記視覚装置方向から見た中心前記θ回転軸中心の真上の位置に来るように回転する段階と
を具備することを特徴とする被位置決め物に設けた穴の位置決め方法。
A holding part for chucking an object to be positioned having a hemispherical surface in which a hole is formed;
A visual device that captures an image of the hemispherical surface of the object to be positioned held by the holding unit;
A θ positioning unit that rotates the object to be positioned around a θ rotation axis in the direction of the visual device;
A φ positioning portion that rotates the object to be positioned around a φ rotation axis in a direction perpendicular to the θ rotation axis and passing through the center of the hemisphere.
Wherein a hole positioning method of the positioning object formed in said semi-spherical hole to be positioned object is positioned such that the front position of the visual device,
Said object positioning was chuck by said holding unit, for each rotation 120 ° about said θ rotation axis and the θ positioning portion by the visual device, the capture three images of the hemisphere, said from said three image Obtaining the center of rotation of the θ viewed from the visual device direction of the object to be positioned;
An origin that allows the θ positioning portion to rotate the center of the hole of the object to be positioned as viewed from the visual device to a position directly above the θ rotation axis center viewed from the visual device direction by the φ positioning portion. Rotating to a position,
Characterized in that by the φ positioning unit, wherein rotating the object to be positioned object, the center as viewed from the visual device direction of said hole; and a step of rotating to come to a position directly over the θ rotation axis center The positioning method of the hole provided in the to-be-positioned object.
JP2004207394A 2004-07-14 2004-07-14 Hole positioning method Expired - Fee Related JP4046110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207394A JP4046110B2 (en) 2004-07-14 2004-07-14 Hole positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207394A JP4046110B2 (en) 2004-07-14 2004-07-14 Hole positioning method

Publications (2)

Publication Number Publication Date
JP2006031258A JP2006031258A (en) 2006-02-02
JP4046110B2 true JP4046110B2 (en) 2008-02-13

Family

ID=35897549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207394A Expired - Fee Related JP4046110B2 (en) 2004-07-14 2004-07-14 Hole positioning method

Country Status (1)

Country Link
JP (1) JP4046110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905026B1 (en) * 2016-09-14 2018-02-27 The Boeing Company Photogrammetric identification of locations for performing work

Also Published As

Publication number Publication date
JP2006031258A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP6153816B2 (en) Shape measuring apparatus and rotary table coordinate system registration method
US10074192B2 (en) Substrate inspection apparatus and control method thereof
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
JP5292564B2 (en) Shape measuring apparatus, calibration method thereof, and calibration program
JP2004317159A (en) Reference holder for roundness measuring machines
JP5294949B2 (en) Measuring device for rotating body thickness etc.
JP5571007B2 (en) Sphere shape measuring device
JP2009012083A (en) Motion error measuring method and device of machine tool
JP5057489B2 (en) Alignment apparatus and alignment method
JP2014503369A (en) Centering the optical element
JP2014081279A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP5270138B2 (en) Calibration jig and calibration method
JP2012083192A (en) Calibration method and calibration jig for three-dimensional measuring machines
JP2021094600A (en) Machine tool and shape measurement method of workpiece machining part
JP2004205288A (en) Measuring instrument and accuracy analyzer equipped with the same
TWI647037B (en) Fixture correction device and method
JP4046110B2 (en) Hole positioning method
JP6542742B2 (en) Drill blade phase measurement device and drill blade phase measurement method
JP2007333596A (en) X-ray ct system
JP4705828B2 (en) Relative relationship measurement method and relative relationship measurement device
TWI769869B (en) Method for measuring the center position of the rotating shaft of a machine tool
JP7321067B2 (en) Reversing error measurement method for machine tools
JP6757391B2 (en) Measuring method
KR101498725B1 (en) Turn table apparatus
KR20150108323A (en) Method and apparatus for determining the distance of a light beam from a point on a surface of an object by means of a light sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees