JP4045678B2 - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
JP4045678B2
JP4045678B2 JP36115098A JP36115098A JP4045678B2 JP 4045678 B2 JP4045678 B2 JP 4045678B2 JP 36115098 A JP36115098 A JP 36115098A JP 36115098 A JP36115098 A JP 36115098A JP 4045678 B2 JP4045678 B2 JP 4045678B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
flow direction
fluid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36115098A
Other languages
Japanese (ja)
Other versions
JP2000182631A (en
Inventor
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP36115098A priority Critical patent/JP4045678B2/en
Publication of JP2000182631A publication Critical patent/JP2000182631A/en
Application granted granted Critical
Publication of JP4045678B2 publication Critical patent/JP4045678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用のセパレータに関し、詳しくは、電極や他の部材と共に燃料ガスや酸化ガスまたは冷却媒体等の流体の流路を形成する複数の凸部を有し、この電極等と積層されて燃料電池スタックを形成した際に単位セル間の隔壁をなす燃料電池用のセパレータに関する。
【0002】
【従来の技術】
従来、この種の燃料電池用のセパレータとしては、図6の従来例のセパレータ320として示されるように、ガス拡散電極(図示せず)とにより形成される燃料ガスや酸化ガスの流路を、流路形成リブ334,336,338により全体としては二つのU字型状とし、その直線部分については複数の直線リブ340により流路をガイドし、流向の変化する部位(すなわち、U字型の流路の屈曲部)については断面が略正方形の複数の凸部342,344によりガスの方向性に対する自由度を大きくして燃料ガスや酸化ガスの流向を変化させるものが提案されている(例えば、特開平10−106594号公報など)。この従来例のセパレータ320によれば、このように燃料ガスや酸化ガスの流路を二つのU字型状とすることにより、ガス拡散電極全体に燃料ガスや酸化ガスをより均等に供給することができるとされている。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来例のセパレータ320では、燃料ガスや酸化ガスの流向が変化する部位において、ガスは、流向の変化の内周側を多く流れ、その外周側についてはあまり流れないといった問題が生じていた。この問題は燃料ガスや酸化ガスのガス拡散電極への均等な供給を阻害するものであるから、燃料電池の性能を十分に発揮させることができないという問題をも生じさせる。
【0004】
こうした問題は、同様のセパレータを用いて冷却媒体の流路を形成した場合には、冷却媒体がセパレータ内に均等に流れないことによって生じるセパレータの温度分布の問題、すなわち、温度分布を生じることによる燃料電池の性能の低下の問題として把握される。
【0005】
本発明の燃料電池用のセパレータは、こうした問題を解決し、燃料ガスや酸化ガスをより均等に電極に供給すること又は冷却媒体をセパレータ内により均等に流すことを目的とする。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の燃料電池用のセパレータは、上述の目的を達成するために以下の手段を採った。
【0007】
本発明の燃料電池用のセパレータは、電極や他の部材と共に燃料ガスや酸化ガスまたは冷却媒体等の流体の流路を形成する複数の凸部を有し、前記電極等と積層されて燃料電池スタックを形成した際に単位セル間の隔壁をなす燃料電池用のセパレータであって、少なくとも一つの前記流体の流向を変化させる部位における前記凸部は、前記流体の流向に沿って少なくとも該部位の前後に亘って一体的に形成されてなることを要旨とする。
【0008】
このように本発明の燃料電池用のセパレータでは、少なくとも一つの凸部が流体の流向を変化させる部位の前後に亘って一体的に形成されているから、流体を、流向の変化の内周側や外周側に関わらずより均等に流すことができる。この結果、流体が燃料ガスや酸化ガスの場合には、これらのガスを電極により均等に供給することができ、燃料電池の性能を向上させることができる。また、流体が冷却媒体の場合には、セパレータにおける温度分布を小さくすることができ、燃料電池の性能を向上させることができる。
【0009】
こうした本発明の燃料電池のセパレータにおいて、流体の流向を変化させる部位は流向を180度変化させる部位であり、流体の流向を変化させる部位における凸部はコの字型に形成されてなるものとすることもできる。また、本発明の燃料電池のセパレータにおいて、流体の流向を変化させる部位における凸部は、流向の変化の内周側に位置するほど流れに対して上流側から一体的に形成されてなるものとすることもできる。このように、流体の流向を変化させる部位における凸部は、流体のセパレータ内における流向や流れ密度などに合わせて形成することができる。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である燃料電池用のセパレータ20の概略構成を示す構成図である。このセパレータ20は、ガス不透過の緻密性カーボンにより形成されている。図示するように、セパレータ20の各辺の近くには、燃料ガス(例えば、水素を含有する水素リッチガス等)をセパレータ20の表面に導入するための燃料ガス導入孔22と、燃料ガスを他の単位セルと連絡するための燃料ガス連絡孔23と、燃料ガスをセパレータ20から排出するための燃料ガス排出孔24と、酸化ガス(例えば、酸素を含有する空気等)を図示しないセパレータ20の裏面に導入するための酸化ガス導入孔26と、酸化ガスを他の単位セルと連絡するための酸化ガス連絡孔27と、この酸化ガスをセパレータ20から排出するための酸化ガス排出孔28と、冷却水の水路を形成する冷却水孔30および32とが形成されている。これらの各孔は、図示しないが、積層して燃料電池スタックを形成した際には、燃料電池スタック内に積層方向の燃料ガスや酸化ガスあるいは冷却水の流入または排出のための流路が形成され、燃料電池スタック内の各セルに燃料ガスや酸化ガスが供給され、燃料電池スタックを冷却するために規則的に積層された各冷却部材に冷却水が供給されるようになっている。
【0011】
セパレータ20の表面には、燃料ガス導入孔22から導入された燃料ガスが全体としてU字型に流れて燃料ガス連絡孔23に至り、この燃料ガス連絡孔23から同様にU字型に流れて燃料ガス排出孔24へ排出される流路を形成する3本の流路形成リブ34,36,38が形成されている。この3本の流路形成リブ34,36,38により形成された二つのU字型の流路の直線部分には断面が正方形の複数の凸部40が形成されており、燃料ガスの電極への効率的な拡散と電極との十分な接触を確保している。二つのU字型の流路における屈曲部には、等間隔の複数の溝を形成するコの字型の屈曲部リブ42a〜42d,44a〜44cが形成されており、燃料ガスが屈曲部の内周側に片寄って流れるのを防止し、外周側にも燃料ガスが均等に流れるようにされている。なお、屈曲部において、外周側になるほど外周側の屈曲部リブ(例えば屈曲部リブ42dや44c)の上流側の端部を内周側の屈曲部リブ(例えば屈曲部リブ42aや44a)のそれより下流側になるよう形成しているのは、燃料ガスが外周部ほど流れ込みやすいようにするためである。これは、各屈曲部リブにより形成される各溝の長さや各溝から電極に供給される燃料ガスの量、更に流体力学的な燃料ガスの流れやすさを勘案すると、外周側の溝ほど燃料ガスをより多く流す必要があるからである。
【0012】
セパレータ20の裏面には、図示しないが、酸化ガス導入孔26から導入された酸化ガスが酸化ガス連絡孔27を経由して酸化ガス排出孔28へ排出される二つのU字型の流路が、図1に例示するセパレータ20の表示面における燃料ガスの二つのU字型の流路と同様に形成されている。したがって、セパレータ20の裏面の構成については説明が重複するので省略する。
【0013】
こうして構成された実施例のセパレータ20は、図2に固体高分子型燃料電池の単位セルの構成図として例示するセルを構成する電解質膜50と燃料ガス側の電極52と酸化ガス側の電極54と共に積層されて燃料電池スタック(図示せず)を構成する。なお、図2に例示する単位セルは、電解質膜50はフッ素系樹脂等の固体高分子材料により形成されたプロトン導電性の膜体により形成されており、電極52および54は白金または白金と他の金属からなる合金の触媒が練り込められたカーボンクロスにより形成されている。
【0014】
図3は、実施例のセパレータ20と図6に例示する従来例のセパレータ320とを用いて図2に例示する燃料電池スタックの単位セルを構成したときの各単位セルの性能を単位セルの電流密度と電圧との関係で示すグラフである。曲線Aは実施例のセパレータ20を用いた単位セルの性能を表し、曲線Cは従来例のセパレータ320を用いた単位セルの性能を表す。図示するように、実施例のセパレータ20を用いた単位セルは、電流密度の全般で従来例のセパレータ320を用いた単位セルより良い性能を示し、特に電流密度の高い領域において顕著な性能の向上が見られる。
【0015】
以上説明した実施例のセパレータ20によれば、二つのU字型の流路における屈曲部にコの字型の屈曲部リブ42a〜42d,44a〜44cを形成することにより、燃料ガスや酸化ガスが屈曲部の内周側に片寄って流れるのを防止し、外周側にも十分に流れるようにすることができる。この結果、燃料電池スタックを構成した際には、燃料ガスや酸化ガスを電極52や54により均等に供給することができ、燃料電池の性能を向上させることができる。また、屈曲部における外周側の屈曲部リブの上流側の端部を内周側の屈曲部リブのそれより下流側になるよう形成することにより、燃料ガスや酸化ガスを外周部ほど流れ込みやすくすることができる。この結果、外周部に必要な量の燃料ガスや酸化ガスを供給することができ、燃料電池の性能を更に向上させることができる。
【0016】
実施例のセパレータ20では、二つのU字型の流路の屈曲部における外周側の屈曲部リブの上流側の端部を内周側の屈曲部リブのそれより下流側になるよう形成したが、図4の変形例の屈曲部リブ142a〜142dに例示するように、屈曲部における外周側の屈曲部リブの上流側の端部を内周側の屈曲部リブのそれと同じ位置となるよう形成しても差し支えない。この変形例のセパレータを用いて単位セルを構成した際の単位セルの性能を図3の曲線Bとして示す。図示するように、変形例のセパレータを用いた単位セルは、実施例のセパレータ20ほどではないが、従来例のセパレータ320を用いた単位セルに比して著しい性能の向上が見られる。
【0017】
実施例のセパレータ20では、二つのU字型の流路における屈曲部に等間隔のコの字型の複数の溝を形成するようコの字型の屈曲部リブ42a〜42d,44a〜44cを形成したが、屈曲部の外周側に形成される直線部については一体の連続したリブによってコの字型に形成する必要はなく、図5の参考例の屈曲部リブ242a〜242dに例示するように、コの字型の直線部においては複数の凸部243を形成するものとしてもかまわない。
【0018】
実施例では、燃料ガスや酸化ガスを電極に供給するための流路について本発明を適用したが、燃料電池スタックを冷却するためにスタック内に規則的に積層される冷却部材における冷却媒体(例えば、水)の流路について適用するものとしても良い。こうすれば、冷却部材内を冷却媒体がより均等に流れることにより冷却部材の温度分布を小さくすることができ、この結果、燃料電池の性能を向上させることができる。
【0019】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である燃料電池用のセパレータ20の概略構成を示す構成図である。
【図2】 実施例のセパレータ20を用いて固体高分子型燃料電池を構成した際の単位セルの概略構成を例示する構成図である。
【図3】 実施例と従来例のセパレータを用いて構成された燃料電池スタックの単位セルの電流密度と電圧との関係で示すグラフである。
【図4】 変形例の屈曲部リブ142a〜142dを示す説明図である。
【図5】 参考例の屈曲部リブ242a〜242dを示す説明図である。
【図6】 従来例のセパレータ320の構成を例示する構成図である。
【符号の説明】
20 セパレータ、22 燃料ガス導入孔、23 燃料ガス連絡孔、24 燃料ガス排出孔、26 酸化ガス導入孔、27 酸化ガス連絡孔、28 酸化ガス排出孔、30,32 冷却水孔、34,36,38 流路形成リブ、40 凸部、42a〜42d 屈曲部リブ、44a〜44c 屈曲部リブ、50 電解質膜、52,54 電極、142a〜142d 屈曲部リブ、242a〜242d 屈曲部リブ、243 凸部、320 従来例のセパレータ、334,336,338 流路形成リブ、340 直線リブ、342,344 凸部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a fuel cell. More specifically, the present invention has a plurality of protrusions that form a flow path of a fluid such as a fuel gas, an oxidizing gas, or a cooling medium together with electrodes and other members, and is laminated with the electrodes and the like. The present invention relates to a fuel cell separator that forms partition walls between unit cells when a fuel cell stack is formed.
[0002]
[Prior art]
Conventionally, as a separator for this type of fuel cell, as shown as a conventional separator 320 in FIG. 6, a flow path of fuel gas or oxidizing gas formed by a gas diffusion electrode (not shown), The flow path forming ribs 334, 336, and 338 form two U-shapes as a whole, and the straight portions of the flow paths are guided by a plurality of straight ribs 340 to change the flow direction (that is, the U-shaped shape). As for the bent portion of the flow path, a plurality of convex portions 342 and 344 having a substantially square cross section have been proposed to increase the degree of freedom with respect to the directionality of the gas and change the flow direction of the fuel gas or the oxidizing gas (for example, JP, 10-106594, A, etc.). According to the separator 320 of this conventional example, the fuel gas and the oxidizing gas are more evenly supplied to the entire gas diffusion electrode by making the flow path of the fuel gas and the oxidizing gas into two U-shapes in this way. It is supposed to be possible.
[0003]
[Problems to be solved by the invention]
However, in the separator 320 of the conventional example, there is a problem that in the portion where the flow direction of the fuel gas or the oxidizing gas changes, the gas flows much on the inner peripheral side of the change in the flow direction and does not flow much on the outer peripheral side. It was. Since this problem hinders the uniform supply of fuel gas and oxidizing gas to the gas diffusion electrode, it also causes a problem that the performance of the fuel cell cannot be fully exhibited.
[0004]
Such a problem is caused when a cooling medium flow path is formed by using the same separator, and the temperature distribution of the separator caused by the cooling medium not flowing uniformly in the separator, that is, the temperature distribution is generated. It is grasped as a problem of deterioration of fuel cell performance.
[0005]
The separator for a fuel cell of the present invention aims to solve such problems and to supply fuel gas and oxidizing gas to the electrode more evenly or to flow the cooling medium more evenly in the separator.
[0006]
[Means for solving the problems and their functions and effects]
The fuel cell separator of the present invention employs the following means in order to achieve the above-described object.
[0007]
The separator for a fuel cell of the present invention has a plurality of convex portions that form a flow path of a fluid such as a fuel gas, an oxidizing gas, or a cooling medium together with an electrode and other members, and is laminated with the electrode or the like to be a fuel cell A separator for a fuel cell that forms a partition wall between unit cells when a stack is formed, wherein at least one of the convex portions in the portion that changes the flow direction of the fluid is at least along the flow direction of the fluid. The gist is that it is formed integrally in the front and rear.
[0008]
As described above, in the separator for a fuel cell according to the present invention, since at least one convex portion is integrally formed before and after the portion where the flow direction of the fluid is changed, the fluid is supplied to the inner peripheral side of the change in the flow direction. It is possible to flow more evenly regardless of the outer peripheral side. As a result, when the fluid is a fuel gas or an oxidizing gas, these gases can be supplied uniformly by the electrodes, and the performance of the fuel cell can be improved. Further, when the fluid is a cooling medium, the temperature distribution in the separator can be reduced, and the performance of the fuel cell can be improved.
[0009]
In such a separator of the fuel cell of the present invention, the part that changes the flow direction of the fluid is a part that changes the flow direction by 180 degrees, and the convex part in the part that changes the flow direction of the fluid is formed in a U-shape. You can also Further, in the separator of the fuel cell of the present invention, the convex portion at the portion that changes the flow direction of the fluid is integrally formed from the upstream side with respect to the flow as it is located on the inner peripheral side of the change in the flow direction. You can also Thus, the convex part in the part which changes the flow direction of a fluid can be formed according to the flow direction, the flow density, etc. in the separator of a fluid.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing a schematic configuration of a fuel cell separator 20 according to an embodiment of the present invention. The separator 20 is formed of dense carbon that is impermeable to gas. As shown in the figure, near each side of the separator 20, a fuel gas introduction hole 22 for introducing a fuel gas (for example, a hydrogen rich gas containing hydrogen) into the surface of the separator 20, and other fuel gas A fuel gas communication hole 23 for communicating with the unit cell, a fuel gas discharge hole 24 for discharging the fuel gas from the separator 20, and a back surface of the separator 20 not shown with an oxidizing gas (for example, air containing oxygen). An oxidizing gas introduction hole 26 for introducing the oxidizing gas into the gas, an oxidizing gas communication hole 27 for communicating the oxidizing gas with other unit cells, an oxidizing gas discharge hole 28 for discharging the oxidizing gas from the separator 20, and cooling Cooling water holes 30 and 32 that form water channels are formed. Although these holes are not shown, when a fuel cell stack is formed by stacking, a flow path for inflow or discharge of fuel gas, oxidizing gas or cooling water in the stacking direction is formed in the fuel cell stack. The fuel gas and the oxidizing gas are supplied to each cell in the fuel cell stack, and the cooling water is supplied to each cooling member that is regularly stacked to cool the fuel cell stack.
[0011]
On the surface of the separator 20, the fuel gas introduced from the fuel gas introduction hole 22 flows in a U-shape as a whole to the fuel gas communication hole 23, and also flows in a U-shape from the fuel gas communication hole 23. Three flow path forming ribs 34, 36, and 38 that form a flow path discharged to the fuel gas discharge hole 24 are formed. A plurality of convex portions 40 having a square cross section are formed on the straight portions of the two U-shaped flow paths formed by the three flow path forming ribs 34, 36, and 38, to the fuel gas electrode. Ensures efficient diffusion and sufficient contact with the electrode. The bent portions in the two U-shaped flow paths are formed with U-shaped bent portion ribs 42a to 42d and 44a to 44c that form a plurality of equally spaced grooves. The fuel gas is prevented from flowing toward the inner peripheral side and the fuel gas flows evenly on the outer peripheral side. In the bent portion, the upstream end of the outer side bent portion rib (for example, the bent portion ribs 42d and 44c) becomes closer to that of the inner peripheral side bent portion rib (for example, the bent portion ribs 42a and 44a) toward the outer peripheral side. The reason why it is formed on the downstream side is to make it easier for the fuel gas to flow into the outer peripheral portion. Considering the length of each groove formed by each bent rib, the amount of fuel gas supplied from each groove to the electrode, and the ease of flow of the hydrodynamic fuel gas, the groove on the outer peripheral side is more fueled. This is because it is necessary to flow more gas.
[0012]
Although not shown in the drawing, two U-shaped flow paths through which the oxidizing gas introduced from the oxidizing gas introduction hole 26 is discharged to the oxidizing gas discharge hole 28 via the oxidizing gas communication hole 27 are formed on the back surface of the separator 20. 1 is formed in the same manner as the two U-shaped flow paths of the fuel gas on the display surface of the separator 20 illustrated in FIG. Accordingly, the description of the configuration of the back surface of the separator 20 is omitted because it is redundant.
[0013]
The separator 20 of the embodiment thus configured includes an electrolyte membrane 50, a fuel gas side electrode 52, and an oxidizing gas side electrode 54 that constitute a cell illustrated in FIG. 2 as a unit cell configuration diagram of a solid polymer fuel cell. And a fuel cell stack (not shown). In the unit cell illustrated in FIG. 2, the electrolyte membrane 50 is formed of a proton conductive membrane formed of a solid polymer material such as a fluororesin, and the electrodes 52 and 54 are made of platinum or platinum and the like. It is made of carbon cloth in which an alloy catalyst made of one of these metals is kneaded.
[0014]
3 shows the performance of each unit cell when the unit cell of the fuel cell stack illustrated in FIG. 2 is configured using the separator 20 of the embodiment and the separator 320 of the conventional example illustrated in FIG. It is a graph shown by the relationship between a density and a voltage. Curve A represents the performance of the unit cell using the separator 20 of the example, and curve C represents the performance of the unit cell using the separator 320 of the conventional example. As shown in the figure, the unit cell using the separator 20 of the example shows better performance than the unit cell using the separator 320 of the conventional example in general in the current density, and the performance is remarkably improved particularly in the region where the current density is high. Is seen.
[0015]
According to the separator 20 of the embodiment described above, the U-shaped bent portion ribs 42a to 42d and 44a to 44c are formed at the bent portions in the two U-shaped flow paths, thereby allowing the fuel gas and the oxidizing gas to be formed. Can be prevented from flowing to the inner peripheral side of the bent portion, and can flow sufficiently to the outer peripheral side. As a result, when the fuel cell stack is configured, the fuel gas and the oxidizing gas can be supplied uniformly by the electrodes 52 and 54, and the performance of the fuel cell can be improved. Further, by forming the upstream end of the outer peripheral side bent portion rib in the bent portion so as to be downstream from that of the inner peripheral side bent portion rib, the fuel gas and the oxidizing gas can easily flow into the outer peripheral portion. be able to. As a result, a necessary amount of fuel gas or oxidizing gas can be supplied to the outer peripheral portion, and the performance of the fuel cell can be further improved.
[0016]
In the separator 20 of the example, the upstream end portion of the outer side bent portion rib in the bent portion of the two U-shaped flow paths is formed downstream of that of the inner peripheral side bent portion rib. 4, as illustrated in the bent portion ribs 142a to 142d of the modified example of FIG. 4, the upstream end of the bent portion rib on the outer peripheral side in the bent portion is formed at the same position as that of the bent portion rib on the inner peripheral side. It doesn't matter. The performance of the unit cell when the unit cell is configured using the separator of this modification is shown as a curve B in FIG. As shown in the figure, the unit cell using the separator of the modification is not as large as the separator 20 of the embodiment, but the performance is remarkably improved as compared with the unit cell using the separator 320 of the conventional example.
[0017]
In the separator 20 of the embodiment, the U-shaped bent portion ribs 42a to 42d and 44a to 44c are formed so as to form a plurality of equally spaced U-shaped grooves in the bent portions in the two U-shaped flow paths. Although formed, the straight portion formed on the outer peripheral side of the bent portion does not need to be formed in a U-shape by an integral continuous rib, and is illustrated in the bent portion ribs 242a to 242d of the reference example of FIG. In addition, a plurality of convex portions 243 may be formed in the U-shaped linear portion.
[0018]
In the embodiment, the present invention is applied to the flow path for supplying the fuel gas and the oxidizing gas to the electrode. However, in order to cool the fuel cell stack, a cooling medium (for example, a cooling medium regularly stacked in the stack) , Water) flow path may be applied. By so doing, the cooling medium flows more evenly in the cooling member, whereby the temperature distribution of the cooling member can be reduced, and as a result, the performance of the fuel cell can be improved.
[0019]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a schematic configuration of a separator 20 for a fuel cell according to an embodiment of the present invention.
FIG. 2 is a configuration diagram illustrating a schematic configuration of a unit cell when a polymer electrolyte fuel cell is configured using a separator 20 of an example.
FIG. 3 is a graph showing a relationship between a current density and a voltage of a unit cell of a fuel cell stack configured using separators of an example and a conventional example.
FIG. 4 is an explanatory view showing bent portion ribs 142a to 142d of a modified example.
FIG. 5 is an explanatory view showing bent portion ribs 242a to 242d of a reference example .
FIG. 6 is a configuration diagram illustrating the configuration of a separator 320 of a conventional example.
[Explanation of symbols]
20 Separator, 22 Fuel gas introduction hole, 23 Fuel gas communication hole, 24 Fuel gas discharge hole, 26 Oxidation gas introduction hole, 27 Oxidation gas communication hole, 28 Oxidation gas discharge hole, 30, 32 Cooling water hole, 34, 36, 38 flow path forming rib, 40 convex portion, 42a to 42d bent portion rib, 44a to 44c bent portion rib, 50 electrolyte membrane, 52, 54 electrode, 142a to 142d bent portion rib, 242a to 242d bent portion rib, 243 convex portion , 320 Conventional separator, 334, 336, 338 Channel forming rib, 340 Linear rib, 342, 344 Projection.

Claims (3)

体の流路を形成する複数の凸部を有し、電極と積層されて燃料電池スタックを形成した際に単位セル間の隔壁をなす燃料電池用のセパレータであって、
記流体の流向を変化させる前記凸部は、該流向の変化の内周側に位置するほど該流れに対して上流側から形成されてなるセパレータ。
A plurality of protrusions which form a flow path of the flow body, a separator for a fuel cell which forms a partition wall between unit cells when the being laminated with the electrodes to form a fuel cell stack,
The Kitotsu unit before Ru changing the flow direction before Symbol fluid separator comprising formed from the upstream side with respect to Re fluid as located on the inner peripheral side of the flow direction changes.
請求項1記載のセパレータであって、
前記凸部は、前記流体の流向に沿って少なくとも前記流体の流向を変化させる部位の上流側から下流側に亘って一体的に形成されなるセパレータ。
The separator according to claim 1,
The said convex part is a separator formed integrally from the upstream to the downstream of the site | part which changes the flow direction of the said fluid at least along the flow direction of the said fluid.
請求項1又は2記載のセパレータであって、The separator according to claim 1 or 2,
前記流体の流向を変化させる部位は、流向をU字型に変化させる部位であり、The part that changes the flow direction of the fluid is a part that changes the flow direction into a U-shape,
前記流体の流向を変化させる部位における前記凸部は、コの字型に形成されてなるセパレータ。  The said convex part in the site | part which changes the flow direction of the said fluid is a separator formed in U shape.
JP36115098A 1998-12-18 1998-12-18 Separator for fuel cell Expired - Fee Related JP4045678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36115098A JP4045678B2 (en) 1998-12-18 1998-12-18 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36115098A JP4045678B2 (en) 1998-12-18 1998-12-18 Separator for fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007184754A Division JP5050697B2 (en) 2007-07-13 2007-07-13 Separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2000182631A JP2000182631A (en) 2000-06-30
JP4045678B2 true JP4045678B2 (en) 2008-02-13

Family

ID=18472405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36115098A Expired - Fee Related JP4045678B2 (en) 1998-12-18 1998-12-18 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP4045678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594037A (en) * 2013-10-02 2016-05-18 丰田自动车株式会社 Separator and fuel cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523089B2 (en) * 1999-04-09 2010-08-11 本田技研工業株式会社 Fuel cell stack
JP4344500B2 (en) 2002-01-07 2009-10-14 本田技研工業株式会社 Fuel cell
JP3998991B2 (en) 2002-02-05 2007-10-31 本田技研工業株式会社 Vehicle equipped with electric motor
JP3972759B2 (en) 2002-07-24 2007-09-05 トヨタ自動車株式会社 Fuel cell separator
US20060093891A1 (en) * 2004-11-02 2006-05-04 General Electric Company Flow field design for high fuel utilization fuel cells
WO2019171575A1 (en) 2018-03-09 2019-09-12 株式会社 東芝 Battery pack
KR102017486B1 (en) * 2018-09-05 2019-09-04 한국과학기술연구원 A separator for a fuel cell comprising a guide pattern and a fuel cell stack comprising the same
CN110277605A (en) * 2019-06-10 2019-09-24 上海爱斯达克汽车空调系统有限公司 New-energy automobile power battery coldplate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594037A (en) * 2013-10-02 2016-05-18 丰田自动车株式会社 Separator and fuel cell
CN105594037B (en) * 2013-10-02 2018-01-09 丰田自动车株式会社 separator and fuel cell

Also Published As

Publication number Publication date
JP2000182631A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US7413821B2 (en) Solid polymer electrolyte fuel cell assembly with gas passages in serial communication, and method of supplying reaction gas in fuel cell
KR101531952B1 (en) Interconnect for a fuel cell, a method for manufacturing an interconnect for a fuel cell
US7687165B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
JP5500254B2 (en) Fuel cell
JP4938912B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP6477412B2 (en) Fuel cell
JP2004235063A (en) Fuel cell
EP2461403A1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP4045678B2 (en) Separator for fuel cell
WO2011099399A1 (en) Fuel cell
CN100546082C (en) Fuel cell pack
JP6634955B2 (en) Fuel cell
JP5050697B2 (en) Separator for fuel cell
JP5541291B2 (en) Fuel cell and vehicle equipped with fuel cell
JP4403706B2 (en) Polymer electrolyte fuel cell
JP5204932B1 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2009522753A (en) Stable fuel cell flow field
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
JP2003086197A (en) Separator for fuel cell
JP7188323B2 (en) Fuel cell separator and fuel cell
JP5604977B2 (en) Fuel cell
JP5653873B2 (en) Fuel cell
WO2021199500A1 (en) Fuel cell separator
JP2022169222A (en) Separator for fuel cell
JPH10189014A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees