JP4045613B2 - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP4045613B2
JP4045613B2 JP18544997A JP18544997A JP4045613B2 JP 4045613 B2 JP4045613 B2 JP 4045613B2 JP 18544997 A JP18544997 A JP 18544997A JP 18544997 A JP18544997 A JP 18544997A JP 4045613 B2 JP4045613 B2 JP 4045613B2
Authority
JP
Japan
Prior art keywords
battery
microballoon
gel electrolyte
lithium battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18544997A
Other languages
Japanese (ja)
Other versions
JPH1131494A (en
Inventor
敏明 小島
一弥 岡部
健吉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP18544997A priority Critical patent/JP4045613B2/en
Publication of JPH1131494A publication Critical patent/JPH1131494A/en
Application granted granted Critical
Publication of JP4045613B2 publication Critical patent/JP4045613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電気自動車あるいは据置式電源のような大容量の電源装置などに使用されるリチウム電池に関する。
【0002】
【従来の技術】
電気自動車あるいは据置式電源装置などに使用されるリチウム電池は、高容量・高エネルギーが必要とされ、従来、このタイプの電池では、高容量を得るためには平板電極を複数枚積層させるか、あるいは長尺の電極を巻き込むか折り畳んで使用する必要があった。
【0003】
【発明が解決しようとする課題】
しかしながら、前記の様な高容量タイプのリチウム電池では、短絡あるいは大電流充放電により熱が発生した場合、電極の積層部に熱が蓄積され、その結果、異常なあるいは急激な温度上昇が起こり、破裂・発火などを起こす危険性を有していた。
【0004】
従って、前記のようなリチウム電池においては、電極内部で発生した熱が急激に上昇する前に冷却するか、発生した熱を内部に蓄積させることなく効率よく外部に拡散させて熱の上昇を抑制する必要があった。
【0005】
本発明の目的は、電極内部で発生した熱が急激に上昇して電池の破裂・発火などの危険な状態になる前に、瞬時になおかつ効率よく熱の発生・上昇を抑制するための手段を有しているリチウム電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明では、電極内部で発生し異常上昇した熱を瞬時になおかつ効率よく抑制するため、正極合剤層と負極合剤層の間に存在するセパレータ層に、5〜20μmの大きさの、アクリロニトリル製の、不活性ガス封入されたマイクロバルーンを前記セパレータ層部分の体積当たり20〜50%保持させたことを特徴とするリチウム電池である。
【0007】
【発明の実施の形態】
本発明は、正極合剤を保持させた集電体、負極合剤を保持させた集電体と、マイクロバルーンを保持したセパレータ層を介してそれぞれ合剤面が向き合うように重ね合わせた平板電極を積層させた極群と、金属製電池容器とを使用したリチウム電池として実施できる。
【0008】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。なお、本発明の電池容器のサイズ、材料、その他の使用される材料、条件などに関しては以下に示した例に限定されるものではない。
【0009】
図1は本発明リチウム電池の分解図、図2はマイクロバルーンを入れたゲル電解質セパレータ層の要部断面図、図3は電極の側面図、図4はマイクロバルーン添加量と電池温度変化との関係図である。
【0010】
本発明で使用したマイクロバルーンは、その大きさにより製膜の難易度あるいは膜引っ張り強度に大きな差があり、電池系に使用する前にその特性についての検討を行い最適条件の検討を行った。
【0011】
(マイクロバルーンの作製)アクリロニトリル系材料で融点が80℃前後になるように重合させた高分子を使用してマイクロバルーンを作製した。その時の製膜難易度と膜引っ張り強度についての調査を行うために、マイクロバルーンの大きさを5μm〜30μmまで5μmきざみで作製した。その結果を表1に示す。
【0012】
【表1】

Figure 0004045613
【0013】
製膜難易度に関しては、5、10μmは全く問題なく容易に作製でき、15、20μmに関しては5、10μmに比べ多少作製困難ではあったが問題なく作製できた。しかし、25μm以上になると膜作製が非常に困難となりほとんど作製できないという結果となった。
【0014】
また、25μm以上になると、膜引っ張り強度が極端に弱くなり、作製できても扱いが非常に困難であることが分かった。
【0015】
以上の製膜難易度および膜引っ張り強度の結果から、マイクロバルーンの大きさは5μm〜20μmの範囲が好適であることが分かった。
【0016】
(電池の作製)
マイクロバルーンの作製結果から、本発明で使用可能なマイクロバルーンの大きさが5μm〜20μmまでと決定したので、本発明のリチウム電池においては、その範囲内のマイクロバルーンを使用し電池作製を行った。
【0017】
以下、本発明で使用した電池の作製方法について説明する。
【0018】
−実施例電池1−
正極電極は、コバルト酸リチウム(LiCoO2 )粉末87重量部に、アセチレンブラック(AB)等の導電剤10重量部と、結着剤およびポリエチレンオキサイド(PEO)と1mol/lの6フッ化リン酸リチウム(LiPF6 )を溶解したプロピレンカーボネイト(PC)溶液とを混合したゲル電解質3重量部とを混合して正極合剤を作成し、これをスラリー状とした。このスラリー状の正極合剤を大きさ188mm×98mmのアルミニウム箔からなる正極集電体1の両面に塗布し、乾燥後、プレス機で圧縮成形して、正極集電体1上に正極合剤2が塗布されてなる正極電極3を作成した。
【0019】
負極電極は、炭素粉末90重量部に結着剤としてポリフッ化ビニリデン6重量部とポリエチレンオキサイド(PEO)と1mol/lの6フッ化リン酸リチウム(LiPF6 )を溶解したプロピレンカーボネイト(PC)溶液とを混合したゲル電解質4重量部とを混合して負極合剤を作成し、これをスラリー状とした。このスラリー状の負極合剤を大きさ190mm×100mmの銅箔からなる負極集電体4の両面に塗布し、乾燥後、プレス機で圧縮成形して、負極集電体4上に負極合剤5が塗布されてなる負極電極6を作成した。
【0020】
また、セパレータは、ポリエチレンオキサイド(PEO)と1mol/lの6フッ化リン酸リチウム(LiPF6 )を溶解したプロピレンカーボネイト(PC)溶液とを混合したゲル電解質に、大きさ15μmから成りその中にArガスを封入して作製したマイクロバルーン7をゲル電解質の体積当たり10%入れ、大きさ190mm×100mm、厚み50μmのゲル電解質セパレータ8とした。以上のように作製した、正極電極と負極電極とゲル電解質セパレータを組み合わせて、極群9を作製した。
【0021】
前記極群9を、厚さ0.5mmのアルミニウムからなり、容器の内側に厚さ30μmのポリプロピレン製の樹脂コーティングが施されている角形電池容器10に挿入し、アルミニウムからなる蓋11をはめ込み、レーザー溶接を行い封口し実施例電池1を得た。なお、端子12部分にはポリエチレン製のパッキンを用いてボルト止めによって封口した。なお、13は正極タブ、14は負極タブである。
【0022】
−実施例電池2−
マイクロバルーンの添加量をゲル電解質の体積当たり20%とした点以外は実施例電池1と同様に作製した。
【0023】
−実施例電池3−
マイクロバルーンの添加量をゲル電解質の体積当たり30%とした点以外は実施例電池1と同様に作製した。
【0024】
−実施例電池4−
マイクロバルーンの添加量をゲル電解質の体積当たり40%とした点以外は実施例電池1と同様に作製した。
【0025】
−実施例電池5−
マイクロバルーンの添加量をゲル電解質の体積当たり50%とした点以外は実施例電池1と同様に作製した。
【0026】
−実施例電池6−
マイクロバルーンの添加量をゲル電解質の体積当たり60%とした点以外は実施例電池1と同様に作製した。
【0027】
−比較例電池1−
マイクロバルーンをゲル電解質の中に保有させていない点以外は実施例電池1と同様に作製した。
【0028】
−比較例電池2−
マイクロバルーンの中に空気を封入している点以外は実施例電池2と同様に作製した。
【0029】
(電池評価試験)
リチウム電池において、過充電などにより電池温度が急激に上昇し、電池容器の破裂あるいは発火など非常に危険な状態となるので、本発明では、過充電などにより電池温度が上昇しても温度が100℃以上、さらにはより安全性を考慮して80℃以上上昇しないような電池についての検討をした。
【0030】
そこで、前記実施例電池1〜6と比較例電池1、2を用いて、完全充電させた後にさらに充電を行い、過充電状態とし、過充電開始から120秒後の電池容器側面の温度を測定した。そのときの測定結果を図4に示す。
【0031】
過充電試験の結果、マイクロバルーンの添加量が20%以上になると電池温度の上昇が80℃以上にならないことが判明した。しかし、マイクロバルーン添加量が60%以上になるとほとんど変化が得られなかったが、マイクロバルーンの存在量が多くなればイオン伝導度が低下し容量も低下する傾向にあった。
【0032】
また、比較例電池2は、マイクロバルーン添加量が20%に達しているにも関わらず、電池温度が80℃を越える結果となった。つまり、マイクロバルーンの中にArガスを封入させることでより効果的に電池温度上昇が抑制できるということが分かった。
【0033】
【発明の効果】
以上詳述したように、本発明リチウム電池は、セパレータ層部にマイクロバルーンを保持させ、さらにマイクロバルーンの中に不活性ガスを封入させることで、マイクロバルーンの融点以上に温度が達したときにマイクロバルーンが融解して不活性ガスが散出する結果、セパレータ層部分に空隙が出来るためイオン伝導度が悪くなり、さらなる反応の進行を遅らせることが可能となり、急激な温度上昇を引き起こすことがなく、発火や爆発などの危険な状態が回避できる。
【図面の簡単な説明】
【図1】本発明リチウム電池の分解図である。
【図2】マイクロバルーンを入れたゲル電解質セパレータ層の要部断面図である。
【図3】電極の側面図である
【図4】マイクロバルーン添加量と電池温度変化との関係図である。
【符号の説明】
1 正極集電体
2 正極合剤
3 正極電極
4 負極集電体
5 負極合剤
6 負極電極
7 マイクロバルーン
8 セパレータ
9 極群
10 電池容器
11 蓋
12 端子
13 正極タブ
14 負極タブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium battery used in a large-capacity power supply device such as an electric vehicle or a stationary power supply.
[0002]
[Prior art]
Lithium batteries used in electric vehicles or stationary power supply devices require high capacity and high energy. Conventionally, in this type of battery, in order to obtain high capacity, Alternatively, it is necessary to use a long electrode that is wound or folded.
[0003]
[Problems to be solved by the invention]
However, in the high capacity type lithium battery as described above, when heat is generated due to short circuit or large current charging / discharging, heat is accumulated in the laminated portion of the electrode, and as a result, an abnormal or rapid temperature rise occurs. There was a risk of explosion and fire.
[0004]
Therefore, in the lithium battery as described above, the heat generated inside the electrode is cooled before it suddenly rises, or the generated heat is efficiently diffused outside without accumulating inside, thereby suppressing the heat rise. There was a need to do.
[0005]
An object of the present invention is to provide a means for instantaneously and efficiently suppressing the generation and increase of heat before the heat generated inside the electrode suddenly rises and becomes a dangerous state such as battery explosion or ignition. The object is to provide a lithium battery.
[0006]
[Means for Solving the Problems]
In the present invention , acrylonitrile having a size of 5 to 20 μm is formed on the separator layer existing between the positive electrode mixture layer and the negative electrode mixture layer in order to suppress the heat generated and abnormally increased inside the electrode instantaneously and efficiently. Made in a lithium battery, characterized in that the inert gas is microballoons encapsulated by holding 20-50% per volume the separator layer portion.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a current collector that holds a positive electrode mixture, a current collector that holds a negative electrode mixture, and a plate electrode that is superposed so that the surface of the mixture faces each other via a separator layer that holds a microballoon. It can be implemented as a lithium battery using a group of electrodes laminated with a metal battery container.
[0008]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. It should be noted that the size, material, other used materials, conditions, etc. of the battery container of the present invention are not limited to the examples shown below.
[0009]
FIG. 1 is an exploded view of the lithium battery of the present invention, FIG. 2 is a cross-sectional view of the main part of a gel electrolyte separator layer containing a microballoon, FIG. 3 is a side view of the electrode, and FIG. It is a relationship diagram.
[0010]
The microballoons used in the present invention differ greatly in the difficulty of film formation or the film tensile strength depending on the size, and the characteristics were examined before use in the battery system, and the optimum conditions were examined.
[0011]
Was prepared microballoons using polymerization was polymer as melting point A acrylonitrile-based material (Fabrication of microballoons) is around 80 ° C.. In order to investigate the degree of film formation difficulty and the film tensile strength at that time, the size of the microballoon was made in 5 μm increments from 5 μm to 30 μm. The results are shown in Table 1.
[0012]
[Table 1]
Figure 0004045613
[0013]
Regarding the difficulty of film formation, 5 and 10 μm could be easily produced without any problems, and 15 and 20 μm could be produced without any problems although they were somewhat difficult to produce compared to 5 and 10 μm. However, when the thickness was 25 μm or more, it was very difficult to produce the film, and almost no production was possible.
[0014]
Moreover, when it became 25 micrometers or more, film | membrane tensile strength became extremely weak, and it turned out that handling is very difficult even if it can produce.
[0015]
From the results of the film formation difficulty and the film tensile strength, it was found that the size of the microballoon is preferably in the range of 5 μm to 20 μm.
[0016]
(Production of battery)
From the result of microballoon production, the size of the microballoon that can be used in the present invention was determined to be 5 μm to 20 μm. Therefore, in the lithium battery of the present invention, the microballoon within the range was used to produce the battery. .
[0017]
Hereinafter, a method for manufacturing the battery used in the present invention will be described.
[0018]
-Example battery 1-
The positive electrode is composed of 87 parts by weight of lithium cobalt oxide (LiCoO 2 ) powder, 10 parts by weight of a conductive agent such as acetylene black (AB), a binder and polyethylene oxide (PEO), and 1 mol / l hexafluorophosphoric acid. A positive electrode mixture was prepared by mixing 3 parts by weight of a gel electrolyte mixed with a propylene carbonate (PC) solution in which lithium (LiPF 6 ) was dissolved, and this was made into a slurry. The slurry-like positive electrode mixture is applied to both surfaces of the positive electrode current collector 1 made of an aluminum foil having a size of 188 mm × 98 mm, dried, and then compression-molded with a press machine. A positive electrode 3 formed by applying 2 was prepared.
[0019]
The negative electrode is a propylene carbonate (PC) solution in which 6 parts by weight of polyvinylidene fluoride, polyethylene oxide (PEO) and 1 mol / l lithium hexafluorophosphate (LiPF 6 ) are dissolved in 90 parts by weight of carbon powder. Was mixed with 4 parts by weight of a gel electrolyte, and a negative electrode mixture was prepared. This slurry-like negative electrode mixture is applied to both surfaces of a negative electrode current collector 4 made of a copper foil having a size of 190 mm × 100 mm, dried, and then compression-molded with a press machine. A negative electrode 6 formed by applying 5 was prepared.
[0020]
The separator has a size of 15 μm in a gel electrolyte obtained by mixing polyethylene oxide (PEO) and a propylene carbonate (PC) solution in which 1 mol / l lithium hexafluorophosphate (LiPF 6 ) is dissolved. A 10% microballoon 7 produced by sealing Ar gas was added to the gel electrolyte volume to form a gel electrolyte separator 8 having a size of 190 mm × 100 mm and a thickness of 50 μm. The electrode group 9 was produced by combining the positive electrode, the negative electrode, and the gel electrolyte separator produced as described above.
[0021]
The pole group 9 is inserted into a rectangular battery container 10 made of aluminum having a thickness of 0.5 mm and having a resin coating made of polypropylene having a thickness of 30 μm inside the container, and a lid 11 made of aluminum is fitted therein. Example battery 1 was obtained by laser welding and sealing. The terminal 12 was sealed by bolting using a polyethylene packing. In addition, 13 is a positive electrode tab and 14 is a negative electrode tab.
[0022]
-Example battery 2-
A microballoon was prepared in the same manner as in Example Battery 1 except that the addition amount of the microballoon was 20% per volume of the gel electrolyte.
[0023]
-Example battery 3-
A microballoon was prepared in the same manner as in Example Battery 1 except that the amount of microballoon added was 30% per volume of the gel electrolyte.
[0024]
-Example battery 4-
A microballoon was prepared in the same manner as in Example Battery 1 except that the amount of microballoon added was 40% per volume of the gel electrolyte.
[0025]
-Example battery 5-
A microballoon was prepared in the same manner as in Example Battery 1 except that the amount of microballoon added was 50% per volume of the gel electrolyte.
[0026]
-Example battery 6
A microballoon was prepared in the same manner as in Example Battery 1 except that the addition amount of microballoon was 60% per volume of the gel electrolyte.
[0027]
-Comparative battery 1-
A microballoon was prepared in the same manner as in Example Battery 1 except that the microballoon was not contained in the gel electrolyte.
[0028]
-Comparative battery 2-
It was produced in the same manner as in Example Battery 2 except that air was sealed in the microballoon.
[0029]
(Battery evaluation test)
In a lithium battery, the battery temperature rapidly rises due to overcharge or the like, resulting in a very dangerous state such as rupture or ignition of the battery container. In the present invention, even if the battery temperature rises due to overcharge or the like, the temperature is 100 Considering a battery that does not rise above 80 ° C. in consideration of safety or higher, and further safety.
[0030]
Therefore, the batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were fully charged after being fully charged to obtain an overcharged state, and the temperature on the side surface of the battery container 120 seconds after the start of overcharging was measured. did. The measurement result at that time is shown in FIG.
[0031]
As a result of the overcharge test, it was found that the increase in battery temperature did not exceed 80 ° C. when the amount of microballoon added was 20% or more. However, almost no change was obtained when the amount of microballoon added was 60% or more, but when the amount of microballoons increased, the ionic conductivity tended to decrease and the capacity also decreased.
[0032]
Moreover, the battery of Comparative Example 2 resulted in the battery temperature exceeding 80 ° C. despite the microballoon addition amount reaching 20%. That is, it was found that the battery temperature rise can be more effectively suppressed by sealing Ar gas in the microballoon.
[0033]
【The invention's effect】
As described above in detail, the lithium battery of the present invention holds the microballoon in the separator layer part and further encloses the inert gas in the microballoon, so that the temperature reaches the melting point of the microballoon or more. As a result of the melting of the microballoon and the inert gas escaping, voids are formed in the separator layer, resulting in poor ionic conductivity and further delay of the progress of the reaction without causing a rapid temperature rise. Avoid dangerous conditions such as fire or explosion.
[Brief description of the drawings]
FIG. 1 is an exploded view of a lithium battery of the present invention.
FIG. 2 is a cross-sectional view of a main part of a gel electrolyte separator layer containing a microballoon.
FIG. 3 is a side view of an electrode. FIG. 4 is a relationship diagram between the amount of added microballoons and a change in battery temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture 3 Positive electrode 4 Negative electrode collector 5 Negative electrode mixture 6 Negative electrode 7 Micro balloon 8 Separator 9 Electrode group 10 Battery container 11 Lid 12 Terminal 13 Positive electrode tab 14 Negative electrode tab

Claims (1)

正極合剤層と負極合剤層との間に存在するゲル電解質セパレータ層に、5〜20μmの大きさの、アクリロニトリル製の、不活性ガスが封入されたマイクロバルーンを前記セパレータ層部分の体積当たり20〜50%保持させたことを特徴とするリチウム電池。The gel electrolyte separator layer existing between the positive electrode mixture layer and the negative electrode mixture layer has a microballoon made of acrylonitrile and filled with an inert gas per volume of the separator layer portion. A lithium battery characterized by holding 20 to 50%.
JP18544997A 1997-07-10 1997-07-10 Lithium battery Expired - Fee Related JP4045613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18544997A JP4045613B2 (en) 1997-07-10 1997-07-10 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18544997A JP4045613B2 (en) 1997-07-10 1997-07-10 Lithium battery

Publications (2)

Publication Number Publication Date
JPH1131494A JPH1131494A (en) 1999-02-02
JP4045613B2 true JP4045613B2 (en) 2008-02-13

Family

ID=16171000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18544997A Expired - Fee Related JP4045613B2 (en) 1997-07-10 1997-07-10 Lithium battery

Country Status (1)

Country Link
JP (1) JP4045613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449263B (en) * 2014-08-22 2018-05-22 宁德时代新能源科技股份有限公司 Lithium ion secondary battery
CN115911611A (en) * 2022-12-05 2023-04-04 罗顺 Battery structure with explosion-proof spontaneous combustion of preventing

Also Published As

Publication number Publication date
JPH1131494A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
US5834135A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell
JP4927064B2 (en) Secondary battery
EP3142173B1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20160372798A1 (en) Non-aqueous electrolyte secondary battery
CN111799440B (en) Nonaqueous electrolyte secondary battery
CA2777286A1 (en) Lithium secondary battery
JP4382557B2 (en) Non-aqueous secondary battery
JPWO2019069402A1 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
CN112582621A (en) Nonaqueous electrolyte secondary battery
KR101742427B1 (en) Lithium ion secondary battery
JP2013137943A (en) Lithium ion secondary battery and manufacturing method thereof
JP4142921B2 (en) Lithium ion secondary battery
KR100634901B1 (en) Non-aqueous electrolyte battery
JPH10233237A (en) Nonaqueous electrolyte secondary battery
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JP4045613B2 (en) Lithium battery
JP6083289B2 (en) Lithium ion secondary battery
JP5354740B2 (en) Thermal runaway inhibitor for lithium ion secondary battery and lithium ion secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
CN111435729B (en) Lithium ion secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2001189167A (en) Non-aqueous electrolyte secondary cell
JP2019179586A (en) Flat type battery
JP4800580B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees