JP4045606B2 - Method for producing β-type copper phthalocyanine pigment - Google Patents

Method for producing β-type copper phthalocyanine pigment Download PDF

Info

Publication number
JP4045606B2
JP4045606B2 JP25855396A JP25855396A JP4045606B2 JP 4045606 B2 JP4045606 B2 JP 4045606B2 JP 25855396 A JP25855396 A JP 25855396A JP 25855396 A JP25855396 A JP 25855396A JP 4045606 B2 JP4045606 B2 JP 4045606B2
Authority
JP
Japan
Prior art keywords
copper phthalocyanine
rosin
parts
type
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25855396A
Other languages
Japanese (ja)
Other versions
JPH10101955A (en
Inventor
正好 高橋
裕之 小川
勇一 鮎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP25855396A priority Critical patent/JP4045606B2/en
Publication of JPH10101955A publication Critical patent/JPH10101955A/en
Application granted granted Critical
Publication of JP4045606B2 publication Critical patent/JP4045606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はβ型銅フタロシアニン顔料の製造方法に関し、更に詳しくは、印刷インキのプロセス色に適した鮮明な緑味調を呈するβ型フタロシアニン顔料を工業的に有利に製造する方法に関する。
【0002】
【従来の技術】
従来、緑味調β型フタロシアニン顔料は、工業的には、粗製銅フタロシアニンを無機塩とエチレングリコールのような粘結剤と共にニーダー等の装置を用いて摩砕する方法により製造されている。この方法によって得られる顔料は、色相が緑味で且つ高着色力であり印刷インキのプロセス色として最適である。
【0003】
しかしながら、この方法は、摩砕時に粉砕物以外の摩砕助剤を用いるため、生産性が悪いこと、高COD排水が生じるため、環境対策が必要であること、これらを回収再利用するために経費がかかり、コストが高くなる等の問題点があった。
【0004】
【発明が解決しようとする課題】
これらの問題点を解決するために、特開昭50−157419号公報、特開昭52−69435号公報等には、粗製銅フタロシアニンを乾式粉砕して、α型銅フタロシアニンとβ型銅フタロシアニンの混合物を得た後、この混合物をキシレン等の結晶化溶剤に浸漬することによって、α形銅フタロシアニンをβ型銅フタロシアニンへと転移させるβ型銅フタロシアニン顔料を得る方法が開示されている。
【0005】
また、特公平6−51846号公報には、粗製銅フタロシアニンにロジン類を加えて乾式摩砕した後、得られた摩砕物をブチルセロソルブ水溶液中で加熱処理することによって易分散性の銅フタロシアニン顔料を得る方法が開示されている。
【0006】
しかしながら、特開昭50−157419号公報、特開昭52−69435号公報等に記載の方法で得られたβ型銅フタロシアニン顔料は、従来の粗製銅フタロシアニンを無機塩とエチレングリコールのような粘結剤を用いてニーダー等で摩砕する方法に比較して、色相が赤味で、ベヒクルへの顔料の分散性が悪いうえ、着色力も劣る等の欠点があるため、この方法への代替は困難であった。
【0007】
また、特公平6−51846号公報に記載の方法で得られた銅フタロシアニン顔料の色相は赤味であり、印刷インキのプロセス用には適さないものであった。また、この方法で用いるロジンは軟化点が約60℃と低いため、アトライターでの摩砕中に、その摩擦熱で溶融し、アトライター内壁に付着現象を引き起こし、異常加熱による発火を誘引する危険性があった。
【0008】
特公平6−51846号に記載の方法で得られるβ型銅フタロシアニン顔料の色相が赤味となる原因は、(1)αとβ型の混合物をブチルセロソルブ中でβ型に結晶変換する際に、針状の大きな結晶に成長するためと考えられる。
【0009】
本発明が解決しようとする課題は、色相が緑味で、しかも着色力、分散性に優れ、工業的にも経済性にも優れ、且つ安全性の高いβ型銅フタロシアニン顔料の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は鋭意研究した結果、粗製銅フタロシアニンとロジン基本骨格を有する化合物を含有する混合物を乾式摩砕して得られるα型銅フタロシアニン及びβ型銅フタロシアニンの混合物を、アルコール、ケトン及びエステル等の有機溶剤を単独あるいは2種以上の混合溶液あるいはそれらと水との混合溶剤中で加熱処理する方法により、色相が緑味で、着色力、分散性に優れ、従来のニーダー法に匹敵するβ型銅フタロシアニン顔料を経済的且つ安全に製造できることを見出し本発明を完成するに至った。
【0011】
即ち、本発明は上記課題を解決するために、粗製銅フタロシアニン及びロジンの基本骨格を有する化合物を含有する混合物を乾式摩砕して得られるα型銅フタロシアニン及びβ型銅フタロシアニンの混合物を、アルコール、ケトン、エステルから成る群から選ばれる単独の有機溶剤中で、2種以上の有機溶剤から成る混合溶剤中で、あるいはそれらと水との混合溶剤中で加熱処理することを特徴とする緑味調を呈するβ型銅フタロシアニン顔料の製造方法を提供する。
【0012】
【発明の実施の形態】
本発明の製造方法で用いるロジン基本骨格を有する化合物としては、例えば、ガムロジン、トール油ロジン、ウッドロジン、水添ロジン、不均化ロジン、重合ロジン等あるいはその金属塩あるいはエステル類等;ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ロジン変性フマル酸樹脂、ロジン変性ポリエステル樹脂、ロジン変性ポリアミド樹脂、ロジン変性アクリル酸樹脂、ロジン変性アルキド樹脂等あるいはその金属塩あるいはエステル類の如き各種ロジン変性樹脂が挙げられる。
【0013】
ロジンの基本骨格とは、大別してアビエタン、ピマラン、イソピマラン、ラブダン型の4種に分けられるが、本発明の製造方法で用いるロジン基本骨格を有する化合物では、その全てを含み、カルボキシル基を除いた骨格の部分を有しているもの全てを含むものである。
【0014】
この乾式摩砕の際、ロジンを未溶融状態で処理した方が、その結晶成長防止効果が高く、製造工程的にもアトライター等内部への付着を引き起こさず好都合である。ロジンをそのままを使用する場合は、十分な冷却を行なう必要が生じるが、ロジンを金属塩とすることによって、その軟化点が300℃以上となる結果、難燃性となり、溶融付着現象が発生せず、処理効果を高めるとともに工業的にも有利となる。また、ロジンを樹脂と反応させることで軟化点を高くすることによっても同様の効果が得られる。
【0015】
ロジンの金属塩の金属種には特に限定はないが、例えば、Na、K、Ca、Ba、Sr、Al、Ti等が挙げられる。
【0016】
ロジンの基本骨格を有する化合物の添加量は、粗製銅フタロシアニンの仕込量の0.5〜50重量%の範囲が好ましく、3〜20重量%の範囲が特に好ましい。
【0017】
粗製銅フタロシアニンとロジンの基本骨格を有する化合物の金属塩とを混合する方法は、磨砕時に粗製銅フタロシアニンにロジンの基本骨格を有する化合物の金属塩を添加する方法であっても、予め粗製銅フタロシアニンにロジンの基本骨格を有する化合物の金属塩を処理しておく方法であってもよい。
【0018】
本発明の製造方法において、乾式摩砕に用いる装置としては、例えば、アトライター、ボールミル、ビーズミル、振動ミル、ハンマーミル等を挙げることができる。
【0019】
乾式摩砕は、銅フタロシアニン顔料のα型及びβ型結晶形を表わすX線回折図ピーク高さをLα及びLβとした場合、Lα/Lβと含有率の検量線からα型の含有率が≧30%となるまで行なうことが好ましい。最も工業的に有利なのはα型の含有率が60%から75%程度である。なお、X線回折図におけるLαは6.8°の、Lβは9.2°のピーク高さをとった。
【0020】
本発明の製造方法で用いる有機溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、イソブタノール、2−ブタノール、4−ブタノール、アミルアルコール、イソアミルアルコール、2−アミルアルコール、tert−アミルアルコール、ヘキシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ヘプチルアルコール等のアルコール系溶媒;アセトン、メチルアセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン系溶媒;酢酸エチル、酢酸ブチル、酢酸シクロヘキシル、メトキシブチルアセテート、セロソルブアセテート等のエステル系溶媒等が挙げられる。これらの有機溶剤は、2種以上の混合物として用いることもでき、あるいはこれらの有機溶剤又はそれらの混合物と水との混合系を用いることもできる。なかでも、α型からβ型への結晶変換能力、溶剤の回収の容易さ、得られる顔料の品質特に色相、分散性に優れる点から、イソブタノール、2−ブタノール等の炭素原子数4の脂肪族アルコールを用いることが好ましい。
【0021】
有機溶剤の使用量は、摩砕物100重量部に対して5重量部以上が好ましく、100〜300重量部の範囲が特に好ましい。
【0022】
有機溶剤による処理温度は、処理溶剤系の結晶成長能力に応じて室温から該溶剤系の沸点或は混合溶剤ではその共沸点の範囲で適宜選択することができるが、例えば、イソブタノールと水の混合溶剤の場合はその共沸点89℃が好ましい。
【0023】
有機溶剤による処理時間も処理溶剤系の結晶成長能力に応じて変わるが、4〜8時間の範囲が好ましい。
【0024】
溶剤処理後は、蒸留、好ましくは水との共沸により、留去回収する。回収した溶剤は再度使用することができる。
【0025】
【作用】
ロジンの基本骨格部が、乾式摩砕によるメカノケミカル的作用により銅フタロシアニンの結晶成長面であるb軸面に強く親和する。それにより、顔料化時にα型からβ型へ結晶変換させる溶剤処理により引き起こされる結晶成長を防止するのに大きな効果をもたらし、また、顔料同志の凝集を緩和し解凝集を容易にさせる効果をもたらすことにより、色相の緑味化と高い着色力を有する顔料を得ることを可能にしたものと考えられる。
【0026】
【実施例】
以下、製造例、実施例及び比較例を用いて本発明を更に詳細に説明する。なお、以下の説明において、「部」及び「%」はそれぞれ『重量部』及び『重量%』を表わす。
【0027】
<製造例1>(粗製銅フタロシアニンの製造)
無水フタル酸1218部、尿素1540部、無水塩化第一銅200部、モリブデン酸アンモニウム5部及び溶媒として炭素原子数5〜8個のアルキル基を有するアルキルベンゼンの混合物4000部を反応器に仕込み、撹拌しながら加熱して200℃まで昇温させた後、同温度で2.5時間反応させた。反応終了後、減圧下で溶媒を留去し、残った反応生成物を2%塩酸8000部中に加え、70℃で1時間撹拌した後、吸引濾過した。このようにして得たケーキを80℃の温水で充分洗浄した後、乾燥させて粗製銅フタロシアニンを得た。
【0028】
<製造例2>(ロジン金属塩の製造方法)
水添ロジン(ステベライトロジン)100部、水酸化ナトリウム20部及び水1000部をビーカーに仕込んだ後、70℃以上に加熱することによって溶解させてロジン水溶液を得た。このようにして得たロジン水溶液に、塩化カルシウム27部及び水200部から成る水酸化カルシウム水溶液を撹拌しながら添加することによって、ロジンカルシウム塩を析出させた。ロジンカルシウム塩析出溶液のpHを8に調整した後、濾過し、得られた残渣を湯洗浄し、乾燥させて、ロジンカルシウム塩を得た。
【0029】
<製造例3>(粗製銅フタロシアニンの乾式粉砕物の製造)
製造例1で得た粗製銅フタロシアニン500部及び製造例2で得たステベライトロジンカルシウム塩25部を容量5リットルのアトライター(直径3/8インチのスチールボール13Kgを含む)を用いて、内温90〜110℃で60分間粉砕して、α型銅フタロシアニン71%及びβ型銅フタロシアニン29%から成る混合物を得た。
【0030】
α型銅フタロシアニンとβ型銅フタロシアニンの重量比(α/β)は、図1に示したX線回折図のα型結晶形を表わす回折角度(2θ)=6.8゜におけるピーク高さSαと、β型結晶形を表わす回折角度(2θ)=9.2におけるピーク高さSβから求めた。
【0031】
なお、この時のX線回折の測定条件は、ターゲット:Cu、フイルター:Ni、電圧:40KV、電流:30mAである。
【0032】
<製造例4>(粗製銅フタロシアニンへのロジン処理)
製造例1で得た粗製銅フタロシアニン500部を水5000部に分散し、70℃に加熱して、粗製銅フタロシアニンの水分散液を得た。このようにして得た粗製銅フタロシアニンの水分散液に、水酸化ナトリウム10部及び水500部から成る水酸化ナトリウム水溶液にトール油ロジン50部を加熱溶解したロジン水溶液を添加した。この混合物に、塩化カルシウム13.5部を水100部に溶解した水溶液を添加した。混合液のpHを8に調整した後、生じた析出物を濾取し、湯洗浄し、乾燥させて、ロジンカルシウム塩含有粗製銅フタロシアニンのロジンを得た。
【0033】
<製造例5>(粗製銅フタロシアニンの乾式粉砕物の製造)
製造例4で得たロジンカルシウム塩含有粗製銅フタロシアニン500部を容量5リットルのアトライター(直径3/8インチのスチールボール13Kgを含む)を用いて、内温90〜110℃で60分間粉砕して、α型銅フタロシアニン72%及びβ型銅フタロシアニン28%から成る混合物を得た。なお、α型とβ型の割合は、製造例3と同じ方法で求めた。
【0034】
<製造例6>(ロジン変性樹脂の金属塩の製造)
ロジン変性マレイン酸樹脂(ハリマ化成製の「ハリマックT−80」)100部、水酸化ナトリウム13部及び水850部をビーカーに仕込み、80℃に加熱して溶解させて、ロジン変性マレイン樹脂の水溶液を得た。このようにして得たロジン変性マレイン酸樹脂の水溶液に、塩化カルシウム48部及び水400部から成る塩化カルシウム水溶液を撹拌しながら添加し、ロジン変性マレイン酸樹脂のカルシウム塩を析出させた。ロジン変性マレイン酸樹脂のカルシウム塩析出溶液のpHを8に調整した後、濾過し、得られた残渣を湯洗浄し、乾燥させて、ロジン変性マレイン酸樹脂のカルシウム塩を得た。
【0035】
<製造例7>
製造例1で得た粗製銅フタロシアニン500部及び製造例6で得たロジン変性マレイン酸樹脂のカルシウム塩25部を容量5リットルのアトライター(直径3/8インチのスチールボール13Kgを含む)を用いて、内温90〜110℃で60分間粉砕して、α型銅フタロシアニン69%及びβ型銅フタロシアニン31%から成る混合物を得た。なお、α型とβ型の割合は、製造例3と同じ方法で求めた。
【0036】
<製造例8>
製造例1で得た粗製銅フタロシアニン500部及びロジン変性マレイン酸樹脂(ハリマ化成製の「ハリマックT−80」)50部を容量5リットルのアトライター(直径3/8インチのスチールボール13Kgを含む)を用いて、内温90〜110℃で60分間粉砕して、α型銅フタロシアニン67%及びβ型銅フタロシアニン33%から成る混合物を得た。
【0037】
<比較例1>(ニーダー法)
製造例1で得た粗製銅フタロシアニン500部、粉砕食塩2500部、ジエチレングリコール500部及びキシレン30部を容量8リットルのニーダーを用いて80℃で6時間混練した。得られた混練物100部を1%塩酸水溶液2000部と共に、80℃で2時間分散させた後、濾過し、得られた残渣を水洗し、乾燥させて銅フタロシアニン顔料を得た。このようにして得た銅フタロシアニンの結晶形をX線回折法により分析した結果、β型であった。
【0038】
<比較例2>(粗製銅フタロシアニンの乾式粉砕物の製造)
製造例1で得た粗製銅フタロシアニン500部を容量5リットルのアトライター(直径3/8インチのスチールボール13Kgを含む)を用いて、内温90〜110℃で60分間粉砕して、α型銅フタロシアニン62%及びβ型銅フタロシアニン38%から成る摩砕物を得た。なお、α型とβ型の割合は、製造例3と同じ方法で求めた。
【0039】
<比較例3>(溶剤法)
比較例2で得た摩砕物100部、イソブタノール300部及び水600部を容量1リットルのフラスコ中で共沸温度で4時間加熱した後、溶剤を共沸により完全に除去・回収した。固形分を濾過し、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0040】
<実施例1>
製造例3で得た粗製銅フタロシアニンの乾式摩砕物100部を、イソブタノール300部及び水600部と共に容量1リットルのフラスコ中で共沸温度で8時間加熱した後、溶剤を共沸により完全に除去・回収した。固形分を濾過し、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0041】
得られた銅フタロシアニン顔料の色相を比較例1のニーダー法による顔料と比較したところ、色相はほぼ同等の緑味調β型銅フタロシアニン顔料であった。また、着色力も同等であった。
表1に評価結果を示した。
【0042】
<実施例2>
製造例3と同様操作にてステベライトロジンCa塩25部の代わりに、不均化ロジン(ハリマ化成製「バンディスT−25K」)のCa塩50部を添加し、乾式摩砕した摩砕物100部を、イソブタノール300部、イソプロピルアルコール30部及び水600部と共に容量1リットルのフラスコ中で共沸温度で8時間加熱した後、溶剤を共沸により完全に回収し、固形分を濾過、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0043】
得られた銅フタロシアニン顔料の色相を比較例1の顔料と比較したところ、色相はほぼ同等で分散性,流動性に優れていた。
表1に評価結果を示した。
【0044】
<実施例3>
製造例4で得た粗製銅フタロシアニンの乾式摩砕物100部、イソブタノール300部、イソプロピルアルコール30部及び水600部を容量1リットルのフラスコ中で共沸温度で8時間加熱した後、溶剤を共沸により完全に除去・回収した。固形分を濾過し、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0045】
得られた銅フタロシアニン顔料の色相を比較例1の顔料と比較したところ、色相はほぼ同等で分散性,流動性に優れていた。
表1に評価結果を示した。
【0046】
<実施例4>
製造例7で得た粗製銅フタロシアニンの乾式摩砕物100部、イソブタノール300部、イソプロピルアルコール30部及び水600部を容量1リットルのフラスコ中で共沸温度で8時間加熱した後、溶剤を共沸により完全に除去・回収した。固形分を濾過し、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0047】
得られた銅フタロシアニン顔料の色相を比較例1の顔料と比較したところ、色相,着色力とも同等であった。また、分散性,流動性とも良好であった。
表1に評価結果を示した。
【0048】
<実施例5>
製造例8で得た粗製銅フタロシアニンの乾式摩砕物100部、2−ブタノール300部及び水600部を容量1リットルのフラスコ中で共沸温度で8時間加熱した後、溶剤を共沸により完全に除去・回収した。固形分を濾過、乾燥させて顔料を得た。このようにして得た銅フタロシアニン顔料の結晶形をX線回折法により分析した結果、β型であった。
【0049】
得られた銅フタロシアニン顔料の色相を比較例1の顔料と比較したところ、色相はほぼ同等で分散性,流動性に優れていた。
表1に評価結果を示した。
【0050】
≪評価方法≫
上記実施例中の顔料の色差,着色力,流動性の測定は以下の方法で行い、その結果を下記表1にまとめた。
【0051】
<平版インキの製造>
(濃色インキ)
ロジン変性フェノール樹脂ワニス84部及びβ型銅フタロシアニン顔料16部をプレミックス後、ビューラー製3本ロールを用いて3パスしてインキを作製した。
【0052】
平版インキ用ビヒクルは上記記載のロジン変性フェノール樹脂に限定されるものではなく、その他石油樹脂、アルキッド樹脂又はこれら乾性油変性樹脂等の樹脂と、必要に応じて、アルニ油、桐油、大豆油等の植物油と、n−パラフィン、イソパラフィン、アロマテック、ナフテン、α−オレフィン等の溶剤から成るものが使用できる。また、必要に応じて、インキ溶剤、ドライヤー、レベリング改良剤、増粘剤等の公知の添加剤を適宜配合できる。
【0053】
(淡色インキ)
上記濃色インキ0.020部と白インキ4.000部(大日本インキ化学工業製ニューチャンピオンAT白179)をフーバーマーラーで混合する。混合条件:加重50lb,50回転 X 3回。
【0054】
<着色力,色相の評価方法>
上記で作製した淡色インキを上質紙にへらで展色し、その上色(肉色)をグレタグ(Gretag)社製の分光光度計「SPM50」を用いて測定した。色相は比較例1で得た顔料との差(色差:△a)で示した。△a値が小さいほど、緑味である。着色力は、比較例1の顔料を標準としてシアン濃度の比で表した。
【0055】
<流動性>
70度に傾けたガラス板上に上記で作製した濃色インキを乗せ、1時間経過後の流れた距離により評価した。表1には、比較例1で得た顔料を用いて作製したインキの値を100としそれとの比で示した。
【0056】
【表1】

Figure 0004045606
【0057】
【発明の効果】
本発明の製造方法によれば、乾式摩砕と溶剤処理法を組み合わせることによって、ニーダー法に匹敵した色相の緑味調のプロセスインキに適したβ型銅フタロシアニン顔料を製造することができるので、ニーダー法の大きな問題である副原料のジエチレングリコールと食塩の回収が不要となり製造コストの大幅な削減が可能となる。また、本発明の製造方法によれば、高COD排水の激減により、環境負荷を著しく小さくすることができ、更に、顔料化工程を短縮できるので、本発明の製造方法は、工業的に優れた方法である。
【図面の簡単な説明】
【図1】製造例2で得た粗製銅フタロシアニンの乾式粉砕物のX線回折図である。
【図2】α型銅フタロシアニン顔料のX線回折図である。
【図3】β型銅フタロシアニン顔料のX線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a β-type copper phthalocyanine pigment, and more particularly to a method for industrially advantageously producing a β-type phthalocyanine pigment exhibiting a clear green tone suitable for the process color of printing ink.
[0002]
[Prior art]
Conventionally, greenish tone β-type phthalocyanine pigments are industrially produced by a method of grinding crude copper phthalocyanine using an apparatus such as a kneader together with an inorganic salt and a binder such as ethylene glycol. The pigment obtained by this method has a green hue and high coloring power, and is optimal as a process color for printing ink.
[0003]
However, this method uses grinding aids other than the pulverized product at the time of grinding, so that productivity is poor, high COD wastewater is generated, environmental measures are required, and these are collected and reused. There were problems such as high costs and high costs.
[0004]
[Problems to be solved by the invention]
In order to solve these problems, JP-A-50-157419, JP-A-52-69435, etc. disclose dry pulverization of crude copper phthalocyanine to obtain α-type copper phthalocyanine and β-type copper phthalocyanine. After obtaining a mixture, a method for obtaining a β-type copper phthalocyanine pigment for transferring α-type copper phthalocyanine to β-type copper phthalocyanine by immersing the mixture in a crystallization solvent such as xylene is disclosed.
[0005]
Japanese Patent Publication No. 6-51846 discloses an easily dispersible copper phthalocyanine pigment obtained by adding rosins to crude copper phthalocyanine and dry milling, and then heat-treating the obtained milled product in a butyl cellosolve aqueous solution. A method of obtaining is disclosed.
[0006]
However, the β-type copper phthalocyanine pigment obtained by the methods described in JP-A-50-157419, JP-A-52-69435, etc. is a conventional crude copper phthalocyanine that has a viscosity similar to that of an inorganic salt and ethylene glycol. Compared to the method of grinding with a kneader using a binder, the hue is reddish, the dispersibility of the pigment in the vehicle is poor, and the coloring power is also inferior. It was difficult.
[0007]
Moreover, the hue of the copper phthalocyanine pigment obtained by the method described in Japanese Patent Publication No. 6-51846 was reddish and was not suitable for printing ink processes. In addition, since the rosin used in this method has a low softening point of about 60 ° C., it is melted by the frictional heat during attritor grinding, causing an adhesion phenomenon on the inner wall of the attritor, and triggering ignition due to abnormal heating. There was a danger.
[0008]
The reason why the hue of the β-type copper phthalocyanine pigment obtained by the method described in JP-B-6-51846 is reddish is as follows: (1) When a mixture of α and β types is crystallized into β type in butyl cellosolve, It is thought that it grows into a needle-like large crystal.
[0009]
The problem to be solved by the present invention is to provide a method for producing a β-type copper phthalocyanine pigment having a green hue, excellent coloring power and dispersibility, industrially and economically, and high safety. There is to do.
[0010]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have determined that a mixture of α-type copper phthalocyanine and β-type copper phthalocyanine obtained by dry milling a mixture containing crude copper phthalocyanine and a compound having a rosin basic skeleton, alcohol, ketone and ester By using a method of heat-treating an organic solvent such as a single or two or more mixed solutions or a mixed solvent thereof with water, the hue is green and the coloring power and dispersibility are excellent, comparable to the conventional kneader method. The inventors have found that a β-type copper phthalocyanine pigment can be produced economically and safely, and have completed the present invention.
[0011]
That is, in order to solve the above-mentioned problems, the present invention provides a mixture of α-type copper phthalocyanine and β-type copper phthalocyanine obtained by dry-grinding a mixture containing a crude copper phthalocyanine and a compound having a basic skeleton of rosin. Characterized by being heat-treated in a single organic solvent selected from the group consisting of ketones, esters, in a mixed solvent consisting of two or more organic solvents, or in a mixed solvent thereof with water Provided is a method for producing a β-type copper phthalocyanine pigment exhibiting a tone.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the compound having a basic rosin skeleton used in the production method of the present invention include gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin and the like, or metal salts or esters thereof; Examples include acid resins, rosin-modified phenol resins, rosin-modified fumaric acid resins, rosin-modified polyester resins, rosin-modified polyamide resins, rosin-modified acrylic acid resins, rosin-modified alkyd resins, and various rosin-modified resins such as metal salts or esters thereof. It is done.
[0013]
The basic skeleton of rosin is roughly divided into four types: abietane, pimaran, isopimaran, and labdane type, but the compounds having the rosin basic skeleton used in the production method of the present invention include all of them and exclude the carboxyl group. It includes everything that has a skeleton part.
[0014]
In the dry grinding, it is more convenient to treat the rosin in an unmelted state because the crystal growth prevention effect is high and the production process does not cause adhesion to the interior of an attritor or the like. If the rosin is used as it is, it will be necessary to sufficiently cool it. However, by using rosin as a metal salt, its softening point becomes 300 ° C or higher, resulting in flame retardancy and a phenomenon of melt adhesion. In addition, the treatment effect is enhanced and it is industrially advantageous. The same effect can be obtained by increasing the softening point by reacting rosin with a resin.
[0015]
The metal species of the metal salt of rosin is not particularly limited, and examples thereof include Na, K, Ca, Ba, Sr, Al, Ti and the like.
[0016]
The amount of the compound having the basic skeleton of rosin is preferably in the range of 0.5 to 50% by weight, particularly preferably in the range of 3 to 20% by weight, based on the amount of the crude copper phthalocyanine charged.
[0017]
A method of mixing a metal salt of a compound having a crude copper phthalocyanine and basic skeleton of rosin may be a method of adding a metal salt of a compound having a basic skeleton of rosin crude copper phthalocyanine in grinding time, pre crude copper A method of treating a metal salt of a compound having a basic rosin skeleton with phthalocyanine may also be used.
[0018]
In the production method of the present invention, examples of the apparatus used for dry grinding include an attritor, a ball mill, a bead mill, a vibration mill, and a hammer mill.
[0019]
In dry grinding, when the peak heights of the X-ray diffraction diagrams representing the α-type and β-type crystal forms of the copper phthalocyanine pigment are Lα and Lβ, the α-type content is ≧ from the calibration curve of Lα / Lβ and the content rate. It is preferable to carry out until it becomes 30%. The most industrially advantageous is that the α-type content is about 60% to 75%. In the X-ray diffraction diagram, Lα has a peak height of 6.8 °, and Lβ has a peak height of 9.2 °.
[0020]
Examples of the organic solvent used in the production method of the present invention include methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, 2-butanol, 4-butanol, amyl alcohol, isoamyl alcohol, 2-amyl alcohol, tert- Alcohol solvents such as amyl alcohol, hexyl alcohol, cyclohexanol, methylcyclohexanol, heptyl alcohol; ketone solvents such as acetone, methyl acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone; ethyl acetate, butyl acetate And ester solvents such as cyclohexyl acetate, methoxybutyl acetate, and cellosolve acetate. These organic solvents can be used as a mixture of two or more kinds, or a mixed system of these organic solvents or a mixture thereof and water can be used. Of these, fats having 4 carbon atoms, such as isobutanol and 2-butanol, are excellent in terms of crystal conversion ability from α-type to β-type, ease of solvent recovery, and excellent pigment quality, particularly hue and dispersibility. It is preferable to use a group alcohol.
[0021]
The amount of the organic solvent used is preferably 5 parts by weight or more with respect to 100 parts by weight of the ground product, and particularly preferably in the range of 100 to 300 parts by weight.
[0022]
The treatment temperature with the organic solvent can be appropriately selected from room temperature to the boiling point of the solvent system or the azeotropic point of the mixed solvent depending on the crystal growth ability of the treatment solvent system. For example, isobutanol and water In the case of a mixed solvent, the azeotropic point of 89 ° C. is preferable.
[0023]
The treatment time with the organic solvent also varies depending on the crystal growth ability of the treatment solvent system, but a range of 4 to 8 hours is preferable.
[0024]
After the solvent treatment, it is recovered by distillation, preferably by azeotropy with water. The recovered solvent can be used again.
[0025]
[Action]
The basic skeleton of rosin has a strong affinity for the b-axis surface, which is the crystal growth surface of copper phthalocyanine, due to the mechanochemical action by dry grinding. As a result, it has a great effect on preventing crystal growth caused by the solvent treatment for converting the crystal form from α type to β type at the time of pigmentation, and also has the effect of relaxing the aggregation of pigments and facilitating the deagglomeration. This is considered to make it possible to obtain a pigment having a green hue and high coloring power.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail using production examples, examples, and comparative examples. In the following description, “part” and “%” represent “part by weight” and “% by weight”, respectively.
[0027]
<Production Example 1> (Production of crude copper phthalocyanine)
A reactor is charged with 4000 parts of a mixture of 1218 parts of phthalic anhydride, 1540 parts of urea, 200 parts of anhydrous cuprous chloride, 5 parts of ammonium molybdate and an alkylbenzene having an alkyl group of 5 to 8 carbon atoms as a solvent. The mixture was heated up to 200 ° C., and then reacted at the same temperature for 2.5 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, the remaining reaction product was added to 8000 parts of 2% hydrochloric acid, and the mixture was stirred at 70 ° C. for 1 hour, followed by suction filtration. The cake thus obtained was thoroughly washed with warm water at 80 ° C. and then dried to obtain crude copper phthalocyanine.
[0028]
<Production Example 2> (Method for producing rosin metal salt)
100 parts of hydrogenated rosin (stevelite rosin), 20 parts of sodium hydroxide and 1000 parts of water were charged into a beaker and then dissolved by heating to 70 ° C. or higher to obtain an aqueous rosin solution. To the rosin aqueous solution thus obtained, a calcium hydroxide aqueous solution consisting of 27 parts of calcium chloride and 200 parts of water was added with stirring to precipitate a rosin calcium salt. The pH of the rosin calcium salt precipitation solution was adjusted to 8, then filtered, and the resulting residue was washed with hot water and dried to obtain a rosin calcium salt.
[0029]
<Production Example 3> (Production of dry pulverized product of crude copper phthalocyanine)
Using 500 parts of crude copper phthalocyanine obtained in Production Example 1 and 25 parts of stevelite rosin calcium salt obtained in Production Example 2 using an attritor with a capacity of 5 liters (including 13 kg of steel balls having a diameter of 3/8 inch) The mixture was pulverized at a temperature of 90 to 110 ° C. for 60 minutes to obtain a mixture composed of 71% α-type copper phthalocyanine and 29% β-type copper phthalocyanine.
[0030]
The weight ratio (α / β) of α-type copper phthalocyanine and β-type copper phthalocyanine is the peak height Sα at the diffraction angle (2θ) = 6.8 ° representing the α-type crystal form of the X-ray diffraction diagram shown in FIG. And the peak height Sβ at the diffraction angle (2θ) = 9.2 representing the β-type crystal form.
[0031]
The measurement conditions of X-ray diffraction at this time are: target: Cu, filter: Ni, voltage: 40 KV, current: 30 mA.
[0032]
<Production Example 4> (Rosin treatment of crude copper phthalocyanine)
500 parts of the crude copper phthalocyanine obtained in Production Example 1 was dispersed in 5000 parts of water and heated to 70 ° C. to obtain an aqueous dispersion of crude copper phthalocyanine. To the aqueous dispersion of crude copper phthalocyanine thus obtained, an aqueous rosin solution in which 50 parts of tall oil rosin was dissolved by heating in an aqueous sodium hydroxide solution consisting of 10 parts of sodium hydroxide and 500 parts of water was added. To this mixture, an aqueous solution in which 13.5 parts of calcium chloride was dissolved in 100 parts of water was added. After adjusting the pH of the mixed solution to 8, the resulting precipitate was collected by filtration, washed with hot water, and dried to obtain a rosin calcium salt-containing crude copper phthalocyanine rosin.
[0033]
<Production Example 5> (Production of dry pulverized product of crude copper phthalocyanine)
500 parts of rosin calcium salt-containing crude copper phthalocyanine obtained in Production Example 4 was pulverized for 60 minutes at an internal temperature of 90 to 110 ° C. using an attritor having a capacity of 5 liters (including 13 kg of 3/8 inch diameter steel balls). Thus, a mixture comprising 72% α-type copper phthalocyanine and 28% β-type copper phthalocyanine was obtained. The ratio of α type and β type was determined by the same method as in Production Example 3.
[0034]
<Production Example 6> (Production of metal salt of rosin-modified resin)
100 parts of rosin-modified maleic acid resin ("Harimak T-80" manufactured by Harima Kasei), 13 parts of sodium hydroxide and 850 parts of water are charged into a beaker and dissolved by heating to 80 ° C to obtain an aqueous solution of rosin-modified maleic resin. Got. To the aqueous solution of the rosin-modified maleic resin thus obtained, an aqueous calcium chloride solution comprising 48 parts of calcium chloride and 400 parts of water was added with stirring to precipitate the calcium salt of the rosin-modified maleic resin. The pH of the calcium salt precipitation solution of rosin-modified maleic acid resin was adjusted to 8, then filtered, and the resulting residue was washed with hot water and dried to obtain a calcium salt of rosin-modified maleic resin.
[0035]
<Production Example 7>
Using 500 parts of the crude copper phthalocyanine obtained in Production Example 1 and 25 parts of the calcium salt of the rosin-modified maleic resin obtained in Production Example 6 using an attritor having a capacity of 5 liters (including 13 kg of steel balls having a diameter of 3/8 inch). Then, the mixture was pulverized for 60 minutes at an internal temperature of 90 to 110 ° C. to obtain a mixture composed of 69% α-type copper phthalocyanine and 31% β-type copper phthalocyanine. The ratio of α type and β type was determined by the same method as in Production Example 3.
[0036]
<Production Example 8>
500 parts of the crude copper phthalocyanine obtained in Production Example 1 and 50 parts of rosin-modified maleic acid resin ("Harimak T-80" manufactured by Harima Kasei Co., Ltd.) containing an attritor (13Kg of 3/8 inch diameter steel balls) having a capacity of 5 liters. ) To obtain a mixture composed of 67% α-type copper phthalocyanine and 33% β-type copper phthalocyanine.
[0037]
<Comparative Example 1> (kneader method)
500 parts of the crude copper phthalocyanine obtained in Production Example 1, 2500 parts of crushed salt, 500 parts of diethylene glycol and 30 parts of xylene were kneaded at 80 ° C. for 6 hours using a kneader having a capacity of 8 liters. 100 parts of the obtained kneaded material was dispersed together with 2000 parts of a 1% aqueous hydrochloric acid solution at 80 ° C. for 2 hours, followed by filtration. The resulting residue was washed with water and dried to obtain a copper phthalocyanine pigment. The crystal form of copper phthalocyanine thus obtained was analyzed by X-ray diffractometry. As a result, it was β type.
[0038]
<Comparative Example 2> (Production of dry pulverized product of crude copper phthalocyanine)
500 parts of the crude copper phthalocyanine obtained in Production Example 1 was ground for 60 minutes at an internal temperature of 90 to 110 ° C. using an attritor having a capacity of 5 liters (including 13 kg of steel balls having a diameter of 3/8 inch) to obtain α-type A ground product comprising 62% copper phthalocyanine and 38% β-type copper phthalocyanine was obtained. The ratio of α type and β type was determined by the same method as in Production Example 3.
[0039]
<Comparative Example 3> (Solvent method)
After 100 parts of the milled product obtained in Comparative Example 2, 300 parts of isobutanol and 600 parts of water were heated at an azeotropic temperature for 4 hours in a flask having a capacity of 1 liter, the solvent was completely removed and recovered by azeotropy. The solid content was filtered and dried to obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0040]
<Example 1>
100 parts of the dry milled product of crude copper phthalocyanine obtained in Production Example 3 was heated together with 300 parts of isobutanol and 600 parts of water in a 1 liter flask at an azeotropic temperature for 8 hours, and then the solvent was completely removed by azeotropy. Removed and recovered. The solid content was filtered and dried to obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0041]
When the hue of the obtained copper phthalocyanine pigment was compared with the pigment obtained by the kneader method of Comparative Example 1, the hue was a substantially greenish-tone β-type copper phthalocyanine pigment. Moreover, the coloring power was also equivalent.
Table 1 shows the evaluation results.
[0042]
<Example 2>
In the same manner as in Production Example 3, 50 parts of disproportionated rosin (Harima Kasei “Bandis T-25K”) Ca salt was added instead of 25 parts of stevelite rosin Ca salt, and dry milled product 100 Parts were heated together with 300 parts of isobutanol, 30 parts of isopropyl alcohol and 600 parts of water in a 1 liter flask at an azeotropic temperature for 8 hours, and then the solvent was completely recovered by azeotropic distillation, and the solid content was filtered and dried. To obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0043]
When the hue of the obtained copper phthalocyanine pigment was compared with that of the pigment of Comparative Example 1, the hue was almost the same and the dispersibility and fluidity were excellent.
Table 1 shows the evaluation results.
[0044]
<Example 3>
100 parts of the crude copper phthalocyanine dry milled product obtained in Production Example 4, 300 parts of isobutanol, 30 parts of isopropyl alcohol and 600 parts of water were heated at an azeotropic temperature for 8 hours in a flask having a capacity of 1 liter. Completely removed and recovered by boiling. The solid content was filtered and dried to obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0045]
When the hue of the obtained copper phthalocyanine pigment was compared with that of the pigment of Comparative Example 1, the hue was almost the same and the dispersibility and fluidity were excellent.
Table 1 shows the evaluation results.
[0046]
<Example 4>
100 parts of the crude copper phthalocyanine dry milled product obtained in Production Example 7, 300 parts of isobutanol, 30 parts of isopropyl alcohol and 600 parts of water were heated at an azeotropic temperature for 8 hours in a flask having a capacity of 1 liter. Completely removed and recovered by boiling. The solid content was filtered and dried to obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0047]
When the hue of the obtained copper phthalocyanine pigment was compared with the pigment of Comparative Example 1, the hue and tinting strength were also equivalent. Moreover, both dispersibility and fluidity were good.
Table 1 shows the evaluation results.
[0048]
<Example 5>
After heating 100 parts of the crude copper phthalocyanine dry product obtained in Production Example 8, 300 parts of 2-butanol and 600 parts of water at an azeotropic temperature in a 1 liter flask for 8 hours, the solvent was completely removed by azeotropy. Removed and recovered. The solid content was filtered and dried to obtain a pigment. As a result of analyzing the crystal form of the copper phthalocyanine pigment thus obtained by X-ray diffraction, it was β type.
[0049]
When the hue of the obtained copper phthalocyanine pigment was compared with that of the pigment of Comparative Example 1, the hue was almost the same and the dispersibility and fluidity were excellent.
Table 1 shows the evaluation results.
[0050]
≪Evaluation method≫
The color difference, coloring power and fluidity of the pigments in the above examples were measured by the following methods, and the results are summarized in Table 1 below.
[0051]
<Manufacture of lithographic ink>
(Dark ink)
After premixing 84 parts of rosin-modified phenolic resin varnish and 16 parts of β-type copper phthalocyanine pigment, ink was prepared by three passes using a three-roller made by Buehler.
[0052]
The vehicle for lithographic ink is not limited to the above-mentioned rosin-modified phenolic resins, and other resins such as petroleum resins, alkyd resins, or these drying oil-modified resins, and if necessary, alkani oil, tung oil, soybean oil, etc. And those comprising a solvent such as n-paraffin, isoparaffin, aromatech, naphthene, α-olefin and the like. Moreover, well-known additives, such as an ink solvent, a drier, a leveling improver, a thickener, can be suitably mix | blended as needed.
[0053]
(Light color ink)
0.020 parts of the dark ink and 4.000 parts of white ink (Dainippon Ink & Chemicals New Champion AT White 179) are mixed with a Hoover Mahler. Mixing conditions: Weight 50 lb, 50 rotations x 3 times.
[0054]
<Evaluation method of coloring power and hue>
The light-colored ink produced above was spread on a fine paper with a spatula, and the upper color (meat color) was measured using a spectrophotometer “SPM50” manufactured by Gretag. The hue is shown by the difference from the pigment obtained in Comparative Example 1 (color difference: Δa). The smaller the Δa value, the greener. The coloring power was expressed as a cyan density ratio using the pigment of Comparative Example 1 as a standard.
[0055]
<Fluidity>
The dark ink prepared above was placed on a glass plate tilted at 70 degrees, and the evaluation was made based on the distance passed after 1 hour. In Table 1, the value of the ink produced using the pigment obtained in Comparative Example 1 was set to 100, and the ratio was shown.
[0056]
[Table 1]
Figure 0004045606
[0057]
【The invention's effect】
According to the production method of the present invention, it is possible to produce a β-type copper phthalocyanine pigment suitable for a greenish process ink having a hue comparable to the kneader method by combining dry grinding and a solvent treatment method. Recovery of diethylene glycol and salt as secondary materials, which is a major problem of the kneader method, is not required, and the manufacturing cost can be greatly reduced. Further, according to the production method of the present invention, the environmental load can be remarkably reduced by drastically reducing high COD wastewater, and further, the pigmentation step can be shortened. Therefore, the production method of the present invention is industrially excellent. Is the method.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of a dry pulverized product of crude copper phthalocyanine obtained in Production Example 2. FIG.
FIG. 2 is an X-ray diffraction pattern of an α-type copper phthalocyanine pigment.
FIG. 3 is an X-ray diffraction pattern of a β-type copper phthalocyanine pigment.

Claims (3)

粗製銅フタロシアニン及びロジンの基本骨格を有する化合物の金属塩を含有する混合物を乾式磨砕して得られるα型銅フタロシアニン及びβ型銅フタロシアニンの混合物を、アルコール、ケトン及びエステルから成る群から選ばれる単独の有機溶剤中で、2種以上の有機溶剤から選ばれる混合溶剤中で、あるいはそれらと水との混合溶剤中で加熱処理することを特徴とする緑味調を呈するβ型銅フタロシアニン顔料の製造方法。A mixture of α-type copper phthalocyanine and β-type copper phthalocyanine obtained by dry-grinding a mixture containing a metal salt of a compound having a basic skeleton of crude copper phthalocyanine and rosin is selected from the group consisting of alcohol, ketone and ester A β-type copper phthalocyanine pigment exhibiting a greenish tone, characterized by being heat-treated in a single organic solvent, in a mixed solvent selected from two or more organic solvents, or in a mixed solvent thereof with water Production method. ロジン基本骨格を有する化合物がロジンで変性された樹脂の金属塩又はロジンで変性されたエステルの金属塩である請求項1記載の製造方法。The process according to claim 1, wherein the compound having a rosin basic skeleton is a metal salt of a resin modified with rosin or a metal salt of an ester modified with rosin . 有機溶剤が炭素原子数1〜7の脂肪族アルコールである請求項1又は2記載の製造方法。The production method according to claim 1 or 2 , wherein the organic solvent is an aliphatic alcohol having 1 to 7 carbon atoms.
JP25855396A 1996-09-30 1996-09-30 Method for producing β-type copper phthalocyanine pigment Expired - Fee Related JP4045606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25855396A JP4045606B2 (en) 1996-09-30 1996-09-30 Method for producing β-type copper phthalocyanine pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25855396A JP4045606B2 (en) 1996-09-30 1996-09-30 Method for producing β-type copper phthalocyanine pigment

Publications (2)

Publication Number Publication Date
JPH10101955A JPH10101955A (en) 1998-04-21
JP4045606B2 true JP4045606B2 (en) 2008-02-13

Family

ID=17321833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25855396A Expired - Fee Related JP4045606B2 (en) 1996-09-30 1996-09-30 Method for producing β-type copper phthalocyanine pigment

Country Status (1)

Country Link
JP (1) JP4045606B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181529A (en) * 1999-12-27 2001-07-03 Dainippon Ink & Chem Inc Production method for copper phthalocyanine semicrude and production method for copper phthalocyanine crude
JP2001261998A (en) * 2000-01-14 2001-09-26 Dainippon Ink & Chem Inc Method for producing copper phthalocyanine pigment
JP2003041173A (en) * 2001-07-26 2003-02-13 Dainichiseika Color & Chem Mfg Co Ltd Method for producing printing ink and printing ink
JP2011225771A (en) * 2010-04-22 2011-11-10 Dic Corp Copper phthalocyanine pigment composition and printing ink
CN114656800B (en) * 2022-04-29 2024-04-26 美利达颜料工业有限公司 Method for preparing phthalocyanine blue BGS by low alpha phase activation crude solvent treatment

Also Published As

Publication number Publication date
JPH10101955A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
JP3139396B2 (en) Manufacturing method of printing ink
WO2007025932A2 (en) Process for preparation of a novel pigmented composition for use in gravure inks
JP3129030B2 (en) Method for producing copper phthalocyanine pigment composition
JPH09291223A (en) Production of beta-type copper phthalocyanine pigment
JP4045606B2 (en) Method for producing β-type copper phthalocyanine pigment
JPH09291221A (en) Production of pigment composition, pigment composition and its use
US3936315A (en) Conversion of crude phthalocyanines into pigments
KR970000737B1 (en) Process for the manufacturing of opaque quinacridones
EP0398716B1 (en) Pigment composition
JP2683458B2 (en) Method for producing β-type dioxazine pigment
JP3872356B2 (en) Manufacturing method of printing ink
JP3477810B2 (en) Production method of β-type copper phthalocyanine pigment
JP4126725B2 (en) δ-type indanthrone blue pigment and method for producing the same
JP4123416B2 (en) Manufacturing method of printing ink
CN110591412A (en) Phthalocyanine pigment composition, method for producing same, and ink
JP2006328262A (en) Production method for fine quinacridone pigment
JP2629070B2 (en) Copper phthalocyanine pigment composition and pigment dispersion composition using the same
EP1888692A2 (en) Process for preparation of a novel pigmented composition for use in offset inks
JP2000290578A (en) Preparation of water-based pigment dispersion
KR100497113B1 (en) Process for preparing a stable copper phthalocyanine pigment
JP2003313456A (en) PROCESS FOR PRODUCING beta-FORM COPPER PHTHALOCYANINE PIGMENT
JP2002155219A (en) PIGMENT COMPOSITION OF beta TYPE COPPER PHTHALOCYANINE AND METHOD OF MANUFACTURING THE SAME
JPH0336065B2 (en)
JP5534325B2 (en) Method for producing copper phthalocyanine pigment composition and method for producing printing ink
JP4185312B2 (en) Easily dispersible copper phthalocyanine pigment composition, method for producing the same, and method for producing a colored composition

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees