JP4045209B2 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP4045209B2
JP4045209B2 JP2003175681A JP2003175681A JP4045209B2 JP 4045209 B2 JP4045209 B2 JP 4045209B2 JP 2003175681 A JP2003175681 A JP 2003175681A JP 2003175681 A JP2003175681 A JP 2003175681A JP 4045209 B2 JP4045209 B2 JP 4045209B2
Authority
JP
Japan
Prior art keywords
core
fuel injection
valve
mover
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175681A
Other languages
Japanese (ja)
Other versions
JP2005009424A (en
Inventor
賢一 郡司
正文 中野
清隆 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003175681A priority Critical patent/JP4045209B2/en
Publication of JP2005009424A publication Critical patent/JP2005009424A/en
Application granted granted Critical
Publication of JP4045209B2 publication Critical patent/JP4045209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電磁式燃料噴射弁に係り、特に、内燃機関用として好適な筒内直接燃料噴射方式の電磁式燃料噴射弁に関する。
【0002】
【従来の技術】
従来の電磁式燃料噴射弁は、例えば特表2003−511604号公報に記載のように、可動子のストローク量に関する構成部品として、可動子は弁ニードルに溶接されたフランジと保持フランジとで構成され、弁ニードルと一体化されている。
【0003】
一方、可動子のストローク量を規制する衝突部は内極の端面と弁座面であり、内極と外極は非電磁的な結合構成部材で結合され、更に外極の先端には弁座体を有するノズル本体が調節プレートを介してねじ止め固定されており、可動子の衝突部を構成している。
【0004】
上記構成において、一般的に磁気回路の関係から、可動子,内極及び外極はフェライト系磁気ステンレス鋼が用いられ、内極と外極を結合する結合構成部材にはオーステナイト系ステンレス鋼が用いられる。また、弁ニードル,弁座体及びノズル本体にはマルテンサイト系ステンレス鋼が用いられる。
【0005】
【特許文献1】
特表2003−511604号公報
【0006】
【発明が解決しようとする課題】
上記従来技術は、オーステナイト系ステンレス鋼である結合構成部材で内極と外極を結合しており、弁ニードルと結合された可動子と比較して熱膨張の点について配慮されておらず、燃料の温度変化や使用環境での温度変化でストローク量が変化し、燃料噴射量が変化するという問題があった。
【0007】
また、磁性材であるマルテンサイト系ステンレス鋼の弁ニードルと可動子が接触していることから、弁ニードルに磁気が洩れることについて配慮がされておらず、可動子の開弁が遅れる問題があった。
【0008】
本発明は、燃料の温度や使用環境の温度が変化してもストローク量がほとんど変化しない電磁式燃料噴射弁を提供することを目的とする。
【0009】
本発明は、可動コアから弁体に磁気が洩れることを防止し、可動子の開弁時間を短縮することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の電磁式燃料噴射弁は、弁体とフェライト系磁性ステンレス鋼からなる可動コアとを有する可動子と、電磁コイルと、フェライト系磁性ステンレス鋼からなり前記電磁コイルの励磁により前記可動子を開弁側に磁気吸引する磁気回路を構成するヨーク,ハウジング,コアとを有し、前記ハウジングと前記コアとの間は非磁性若しくは弱磁性のシールリングにより油密に結合され、前記ハウジングの先端には弁座を備えたノズルが結合されており、前記可動子は前記コアの端面と前記弁座とに衝突することでストローク量が決定される電磁式燃料噴射弁であって、前記弁体と前記可動コアとを前記シールリングと同じ非磁性若しくは弱磁性の材質でできたジョイントで結合し、前記可動子の軸方向の熱膨張量と前記弁座から前記コアの端面までの軸方向の熱膨張量とを近似させたものである。
このとき、前記ジョイントと前記シールリングとはオーステナイト系ステンレス鋼であり、前記ノズル,前記弁座部材及び前記弁体はマルテンサイト系ステンレス鋼であればよい。
また、前記可動子の温度変化によるストロークの変化量を1μm/100℃以下になるように前記可動子の軸方向の熱膨張量と、前記弁座から前記コアの端面までの軸方向の熱膨張量とを近似させるとよい。
【0011】
【発明の実施の形態】
上述の目的の1つは、ノズル内に配置された可動子を電磁力により付勢し、燃料の吐出量を制御してなる電磁式燃料噴射弁であって、前記可動子を構成する部品の総和の軸方向熱膨張量と、前記可動子の周囲を覆って外套部材を構成する部品の総和の軸方向熱膨張量とを近似させることにより達成される。
【0012】
本発明の好ましくは、可動子は弁体と可動コアから構成され、両者間はジョイントで結合されていることにより達成される。
【0013】
本発明の好ましくは、可動子は弁体と可動コアから構成され、両者間は1部材以上の連結部品を介して結合されていることにより達成される。
【0014】
本発明の好ましくは、可動子のストローク量の規制は、弁座とコアの端面で行われ、前記弁座とコアの端面までは、少なくとも弁座部材,ノズル,ハウジング,シールリング及び前記コアで構成され、機械的に油密に結合されていることにより達成される。
【0015】
本発明の好ましくは、ジョイントは可動コアと前記弁体に結合され、軸方向長さ及び前記結合位置の間隔を調整することにより前記可動子と前記弁座から前記コアの端面までの熱膨張量を近似させることにより達成される。
【0016】
本発明の好ましくは、シールリングはコアとハウジングに結合され、軸方向長さ及び前記結合位置の間隔を調整することにより可動子と弁座から前記コアの端面までの熱膨張量を近似させることにより達成される。
【0017】
本発明の好ましくは、ジョイントとシールリングの線膨張係数の差が3×10-6/℃以下の材料であり、ヨーク,ハウジング,コア及び可動コアの線膨張係数の差が3×10-6/℃以下の材料であり、更にノズル,弁座部材及び弁体の線膨張係数の差が2×10-6/℃以下の材料から構成することにより達成される。
【0018】
本発明の好ましくは、ジョイントとシールリングはオーステナイト系ステンレス鋼であり、ヨーク,ハウジング,コア及び可動コアはフェライト系磁性ステンレス鋼であり、ノズル,弁座部材及び弁体はマルテンサイト系ステンレス鋼であることにより達成される。
【0019】
上述の目的の一つは、弁体と可動コアを非磁性若しくは弱磁性のジョイントで結合した可動子と、電磁コイルと、前記電磁コイルの励磁により前記可動子を開弁側に磁気吸引する磁気回路を構成するヨーク,ハウジング,コアとを有し、前記ハウジングと前記コアとの間は非磁性若しくは弱磁性のシールリングにより油密に結合され、前記ハウジングの先端には弁座を備えたノズルが結合されており、可動子は前記コアの端面と弁座とに衝突することでストローク量が決定される電磁式燃料噴射弁であって、
前記可動子の温度変化によるストロークの変化量を1μm/100℃以下になるように可動子の軸方向の熱膨張量と、前記弁座から前記コアの端面までの軸方向の熱膨張量とを近似させたことにより達成される。
【0020】
上述の目的の一つは、ノズル内に配置された可動子を電磁力により付勢し、燃料の吐出量を制御してなる電磁式燃料噴射弁であって、前記可動子は前記弁体と可動コア及び前記弁体と可動コアとを結合するジョイントから構成されおり、前記弁体と前記可動コアは前記ジョイントにより磁気的に遮断されていることにより達成される。
【0021】
本発明の好ましくは、前記ジョイントは非磁性若しくは弱磁性の材料から構成されることにより達成される。
【0022】
本発明の好ましくは、前記ジョイントはオーステナイト系ステンレス鋼から構成されることにより達成される。
【0023】
図1〜図5を用いて、本発明の一実施形態による電磁式燃料噴射弁の構成について説明する。
【0024】
図1は、本発明の一実施形態による電磁式燃料噴射弁の全体構成を示す縦断面図である。
【0025】
電磁式燃料噴射弁本体1は、コア2,ヨーク3,ハウジング4,可動子5からなる磁気回路,磁気回路を励磁するコイル6、及びコイル6に通電する端子ボビン7から構成されている。コア2とハウジング4の間にはシールリング8が結合され、コイル6に燃料が流入するのを防いでいる。
【0026】
ハウジング4の内部にはバルブ部品が収納され、可動子5,ノズル9,可動子5のストローク量を調整するリング10が配置されている。可動子5は、弁体
11と可動コア12をジョイント13で結合したものであり、可動コア12とジョイント13の間にはパイプ18と共同して可動子5が閉弁した時のバウンドを抑えるプレート14を備えている。
【0027】
外套部材を構成する前記ハウジング4とノズル9は前記可動子5の周囲を覆ってなり、ノズル9は、先端に弁座15a,オリフィス15bを有する弁座部材
15と、ガイドプレート16と共に可動子5を摺動可能にガイドし燃料に旋回力を与えるスワラー17を備えている。
【0028】
コア2の内部には弁体11を弁座15aにパイプ18とプレート14を介して押圧するスプリング19,スプリング19の押圧荷重を調整するアジャスタ20,外部からのコンタミの進入を防ぐフィルター21が配置されている。
【0029】
以上のように構成された電磁式燃料噴射弁本体1の動作について説明する。コイル6に通電すると、可動子5がスプリング19の付勢力に抗してコア2の方向に吸引され、可動子5の先端の弁シート部11aと弁座15aとの間に隙間ができる(開弁状態)。加圧されている燃料はまずコア2,アジャスタ20,パイプ18から可動子5内の燃料通路13a経てノズル9内に入る。次にガイドプレート16の燃料通路16a,ノズルの通路9aから、スワラー17の通路17a,17bに入り、スワラー17の旋回溝17cによって旋回力を与えられる。旋回力を与えられた燃料は弁シート部11aと弁座15aの隙間からオリフィス15bを経て噴射される。
【0030】
一方、コイル6の電流を遮断した場合には、可動子5の弁シート部11aがスプリング19の力で弁座15aに当接し、閉弁状態となる。
【0031】
次に、電磁式燃料噴射弁本体1を構成する主要部品の材質について説明する。
【0032】
磁気回路を構成しているコア2,ヨーク3,ハウジング4,可動コア12は、磁気特性を考慮してフェライト系磁性ステンレス鋼を使用している。シールリング8はハウジング4からシールリング8を介してコア2に磁束が漏洩するのを防止するために非磁性若しくは弱磁性のオーステナイト系ステンレス鋼を使用しており、磁束がハウジング4から可動コア12を通ってコア2に効率良く流れるようにしている。
【0033】
弁体11,弁座部材15の材料は、弁シート部11aと弁座15aが衝突するために耐摩耗性が必要であり、マルテンサイト系ステンレス鋼を焼入れしている。また、コア2の端面2aと可動コア12の端面12aも衝突面であり耐摩耗性が要求される。しかし、磁気回路を構成するため焼入れ材は使用できない。このため硬質クロムめっきを施し、衝突時の耐磨耗性を確保している。
【0034】
ノズル9はハウジング4と塑性結合されるため、塑性流動の応力で結合溝9bが変形しないように焼入れが可能なマルテンサイト系ステンレス鋼を使用している。本実施例では塑性結合するためマルテンサイト系ステンレス鋼を使用しているが、電磁式燃料噴射弁の機能上マルテンサイト系ステンレス鋼に限らず全ての材料が使用可能である。
【0035】
図2,図3を元に電磁式燃料噴射弁本体1のストローク量について説明する。図2は可動弁5の軸方向のストローク量(動き量)を規制するコア2の端面2aから弁座15aを示す縦断面図であり、説明上可動子5は取り除いている。図3は可動子5の拡大図である。
【0036】
電磁式燃料噴射弁本体1のストローク量は、可動子5の軸方向の衝突面を構成するコア2の端面2aと弁座部材15の弁座15aとの間のA寸法と、可動子5のB寸法との差であり、ストローク量=A−Bで表され、リング10の厚みを調整することで所定のストローク量にしている。
【0037】
ところで、電磁式燃料噴射弁本体1の使用環境を考えると、外気温度の変化やコイル6による発熱、筒内直接燃料噴射による燃焼温度の影響等で電磁式燃料噴射弁本体1は熱変形する。例えば筒内直接燃料噴射の場合、燃焼温度の影響でノズル9は約100℃になる。このため、A寸法を構成している部品とB寸法を構成している部品の熱膨張率が異なるとストローク量が変化し、燃料の噴射量が変化する原因となる。
【0038】
各部品の線熱膨張係数が同一なら熱変形の影響はないが、先に記載したように材質は機能上制約されるため線熱膨張係数を同じにすることはできない。また、各部品の軸方向長さも機能上制約されるものが多い。このため、設計自由度のある弁体11の長さを短くして、可動コア12と弁体11の間に熱膨張を調整できる部品を挿入した。具体的には可動子5を可動コア12と弁体11とジョイント13の3部材から構成し、ジョイント13をオーステナイト系ステンレス鋼とすることで熱膨張率を合わせる構造にした。
【0039】
実施例ではコア2,ハウジング4,可動コア12を同じフェライト系磁性ステンレス鋼(線熱膨張係数α1=12.5×10-6)とし、ノズル9,弁座部材15,弁体11を同じマルテンサイト系ステンレス鋼(線熱膨張係数α2=10.8×10-6)とした。また、シールリング8とジョイント13を同じオーステナイト系ステンレス鋼(線熱膨張係数α3=17.8×10-6)にした。総和の軸方向の熱膨張量は下記のようにして、算出できる。
【0040】
A寸法の熱膨張量ΔAは、温度変化をΔTとして、
ΔA=(L1×α2+L2×α1+L3×α3−L4×α1)×ΔT
で表される。
【0041】
B寸法の熱膨張量ΔBは、
ΔB=(L5×α1+L6×α2+L7×α3)×ΔT
で表される。
【0042】
ここでL1からL5寸法は機能上制約されるため、ΔAは決定してしまう。そこでジョイント13の長さを調整し、L6とL7寸法の兼ね合いでΔBをΔAと合わせた。
【0043】
尚、30,31,32,33,34は溶接継ぎ目であり、結合溝9bはハウジング4とノズル9の塑性結合位置になる。
【0044】
図4は温度変化とストローク量の変化の関係を示した図である。横軸に温度の変化量を示し、縦軸はA寸法とB寸法の熱膨張の違いによるストローク量の変化を示している。
【0045】
従来の可動子の構造では、フェライト系磁気ステンレス鋼である可動子とマルテンサイト系ステンレス鋼である弁ニードルで構成されるため、図4に示す従来品のように、温度が100℃変化するとストローク量の変化は約4μmになる。たとえばストローク量を40μmに設定すると熱膨張で10%変化することになり、燃料噴射量もほぼ10%変化してしまう。
【0046】
一方、本実施例では温度が100℃変化してもストローク量の変化は約0.2μmに低減でき、燃料噴射量の変化をほぼ0%にできる。
【0047】
また、ジョイント13を非磁性のオーステナイト系ステンレス鋼にしたことにより可動コア12から弁体11への磁束の漏洩を防止できるため、吸引時の磁気回路の効率を向上でき、可動子5が開弁する時間を短縮することができる。
【0048】
図5は可動子5の第2の実施例である。可動子40は可動コア41と弁体42とロッド43で構成され、可動コア41とロッド43を溶接継ぎ目44で溶接し、また、ロッド43と弁体42を溶接継ぎ目45で溶接している。この場合ロッド43をオーステナイト系ステンレス鋼として、ロッド43の長さ及び溶接継ぎ目45の位置を調整することで図2のA寸法とB2寸法の熱膨張量を合わせている。
【0049】
尚、L5,L6,L7は図3と同じ符号としている。
【0050】
電磁式燃料噴射弁の温度変化で、可動子のストローク量が変化することによる燃料噴射量の誤差を外部から電子的に制御して調整するやり方もあるが、上記実施例によれば、電子制御に頼らず燃料噴射弁そのものでできるので汎用性に優れ、内燃機関の仕様に合わせてその都度回路調整を行う煩わしさがなくなる利点がある。
【0051】
【発明の効果】
本発明によれば、ハウジングとコアとの間が非磁性若しくは弱磁性のシールリングにより油密に結合され、可動子のストローク量がコアの端面と弁座とに衝突することで決定される電磁式燃料噴射弁にあって、弁体と可動コアとをシールリングと同じ非磁性若しくは弱磁性の材質でできたジョイントで結合し、可動子の軸方向の熱膨張量と弁座からコアの端面までの軸方向の熱膨張量とを近似させることで、燃料の温度変化や使用環境の温度変化がある場合でもストロークの変化が無く一定した流量特性を得られる効果がある。
【0052】
本発明は、可動子の温度変化によるストロークの変化量を1μm/100℃以下になるように可動子の軸方向の熱膨張量と、前記弁座から前記コアの端面までの軸方向の熱膨張量とを近似させたことにより、燃料の温度変化や使用環境の温度変化がある場合でもストロークの変化が無く、可動子の開閉弁する時間を一定にできる効果がある。
【0053】
本発明は、可動コアから弁体への磁束の漏洩を無くせるため、可動子の開弁する時間を短縮できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態による電磁式燃料噴射弁の全体構成を示す縦断面図。
【図2】可動弁の軸方向のストローク量を規制するコアの端面から弁座を示す縦断面図。
【図3】可動子の拡大を示す縦断面図。
【図4】本発明の第1実施例による可動子を採用した場合の温度変化とストローク量の関係と、従来の方法を採用した場合の温度変化とストローク量の変化を比較したグラフ。
【図5】可動子の第2の実施例を示す縦断面図。
【符号の説明】
1…電磁式燃料噴射弁本体、2…コア、3…ヨーク、4…ハウジング、5…可動子、8…シールリング、9…ノズル、11…弁体、12…可動コア、13…ジョイント、15…弁座部材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic fuel injection valve, and more particularly to an in-cylinder direct fuel injection type electromagnetic fuel injection valve suitable for an internal combustion engine.
[0002]
[Prior art]
A conventional electromagnetic fuel injection valve, for example, as described in Japanese Patent Application Publication No. 2003-511604, includes a flange welded to a valve needle and a holding flange as a component related to the stroke amount of the mover. , Integrated with the valve needle.
[0003]
On the other hand, the collision part that regulates the stroke amount of the mover is the end face of the inner pole and the valve seat surface, the inner pole and the outer pole are coupled by a non-electromagnetic coupling component, and further, the valve seat is disposed at the tip of the outer pole. A nozzle body having a body is screwed and fixed via an adjustment plate, and constitutes a collision part of the mover.
[0004]
In the above configuration, generally, ferritic magnetic stainless steel is used for the mover, inner pole and outer pole from the relationship of the magnetic circuit, and austenitic stainless steel is used for the connecting component that joins the inner pole and outer pole. It is done. Further, martensitic stainless steel is used for the valve needle, the valve seat body, and the nozzle body.
[0005]
[Patent Document 1]
JP-T-2003-511604 gazette [0006]
[Problems to be solved by the invention]
In the above prior art, an inner pole and an outer pole are coupled with a coupling component member made of austenitic stainless steel, and no consideration is given to thermal expansion as compared with a mover coupled to a valve needle. There was a problem that the stroke amount changed due to the temperature change in the environment and the temperature change in the usage environment, and the fuel injection amount changed.
[0007]
In addition, since the martensitic stainless steel valve needle, which is a magnetic material, is in contact with the mover, no consideration has been given to leakage of magnetism to the valve needle, and there is a problem that the opening of the mover is delayed. It was.
[0008]
An object of the present invention is to provide an electromagnetic fuel injection valve in which the stroke amount hardly changes even if the temperature of the fuel or the temperature of the usage environment changes.
[0009]
An object of the present invention is to prevent magnetism from leaking from the movable core to the valve body, and to shorten the valve opening time of the movable element.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, an electromagnetic fuel injection valve according to the present invention includes a mover having a valve body and a movable core made of ferritic magnetic stainless steel, an electromagnetic coil, and ferritic magnetic stainless steel. A yoke, a housing, and a core that constitute a magnetic circuit that magnetically attracts the mover to the valve opening side by exciting a coil, and a non-magnetic or weak magnetic seal ring between the housing and the core A nozzle having a valve seat is coupled to the front end of the housing, and the mover collides with the end surface of the core and the valve seat to determine the stroke amount. The valve body and the movable core are joined by a joint made of the same nonmagnetic or weakly magnetic material as the seal ring, and the amount of thermal expansion in the axial direction of the mover In which from the valve seat was approximated the thermal expansion amount in the axial direction to the end face of the core.
At this time, the joint and the seal ring are austenitic stainless steel, and the nozzle, the valve seat member, and the valve body may be martensitic stainless steel.
In addition, the amount of thermal expansion in the axial direction of the mover and the thermal expansion in the axial direction from the valve seat to the end face of the core so that the change in stroke due to temperature change of the mover is 1 μm / 100 ° C. or less. The quantity should be approximated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
One of the above-mentioned objects is an electromagnetic fuel injection valve that controls the discharge amount of fuel by energizing a mover arranged in a nozzle by electromagnetic force, and is a component of the mover. This is achieved by approximating the total axial thermal expansion amount and the total axial thermal expansion amount of the parts constituting the mantle member covering the periphery of the mover.
[0012]
Preferably, according to the present invention, the movable element is constituted by a valve body and a movable core, and the two are connected by a joint.
[0013]
Preferably, according to the present invention, the movable element is constituted by a valve body and a movable core, and the two are achieved by being coupled via one or more connecting parts.
[0014]
Preferably, in the present invention, the stroke amount of the mover is regulated at the end face of the valve seat and the core, and at least the valve seat member, the nozzle, the housing, the seal ring, and the core up to the end face of the valve seat and the core. This is achieved by being constructed and mechanically oil-tightly coupled.
[0015]
Preferably, the joint is coupled to the movable core and the valve body, and the amount of thermal expansion from the movable element and the valve seat to the end surface of the core is adjusted by adjusting an axial length and a distance between the coupling positions. Is achieved by approximating
[0016]
Preferably, the seal ring is coupled to the core and the housing, and an amount of thermal expansion from the mover and the valve seat to the end surface of the core is approximated by adjusting an axial length and an interval between the coupling positions. Is achieved.
[0017]
Preferably, the present invention is a material in which the difference in coefficient of linear expansion between the joint and the seal ring is 3 × 10 −6 / ° C. or less, and the difference in coefficient of linear expansion between the yoke, the housing, the core and the movable core is 3 × 10 −6. This is achieved by forming a material having a linear expansion coefficient of 2 × 10 −6 / ° C. or less.
[0018]
Preferably, the joint and the seal ring of the present invention are austenitic stainless steel, the yoke, the housing, the core and the movable core are ferritic magnetic stainless steel, and the nozzle, the valve seat member and the valve body are martensitic stainless steel. It is achieved by being.
[0019]
One of the above-mentioned objects is that a movable body in which a valve body and a movable core are coupled by a non-magnetic or weak magnetic joint, an electromagnetic coil, and a magnet that magnetically attracts the movable element to the valve opening side by excitation of the electromagnetic coil. A nozzle having a yoke, a housing, and a core constituting a circuit, wherein the housing and the core are oil-tightly coupled by a non-magnetic or weak magnetic seal ring, and a valve seat is provided at the front end of the housing The mover is an electromagnetic fuel injection valve whose stroke amount is determined by colliding with the end face of the core and the valve seat,
The amount of thermal expansion in the axial direction of the mover and the amount of thermal expansion in the axial direction from the valve seat to the end surface of the core so that the amount of change in stroke due to temperature change of the mover is 1 μm / 100 ° C. or less. This is achieved by approximation.
[0020]
One of the above-mentioned objects is an electromagnetic fuel injection valve formed by energizing a mover arranged in a nozzle by electromagnetic force and controlling a fuel discharge amount, and the mover is connected to the valve body. It is comprised from the joint which couple | bonds a movable core and the said valve body and a movable core, and the said valve body and the said movable core are achieved by being interrupted | blocked magnetically by the said joint.
[0021]
In the present invention, preferably, the joint is made of a nonmagnetic or weakly magnetic material.
[0022]
In the present invention, preferably, the joint is made of austenitic stainless steel.
[0023]
A configuration of an electromagnetic fuel injection valve according to an embodiment of the present invention will be described with reference to FIGS.
[0024]
FIG. 1 is a longitudinal sectional view showing the overall configuration of an electromagnetic fuel injection valve according to an embodiment of the present invention.
[0025]
The electromagnetic fuel injection valve body 1 includes a magnetic circuit including a core 2, a yoke 3, a housing 4, and a mover 5, a coil 6 for exciting the magnetic circuit, and a terminal bobbin 7 for energizing the coil 6. A seal ring 8 is coupled between the core 2 and the housing 4 to prevent fuel from flowing into the coil 6.
[0026]
Valve parts are housed inside the housing 4, and a movable element 5, a nozzle 9, and a ring 10 that adjusts the stroke amount of the movable element 5 are arranged. The movable element 5 is obtained by connecting the valve body 11 and the movable core 12 with a joint 13, and suppresses the bounce when the movable element 5 is closed in cooperation with the pipe 18 between the movable core 12 and the joint 13. A plate 14 is provided.
[0027]
The housing 4 and the nozzle 9 constituting the outer cover member cover the periphery of the movable element 5, and the nozzle 9 has a valve seat member 15 having a valve seat 15 a and an orifice 15 b at the tip, and a guide plate 16 and the movable element 5. The swirler 17 is slidably guided to give the fuel a turning force.
[0028]
A spring 19 that presses the valve element 11 against the valve seat 15a via the pipe 18 and the plate 14, an adjuster 20 that adjusts the pressing load of the spring 19, and a filter 21 that prevents entry of contaminants from the outside are disposed inside the core 2. Has been.
[0029]
The operation of the electromagnetic fuel injection valve body 1 configured as described above will be described. When the coil 6 is energized, the mover 5 is attracted in the direction of the core 2 against the biasing force of the spring 19, and a gap is formed between the valve seat portion 11a at the tip of the mover 5 and the valve seat 15a (opening). Valve state). The pressurized fuel first enters the nozzle 9 from the core 2, the adjuster 20, and the pipe 18 through the fuel passage 13 a in the mover 5. Next, the fuel passage 16 a of the guide plate 16 and the passage 9 a of the nozzle enter the passages 17 a and 17 b of the swirler 17, and a turning force is given by the turning groove 17 c of the swirler 17. The fuel given the turning force is injected through the orifice 15b from the gap between the valve seat portion 11a and the valve seat 15a.
[0030]
On the other hand, when the current of the coil 6 is interrupted, the valve seat portion 11a of the mover 5 comes into contact with the valve seat 15a by the force of the spring 19, and the valve is closed.
[0031]
Next, the material of the main parts constituting the electromagnetic fuel injection valve body 1 will be described.
[0032]
Ferrite magnetic stainless steel is used for the core 2, yoke 3, housing 4 and movable core 12 constituting the magnetic circuit in consideration of magnetic characteristics. The seal ring 8 uses nonmagnetic or weakly magnetic austenitic stainless steel to prevent leakage of magnetic flux from the housing 4 to the core 2 via the seal ring 8. So that it can flow efficiently through the core 2.
[0033]
The material of the valve body 11 and the valve seat member 15 requires wear resistance because the valve seat portion 11a and the valve seat 15a collide with each other, and martensite stainless steel is quenched. Further, the end surface 2a of the core 2 and the end surface 12a of the movable core 12 are also collision surfaces, and wear resistance is required. However, a hardened material cannot be used because it constitutes a magnetic circuit. For this reason, hard chrome plating is applied to ensure wear resistance during a collision.
[0034]
Since the nozzle 9 is plastically coupled to the housing 4, martensitic stainless steel that can be quenched so as not to deform the coupling groove 9 b due to plastic flow stress is used. In this embodiment, martensitic stainless steel is used for plastic bonding, but not only martensitic stainless steel but also all materials can be used in terms of the function of the electromagnetic fuel injection valve.
[0035]
The stroke amount of the electromagnetic fuel injection valve body 1 will be described with reference to FIGS. FIG. 2 is a longitudinal sectional view showing the valve seat 15a from the end surface 2a of the core 2 that regulates the stroke amount (movement amount) of the movable valve 5 in the axial direction, and the movable element 5 is removed for explanation. FIG. 3 is an enlarged view of the mover 5.
[0036]
The stroke amount of the electromagnetic fuel injection valve body 1 is determined by the dimension A between the end surface 2a of the core 2 constituting the axial collision surface of the mover 5 and the valve seat 15a of the valve seat member 15; This is a difference from dimension B, and is represented by stroke amount = A−B, and is adjusted to a predetermined stroke amount by adjusting the thickness of the ring 10.
[0037]
By the way, when considering the use environment of the electromagnetic fuel injection valve body 1, the electromagnetic fuel injection valve body 1 is thermally deformed due to the influence of the change in the outside air temperature, the heat generated by the coil 6, the combustion temperature due to the direct fuel injection in the cylinder, and the like. For example, in the case of in-cylinder direct fuel injection, the nozzle 9 becomes about 100 ° C. due to the influence of the combustion temperature. For this reason, if the coefficient of thermal expansion of the part which comprises A dimension differs from the part which comprises B dimension, stroke amount will change and it will become a cause which changes the fuel injection quantity.
[0038]
If each component has the same linear thermal expansion coefficient, there is no influence of thermal deformation. However, as described above, since the material is functionally restricted, the linear thermal expansion coefficient cannot be made the same. In addition, the axial length of each component is often limited in function. For this reason, the length of the valve body 11 having a degree of design freedom was shortened, and a part capable of adjusting the thermal expansion was inserted between the movable core 12 and the valve body 11. Specifically, the movable element 5 is composed of three members, that is, a movable core 12, a valve body 11, and a joint 13, and the joint 13 is made of austenitic stainless steel so that the thermal expansion coefficient is matched.
[0039]
In the embodiment, the core 2, the housing 4 and the movable core 12 are made of the same ferritic magnetic stainless steel (linear thermal expansion coefficient α1 = 12.5 × 10 −6 ), and the nozzle 9, the valve seat member 15, and the valve body 11 are made of the same martens. Site stainless steel (linear thermal expansion coefficient α2 = 10.8 × 10 −6 ) was used. The seal ring 8 and the joint 13 were made of the same austenitic stainless steel (linear thermal expansion coefficient α3 = 17.8 × 10 −6 ). The total amount of thermal expansion in the axial direction can be calculated as follows.
[0040]
The amount of thermal expansion ΔA of dimension A is the temperature change ΔT,
ΔA = (L1 × α2 + L2 × α1 + L3 × α3-L4 × α1) × ΔT
It is represented by
[0041]
The amount of thermal expansion ΔB of dimension B is
ΔB = (L5 × α1 + L6 × α2 + L7 × α3) × ΔT
It is represented by
[0042]
Here, since the dimensions L1 to L5 are restricted in terms of function, ΔA is determined. Therefore, the length of the joint 13 was adjusted, and ΔB was set to ΔA in consideration of the dimensions L6 and L7.
[0043]
30, 31, 32, 33, and 34 are weld seams, and the coupling groove 9 b is a plastic coupling position between the housing 4 and the nozzle 9.
[0044]
FIG. 4 is a diagram showing the relationship between temperature change and stroke amount change. The horizontal axis indicates the amount of change in temperature, and the vertical axis indicates the change in stroke amount due to the difference in thermal expansion between the A and B dimensions.
[0045]
The structure of the conventional mover is composed of a mover made of ferritic magnetic stainless steel and a valve needle made of martensite stainless steel. Therefore, when the temperature changes by 100 ° C. as in the conventional product shown in FIG. The change in quantity is about 4 μm. For example, if the stroke amount is set to 40 μm, it will change by 10% due to thermal expansion, and the fuel injection amount will also change by approximately 10%.
[0046]
On the other hand, in this embodiment, even if the temperature changes by 100 ° C., the change in stroke amount can be reduced to about 0.2 μm, and the change in fuel injection amount can be made almost 0%.
[0047]
Further, since the joint 13 is made of nonmagnetic austenitic stainless steel, leakage of magnetic flux from the movable core 12 to the valve body 11 can be prevented, so that the efficiency of the magnetic circuit at the time of attraction can be improved and the movable element 5 is opened. Time can be shortened.
[0048]
FIG. 5 shows a second embodiment of the mover 5. The movable element 40 includes a movable core 41, a valve body 42, and a rod 43. The movable core 41 and the rod 43 are welded at a welded seam 44, and the rod 43 and the valve body 42 are welded at a welded seam 45. In this case, the rod 43 is made of austenitic stainless steel, and the length of the rod 43 and the position of the weld seam 45 are adjusted so that the thermal expansion amounts of the dimension A and the dimension B2 in FIG.
[0049]
L5, L6, and L7 have the same reference numerals as in FIG.
[0050]
There is a method of electronically controlling and adjusting the fuel injection amount error due to the change in the stroke amount of the mover due to the temperature change of the electromagnetic fuel injection valve, but according to the above embodiment, the electronic control Since the fuel injection valve itself can be used without depending on the above, it is excellent in versatility, and there is an advantage that the troublesome adjustment of the circuit each time according to the specifications of the internal combustion engine is eliminated.
[0051]
【The invention's effect】
According to the present invention, the housing and the core are oil-tightly coupled by the non-magnetic or weak magnetic seal ring, and the stroke amount of the mover is determined by colliding with the end surface of the core and the valve seat. In the fuel injection valve, the valve body and the movable core are joined by a joint made of the same non-magnetic or weak magnetic material as the seal ring, and the axial thermal expansion amount of the mover and the end face of the core from the valve seat By approximating the amount of thermal expansion in the axial direction up to, there is an effect that a constant flow rate characteristic can be obtained without a change in stroke even when there is a change in the temperature of the fuel or a change in the temperature of the usage environment.
[0052]
The present invention relates to the amount of thermal expansion in the axial direction of the mover and the thermal expansion in the axial direction from the valve seat to the end face of the core so that the amount of change in stroke due to temperature change of the mover is 1 μm / 100 ° C. or less. By approximating the amount, there is no effect of changing the stroke even when there is a change in the temperature of the fuel or a change in the temperature of the usage environment, and there is an effect that the time for opening and closing the movable element can be made constant.
[0053]
The present invention eliminates the leakage of magnetic flux from the movable core to the valve body, so that the time required for opening the movable element can be shortened.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the overall configuration of an electromagnetic fuel injection valve according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a valve seat from an end face of a core that regulates an axial stroke amount of a movable valve.
FIG. 3 is a longitudinal sectional view showing an enlargement of a mover.
FIG. 4 is a graph comparing a relationship between a temperature change and a stroke amount when the mover according to the first embodiment of the present invention is employed, and a temperature change and a stroke amount change when a conventional method is employed.
FIG. 5 is a longitudinal sectional view showing a second embodiment of the mover.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic fuel injection valve main body, 2 ... Core, 3 ... Yoke, 4 ... Housing, 5 ... Movable element, 8 ... Seal ring, 9 ... Nozzle, 11 ... Valve body, 12 ... Movable core, 13 ... Joint, 15 ... Valve seat member.

Claims (3)

弁体とフェライト系磁性ステンレス鋼からなる可動コアとを有する可動子と、電磁コイルと、フェライト系磁性ステンレス鋼からなり前記電磁コイルの励磁により前記可動子を開弁側に磁気吸引する磁気回路を構成するヨーク,ハウジング,コアとを有し、前記ハウジングと前記コアとの間は非磁性若しくは弱磁性のシールリングにより油密に結合され、前記ハウジングの先端には弁座を備えたノズルが結合されており、前記可動子は前記コアの端面と前記弁座とに衝突することでストローク量が決定される電磁式燃料噴射弁であって、
前記弁体と前記可動コアとを前記シールリングと同じ非磁性若しくは弱磁性の材質でできたジョイントで結合し、前記可動子の軸方向熱膨張量と前記弁座から前記コアの端面までの軸方向熱膨張量とを近似させことを特徴とする電磁式燃料噴射弁。
A mover having a valve body and a movable core made of ferritic magnetic stainless steel, an electromagnetic coil, and a magnetic circuit made of ferritic magnetic stainless steel that magnetically attracts the mover toward the valve opening side by excitation of the electromagnetic coil. The housing has a yoke, a housing, and a core. The housing and the core are oil-tightly coupled by a non-magnetic or weak magnetic seal ring, and a nozzle having a valve seat is coupled to the front end of the housing. The movable element is an electromagnetic fuel injection valve whose stroke amount is determined by colliding with the end face of the core and the valve seat ,
And said movable core and the valve body is coupled with a joint made of a material of the same non-magnetic or weakly magnetic and the seal ring, the thermal expansion amount in the axial direction of the movable element from the valve seat to an end face of the core electromagnetic fuel injection valve, characterized in that by approximating the thermal expansion amount in the axial direction.
請求項1に記載の電磁式燃料噴射弁において、前記ジョイントと前記シールリングはオーステナイト系ステンレス鋼であり、前記ノズル,前記弁座部材及び前記弁体はマルテンサイト系ステンレス鋼であることを特徴とする電磁式燃料噴射弁。The electromagnetic fuel injection valve according to claim 1, the said joint and the seal ring is an austenite stainless steel, pre-Symbol nozzle, the valve seat member and the valve body is a martensitic stainless steel A featured electromagnetic fuel injection valve. 請求項1又は2に記載の電磁式燃料噴射弁において、
前記可動子の温度変化によるストロークの変化量を1μm/100℃以下になるように前記可動子の軸方向の熱膨張量と、前記弁座から前記コアの端面までの軸方向の熱膨張量とを近似させことを特徴とする電磁式燃料噴射弁。
The electromagnetic fuel injection valve according to claim 1 or 2 ,
The amount of thermal expansion in the axial direction of the mover and the amount of thermal expansion in the axial direction from the valve seat to the end surface of the core so that the stroke change amount due to temperature change of the mover is 1 μm / 100 ° C. or less. electromagnetic fuel injection valve, characterized in that is approximated.
JP2003175681A 2003-06-20 2003-06-20 Electromagnetic fuel injection valve Expired - Fee Related JP4045209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175681A JP4045209B2 (en) 2003-06-20 2003-06-20 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175681A JP4045209B2 (en) 2003-06-20 2003-06-20 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2005009424A JP2005009424A (en) 2005-01-13
JP4045209B2 true JP4045209B2 (en) 2008-02-13

Family

ID=34098752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175681A Expired - Fee Related JP4045209B2 (en) 2003-06-20 2003-06-20 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP4045209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800961B2 (en) 2011-08-29 2014-08-12 Denso Corporation Fluid control electromagnetic valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062904A (en) * 2007-09-07 2009-03-26 Nikki Co Ltd Injector
WO2018159326A1 (en) * 2017-03-03 2018-09-07 株式会社デンソー Fuel injection valve and fuel injection system
JP6662364B2 (en) * 2017-03-03 2020-03-11 株式会社デンソー Fuel injection valve and fuel injection system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763135A (en) * 1993-08-20 1995-03-07 Nippon Injector Kk Fuel injection valve
JPH08177689A (en) * 1994-12-28 1996-07-12 Nippon Soken Inc Fuel supply device for internal combustion engine
DE19739324A1 (en) * 1997-09-09 1999-03-11 Bosch Gmbh Robert Electromagnetically actuated valve
JPH11193762A (en) * 1997-12-26 1999-07-21 Hitachi Ltd Electromagnetic fuel injection valve unit and manufacturing method thereof
DE19808067A1 (en) * 1998-02-26 1999-09-02 Bosch Gmbh Robert Electromagnetically actuated valve
DE19948238A1 (en) * 1999-10-07 2001-04-19 Bosch Gmbh Robert Fuel injector
JP3747747B2 (en) * 2000-06-06 2006-02-22 トヨタ自動車株式会社 Fuel injection valve
US6409101B1 (en) * 2000-06-30 2002-06-25 Siemens Automotive Corporation Hollow oversized telescopic needle with armature
DE10149914A1 (en) * 2001-10-10 2003-04-24 Bosch Gmbh Robert Fuel injection valve consists of an actuator located in a housing connected on the side of a valve needle to a valve body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8800961B2 (en) 2011-08-29 2014-08-12 Denso Corporation Fluid control electromagnetic valve

Also Published As

Publication number Publication date
JP2005009424A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US5996911A (en) Electromagnetically actuated valve
JP4603749B2 (en) Fuel injection valve
US7775463B2 (en) Electromagnetic fuel injection valve
US6695233B2 (en) Electromagnetic fuel injection valve
US7051960B2 (en) Fuel injection valve
US4546339A (en) Pole structure for a polarized electromagnet
JP2003511602A (en) Fuel injection valve
JPH11132127A (en) Fuel injection valve and assembling method thereof
US5645226A (en) Solenoid motion initiator
JPS61152960A (en) Electromagnetic fuel injection valve
US11319911B2 (en) Fuel injection valve
JP2005515347A (en) Fuel injector having a ferromagnetic coil bobbin
EP1085202B1 (en) Electromagnetic fuel injection valve
US7946276B2 (en) Protection device for a solenoid operated valve assembly
US6412713B2 (en) Fuel injection apparatus
JP2003232268A (en) Solenoid operated fuel injection valve
JP4045209B2 (en) Electromagnetic fuel injection valve
US6981663B2 (en) Fuel injection valve
US20030116657A1 (en) Solenoid-operated fuel injection valve
JP2008509334A (en) Fuel injector and component connection method
JP4038462B2 (en) Fuel injection valve
JP2004519619A (en) Fuel injection valve
CN110199108B (en) Fuel injection valve
JP2007154855A (en) Fuel injection valve
JPH09324723A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4045209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees