JP4044159B2 - Waste liquid treatment method in small-scale waste liquid treatment tank - Google Patents

Waste liquid treatment method in small-scale waste liquid treatment tank Download PDF

Info

Publication number
JP4044159B2
JP4044159B2 JP19570596A JP19570596A JP4044159B2 JP 4044159 B2 JP4044159 B2 JP 4044159B2 JP 19570596 A JP19570596 A JP 19570596A JP 19570596 A JP19570596 A JP 19570596A JP 4044159 B2 JP4044159 B2 JP 4044159B2
Authority
JP
Japan
Prior art keywords
waste liquid
oil
inflow
tank
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19570596A
Other languages
Japanese (ja)
Other versions
JPH1015587A (en
Inventor
裕昭 橋口
Original Assignee
株式会社プリオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プリオ filed Critical 株式会社プリオ
Priority to JP19570596A priority Critical patent/JP4044159B2/en
Publication of JPH1015587A publication Critical patent/JPH1015587A/en
Application granted granted Critical
Publication of JP4044159B2 publication Critical patent/JP4044159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭から発生する生活廃液や飲食料理店や食品工場等において発生する事業所廃液などを微生物学的に分解処理する方法に関する。
【0002】
【従来の技術】
一般家庭から発生する生活廃液は、直接に又は一旦浄化槽に蓄えられ処理された後に下水に排出されている。そして下水から大規模の水処理施設に導かれて浄化処理され、河川や海などに排出されている。その処理施設での水の浄化処理能力は現在限界に近く、新たな施設建設は莫大費用がかかる上に地域住民の理解を得ての設置場所の確保が非常に困難となっている。
【0003】
また、飲食料理店、レストラン、ホテル、学校、病院などの小規模事業所における厨房排水の中には多くの油脂分が含まれている。その廃液中の油分をなんの処理もしないで排水管にそのまま流すと油粒子が集合(スカム化)し、他のごみを取り込んで排水管壁に付着して固まり、管を詰らせてしまう問題が起こる。またその油脂分は合併処理槽や下水処理場での水の浄化処理を困難とさせ、汚水浄化処理能力を大幅に減殺してしまう。
そのため廃液の発生源近くに小規模の油分分離槽(グリ−ス阻集器)や沈殿分離槽などを設けて、決められた排水基準の数値をクリア−するまで油脂分の取除き処理をして排出するように規制、指導されている。
【0004】
これまでの油分分離槽における油分の処理方法は、廃液を排水路から直接油分分離槽に流し込み、その油分分離槽において比重の異なる油と水とを分離させ、その比重が小さい浮き上がった油脂分の塊り(スカム)を汲み出して、廃液中の油脂分の混合率を減少させて排出する方法が一般的に行なわれている。この油分分離によるものは、分離された油脂分を随時汲み上げ油分分離槽から除去し廃棄しなければならず、この廃棄物の処理についても焼却処理が必要であり、埋め立てすると環境に影響を及ぼすおそれがある。また汲み上げを休むと油分が未処理のまま槽内から廃液とともに溢れて流出してしなうなどの問題が残される。
【0005】
このような阻集器や分離槽では定期的に阻集して残留物質を除去しなければならないが、現状では除去せずにそのまま放置されることが多く、阻集機能が充分には発揮されないまま多くの混合物質を含んだ廃液を流出させているのが実態である。
さらに、油分分離槽内には油脂分の強烈な悪臭が発生し、市販の脱臭剤などでは対処できない程であり、特に汲み上げ作業員が最も嫌る作業の一つであった。
【0006】
例えば、ラ−メン100食の売上がある規模のAラ−メン店について、建設省の機械設備共通仕様書のHASS217「グリ−ス阻集器」の選定基準によって算出すると、
1日当りの発生量は、
廃液量 8000l
グリ−ス阻集量 1Kg
残渣の堆積量 500g
である。
【0007】
このAラ−メン店から発生する廃液をグリ−ス阻集器によって、阻集したグリ−スを2日に一度の汲み出して除去する場合についての従来の方法を説明すると、このグリ−ス阻集器には、1Kgのスカムが阻集される。そして、処理槽内のスカムの残留量の変化を示す図5のA点において、スカムが汲み上げられ、その時にはスカムはなくなるが、その後にまた槽内の残留量が増加する様子を示している。
この場合、汲み上げ直後に大部分のスカムは除去され、臭いは少なくなるが、周囲に残っているスカムがあるので殆ど悪臭が消えることがない。
【0008】
そこで、微生物学的処理によって油脂分を無害な物質に分解処理しようとする処理装置の提案もなされている。
例えば、油分分離槽にセラミック製や合成樹脂製等の微生物担体を沈める方法や、それに加えて1日数回に分けて定時的に微生物を投入する随時投入方式(例えば図6に示すように、グラフ線上の丸印に示す時点の6時間間隔に微生物を投入方式)など各種提供されている。
【0009】
この場合には、油脂分を分解できる微生物の数を短時間で多量に増殖させることが困難であり、廃油水の排出量に較べて油分分解能力が極めて低い。
このため油分総量としての処理においては減少効果が見られるが、次の廃液流入時にまで未処理スカムが残り(図6の谷部B)なかなか残留量が「0」にならない。
そして、完全に処理しきれないうちに翌日の流入が開始されるので、悪臭の対策には目立った効果をあげることができなかった。このために別途にオゾンを注入したり臭い吸着剤を用いた悪臭除去手段を設けるものが多い。
【0010】
通常この方法では、図7の(イ)に示すように、槽内スカムが徐々に減少するが、設置後少なくとも1ケ月以上経たないと充分な効果(図7における100Mg/L以下の数値)が表れず、即効性に関しては難点がある。
また、微生物担体はその表面に油脂分が付着し、一旦付着すると油脂分を落とすことは難しく、いずれも微生物担体としての機能を充分果すことが困難であった。
【0011】
その微生物の処理効果が得られなかった根本的な原因は、処理槽が小規模であるために汚水が流入するとその分の処理槽内の汚水が排出され、その結果折角増加した微生物が簡単に流出してしまい、処理槽内の微生物を高濃度に増殖維持することができなかった点にあった。
【0012】
【発明が解決しようとする課題】
本発明は上記実情に鑑みてなされたもので、一般家庭から発生する生活廃液や飲食料理店や食品工場等において発生する事業所廃液などを、微生物によって高効率に分解処理できる汚水処理方法を提供するものである。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明は、廃液の昼間での断続的又は連続的流入と夜間での少なくとも4時間の流入停止とが定時的に交番され、その流入と流出の過程で廃液中の比重の小さい油分が水面に浮上分離し、比重の大きい懸濁物質は底に沈殿分離して夫々が槽内分離滞留し、残余の廃液が新たな廃液の流入量分づつ排出される小規模廃液処理槽において、
廃液の流入停止開始時の直前又は/及び直後にその都度毎に廃液成分の分解能を有する微生物を自動的に供給すると共に廃液の流入停止時間の槽内廃液中に酸素を供給して前記微生物を多量に増殖させ、次回の廃液の流入開始時前に槽内滞留物質をその都度処理しるものである。
【0014】
また、前記廃液処理槽内に、油分吸着材を沈め、廃液流入中においてはその油分吸着材で浮上分離油分以外のコロイド状混合油分をその表面に吸着させ、流入停止後においては廃液滞留中に表面に吸着した油分を微生物で分解させて吸着能を回復させるものである。
【0015】
【発明の実施の形態】
本発明は、廃液の昼間での断続的又は連続的流入と夜間での流入停止とが定時的に交番され、その流入と流出の過程で廃液中の比重の小さい油分が水面に浮上分離し、比重の大きい懸濁物質は底に沈殿分離して夫々が槽内分離滞留し、残余の廃液が新たな廃液の流入量分づつ排出される小規模廃液処理槽1におけるものである。
本発明においての前記夜間とは、通常は夜間になる時間帯で、飲食料理店、レストランなどの活動が停止している時間であり、その意味で営業停止時間と殆ど同じ意味であり、厳密には必ずしも日の出から日の入りから日の出までの意味ではない。
【0016】
そして、その小規模廃液処理槽1において、廃液の流入停止開始時の直後にその都度毎に廃液成分の分解能を有する微生物を自動的に供給すると共に廃液の流入停止時間の槽内廃液中に酸素を供給して前記微生物を多量に増殖させ、次回の廃液の流入開始時前に槽内滞留物質をその都度処理しきるものである。
【0017】
また、前記廃液処理槽内1に、油分吸着材を沈め、廃液流入中においてはその油分吸着材で浮上分離油分以外のコロイド状混合油分をその表面に吸着させ、流入停止後においては廃液滞留中に表面に吸着した油分を微生物で分解させて吸着能を回復させるものである。
【0018】
前記廃液処理法をその方法を実施するための廃液処理装置で具体的に詳しく説明すると、
前記小規模廃液処理槽1としては、浮遊物・沈殿物分離槽、グリ−ス阻集機等が含まれる。
例えばそれらの中のグリ−ス阻集器について説明すると、その構造は、図1に示すように、槽内に廃液を導き入れる流入管11と処理液を槽内から排出する排出管12が備り、槽内には流入管11から入るゴミを受ける受籠10を経て廃液のみを槽内に流れるようにしてある。また槽内は垂直に設けた仕切板8で中間深さまで数区画に仕切られている。そして排出管12の直前には浮遊物・沈殿物を排除するための阻集部9が備っている。
【0019】
そして、図1に示すように、槽内滞留物質の分解能を有する微生物を自動的に供給する微生物供給手段2及びその微生物に酸素を自動的に供給する酸素供給手段3とを備えて成り、前記微生物供給手段2によって廃液の流入停止開始時の直前又は直後にその都度に微生物を自動的に供給できるようにし、また前記酸素供給手段3によって廃液の流入停止中の滞留廃水内の微生物に酸素を自動的に供給できるようにする。
【0020】
前記微生物としては、従来提供されている油分分解菌やその他有用微生物(細菌、放線菌、酵母菌、油分分解バクテリア等)が使用できる。
それらの微生物は、微生物供給手段2内の微生物保存タンク5に貯蓄される。その貯蓄形態は、栄養物質が混合された活性液の液体中に一定濃度で保存する方法と、固形栄養物質を粉状又粒状にしてその中に保存する方法とがある。
【0021】
そして、前記微生物供給手段2によって廃液の流入停止開始時の直前又は直後にその都度に微生物をタイマ−による間欠稼働機構を有して微生物保存タンク5から自動的に供給できるようにし、また送風機6及び散気管7などの前記酸素供給手段3によって廃液の一定時間流入停止(分解処理を完全にするには約4時間以上の流入停止時間があることが好ましい、流入停止時間の設定が短時間である場合には微生物の供給量を増加させるなどの対応を要する)中の滞留廃液内の微生物に酸素をタイマ−による間欠稼働機構を有して自動的に供給できるようにする。
【0022】
また、前記散気管7から発生する気泡は廃液を攪拌する作用があるので、酸素供給が槽内全般になされるとともに槽内滞留物質の攪拌混合が行なわれ、槽内滞留物質(油分、懸濁物質等)の微生物付着表面積が拡大し、その槽内滞留物質の分解処理が促進される。
前記受籠10には野菜片やビニ−ルなどの固形ゴミを分集し、このゴミは受籠10に入れたまま引き上げられて廃棄した後に受籠10は元の場所に戻される。
【0023】
また別の態様として、図2に示すように、前記小規模廃液処理槽1内に油分吸着材4を沈める。
そして、廃液流入中においてはその油分吸着材4で浮上分離油分以外のコロイド状混合油分をその表面に吸着させ、流入停止後においては廃液滞留中に表面に吸着した油分を微生物で分解させて吸着能を回復できるようにする。
以上によって槽内滞留中に透明となった処理水は、次回の流入開始によって新たに流入してきた廃液に押し流されて微生物もろともに外部に排出される。
なお、廃液流入中での微生物学的処理は、新たな油分や懸濁物質の蓄積が続くと共に微生物は常に流れ出してしまうのでたいした効果は期待できない行なわない。また悪臭も、微生物学的方法ではいかなる方法でも防ぎようもないので、オゾン注入等で対処しても良い。
【0024】
【実験例】
上記廃液処理の方法を用い、Aラ−メン店で既存の設備(グリ−ストラップ)を改良して実験をした。
その改良点は、微生物に酸素を供給する送風機6と散気管7を設置した。
そして、廃液の流入停止開始時の直後に廃液成分の分解能を有する活性液に混合した微生物を供給して行なった。その結果、水質検査及び悪臭検査については下記表1及び表2の通りであった。
この検査の実施時刻は、前記処理直前が処理開始の22:00で、前記処理後が翌朝の8:00である。
【0025】
【表1】

Figure 0004044159
【0026】
【表2】
Figure 0004044159
【0027】
また、廃液流入と廃液処理の状態について前記Aラ−メン店の場合で説明すると、
図3に示すように、廃液流入(図3の(イ)が流入開始(ロ)が流入停止である)はAラ−メン店の客が集中する昼食時(図3のA)と夕食時(図3のB)の二つのピ−クに多く流入し、その1日のサイクルが毎日繰返される。この1日分の廃液流入量(図3の斜線部分)は、8000lである。
そして、廃液処理槽1内へのグリ−ス蓄積量(図4の(イ)の線で示す)は1Kgで、残渣の堆積量(図4の(ロ)の線で示す)は500gであり、ラ−メンの準備段階から始り閉店の21時ごろから食器洗いや後片付けする時間に最大量になる。
この直後に微生物に酸素を供給する送風機6で散気管7から空気を供給し、廃液成分の分解能を有する微生物を投入注入する。
【0028】
すると、図4の(B)部分に示すように、空気の供給開始以後に油分の減少が進行していく。
そして、ある時点(図4の(D)部分)でスカムが消滅し廃液が透明状態になる。この時には臭いは殆ど消滅している。これから廃液流入時(図4の(E)部分)まで無臭状態が維持される。
処理が終了すれば、スカムが消滅時の図4の(D)部分から次回の廃液の流入開始時の(E)部分まで(図4の(C)部分)の時間は空気の供給を停止することができる。
以上の廃液流入開始から廃液流入が停止し次の廃液流入開始までの24時間のサイクルで毎日がこの繰返しとなる。
【0029】
また、図2に示すように、廃液処理槽1内へ油分吸着材4を沈めて置くと、浮上分離油分以外のコロイド状混合油分をその表面に吸着させるので、流出廃液中の油分をより多く処理し、より浄化した廃液を排水することができる。その後吸着油分の微生物による分解によって油分吸着材4の吸着能は回復する。このために、その油分吸着材4の吸着機能回復作業は不用となる。
【0030】
【発明の作用並びに効果】
従来の微生物による廃液処理方法においては廃液流出中に微生物を投入するので折角投入した微生物が殆ど流出してしまい増殖させる暇がなかった。このためにスカム等を完全に処理することが難しかった。
そこで、微生物流出を防ぐために、さらに微生物担体に付着増殖させようとする方法が提案された。しかし、せっかくその担体によって増殖してもその分の微生物がまた流出してしまうために、図7の(イ)に示すように、処理効果を得るのに長期間を要し、その成果はさほど大きくはなかった。
【0031】
これに対して本発明は、小規模廃液処理槽1内で比重の大小で分離されて残留した廃液成分(水面に浮上分離された油分と、底に沈殿分離した懸濁物質)が槽内滞留中において、供給した微生物が全く流れ出さないので短時間に一気に増殖でき、その多量の微生物によって全ての残留廃液成分が流入停止後の一定短時間内(図7の(ロ)に示すように1日目から極めて大きな効果が得られる)で全て分解処理が完了する。
【0032】
このため、これまでのようにスカム汲み上げ作業は不用となるとともに汲み上げた大量の油脂分の廃棄問題はこれにて解消されることになる。また、悪臭も油分が消滅するとともに消滅する。
また、廃液処理槽1内へ油分吸着材4を沈めて置く態様においては、浮上分離油分以外のコロイド状混合油分を表面に吸着させ、流出廃液中の油分を除去してより浄化した廃液を排出することができる。
そして微生物や酸素の供給が定時自動的に行なわれるので日常的な管理も微生物や酸素が正常に供給されているかの確認だけで済むので楽である。
【0033】
さらに、酸素供給時間は流入停止時間中のみで良いので、これまでの全日稼働式と比較すると電力消費が1/3以下程度に削減できる。
また、槽内滞留物質の分解の終了まで槽外への流出がないので、購入価格の高い微生物の供給も一日一回で充分であり、その使用量も従来の随時投入方式と較べると数十分の1程度に節約できる。
さらに、既存の設備に対してその分解や洗浄等を行なうことなく簡単に設置できる利点もある。
【図面の簡単な説明】
【図1】本発明装置の模式的縦断側面図。
【図2】別の態様の模式的縦断側面図。
【図3】廃液流入量の時間的推移を示す概念的グラフ図。
【図4】処理槽内のスカム及び沈殿物の残留量の時間的変化を示す概念的グラフ図。
【図5】従来の処理槽内のスカムの残留量の時間的変化を示す概念的グラフ図。
【図6】従来の微生物担体型処理槽内のスカムの残留量の時間的変化を示す概念的グラフ図。
【図7】従来の微生物担体型処理槽内におけるスカムの残留量の週ごとの変化と、本発明の1日の変化との比較を示す概念的グラフ図。
【符号の説明】
1 小規模廃液処理槽
2 微生物供給手段
3 酸素供給手段
4 油分吸着材
5 微生物保存タンク
6 送風機
7 散気管
8 仕切板
9 阻集部
10 受籠
11 流入管
12 排出管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for microbiologically decomposing living effluent generated from general households, establishment effluent generated in restaurants, food factories, and the like.
[0002]
[Prior art]
The domestic waste liquid generated from ordinary households is directly or once stored in the septic tank and then discharged into the sewage. Then, it is guided from the sewage to a large-scale water treatment facility for purification, and discharged into rivers and the sea. The water purification capacity of the treatment facility is close to the present limit, and the construction of a new facility is very expensive and it is very difficult to secure an installation location with the understanding of local residents.
[0003]
In addition, a lot of oil and fat is contained in kitchen wastewater in small-scale establishments such as restaurants, restaurants, hotels, schools, and hospitals. If the oil in the effluent is passed through the drainage pipe without any treatment, the oil particles collect (scum), take in other waste, adhere to the drainage pipe wall, solidify, and clog the pipe. Problems arise. Moreover, the fats and oils make it difficult to purify water in the combined treatment tank and the sewage treatment plant, and greatly reduce the sewage purification treatment capacity.
For this reason, a small oil separation tank (grease interceptor) or sedimentation separation tank is installed near the source of waste liquid, and the oil and fat are removed until it clears the values set by the drainage standards. It is regulated and directed to discharge.
[0004]
The conventional oil separation method in the oil separation tank is that the waste liquid is poured directly from the drainage channel into the oil separation tank, oil and water having different specific gravities are separated in the oil separation tank, and the floated oil and fat content with a small specific gravity is separated. A method is generally used in which lumps (scum) are pumped out and discharged while reducing the mixing ratio of fats and oils in the waste liquid. In the case of this oil separation, the separated fats and oils must be pumped from time to time and removed from the oil separation tank and discarded. Incineration is also necessary for the treatment of this waste, and landfilling may affect the environment. There is. In addition, when pumping is stopped, the problem remains that the oil does not flow out of the tank with the waste liquid without being treated.
[0005]
In such interceptors and separation tanks, residual substances must be removed periodically to remove residual substances, but at present, they are often left as they are without being removed. The reality is that waste liquid containing mixed substances is discharged.
Furthermore, a strong odor of fats and oils was generated in the oil separation tank, which cannot be dealt with by commercially available deodorizers, and was one of the tasks most disliked by pumping workers.
[0006]
For example, for an A Ramen store with sales of 100 Ramen meals, it is calculated according to the selection criteria of HASS217 “Grease Interceptor” in the machinery and equipment common specification of the Ministry of Construction.
The amount generated per day is
Waste liquid volume 8000l
Grease interception amount 1kg
Amount of residue deposited 500g
It is.
[0007]
The conventional method for removing the waste liquid generated from this A-ramen store by pumping the collected grease once every two days with a grease interceptor will be described. 1 Kg of scum is blocked. 5 shows a change in the residual amount of scum in the treatment tank, and the scum is pumped up at that time, but the scum disappears at that time, but then the residual amount in the tank increases again.
In this case, most of the scum is removed immediately after pumping, and the odor is reduced. However, since there is a scum remaining in the surrounding area, the bad odor hardly disappears.
[0008]
In view of this, there has been proposed a treatment apparatus that attempts to decompose fats and oils into harmless substances by microbiological treatment.
For example, a method of sinking a microbial carrier such as ceramic or synthetic resin in an oil separation tank, or in addition, an occasional charging method in which microorganisms are periodically poured into several times a day (for example, as shown in FIG. Various methods are provided such as a method in which microorganisms are introduced at an interval of 6 hours from the time indicated by a circle on the line.
[0009]
In this case, it is difficult to multiply the number of microorganisms capable of decomposing oil and fat in a short time, and the oil decomposing ability is extremely low compared to the amount of waste oil discharged.
For this reason, although a reduction effect is seen in the treatment as the total amount of oil, the untreated scum remains (the valley B in FIG. 6) until the next waste liquid inflow, and the residual amount does not readily become “0”.
And since the inflow of the next day was started before it was able to be completely processed, the remarkable effect was not able to be given to the countermeasure against a bad smell. For this purpose, there are many cases in which ozone is separately injected or malodor removing means using an odor adsorbent is provided.
[0010]
Usually, in this method, as shown in FIG. 7 (A), the scum in the tank gradually decreases, but if it does not pass at least one month after installation, a sufficient effect (numerical value of 100 Mg / L or less in FIG. 7) is obtained. It does not appear, and there are difficulties regarding immediate effect.
In addition, the microbial carrier has oil and fat attached to the surface, and once attached, it is difficult to remove the oil and fat, and it has been difficult to fully function as a microbial carrier.
[0011]
The fundamental reason why the treatment effect of the microorganisms was not obtained is that the treatment tank is small, so when sewage flows in, the sewage in the treatment tank is discharged, and as a result, the increased microorganisms can be easily obtained. As a result, the microorganisms in the treatment tank could not be grown and maintained at a high concentration.
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a sewage treatment method capable of efficiently decomposing living waste liquid generated from general households and establishment waste liquid generated in restaurants, food factories, etc. with microorganisms. To do.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has an intermittent or continuous inflow of waste liquid during the day and an inflow stop for at least 4 hours at night, and the waste liquid is in the process of inflow and outflow. Small specific gravity oil floats and separates on the surface of water, suspended solids with high specific gravity settle at the bottom, separates and stays in the tank, and the remaining waste liquid is discharged by the amount of new waste liquid inflow In the waste liquid treatment tank,
Immediately before and / or immediately after the start of the stoppage of waste liquid supply, automatically supply microorganisms having the resolution of the waste liquid components and supply oxygen to the waste liquid in the tank at the stoppage time of the waste liquid. large amount of grown, is shall Setsu processes each time the intracisternal retention material inflow at the start before the next waste.
[0014]
In addition, the oil adsorbent is submerged in the waste liquid treatment tank, and the colloidal mixed oil other than the floating separated oil is adsorbed on the surface by the oil adsorbent during the inflow of the waste liquid, and the waste liquid is retained after the inflow is stopped. The oil adsorbed on the surface is decomposed by microorganisms to recover the adsorption ability.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, intermittent or continuous inflow of waste liquid in the daytime and stoppage of inflow at night are alternated periodically, and the oil component with a small specific gravity in the waste liquid floats and separates on the water surface in the process of inflow and outflow. Suspended substances having a large specific gravity are in the small-scale waste liquid treatment tank 1 where the separated and settled substances are separated and retained in the tank, and the remaining waste liquid is discharged by the amount of new waste liquid flowing in.
In the present invention, the nighttime is a time period that is usually at night, and is a time during which activities such as restaurants, restaurants, etc. are stopped. Does not necessarily mean from sunrise to sunset to sunrise.
[0016]
Then, in the small-scale waste liquid treatment tank 1, microorganisms having the resolution of the waste liquid component are automatically supplied every time immediately after the start of the waste liquid inflow stop, and oxygen is contained in the waste liquid in the tank at the waste liquid inflow stop time. The microorganisms are allowed to grow in large quantities, and the accumulated substances in the tank can be treated each time before the start of the next inflow of the waste liquid.
[0017]
Further, the oil adsorbent is submerged in the waste liquid treatment tank 1, and the colloidal mixed oil other than the floating separated oil is adsorbed on the surface by the oil adsorbent during the waste liquid inflow, and the waste liquid is retained after the inflow is stopped. The oil adsorbed on the surface is decomposed by microorganisms to recover the adsorption capacity.
[0018]
The waste liquid treatment method will be described in detail with a waste liquid treatment apparatus for carrying out the method.
The small-scale waste liquid treatment tank 1 includes a suspended matter / sediment separation tank, a grease interceptor, and the like.
For example, the grease interceptor in them will be described. As shown in FIG. 1, the structure includes an inflow pipe 11 for introducing the waste liquid into the tank and a discharge pipe 12 for discharging the processing liquid from the tank. In the tank, only the waste liquid flows into the tank through a receptacle 10 for receiving the dust entering from the inflow pipe 11. Further, the inside of the tank is divided into several sections up to an intermediate depth by a partition plate 8 provided vertically. In front of the discharge pipe 12, a blocking portion 9 is provided for removing suspended matter and sediment.
[0019]
And, as shown in FIG. 1, it comprises a microorganism supply means 2 that automatically supplies microorganisms having a resolution of the substance retained in the tank and an oxygen supply means 3 that automatically supplies oxygen to the microorganisms, The microorganism supply means 2 can automatically supply microorganisms each time immediately before or after the start of the stoppage of the waste liquid inflow, and the oxygen supply means 3 supplies oxygen to the microorganisms in the staying wastewater whose inflow of the waste liquid is stopped. Enable to supply automatically.
[0020]
As the microorganism, conventionally provided oil-degrading bacteria and other useful microorganisms (bacteria, actinomycetes, yeast, oil-degrading bacteria, etc.) can be used.
Those microorganisms are stored in the microorganism storage tank 5 in the microorganism supply means 2. The storage form includes a method of storing a constant concentration in a liquid of an active liquid mixed with a nutrient substance, and a method of storing a solid nutrient substance in powder or granular form therein.
[0021]
The microorganism supply means 2 has an intermittent operation mechanism with a timer each time immediately before or immediately after the start of the stoppage of waste liquid, and can automatically supply the microorganism from the microorganism storage tank 5. In addition, the oxygen supply means 3 such as the air diffuser 7 stops the inflow of the waste liquid for a certain period of time (preferably there is an inflow stop time of about 4 hours or more in order to complete the decomposition process. In some cases, it is necessary to take measures such as increasing the supply amount of microorganisms), and oxygen can be automatically supplied to the microorganisms in the staying waste liquid with an intermittent operation mechanism by a timer.
[0022]
In addition, since the bubbles generated from the air diffuser tube 7 have an action of stirring the waste liquid, oxygen is supplied to the entire tank, and the stagnant substance in the tank is stirred and mixed. The surface area of the microorganisms attached to the substance etc. is increased, and the decomposition treatment of the substance staying in the tank is promoted.
Solid waste such as vegetable pieces and vinyl is collected in the receptacle 10, and the garbage is lifted and discarded while being placed in the receptacle 10, and then the receptacle 10 is returned to its original location.
[0023]
As another aspect, as shown in FIG. 2, the oil adsorbent 4 is submerged in the small-scale waste liquid treatment tank 1.
During the inflow of the waste liquid, the oil adsorbent 4 adsorbs the colloidal mixed oil other than the floating separated oil on the surface, and after the inflow is stopped, the oil adsorbed on the surface during the waste liquid stay is decomposed by microorganisms and adsorbed. To restore the ability.
The treated water that becomes transparent during the stay in the tank as described above is pushed away by the waste liquid that newly flows in at the next start of inflow, and is discharged to the outside together with microorganisms.
The microbiological treatment during the inflow of the waste liquid is not performed because the new oil and suspended substances continue to accumulate and the microorganisms always flow out. Also, bad odors cannot be prevented by any method using microbiological methods, and may be dealt with by ozone injection or the like.
[0024]
[Experimental example]
Using the above-mentioned waste liquid treatment method, an experiment was conducted by improving an existing facility (a green strap) at an A Ramen store.
The improvement is that a blower 6 and an air diffuser 7 for supplying oxygen to microorganisms are installed.
Then, immediately after the start of the stoppage of the inflow of the waste liquid, the microorganism mixed with the active liquid having the resolution of the waste liquid component was supplied. As a result, the water quality test and the malodor test were as shown in Table 1 and Table 2 below.
The execution time of this inspection is 22:00 at the start of the process immediately before the process, and 8:00 the next morning after the process.
[0025]
[Table 1]
Figure 0004044159
[0026]
[Table 2]
Figure 0004044159
[0027]
In addition, the state of waste liquid inflow and waste liquid treatment will be described in the case of the A Ramen store.
As shown in FIG. 3, the inflow of waste liquid ((a) in FIG. 3 is the start of inflow (b) is the stoppage of inflow) is during lunch (A in FIG. 3) and dinner when customers of the Ramen shop are concentrated. The two peaks in (B of FIG. 3) flow in a large amount, and the one-day cycle is repeated every day. The amount of waste liquid inflow for one day (the shaded area in FIG. 3) is 8000 l.
The amount of grease accumulated in the waste liquid treatment tank 1 (indicated by the line (b) in FIG. 4) is 1 kg, and the amount of residue deposited (indicated by the line (b) in FIG. 4) is 500 g. It starts from the ramen preparation stage and reaches the maximum amount at the time of dishwashing and clean-up from around 21 o'clock.
Immediately after this, air is supplied from the air diffuser 7 by the blower 6 for supplying oxygen to the microorganisms, and microorganisms having the resolution of the waste liquid components are injected and injected.
[0028]
Then, as shown in part (B) of FIG. 4, the oil content decreases after the start of air supply.
At a certain point in time (part (D) in FIG. 4), the scum disappears and the waste liquid becomes transparent. At this time, the odor is almost gone. From this time, the odorless state is maintained until the waste liquid flows in (part (E) in FIG. 4).
When the process is completed, the supply of air is stopped for a period of time from the (D) part of FIG. 4 when the scum disappears to the (E) part at the start of the next waste liquid inflow (part (C) of FIG. 4). be able to.
This is repeated every day in a 24-hour cycle from the start of the inflow of the waste liquid to the start of the inflow of the next waste liquid.
[0029]
In addition, as shown in FIG. 2, when the oil adsorbent 4 is submerged in the waste liquid treatment tank 1, colloidal mixed oil other than the floating separation oil is adsorbed on the surface, so that more oil is contained in the effluent waste liquid. The waste liquid that has been treated and purified can be drained. Thereafter, the adsorptive capacity of the oil adsorbent 4 is recovered by decomposition of the adsorbed oil by microorganisms. For this reason, the work of restoring the adsorption function of the oil adsorbent 4 is not necessary.
[0030]
[Operation and effect of the invention]
In the conventional waste liquid treatment method using microorganisms, microorganisms are thrown into the waste liquid outflow, so that almost all of the introduced microorganisms flow out and there is no time for growth. For this reason, it has been difficult to completely process scum and the like.
Therefore, in order to prevent the outflow of microorganisms, a method for further attaching and growing on a microorganism carrier has been proposed. However, even if it grows with the carrier, the corresponding microorganisms will flow out again, so that it takes a long time to obtain the treatment effect, as shown in FIG. It wasn't big.
[0031]
In contrast, according to the present invention, the waste liquid components (oil components floated and separated on the water surface and suspended substances separated and settled on the bottom) remaining in the small-scale waste liquid treatment tank 1 by separation of the specific gravity are retained in the tank. In the inside, since the supplied microorganisms do not flow out at all, they can grow at a stretch in a short time, and all of the remaining waste liquid components are allowed to flow in a short period of time after stopping the inflow (1 as shown in FIG. 7B). The decomposition process is completed in a very large effect from the first day).
[0032]
For this reason, the scum pumping work becomes unnecessary as before, and the disposal problem of a large amount of oil and fat pumped up is solved by this. Also, the bad odor disappears as the oil disappears.
Further, in the embodiment in which the oil adsorbent 4 is submerged in the waste liquid treatment tank 1, colloidal mixed oil other than the floating separation oil is adsorbed on the surface, and the oil in the effluent waste liquid is removed and the purified waste liquid is discharged. can do.
Since the supply of microorganisms and oxygen is performed automatically on a regular basis, daily management is easy because it is only necessary to check whether the microorganisms and oxygen are supplied normally.
[0033]
Further, since the oxygen supply time only needs to be during the inflow stoppage time, the power consumption can be reduced to about 1/3 or less as compared with the conventional all-day operation type.
In addition, since there is no outflow to the outside of the tank until the decomposition of the substances staying in the tank, it is sufficient to supply microorganisms with a high purchase price once a day, and the amount used is several times that of the conventional occasional charging method. It can be saved to about 1 enough.
Furthermore, there is an advantage that existing equipment can be easily installed without disassembling or cleaning the existing equipment.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal side view of a device of the present invention.
FIG. 2 is a schematic longitudinal side view of another embodiment.
FIG. 3 is a conceptual graph showing a temporal transition of the waste liquid inflow amount.
FIG. 4 is a conceptual graph showing temporal changes in residual amounts of scum and precipitate in the treatment tank.
FIG. 5 is a conceptual graph showing a temporal change in the residual amount of scum in a conventional treatment tank.
FIG. 6 is a conceptual graph showing temporal changes in the residual amount of scum in a conventional microorganism carrier type treatment tank.
FIG. 7 is a conceptual graph showing a comparison between a weekly change in residual amount of scum in a conventional microbial carrier type treatment tank and a daily change of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Small-scale waste liquid processing tank 2 Microorganism supply means 3 Oxygen supply means 4 Oil content adsorbent 5 Microorganism preservation tank 6 Blower 7 Aeration pipe 8 Partition plate 9 Intercepting part 10 Receptacle 11 Inflow pipe 12 Exhaust pipe

Claims (2)

廃液の昼間での断続的又は連続的流入と夜間での少なくとも4時間の流入停止とが定時的に交番され、その流入と流出の過程で廃液中の比重の小さい油分が水面に浮上分離し、比重の大きい懸濁物質は底に沈殿分離して夫々が槽内分離滞留し、残余の廃液が新たな廃液の流入量分づつ排出される小規模廃液処理槽において、廃液の流入停止開始時の直前又は/及び直後にその都度毎廃液成分の分解能を有する微生物を自動的に供給すると共に廃液の流入停止時間の槽内廃液中に酸素を供給して前記微生物を多量に増殖させ、次回の廃液の流入開始時前に槽内滞留物質をその都度処理しることを特徴とする廃液処理法。The intermittent or continuous inflow of waste liquid during the day and the stoppage of the inflow for at least 4 hours at night are periodically alternated, and the low specific gravity oil in the waste liquid floats and separates on the water surface in the process of inflow and outflow. Suspended substances with large specific gravity are settled and separated at the bottom, and each of them is separated and retained in the tank, and the remaining waste liquid is discharged by the amount of new waste liquid inflow. Immediately before and / or immediately after each time, microorganisms having the resolution of the waste liquid component are automatically supplied and oxygen is supplied to the waste liquid in the tank at the waste liquid inflow stop time to grow the microorganisms in large quantities. waste treatment method, characterized in Rukoto Setsu processes each time the intracisternal retention material inflow at the start before. 廃液処理槽内に、油分吸着材を沈め、廃液流入中においてはその油分吸着材で浮上分離油分以外のコロイド状混合油分をその表面に吸着させ、流入停止後においては廃液滞留中に表面に吸着した油分を微生物で分解させて吸着能を回復させることを特徴とする請求項1の廃液処理法。The oil adsorbent is submerged in the waste liquid treatment tank, and when the waste liquid flows in, the oil adsorbent adsorbs the colloidal mixed oil other than the floated separated oil on the surface. The waste liquid treatment method according to claim 1, wherein the absorbed oil is decomposed by microorganisms to recover the adsorption capacity.
JP19570596A 1996-07-05 1996-07-05 Waste liquid treatment method in small-scale waste liquid treatment tank Expired - Fee Related JP4044159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19570596A JP4044159B2 (en) 1996-07-05 1996-07-05 Waste liquid treatment method in small-scale waste liquid treatment tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19570596A JP4044159B2 (en) 1996-07-05 1996-07-05 Waste liquid treatment method in small-scale waste liquid treatment tank

Publications (2)

Publication Number Publication Date
JPH1015587A JPH1015587A (en) 1998-01-20
JP4044159B2 true JP4044159B2 (en) 2008-02-06

Family

ID=16345613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19570596A Expired - Fee Related JP4044159B2 (en) 1996-07-05 1996-07-05 Waste liquid treatment method in small-scale waste liquid treatment tank

Country Status (1)

Country Link
JP (1) JP4044159B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274596B2 (en) * 1998-05-11 2009-06-10 有限会社オッペンハイマー テクノロジー ジャパン Method and apparatus for treating wastewater containing oil
GB2377433A (en) * 2001-07-13 2003-01-15 William Anthony Carr Grease/oil separator and digester
JP2004358372A (en) * 2003-06-05 2004-12-24 Kuniyoshi Higuchi Method of treating grease-trap waste solution
JP2007110968A (en) * 2005-10-20 2007-05-10 Matsumoto Sogo Kikaku Kk Microorganism activator, method for environmental clean-up and system for environmental clean-up
JP2015212473A (en) * 2014-05-02 2015-11-26 富士男 後藤 Fat splitting processing method and grease trap having fat splitting processing function
JP7078320B2 (en) * 2017-12-25 2022-05-31 住友重機械工業株式会社 Oil / fat decomposition method and oil / fat decomposition device for oil / fat-containing wastewater using oil / fat adsorbent

Also Published As

Publication number Publication date
JPH1015587A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US4812237A (en) Water recycle system
AU2011202055A1 (en) Screening of inert solids from a low-yield wastewater treatment process
JP4044159B2 (en) Waste liquid treatment method in small-scale waste liquid treatment tank
KR100871651B1 (en) An apparatus for treating waste-water containing concentrated organic materials
NO130002B (en)
KR100283867B1 (en) Large scale sewage treatment method using active microorganism
CN1295981A (en) Method and apparatus for treating sewage from catering business
KR200267145Y1 (en) Dirty and waste water purifying equipment
RU2304085C2 (en) Method for preparing of sewage water for aerobic biological purification process
Rodgers et al. Wastewater treatment using a vertically moving biofilm system followed by a sand filter
Taesopapong et al. Innovative eco biofilter/membrane bioreactor (MBR) technology for community wastewater recycling
Awasare et al. Effluent treatment plant of sugar wastewater-A review
CN105130093A (en) Processing technology of oily waste water from canteen
JP3208843B2 (en) Method for treating high-concentration organic wastewater and wastewater treatment equipment used for the method
JPH10216795A (en) Waste water treatment system for cleaning plant
Nansubuga et al. A two-stage decentralised system combining high rate activated sludge (HRAS) with alternating charcoal filters (ACF) for treating small community sewage to reusable standards for agriculture
RU2225368C1 (en) Method of extensive treatment of sewage and biological extensive treatment station
CN217051951U (en) Domestic sewage treatment system
KR100223543B1 (en) Wastewater treatment device and method by multi anaerobic and aerobic method using yakurut empty bottle
KR20190004168A (en) A waste water of stock raising disposal plant
JPH1175832A (en) Microorganism mixture and degradation of oil and fat
Sutherland Water and sewage: sewage treatment processes
CN208617632U (en) A kind of processing percolate from garbage filling field system
JPH09206787A (en) Treating device for garbage-containing sewage
JP2000005739A (en) Garbage treating apparatus and method for operating garbage treating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees