JP4043923B2 - Processing equipment - Google Patents

Processing equipment Download PDF

Info

Publication number
JP4043923B2
JP4043923B2 JP2002339047A JP2002339047A JP4043923B2 JP 4043923 B2 JP4043923 B2 JP 4043923B2 JP 2002339047 A JP2002339047 A JP 2002339047A JP 2002339047 A JP2002339047 A JP 2002339047A JP 4043923 B2 JP4043923 B2 JP 4043923B2
Authority
JP
Japan
Prior art keywords
suction
residue
port
fluid
fluid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002339047A
Other languages
Japanese (ja)
Other versions
JP2004167590A (en
Inventor
直人 吉高
正一 寺田
啓聡 栗島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002339047A priority Critical patent/JP4043923B2/en
Publication of JP2004167590A publication Critical patent/JP2004167590A/en
Application granted granted Critical
Publication of JP4043923B2 publication Critical patent/JP4043923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,レーザ光又は電子線を用いた加工装置に関する。
【0002】
【従来の技術】
例えば半導体基板,金属,有機物,ガラス,セラミックス等の被加工物に対して微細な加工処理を施す際には,必要に応じて加工精度の高い加工用レーザや電子線を用いた加工装置が用いられている。
【0003】
上述の加工装置が用いられる加工処理として,例えば半導体基板(以下「基板」とする。)の製造プロセスにおいて,基板のアライメントマーク上に形成された薄膜に対しレーザ光を照射し,基板のアライメントマーク上の薄膜のみを除去する加工処理が提案されている。(例えば特許文献1参照。)。アライメントマーク上に薄膜がある状態で当該アライメントマークの位置検出を行うと,正確な検出が行われない。それ故前記加工処理は,基板の厳密な位置調整を行うために行われる。
【0004】
【特許文献1】
特開平10―113779号公報
【0005】
【発明が解決しようとする課題】
しかしながら,このような基板などの被加工物の加工は,レーザ光によって被加工物の一部を蒸発,分解させるものであり,周囲には,必ず被加工物の残渣が浮遊する。このような残渣は,通常静電気により帯電しており,この状態で放置すると,やがて被加工物に再付着する。このような再付着は,被加工物の汚れとなり,被加工物の後処理に悪影響を与えることが多い。特に基板処理の場合には,その汚れによって,後に行われる露光処理,現像処理,加熱処理等が適切に行われず,最終的に正常な回路パターンが形成されない恐れがある。したがって,レーザ加工によって生じた残渣の被加工物への再付着を防止する手段が必要になる。
【0006】
かかる残渣の再付着を防止する手段として,特開平11―145108号では,液体の貯留された加工槽内に基板を浸けた状態でレーザ光を照射して穴加工を施す微細加工装置が提案されている。しかし,この微細加工装置では,除去された膜の残渣が基板近辺を浮遊するので,膜の残渣が再付着することを十分に防止できない。また,基板全体に液体が付着するので,後処理として基板全体を洗浄する洗浄機構が必要となり,加工工程が複雑化するという欠点がある。
【0007】
本発明は,かかる点に鑑みてなされたものであり,レーザ光や電子線の照射により,基板などの被加工物から発生する残渣が被加工物に再付着することを防止できる加工装置を提供することをその目的とする。
【0008】
【課題を解決するための手段】
発明によれば,レーザ光又は電子線の照射により被加工物を加工する加工装置であって,被加工物に対しレーザ光又は電子線を照射する照射部と,前記被加工物における照射位置の外方側から当該照射位置に対し流体を供給する流体供給口と,前記照射位置に対向配置され,前記レーザ光又は電子線による加工によって生じた残渣を前記流体と共に吸引する吸引口と,を備え,前記照射位置は,平面から見て,前記吸引口の内側であって前記吸引口の中心からずれていることを特徴とする加工装置が提供される。
【0009】
この発明によれば,図1に示すようにレーザ光又は電子線の照射部Rの照射によって,被加工物Xの照射位置Cから生じた残渣Aは,外方側の流体供給口Dから供給された流体Lに取り込まれ,照射位置Cに対向した吸引口Eから吸引される。外方から流れた流体Lが吸引口Eにおいて吸い上げられると,吸引口Eの中央部付近には,よどみFができる。一方,吸引口Eの周縁部付近は,滑らかな上昇流が形成される。レーザ光又は電子線の照射位置Cは,平面から見て吸引口Eの内側であって吸引口Eの中心からずれているので,残渣Aは,吸引口Eの周縁部の近傍で発生し,よどみFを避けて吸引口Eの周縁部付近を通って吸引される。この結果,残渣Aは,被加工物X付近に留まることなく直ちに除去され,残渣Aの被加工物Xへの再付着は防止される。
【0010】
前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心から前記流体供給口側にずれていてもよい。前記吸引口における吸引流体の流速は,流体の供給される流体供給口に近い方が速くなる。したがって,前記レーザ光又は電子線の照射位置を流体供給口側にずらすことによって,被加工部分から発生した残渣が直ちに吸引口から吸引され,残渣が被加工物に再付着することなく排出される。
【0011】
前記吸引口に吸引された前記残渣を含む流体は,その後平面から見て吸引口の中心軸に対し所定の径方向に向けて排出され,前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心から前記所定の径方向側にずれていてもよい。このように吸引口の中心軸に対し所定の径方向に向けて流体が排出されたとき,吸引口を通過する吸引流体の流速は,平面から見て前記径方向よりの方が速くなる。したがって,前記レーザ光又は電子線の照射位置を前記径方向にずらすことによって,被加工物から発生した残渣を,より速く吸引除去できる。
【0012】
前記加工装置は,被加工物に対向配置可能で,被加工物から発生した残渣を吸引除去する残渣除去体を備え,前記残渣除去体の中央部には,当該残渣除去体の上面から下面に貫通する吸引貫通孔が設けられ,前記残渣除去体の下面の外周部には,前記流体供給口が開口し,前記吸引貫通孔の下側の開口部は,前記吸引口を構成し,前記吸引貫通孔の上端部は,前記レーザ光又は電子線が透過する透明体で閉鎖されており,前記レーザ光又は電子線は,当該透明体,吸引貫通孔及び吸引口を通じて前記被加工物に照射され,さらに,前記吸引貫通孔の内側面には,この吸引貫通孔内に流入した前記残渣を含む流体を前記残渣除去体外に排出するための排出口が開口していてもよい。
【0013】
かかる場合,残渣除去体を被加工物に対向配置し,流体供給口から流体を供給すると共に,吸引口から吸引貫通孔内に残渣を含む流体を吸引し,当該流体を吸引貫通孔の排出口から排出することができる。一方で,残渣除去体の吸引貫通孔の上端部に透過体が取り付けられており,レーザ光又は電子線は,透明体,吸引貫通孔,吸引口を通って被加工物に照射される。したがって,残渣除去体の上方から被加工物にレーザ光又は電子線を照射し,被加工物を加工すると共に,当該加工によって発生した残渣を残渣除去体によって吸引し,排出することができる。
【0014】
前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心よりも前記流体供給口側にずれていてもよい。前記流体供給口は,複数箇所に開口しており,前記レーザ光又は電子線の照射位置は,前記複数の流体供給口のうちのいずれか一の流体供給口側にずれていてもよい。吸引口を通過する吸引流体の流速は,流体の供給される流体供給口側がより速くなるので,被加工物から発生した残渣をその速い流れに取り込み,直ちに排出できる。なお,前記流体供給口は,前記吸引口を挟んだ両側の二箇所に開口していてもよい。
【0015】
前記流体供給口と前記排出口は,平面から見て前記吸引口の中心を通る同一直線上に配置されていてもよい。
【0016】
前記残渣除去体は,その下面に,前記吸引口のある中央部が前記流体供給口のある外周部よりも下側に突出した略筒状の凸部を備え,当該凸部の下端部には,前記流体供給口側から前記吸引口の中心軸に向けられた溝が形成されていてもよい。この場合,液体供給口側から吸引口の中心方向に向かってより多くの流体が供給されるので,吸引口の中心付近に形成されるよどみが反対側に押しやられる。この結果,よどみのない領域が拡大され,被加工部物から発生した残渣がより確実に排出される。
【0017】
前記溝は,前記吸引口の中心軸からずれた方向に向けて形成されていてもよく,この場合,吸引口におけて旋回流が形成される。この旋回流と本来の上昇流とが合成され,搬送力の強い流れが形成される。この結果,残渣を被加工物付近に留めることなく直ちに除去することができる。
【0018】
前記吸引貫通孔における前記排出口に対向する内側面には,前記吸引貫通孔内に流体を補充するための補充口が開口していてもよい。この場合,吸引貫通孔内に流体を補充し,例えば吸引貫通孔内を流体で満たすことができる。これにより,例えば吸引貫通孔内の密度が均一になるので,レーザ光又は電子線が曲げられたり,減衰することなく,レーザ光又は電子線の照射が適正に行われる。また,吸引口から前記流体以外のものが流入しないように,吸引貫通孔内の内圧を調整することもできる。
【0019】
前記残渣除去体は,当該流体供給口から流出する流体を一旦滞留させる滞留部を備えていてもよい。この場合,流体が一旦滞留されるので,流体が流体供給口から勢いよく流出して残渣除去体周辺に拡散することが防止できる。したがって,供給された流体がより確実に吸引口に吸引され,残渣を除去するための流れを効率的に形成できる。
【0020】
前記流体供給口から供給される流体には,静電気を除去するイオンが付加されるようにしてもよい。通常,被加工物から発生する残渣は,帯電しており,被加工物に再付着し易い状態になっている。この加工装置のように,静電気を除去するイオンを付加することによって,残渣の静電気が除去され,残渣の被加工物への再付着を抑制できる
【0021】
【発明の実施の形態】
以下,本発明の好ましい実施の形態について説明する。図2は,本実施の形態にかかる加工装置1の構成の概略を示す説明図である。加工装置1は,例えばウェハWの表面に微細加工を施すための装置である。
【0022】
加工装置1は,例えばウェハWを保持する保持部材であるチャック2と,チャック2に保持されたウェハW上に配置可能で,加工により発生した残渣を除去する残渣除去体3と,残渣除去体3の上方からウェハWに対して加工用のレーザ光を照射する照射部としてのレーザ光照射部4を主に備えている。
【0023】
例えば残渣除去体3とレーザ光照射部4は,加工装置1内に固定されて設けられており,チャック2は,加工装置1内において水平方向のX−Y方向に移動自在に設けられている。チャック2には,例えばX―Y駆動機構5が取り付けられており,ウェハWを保持した状態でX−Y方向に所定距離ずつ移動して,ウェハWの被加工部分Bをレーザ光照射部4の照射位置Cに合わせることができる。
【0024】
残渣除去体3は,ウェハWとレーザ光照射部4との間に設けられている。残渣除去体3は,例えば図3及び図4に示すように略円柱状の形状を有し,その上下方向の中心軸Pに吸引貫通孔10が開けられている。この吸引貫通孔10は,縦断面が逆円錐台形状,つまり上方に行くにつれ径が大きくなるように形成されている。吸引貫通孔10の下端部は,ウェハWに対向する吸引口11になっている。すなわち,残渣除去体3の下面の中央部には,吸引口11が開口している。残渣除去体3は,この吸引口11のある下面の中央部に,外周部に比べて下側に突出した略円筒状の凸部3aを有している。この凸部3aは,平面から見ると円形状に形成されている。吸引貫通孔10の上端部は,レーザ光が透過可能な透明体としての透明板12によって閉鎖されている。こうすることにより,残渣除去体3の上方から発光したレーザ光を,残渣除去体3内を透過させて,下方のウェハW表面に照射することができる。
【0025】
吸引貫通孔10の外方であって,残渣除去体3の下面の外周部には,この残渣除去体3とウェハWとの間に所定の流体を供給する,複数,例えば2つの流体供給口13,14が開口している。流体供給口13,14は,例えば図4に示すように平面から見て吸引口11と同心の同一円周上で,かつ吸引口11を挟んだ両側に開口している。残渣除去体3の外周部には,図3に示すように流体供給流路15が形成され,流体供給流路15は,残渣除去体3の外側部から中心方向に向かい,その後略直角に曲がって下方向に向かって流体供給口13,14に到達するように形成されている。したがって,流体は,残渣除去体3の外周部の下面から鉛直下方向に向けて吐出される。
【0026】
流体供給流路15は,例えば残渣除去体3外の流体供給装置16に供給管17によって接続されている。流体供給装置16は,例えばポンプや流量計等を有し,流体供給口13,14から供給される流体の流量を自在に設定できる。
【0027】
吸引貫通孔10の内側面には,吸引口11から吸引貫通孔10内に流入した流体を残渣除去体3外に排出するための排出口18が開口している。排出口18は,残渣除去体3の内部を通過する排出流路19に通じている。排出流路19は,前記流体供給流路15より上側の位置に,排出口18から残渣除去体3の外側面に向けて水平方向に形成されている。排出流路19は,例えば一の流体供給口13の直上,つまり図4に示すように平面から見て流体供給口13と重なるように形成されている。したがって,流体供給口13,14から供給され流体は,吸引貫通孔10に流入した後,平面から見て流体供給口13,14と同一直線上にある排出口18,排出流路19を通って外方の径方向に向けて排出される。
【0028】
排出流路19は,図3に示すように残渣除去体3外の排出装置20に排出管21によって接続されている。排出装置20は,例えばポンプや流量計等を有し,排出口18から排出される流体の流量,つまり吸引口11から吸引される流体の流量を自在に設定できる。この排出装置20による吸引により,レーザ光照射時にウェハWから発生した残渣は,流体と共に残渣除去体3内に吸引され,排出される。
【0029】
吸引貫通孔10の排出口18に対向する位置には,吸引貫通孔10内に直接流体を補充する流体補充口22が開口している。流体補充口22は,残渣除去体3内を通過する流体補充路23に通じている。流体補充路23は,図4に示すように例えば排出流路19の吸引貫通孔10を挟んだ反対側の位置に,残渣除去体3の外側面から流体補充口22に向けて水平方向に形成されている。また,流体補充路23は,平面から見ると,流体供給口14と重なるように形成されている。
この流体補充路23により,吸引貫通路10内に流体を補充し,吸引貫通路10内を前記流体で隙間無く満たすことができる。吸引貫通孔10内への流体の補充量を変えて,吸引貫通孔10内の圧力を調整することができる。
【0030】
流体補充路23は,図3に示すように例えば残渣除去体3外の流体供給装置24に補充管25によって接続されている。流体供給装置24は,例えばポンプや流量計等を有し,吸引貫通孔10内に補充される流体の流量を自在に設定できる。
【0031】
レーザ光照射部4は,残渣除去体3の上方に設置されている。レーザ光照射部4は,照射位置Cが残渣除去体3の吸引口11の中心軸Pからずれるように配置されている。照射位置Cは,中心軸Pから流体供給口13側(排出口18側)にずらされている。例えば吸引口11の直径が5mm程度の場合,その1%〜20%程度の0.05mm〜1mm程度中心軸Pからずらされる。したがって,残渣除去体3の中心軸Pからずれた位置にレーザ光が照射され,その位置でレーザ加工が施される。
【0032】
次に,以上のように構成された加工装置1の作用を,ウェハWのアライメントマークM上に塗布された塗布膜Tを除去する加工処理を例に採って説明する。図5に示すようにウェハWがチャック2に保持され,チャック2が移動してウェハWの被加工部分Bである塗布膜Tがレーザ光の照射位置Cに合わせられる。塗布膜Tは,残渣除去体3の吸引口11に対向配置され,吸引口11の中心軸Pに対し流体供給口13側にずれている。吸引口11とウェハWとの距離は,例えば0.4mm〜0.7mm程度に設定される。そして,流体供給口13及び14から流体,例えば液体である純水Hが供給され始め,残渣除去体3とウェハWとの間に純水Hが満たされる。このとき流体供給口13及び14から吐出される純水Hの全流量は,Q1に設定される。
【0033】
純水Hが供給され始めると同時に,排出口18からの排出も開始される。これにより,流体供給口13,14から塗布膜Tに供給された純水Hが,吸引口11から上方に向かって吸引貫通孔10内に流入し,その後さらに上方の排出口18から排出流路19を通じて残渣除去体3の側面から排出される。排出口18からの純水Hの排出量は,Q2に設定され,この結果,吸引口11から吸い上げられる純水の流量は,Q3=Q2―Q1になる。さらに,液体補充口22からは,純水Hが流量Q4で補充される。Q4は,Q4>Q3の条件を満たすように設定される。この結果,吸引貫通孔10内が純水Hで満たされる。流量Q4の純水Hの補充によって吸引貫通孔10内が十分に満たされるので,吸引口11から純水H以外のもの,例えば周辺気体が流入することが抑制される。
【0034】
残渣除去体3の吸引貫通孔10内が純水Hで満たされると,レーザ光照射部4から塗布膜Tに加工用のレーザ光が照射される。図6に示すようにレーザ光の照射により塗布膜Tから発生した残渣Aは,純水Hに取り込まれ,純水Hの上昇流に乗って吸引口11から吸引される。このとき,レーザ光の照射位置Cは,吸引口11の中心軸Pからずれた位置に照射されているので,残渣Aは,吸引口11の中心部を避けた外周付近から吸引口11内に流れ込む。その後残渣Aは,純水Hと共に吸引貫通孔11内を上昇し,排出口18内に流れ込み,排出流路19を通じて排出される。
【0035】
塗布膜Tの除去が終了すると,例えば流体供給口13,14からの純水Hの供給,流体補充口22からの純水Hの補充,排出口18からの排出が停止され,一連の加工処理が終了する。
【0036】
以上の実施の形態によれば,レーザ光の照射位置Cを吸引口11の中心軸Pからずらすようにしたので,吸引口11の中心付近に形成されるよどみを避けて,流れの速い部分から残渣Aを吸い込むことができる。この結果,残渣Aは,ウェハW表面付近に留まることがなく,直ちに吸引貫通孔10内に吸引されるので,残渣AがウェハWに再付着することが防止される。また,吸引口11内において,平面から見て中心部よりも流体供給口13及び排出口18寄りは,流体供給口13〜排出口18間の最短流路上にあり,より強い流れが形成される。レーザ光の照射位置Cが平面から見て流体供給口13及び排出口18側にずらされたので,照射位置Cから発生する残渣Aを直ちに除去できる。
【0037】
残渣除去体3の吸引貫通孔10に流体補充口22を設けたので,吸引貫通孔10内を隙間無く純水Hで満たすことができる。これにより,吸引貫通孔10内が均一な密度に保たれるので,レーザ光の光路が曲げられたり,レーザ光が減衰したりすることがない。また,吸引貫通孔10内の内圧を調整して,吸引口11から純水H以外の気体が流入することを防止できる。
【0038】
以上の実施の形態では,流体として液体である純水Hが用いられていたが,窒素ガス,酸素ガス等の気体が用いられてもよい。例えば気体の場合,図7に示すように流体供給口30,31に,気体が一旦滞留する滞留部32が設けられてもよい。この滞留部32は,図8に示すように吸引口11と同心の環状で,かつ流体供給口30,31の径よりも幅の広い溝状に形成される。滞留部32の下面は,ウェハW側に開口しており,流体供給流路15から勢いよく供給される気体は,滞留部32で一旦滞留し,流速を落とした状態でウェハW側に供給される。こうすることによって,供給気体が残渣除去体3の周辺に拡散することが抑制され,被加工部分Bへの気体の供給が効率よく行われる。
【0039】
図9,図10に示すように残渣除去体3の凸部3aの下面に,例えば流体供給口13側から吸引口11の中心軸Pに向かう溝50を形成してもよい。こうすることにより,吸引口11に対し,より照射位置C側からより多くの流体が供給され,例えば中心軸P付近に形成されるよどみを反対側に押しやることができる。したがって,レーザ光の照射により発生した残渣Aを,よどみを避けてより確実に残渣除去体3内に吸引することができる。
【0040】
また,図11に示すように凸部3aの下面に,吸引口11の中心軸Pからずれた方向に向かう溝60を形成してもよい。この溝60は,複数箇所,例えば2箇所に形成してもよい。かかる場合,吸引口11の外周付近に旋回流が形成され,本来の上昇流とこの旋回流が合成されるので,流体の残渣Aの搬送力が向上する。
【0041】
以上の実施の形態では,レーザ光の照射位置Cを,流体供給口13側にずらしていたが,反対側の流体供給口14側にずらしてもよい。かかる場合においても,吸引口11の中心部のよどみを避けて,流速の速い部分から残渣Aを吸引できるので,残渣AのウェハWの再付着を防止できる。なお,流体供給口の数は,任意に選択でき,3以上の複数であってもよい。この場合,複数の流体供給口の内のいずれか一の流体供給口よりに,照射位置Cがずらされてもよい。
【0042】
上記残渣除去体3には,流体補充口18が設けられていたが,流体補充口18は,必ずしも設けなくてもよい。特に使用される流体が気体の場合には,レーザ光の透過性を向上するために吸引通気孔10内を液体で満たす必要がないため,流体補充口23が無くても適正なレーザ加工が行われる。
【0043】
図12に示すように,流体供給口13,14に通じる供給管17にイオナイザ70を取付け,供給する流体に静電気を除去するイオンを付加するようにしてもよい。残渣Aは,通常発生時に帯電しており,ウェハWの表面に付着しやすい。イオナイザ70によって付加されたイオンによって,残渣Aから静電気を除去し,残渣AがウェハWに再付着することを防止できる。
【0044】
以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず種々の態様を採りうるものである。例えば前記実施の形態では,ウェハW側を移動させるX―Y移動機構5が設けられていたが,レーザ光照射部4及び残渣除去体3側を移動させる移動機構を設けてもよい。前記実施の形態では,レーザ光を用いて加工していたが,電子線を用いてもよい。前記実施の形態は,ウェハW上の塗布膜Tを加工するものであったが,他の加工処理,例えばウェハW表面に印,記号,番号等を付する加工処理,ウェハWに形成された金線などを切断する加工処理等にも適用できる。また,ウェハWに限られず,LCD基板のような他の基板,金属,有機物,ガラス,セラミックス等の他の被加工物に対しても本発明を適用できる。
【0045】
【発明の効果】
本発明によれば,残渣が被加工物に再付着することが防止されるので,被加工物が汚染されることがなく,被加工物の歩留まりの向上が図られる。
【図面の簡単な説明】
【図1】請求項1の発明を説明するための加工装置の模式図である。
【図2】本発明にかかる加工装置の構成の概略を示す説明図である。
【図3】残渣除去体の構成の概略を示す縦断面の説明図である。
【図4】残渣除去体の平面図である。
【図5】使用時の残渣除去体の縦断面図である。
【図6】使用時の残渣除去体の下部の拡大図である。
【図7】滞留部を備えた残渣除去体の構成を示す縦断面の説明図である。
【図8】図7の残渣除去体の下面図である。
【図9】溝を備えた残渣除去体の構成を示す縦断面の説明図である。
【図10】図9の残渣除去体の下面図である。
【図11】2つの溝を備えた残渣除去体の下面図である。
【図12】イオナイザを備えた残渣除去体の縦断面図である。
【符号の説明】
1 加工装置
3 残渣除去体
4 レーザ光照射部
11 吸引口
12 透明板
13,14 流体供給口
18 排出口
B 被加工部分
C 照射位置
H 純水
W ウェハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing apparatus using a laser beam or an electron beam .
[0002]
[Prior art]
For example, when performing fine processing on a workpiece such as a semiconductor substrate, metal, organic material, glass, or ceramic, a processing apparatus using a processing laser or electron beam with high processing accuracy is used as necessary. It has been.
[0003]
As processing using the above-described processing apparatus, for example, in a manufacturing process of a semiconductor substrate (hereinafter referred to as “substrate”), a thin film formed on the alignment mark of the substrate is irradiated with a laser beam to thereby align the alignment mark of the substrate. A processing process for removing only the upper thin film has been proposed. (For example, refer to Patent Document 1). If the position of the alignment mark is detected with the thin film on the alignment mark, accurate detection is not performed. Therefore, the processing is performed in order to perform strict position adjustment of the substrate.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-11379
[Problems to be solved by the invention]
However, processing of a workpiece such as a substrate evaporates and decomposes a part of the workpiece by laser light, and a workpiece residue always floats around the workpiece. Such residues are usually charged by static electricity, and if left in this state, they will reattach to the workpiece. Such re-adhesion results in contamination of the workpiece and often adversely affects post-processing of the workpiece. In particular, in the case of substrate processing, due to the contamination, subsequent exposure processing, development processing, heating processing, and the like may not be appropriately performed, and a normal circuit pattern may not be finally formed. Therefore, a means for preventing reattachment of the residue generated by laser processing to the workpiece is required.
[0006]
As a means for preventing such reattachment of residue, Japanese Patent Application Laid-Open No. 11-145108 proposes a micromachining apparatus that performs hole machining by irradiating a laser beam in a state where a substrate is immersed in a processing tank in which liquid is stored. ing. However, in this microfabrication apparatus, since the removed film residue floats around the substrate, it is not possible to sufficiently prevent the film residue from reattaching. In addition, since the liquid adheres to the entire substrate, a cleaning mechanism for cleaning the entire substrate is required as post-processing, and the processing process is complicated.
[0007]
The present invention has been made in view of the above points, and provides a processing apparatus capable of preventing residues generated from a workpiece such as a substrate from re-adhering to the workpiece by irradiation with a laser beam or an electron beam. The purpose is to do.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a processing apparatus for processing a workpiece by irradiation of a laser beam or an electron beam, an irradiation unit for irradiating a laser beam or an electron beam to the workpiece, the irradiation position in the workpiece A fluid supply port for supplying a fluid to the irradiation position from the outer side, and a suction port that is disposed opposite to the irradiation position and sucks a residue generated by processing by the laser beam or electron beam together with the fluid. The processing apparatus is provided, wherein the irradiation position is located inside the suction port and deviated from the center of the suction port as viewed from above.
[0009]
According to the present invention, as shown in FIG. 1, the residue A generated from the irradiation position C of the workpiece X by the irradiation of the irradiation part R of the laser beam or the electron beam is supplied from the fluid supply port D on the outer side. The fluid L is taken in and sucked from the suction port E facing the irradiation position C. When the fluid L flowing from the outside is sucked up at the suction port E, a stagnation F is formed near the center of the suction port E. On the other hand, in the vicinity of the peripheral edge of the suction port E, a smooth upward flow is formed. Since the irradiation position C of the laser beam or the electron beam is inside the suction port E as viewed from the plane and deviated from the center of the suction port E, the residue A is generated in the vicinity of the peripheral portion of the suction port E, The stagnation F is avoided and suction is performed through the vicinity of the peripheral edge of the suction port E. As a result, the residue A is immediately removed without remaining in the vicinity of the workpiece X, and reattachment of the residue A to the workpiece X is prevented.
[0010]
The irradiation position of the laser beam or the electron beam may be shifted from the center of the suction port to the fluid supply port side when viewed from a plane. The flow rate of the suction fluid at the suction port is faster near the fluid supply port to which the fluid is supplied. Therefore, by shifting the irradiation position of the laser beam or electron beam toward the fluid supply port, the residue generated from the workpiece is immediately sucked from the suction port, and the residue is discharged without reattaching to the workpiece. .
[0011]
The fluid containing the residue sucked into the suction port is then discharged in a predetermined radial direction with respect to the central axis of the suction port as viewed from the plane, and the irradiation position of the laser beam or electron beam is viewed from the plane. The center of the suction port may be shifted to the predetermined radial direction. Thus, when the fluid is discharged in a predetermined radial direction with respect to the central axis of the suction port, the flow velocity of the suction fluid passing through the suction port is faster in the radial direction as seen from the plane. Therefore, the residue generated from the workpiece can be sucked and removed more quickly by shifting the irradiation position of the laser beam or the electron beam in the radial direction.
[0012]
The processing apparatus includes a residue remover that can be disposed opposite to a workpiece and sucks and removes residues generated from the workpiece. The center of the residue remover has an upper surface to a lower surface of the residue remover. A suction through-hole penetrating therethrough is provided, and the fluid supply port opens on the outer peripheral portion of the lower surface of the residue removing body, and the lower opening of the suction through-hole constitutes the suction port, and the suction An upper end portion of the through hole is closed with a transparent body through which the laser beam or electron beam is transmitted, and the laser beam or the electron beam is irradiated to the workpiece through the transparent body, the suction through hole, and the suction port. Furthermore, a discharge port for discharging the fluid containing the residue flowing into the suction through hole to the outside of the residue removing body may be opened on the inner surface of the suction through hole.
[0013]
In such a case, the residue removing body is disposed opposite to the workpiece, fluid is supplied from the fluid supply port, fluid containing residue is sucked into the suction through hole from the suction port, and the fluid is discharged from the suction through hole. Can be discharged from. On the other hand, a transmission body is attached to the upper end portion of the suction through hole of the residue removal body, and laser light or an electron beam is irradiated to the workpiece through the transparent body, the suction through hole, and the suction port. Therefore, the workpiece can be irradiated with a laser beam or an electron beam from above the residue remover to process the workpiece, and the residue generated by the machining can be sucked and discharged by the residue remover.
[0014]
The irradiation position of the laser beam or the electron beam may be shifted to the fluid supply port side from the center of the suction port as viewed from the plane. The fluid supply port may be opened at a plurality of locations, and the irradiation position of the laser beam or the electron beam may be shifted to any one of the plurality of fluid supply ports. Since the flow rate of the suction fluid passing through the suction port is faster on the fluid supply port side to which the fluid is supplied, the residue generated from the workpiece can be taken into the fast flow and immediately discharged. The fluid supply port may be opened at two locations on both sides of the suction port.
[0015]
The fluid supply port and the discharge port may be arranged on the same straight line passing through the center of the suction port as viewed from above.
[0016]
The residue-removing body has a substantially cylindrical convex portion with a central portion with the suction port projecting downward from an outer peripheral portion with the fluid supply port on a lower surface thereof, and a lower end portion of the convex portion , A groove directed from the fluid supply port side toward the central axis of the suction port may be formed. In this case, since more fluid is supplied from the liquid supply port side toward the center of the suction port, stagnation formed near the center of the suction port is pushed to the opposite side. As a result, the area without stagnation is enlarged, and the residue generated from the workpiece is more reliably discharged.
[0017]
The groove may be formed in a direction shifted from the central axis of the suction port. In this case, a swirl flow is formed at the suction port. This swirling flow and the original upward flow are combined to form a flow having a strong conveying force. As a result, the residue can be removed immediately without staying near the workpiece.
[0018]
A replenishing port for replenishing fluid into the suction through hole may be opened on an inner surface of the suction through hole facing the discharge port. In this case, the suction through hole can be replenished with fluid, for example, the suction through hole can be filled with the fluid. Thereby, for example, the density in the suction through-hole becomes uniform, so that the laser beam or the electron beam is appropriately irradiated without bending or attenuating the laser beam or the electron beam . Also, the internal pressure in the suction through hole can be adjusted so that nothing other than the fluid flows from the suction port.
[0019]
The said residue removal body may be provided with the retention part which once retains the fluid which flows out out of the said fluid supply port. In this case, since the fluid is once retained, it is possible to prevent the fluid from flowing out from the fluid supply port and diffusing around the residue removing body. Therefore, the supplied fluid is more reliably sucked into the suction port, and a flow for removing the residue can be efficiently formed.
[0020]
An ion for removing static electricity may be added to the fluid supplied from the fluid supply port. Usually, the residue generated from the workpiece is charged and is easily reattached to the workpiece. As in this processing apparatus, by adding ions for removing static electricity, the static electricity of the residue is removed, and reattachment of the residue to the workpiece can be suppressed.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described. FIG. 2 is an explanatory diagram showing an outline of the configuration of the processing apparatus 1 according to the present embodiment. The processing apparatus 1 is an apparatus for performing fine processing on the surface of the wafer W, for example.
[0022]
The processing apparatus 1 includes, for example, a chuck 2 that is a holding member that holds the wafer W, a residue removal body 3 that can be disposed on the wafer W held by the chuck 2, and that removes residues generated by the processing, and a residue removal body 3 mainly includes a laser beam irradiation unit 4 as an irradiation unit that irradiates the wafer W with a processing laser beam from above 3.
[0023]
For example, the residue removing body 3 and the laser beam irradiation unit 4 are fixedly provided in the processing apparatus 1, and the chuck 2 is provided in the processing apparatus 1 so as to be movable in the horizontal XY directions. . For example, an XY drive mechanism 5 is attached to the chuck 2 and moves by a predetermined distance in the XY direction while holding the wafer W so that the processed part B of the wafer W is moved to the laser beam irradiation unit 4. The irradiation position C can be adjusted.
[0024]
The residue remover 3 is provided between the wafer W and the laser beam irradiation unit 4. For example, as shown in FIGS. 3 and 4, the residue remover 3 has a substantially cylindrical shape, and a suction through hole 10 is formed in a central axis P in the vertical direction. The suction through-hole 10 is formed so that its longitudinal section has an inverted truncated cone shape, that is, its diameter increases as it goes upward. A lower end portion of the suction through hole 10 is a suction port 11 facing the wafer W. That is, the suction port 11 is opened at the center of the lower surface of the residue removing body 3. The residue removing body 3 has a substantially cylindrical convex portion 3a that protrudes downward from the outer peripheral portion at the center of the lower surface where the suction port 11 is located. The convex portion 3a is formed in a circular shape when viewed from the plane. The upper end portion of the suction through hole 10 is closed by a transparent plate 12 as a transparent body that can transmit laser light. By doing so, the laser light emitted from above the residue remover 3 can be transmitted through the residue remover 3 and irradiated onto the surface of the lower wafer W.
[0025]
A plurality of, for example, two fluid supply ports for supplying a predetermined fluid between the residue remover 3 and the wafer W on the outer periphery of the bottom surface of the residue remover 3 outside the suction through hole 10 13 and 14 are open. For example, as shown in FIG. 4, the fluid supply ports 13 and 14 are open on both sides of the suction port 11 on the same circumference concentric with the suction port 11 when viewed from above. As shown in FIG. 3, a fluid supply channel 15 is formed on the outer periphery of the residue remover 3, and the fluid supply channel 15 is directed from the outer side of the residue remover 3 toward the center and then bent substantially at a right angle. Thus, the fluid supply ports 13 and 14 are formed so as to reach downward. Therefore, the fluid is discharged from the lower surface of the outer peripheral portion of the residue remover 3 vertically downward.
[0026]
The fluid supply channel 15 is connected to a fluid supply device 16 outside the residue remover 3 by a supply pipe 17, for example. The fluid supply device 16 includes, for example, a pump and a flow meter, and can freely set the flow rate of the fluid supplied from the fluid supply ports 13 and 14.
[0027]
On the inner side surface of the suction through hole 10, a discharge port 18 for discharging the fluid flowing into the suction through hole 10 from the suction port 11 to the outside of the residue removing body 3 is opened. The discharge port 18 communicates with a discharge flow path 19 that passes through the residue removing body 3. The discharge channel 19 is formed in a horizontal direction at a position above the fluid supply channel 15 from the discharge port 18 toward the outer surface of the residue removing body 3. The discharge channel 19 is formed, for example, so as to overlap the fluid supply port 13 immediately above one fluid supply port 13, that is, as viewed from above as shown in FIG. Therefore, the fluid supplied from the fluid supply ports 13 and 14 flows into the suction through hole 10, and then passes through the discharge port 18 and the discharge channel 19 that are collinear with the fluid supply ports 13 and 14 when viewed from above. It is discharged toward the outer radial direction.
[0028]
As shown in FIG. 3, the discharge channel 19 is connected to a discharge device 20 outside the residue removing body 3 by a discharge pipe 21. The discharge device 20 includes, for example, a pump and a flow meter, and can freely set the flow rate of the fluid discharged from the discharge port 18, that is, the flow rate of the fluid sucked from the suction port 11. Residue generated from the wafer W during laser light irradiation by the suction by the discharge device 20 is sucked into the residue remover 3 together with the fluid and discharged.
[0029]
A fluid replenishing port 22 for directly replenishing fluid into the suction through hole 10 is opened at a position facing the discharge port 18 of the suction through hole 10. The fluid replenishment port 22 communicates with a fluid replenishment path 23 that passes through the residue removing body 3. As shown in FIG. 4, the fluid replenishment path 23 is formed in a horizontal direction from the outer surface of the residue removal body 3 toward the fluid replenishment port 22, for example, at a position on the opposite side of the discharge flow path 19 across the suction through hole 10. Has been. Further, the fluid replenishment path 23 is formed so as to overlap the fluid supply port 14 when viewed from above.
With this fluid replenishment path 23, fluid can be replenished in the suction through path 10, and the suction through path 10 can be filled with the fluid without any gap. The pressure in the suction through hole 10 can be adjusted by changing the replenishment amount of the fluid into the suction through hole 10.
[0030]
As shown in FIG. 3, the fluid replenishment path 23 is connected to, for example, a fluid supply device 24 outside the residue removing body 3 by a replenishment pipe 25. The fluid supply device 24 includes, for example, a pump, a flow meter, and the like, and can freely set the flow rate of the fluid replenished in the suction through hole 10.
[0031]
The laser beam irradiation unit 4 is installed above the residue removal body 3. The laser beam irradiation unit 4 is arranged such that the irradiation position C is deviated from the central axis P of the suction port 11 of the residue removing body 3. The irradiation position C is shifted from the central axis P to the fluid supply port 13 side (discharge port 18 side). For example, when the diameter of the suction port 11 is about 5 mm, it is shifted from the central axis P by about 0.05 mm to 1 mm, which is about 1% to 20%. Therefore, the laser beam is irradiated to a position shifted from the central axis P of the residue removing body 3, and laser processing is performed at that position.
[0032]
Next, the operation of the processing apparatus 1 configured as described above will be described using a processing process for removing the coating film T applied onto the alignment mark M of the wafer W as an example. As shown in FIG. 5, the wafer W is held by the chuck 2, and the chuck 2 moves so that the coating film T that is the processed portion B of the wafer W is aligned with the irradiation position C of the laser beam. The coating film T is disposed opposite to the suction port 11 of the residue removing body 3 and is displaced toward the fluid supply port 13 with respect to the central axis P of the suction port 11. The distance between the suction port 11 and the wafer W is set to about 0.4 mm to 0.7 mm, for example. Then, pure water H, which is a fluid, for example, a liquid, starts to be supplied from the fluid supply ports 13 and 14, and the pure water H is filled between the residue remover 3 and the wafer W. At this time, the total flow rate of the pure water H discharged from the fluid supply ports 13 and 14 is set to Q1.
[0033]
At the same time as the pure water H starts to be supplied, the discharge from the discharge port 18 is also started. As a result, the pure water H supplied to the coating film T from the fluid supply ports 13, 14 flows into the suction through hole 10 upward from the suction port 11, and then from the upper discharge port 18 to the discharge channel. 19 is discharged from the side surface of the residue removing body 3. The discharge amount of pure water H from the discharge port 18 is set to Q2, and as a result, the flow rate of pure water sucked up from the suction port 11 is Q3 = Q2-Q1. Further, pure water H is replenished from the liquid replenishing port 22 at a flow rate Q4. Q4 is set so as to satisfy the condition of Q4> Q3. As a result, the inside of the suction through hole 10 is filled with pure water H. Since the inside of the suction through-hole 10 is sufficiently filled by replenishment with the pure water H at the flow rate Q4, it is possible to suppress the inflow of things other than the pure water H from the suction port 11, for example, ambient gas.
[0034]
When the inside of the suction through hole 10 of the residue removing body 3 is filled with pure water H, the laser beam for processing is irradiated from the laser beam irradiation unit 4 to the coating film T. As shown in FIG. 6, the residue A generated from the coating film T by the irradiation of the laser light is taken into the pure water H and is sucked from the suction port 11 along the rising flow of the pure water H. At this time, since the irradiation position C of the laser beam is irradiated to a position shifted from the central axis P of the suction port 11, the residue A enters the suction port 11 from the vicinity of the outer periphery avoiding the central portion of the suction port 11. Flows in. Thereafter, the residue A rises in the suction through hole 11 together with the pure water H, flows into the discharge port 18, and is discharged through the discharge channel 19.
[0035]
When the removal of the coating film T is completed, for example, the supply of pure water H from the fluid supply ports 13 and 14, the replenishment of pure water H from the fluid replenishment port 22, and the discharge from the discharge port 18 are stopped, and a series of processing treatments Ends.
[0036]
According to the above embodiment, the laser light irradiation position C is shifted from the central axis P of the suction port 11, so that stagnation formed near the center of the suction port 11 is avoided, and the flow is fast. Residue A can be inhaled. As a result, the residue A does not stay near the surface of the wafer W, but is immediately sucked into the suction through-hole 10, so that the residue A is prevented from reattaching to the wafer W. In addition, in the suction port 11, the fluid supply port 13 and the discharge port 18 closer to the fluid supply port 13 and the discharge port 18 than the center portion in a plan view are on the shortest flow path between the fluid supply port 13 and the discharge port 18, thereby forming a stronger flow. . Since the irradiation position C of the laser beam is shifted to the fluid supply port 13 and the discharge port 18 as viewed from the plane, the residue A generated from the irradiation position C can be removed immediately.
[0037]
Since the fluid replenishment port 22 is provided in the suction through-hole 10 of the residue removing body 3, the suction through-hole 10 can be filled with pure water H without a gap. As a result, the inside of the suction through-hole 10 is maintained at a uniform density, so that the optical path of the laser light is not bent and the laser light is not attenuated. In addition, the internal pressure in the suction through hole 10 can be adjusted to prevent a gas other than pure water H from flowing in from the suction port 11.
[0038]
In the above embodiment, pure water H, which is a liquid, is used as the fluid, but a gas such as nitrogen gas or oxygen gas may be used. For example, in the case of gas, as shown in FIG. 7, the fluid supply ports 30 and 31 may be provided with a staying portion 32 where the gas once stays. As shown in FIG. 8, the stay portion 32 is formed in a groove shape that is concentric with the suction port 11 and wider than the diameter of the fluid supply ports 30 and 31. The lower surface of the staying portion 32 opens to the wafer W side, and the gas that is vigorously supplied from the fluid supply flow path 15 stays once in the staying portion 32 and is supplied to the wafer W side with the flow rate lowered. The By doing so, it is possible to suppress the supply gas from diffusing around the residue removing body 3 and to efficiently supply the gas to the part B to be processed.
[0039]
As shown in FIGS. 9 and 10, for example, a groove 50 from the fluid supply port 13 side toward the central axis P of the suction port 11 may be formed on the lower surface of the convex portion 3 a of the residue removing body 3. By doing so, more fluid is supplied to the suction port 11 from the irradiation position C side, and for example, stagnation formed near the central axis P can be pushed to the opposite side. Therefore, the residue A generated by the laser beam irradiation can be more reliably sucked into the residue removing body 3 while avoiding stagnation.
[0040]
In addition, as shown in FIG. 11, a groove 60 may be formed on the lower surface of the convex portion 3 a in a direction shifted from the central axis P of the suction port 11. The groove 60 may be formed at a plurality of places, for example, two places. In such a case, a swirling flow is formed near the outer periphery of the suction port 11, and the original upward flow and the swirling flow are combined, so that the conveying force of the fluid residue A is improved.
[0041]
In the above embodiment, the irradiation position C of the laser beam is shifted to the fluid supply port 13 side, but may be shifted to the opposite fluid supply port 14 side. Even in such a case, since the residue A can be sucked from the portion having a high flow velocity while avoiding the stagnation of the central portion of the suction port 11, the reattachment of the wafer W of the residue A can be prevented. Note that the number of fluid supply ports can be arbitrarily selected, and may be three or more. In this case, the irradiation position C may be shifted from any one of the plurality of fluid supply ports.
[0042]
Although the fluid replenishing port 18 is provided in the residue removing body 3, the fluid replenishing port 18 is not necessarily provided. In particular, when the fluid used is a gas, it is not necessary to fill the suction vent hole 10 with a liquid in order to improve the laser beam transmission, so that proper laser processing can be performed without the fluid replenishment port 23. Is called.
[0043]
As shown in FIG. 12, an ionizer 70 may be attached to the supply pipe 17 that leads to the fluid supply ports 13 and 14, and ions for removing static electricity may be added to the supplied fluid. The residue A is normally charged when it is generated, and tends to adhere to the surface of the wafer W. The static electricity is removed from the residue A by the ions added by the ionizer 70, and the residue A can be prevented from reattaching to the wafer W.
[0044]
The example of the embodiment of the present invention has been described above, but the present invention is not limited to this example and can take various forms. For example, in the embodiment, the XY moving mechanism 5 for moving the wafer W side is provided, but a moving mechanism for moving the laser light irradiation unit 4 and the residue removing body 3 side may be provided. In the above embodiment, the laser beam is used for processing, but an electron beam may be used . In the above-described embodiment, the coating film T on the wafer W is processed. However, other processing processing, for example, processing processing for adding a mark, a symbol, a number, etc. to the surface of the wafer W, is formed on the wafer W. The present invention can also be applied to processing for cutting a gold wire or the like. Further, the present invention is not limited to the wafer W, and the present invention can be applied to other substrates such as an LCD substrate, other workpieces such as metal, organic matter, glass, and ceramics.
[0045]
【The invention's effect】
According to the present invention, since the residue is prevented from reattaching to the workpiece, the workpiece is not contaminated, and the yield of the workpiece is improved.
[Brief description of the drawings]
1 is a schematic view of a processing apparatus for explaining the invention of claim 1;
FIG. 2 is an explanatory diagram showing an outline of a configuration of a processing apparatus according to the present invention.
FIG. 3 is an explanatory view of a longitudinal section showing an outline of a configuration of a residue remover.
FIG. 4 is a plan view of a residue remover.
FIG. 5 is a vertical cross-sectional view of a residue remover in use.
FIG. 6 is an enlarged view of the lower part of the residue remover in use.
FIG. 7 is an explanatory view of a longitudinal section showing a configuration of a residue remover provided with a staying portion.
FIG. 8 is a bottom view of the residue remover of FIG.
FIG. 9 is an explanatory view of a longitudinal section showing a configuration of a residue remover provided with grooves.
10 is a bottom view of the residue remover of FIG. 9. FIG.
FIG. 11 is a bottom view of a residue remover provided with two grooves.
FIG. 12 is a longitudinal sectional view of a residue remover provided with an ionizer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing apparatus 3 Residue removal body 4 Laser beam irradiation part 11 Suction port 12 Transparent plate 13,14 Fluid supply port 18 Discharge port B Processed part C Irradiation position H Pure water W Wafer

Claims (13)

レーザ光又は電子線の照射により被加工物を加工する加工装置であって,
被加工物に対しレーザ光又は電子線を照射する照射部と,
前記被加工物における照射位置の外方側から当該照射位置に対し流体を供給する流体供給口と,
前記照射位置に対向配置され,前記レーザ光又は電子線による加工によって生じた残渣を前記流体と共に吸引する吸引口と,を備え,
前記照射位置は,平面から見て,前記吸引口の内側であって前記吸引口の中心からずれていることを特徴とする,加工装置。
A processing apparatus for processing a workpiece by irradiation with a laser beam or an electron beam ,
An irradiation unit for irradiating a workpiece with a laser beam or an electron beam ;
A fluid supply port for supplying fluid to the irradiation position from the outer side of the irradiation position in the workpiece;
A suction port that is disposed opposite to the irradiation position and sucks together with the fluid a residue generated by processing with the laser beam or electron beam ,
The processing apparatus according to claim 1, wherein the irradiation position is inside the suction port and deviated from the center of the suction port as viewed from above.
前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心から前記流体供給口側にずれていることを特徴とする,請求項1に記載の加工装置。2. The processing apparatus according to claim 1, wherein the irradiation position of the laser beam or the electron beam is shifted from the center of the suction port toward the fluid supply port as viewed in a plan view. 前記吸引口に吸引された前記残渣を含む流体は,その後平面から見て吸引口の中心軸に対し所定の径方向に向けて排出され,
前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心から前記所定の径方向側にずれていることを特徴とする,請求項1又は2のいずれかに記載の加工装置。
The fluid containing the residue sucked into the suction port is then discharged in a predetermined radial direction with respect to the central axis of the suction port as viewed from above,
3. The processing apparatus according to claim 1, wherein an irradiation position of the laser beam or the electron beam is deviated from a center of the suction port toward the predetermined radial direction when viewed from a plane. .
被加工物に対向配置可能で,被加工物から発生した残渣を吸引除去する残渣除去体を備え,
前記残渣除去体の中央部には,当該残渣除去体の上面から下面に貫通する吸引貫通孔が設けられ,
前記残渣除去体の下面の外周部には,前記流体供給口が開口し,
前記吸引貫通孔の下側の開口部は,前記吸引口を構成し,
前記吸引貫通孔の上端部は,前記レーザ光又は電子線が透過する透明体で閉鎖されており,前記レーザ光又は電子線は,当該透明体,吸引貫通孔及び吸引口を通じて前記被加工物に照射され,
さらに,前記吸引貫通孔の内側面には,この吸引貫通孔内に流入した前記残渣を含む流体を前記残渣除去体外に排出するための排出口が開口していることを特徴とする,請求項1に記載の加工装置。
A residue remover that can be placed opposite the workpiece and removes the residue generated from the workpiece by suction.
A suction through-hole penetrating from the upper surface to the lower surface of the residue removing body is provided at the center of the residue removing body,
The fluid supply port opens on the outer periphery of the bottom surface of the residue remover,
The lower opening of the suction through hole constitutes the suction port,
An upper end portion of the suction through hole is closed with a transparent body through which the laser beam or electron beam is transmitted, and the laser beam or electron beam passes through the transparent body, the suction through hole, and the suction port to the workpiece. Irradiated,
The discharge hole for discharging the fluid containing the residue flowing into the suction through hole to the outside of the residue removing body is opened on the inner side surface of the suction through hole. The processing apparatus according to 1.
前記レーザ光又は電子線の照射位置は,平面から見て前記吸引口の中心よりも前記流体供給口側にずれていることを特徴とする,請求項4に記載の加工装置。The processing apparatus according to claim 4, wherein the irradiation position of the laser beam or the electron beam is shifted to the fluid supply port side from the center of the suction port when viewed from a plane. 前記流体供給口は,複数箇所に開口しており,
前記レーザ光又は電子線の照射位置は,前記複数の流体供給口のうちのいずれか一の流体供給口側にずれていることを特徴とする,請求項5に記載の加工装置。
The fluid supply port is open at a plurality of locations,
The processing apparatus according to claim 5, wherein an irradiation position of the laser beam or the electron beam is shifted to any one of the plurality of fluid supply ports.
前記流体供給口は,前記吸引口を挟んだ両側に二箇所に開口していることを特徴とする,請求項6に記載の加工装置。  The processing apparatus according to claim 6, wherein the fluid supply port is opened at two positions on both sides of the suction port. 前記流体供給口と前記排出口は,平面から見て前記吸引口の中心を通る同一直線上に配置されていることを特徴とする,請求項5,6又は7のいずれかに記載の加工装置。  The processing apparatus according to claim 5, wherein the fluid supply port and the discharge port are arranged on the same straight line passing through the center of the suction port as viewed from above. . 前記残渣除去体は,その下面に,前記吸引口のある中央部が前記流体供給口のある外周部よりも下側に突出した略筒状の凸部を備え,
当該凸部の下端部には,前記流体供給口側から前記吸引口の中心軸に向けられた溝が形成されていることを特徴とする,請求項5,6,7又は8のいずれかに記載の加工装置。
The residue-removing body has a substantially cylindrical convex portion on the lower surface thereof, the central portion having the suction port projecting downward from the outer peripheral portion having the fluid supply port,
9. The groove according to any one of claims 5, 6, 7 and 8, wherein a groove directed from the fluid supply port side toward the central axis of the suction port is formed at a lower end portion of the convex portion. The processing apparatus as described.
前記溝は,前記吸引口の中心軸からずれた方向に向けて形成されていることを特徴とする,請求項9に記載の加工装置。  The processing apparatus according to claim 9, wherein the groove is formed in a direction shifted from a central axis of the suction port. 前記吸引貫通孔における前記排出口に対向する内側面には,前記吸引貫通孔内に流体を補充するための補充口が開口していることを特徴とする,請求項4,5,6,7,8,9又は10のいずれかに記載の加工装置。  The replenishing port for replenishing fluid in the suction through-hole is opened on an inner surface of the suction through-hole facing the discharge port. , 8, 9 or 10. 前記残渣除去体は,前記流体供給口から流出する流体を一旦滞留させる滞留部を備えたことを特徴とする,請求項4,5,6,7,8,9,10又は11のいずれかに記載の加工装置。  The said residue removal body was provided with the retention part which once retains the fluid which flows out out of the said fluid supply port, The any one of Claim 4, 5, 6, 7, 8, 9, 10 or 11 characterized by the above-mentioned. The processing apparatus as described. 前記流体供給口から供給される流体には,静電気を除去するイオンが付加されていることを特徴とする,請求項1,2,3,4,5,6,7,8,9,10,11又は12のいずれかに記載の加工装置。  Ions for removing static electricity are added to the fluid supplied from the fluid supply port, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, The processing apparatus in any one of 11 or 12.
JP2002339047A 2002-11-22 2002-11-22 Processing equipment Expired - Fee Related JP4043923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339047A JP4043923B2 (en) 2002-11-22 2002-11-22 Processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339047A JP4043923B2 (en) 2002-11-22 2002-11-22 Processing equipment

Publications (2)

Publication Number Publication Date
JP2004167590A JP2004167590A (en) 2004-06-17
JP4043923B2 true JP4043923B2 (en) 2008-02-06

Family

ID=32702089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339047A Expired - Fee Related JP4043923B2 (en) 2002-11-22 2002-11-22 Processing equipment

Country Status (1)

Country Link
JP (1) JP4043923B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923658B2 (en) 2004-09-13 2011-04-12 Hewlett-Packard Development Company, L.P. Laser micromachining methods and systems
JP4556618B2 (en) * 2004-10-29 2010-10-06 ソニー株式会社 Laser processing equipment
JP2007029973A (en) * 2005-07-25 2007-02-08 Sony Corp Apparatus and method for laser beam machining, and apparatus and method for collecting debris
TW200726566A (en) * 2006-01-10 2007-07-16 Li Bing Huan Laser processing machine
JP5118324B2 (en) * 2006-10-02 2013-01-16 富士重工業株式会社 Laser peening equipment
JP5460176B2 (en) * 2009-08-18 2014-04-02 キヤノン株式会社 Laser processing equipment
JP2011121061A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Method and apparatus for laser beam machining
JP5501098B2 (en) * 2010-06-03 2014-05-21 株式会社ディスコ Laser processing equipment
JP5501099B2 (en) * 2010-06-03 2014-05-21 株式会社ディスコ Laser processing equipment
JP5389068B2 (en) * 2011-01-26 2014-01-15 三菱電機株式会社 Laser processing method and laser processing apparatus
JP5559768B2 (en) * 2011-12-26 2014-07-23 富士重工業株式会社 Laser peening equipment
JP2013150995A (en) * 2012-01-24 2013-08-08 Shibuya Kogyo Co Ltd Laser processing device
JP5805224B2 (en) * 2014-01-15 2015-11-04 キヤノン株式会社 Laser processing equipment
KR101552562B1 (en) 2014-09-18 2015-09-15 주식회사 필옵틱스 Particle suction apparatus and laser processing system having the same
JP6907091B2 (en) * 2017-10-19 2021-07-21 株式会社ディスコ Laser processing equipment

Also Published As

Publication number Publication date
JP2004167590A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4043923B2 (en) Processing equipment
TWI385711B (en) A cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
KR100953462B1 (en) Film removing apparatus, film removing method and substrate processing system
JP4486476B2 (en) Laser processing apparatus and laser processing method
JP5165203B2 (en) Laser processing apparatus and laser processing method
JP4127601B2 (en) Laser processing equipment
US20070119837A1 (en) Laser processing apparatus and laser processing method
TWI411487B (en) Laser processing of gallium arsenide wafers
TWI778159B (en) Laser processing equipment
TWI768137B (en) Laser processing equipment
US10504783B2 (en) Laser processing apparatus
CN109702334B (en) Laser processing apparatus
US11090762B2 (en) Laser processing apparatus
TWI768138B (en) Laser processing equipment
TW202000356A (en) Laser processing device capable of preventing scattering of debris without hindering a laser beam
JP3869358B2 (en) Film removing apparatus and film removing method
JP3288880B2 (en) Method and apparatus for manufacturing image display element substrate
JP2003031466A (en) Manufacturing method and apparatus of semiconductor device
JP4292389B2 (en) Foreign matter removal method and foreign matter removal device
CN212286319U (en) Laser processing apparatus
JP2004140239A (en) Thin film removing device and its method
JP2020027900A (en) Method for processing wafer
KR20080095420A (en) Apparatus and method for cleaning substrate using chemical accompanied with laser shockwave
JP2009038346A (en) Aligner
CN114192987A (en) Laser processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees