JP2007029973A - Apparatus and method for laser beam machining, and apparatus and method for collecting debris - Google Patents

Apparatus and method for laser beam machining, and apparatus and method for collecting debris Download PDF

Info

Publication number
JP2007029973A
JP2007029973A JP2005214682A JP2005214682A JP2007029973A JP 2007029973 A JP2007029973 A JP 2007029973A JP 2005214682 A JP2005214682 A JP 2005214682A JP 2005214682 A JP2005214682 A JP 2005214682A JP 2007029973 A JP2007029973 A JP 2007029973A
Authority
JP
Japan
Prior art keywords
debris
liquid
laser
processing
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214682A
Other languages
Japanese (ja)
Inventor
Yoshinari Sasaki
良成 佐々木
Yukinari Aso
幸成 阿蘇
Eiju Murase
英寿 村瀬
Naoki Yamada
尚樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005214682A priority Critical patent/JP2007029973A/en
Publication of JP2007029973A publication Critical patent/JP2007029973A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for laser beam machining, which apparatus can prevent the re-sticking of debris on the surface of a workpiece, the debris being produced during abrasion machining carried out by radiating a laser beam, and further to provide a method for laser beam machining, and further to provide an apparatus and a method for collecting the debris. <P>SOLUTION: In the apparatus and the method for laser beam machining for carrying out the patterning for a transparent resin layer, a resin film, and a metal thin film formed on a substrate, and the apparatus and the method for collecting the debris, liquid 3 is circulated in the aperture portions of a laser radiating means and the final end lens 21 among an optical projecting lens group 18, 19, 20, 21 of a debris collecting portion 4 which are arranged above the substrate 2, and a liquid immersed portion 24 is locally formed between the machining surfaces of the transparent resin layer, the resin film, and the metal thin film 22, when the transparent resin layer 22 is formed on the substrate 2. As a result, minute particles, such as debris, dross, mist, and fumes produced during the patterning by the irradiation by the laser beam 17 are discharged into the liquid immersed portion 24 and are collected by circulating the liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、FPD(フラットパネルディスプレイ)や太陽電池等の多層薄膜上の透明電極に利用される透明導電膜や樹脂膜・金属薄膜をパターン加工するレーザ加工装置やレーザ加工方法に係わり、特に、加工対象物の上面からレーザ光を照射して、光化学反応(アブレーション)、熱溶融或いはそれらの複合作用によるレーザ加工時に発生する加工飛散物(デブリ:debris・ドロス・ミスト・ヒュームなどの微小パーティクル)を液体によって局所的に浸漬循環させ有効に除去・回収するためのレーザ加工装置と加工方法及びデブリ回収装置とその回収方法に関するものである。   The present invention relates to a laser processing apparatus and a laser processing method for patterning a transparent conductive film, a resin film, and a metal thin film used for transparent electrodes on multilayer thin films such as FPD (flat panel display) and solar cells, Irradiation of laser light from the top surface of the object to be processed, and processing scattered matter (debris: minute particles such as debris, dross, mist, and fume) generated during laser processing by photochemical reaction (ablation), thermal melting, or their combined action The present invention relates to a laser processing device, a processing method, a debris recovery device, and a recovery method for effectively removing and recovering the substrate by immersing and circulating locally with a liquid.

液晶パネルを初めとするFPDを扱うファインプロセスの世界では、透明導電膜や樹脂膜・金属薄膜は、通常、フォトリソグラフィー法によって、所望の形状にパターンニングされる。例えばガラス、プラスチック、シリコンウェハ等の基板上に、ITO(Indium Tin Oxides)膜、またはZnO(酸化亜鉛)膜等からなる透明導電膜を真空成膜し、その上にレジスト層を形成して、所定パターンを有するフォトマスクを通して光を照射しレジスト層を感光する。そして、現像、ポストベークすることでフォトマスクパターンをレジスト層に転写し、ウエットエッチングにて透明導電膜のレジストで被覆されていない部分を除去し、最後に残留レジスト層を除去することで所望の透明導電膜のパターンが得られる。 In the world of fine processes that handle FPDs such as liquid crystal panels, transparent conductive films, resin films, and metal thin films are usually patterned into a desired shape by photolithography. For example, glass, plastic, on a substrate such as a silicon wafer, ITO (I ndium T in O xides) film, or ZnO transparent conductive film made of zinc oxide () film or the like by vacuum deposition, forming a resist layer thereon Then, the resist layer is exposed by irradiating light through a photomask having a predetermined pattern. Then, the photomask pattern is transferred to the resist layer by development and post-baking, the portion of the transparent conductive film that is not covered with the resist is removed by wet etching, and finally the residual resist layer is removed to remove the desired resist layer. A transparent conductive film pattern is obtained.

現在のFPD−やLCD(液晶表示装置)では、収率を向上させるために基板サイズが大型化され、第8世代ディスプレイでは、2メータ□が予定されているなど、フォトリソグラフィー法では設備の大型化が避けられなくなってきている。また、次世代ディスプレイでは、その設計パターンルールが2ミクロンを切ろうとしている中で、回路パターンの微細化が進み、これらの製作にはフォトリソグラフィーを用いたパターン形成技術が必須なものになっている。しかしながらフォトリソグラフィー技術を使用した場合、露光・現像・エッチングに代表されるように、コータディベローッパーなどの大型の装置が必要となり、また、現像液などの薬液を大量に使用するため、多くの設備コストと材料コストなどが費やされることになり、設備投資及びフットプリント並びに環境保全の面でも問題となる。そこで、フォトリソグラフィー工程を省略し製造工程を簡略化するのに、レーザ光を用いて直接、透明導電膜を加工する技術が特許文献1で開示されている。   In the current FPD- and LCD (liquid crystal display device), the substrate size is increased to improve the yield, and in the 8th generation display, 2 meters □ are planned. It is becoming inevitable. In the next generation display, the design pattern rule is going to cut below 2 microns, and the circuit pattern has been miniaturized, and pattern formation technology using photolithography has become indispensable for the production of these. Yes. However, when photolithography technology is used, a large device such as a coater / developer is required as represented by exposure / development / etching, and a large amount of chemical solution such as developer is used. Equipment costs, material costs, and the like are spent, and this is also a problem in terms of capital investment, footprint, and environmental conservation. Therefore, Patent Document 1 discloses a technique of directly processing a transparent conductive film using laser light in order to omit the photolithography process and simplify the manufacturing process.

上述のようにフォトリソグラフィー方法を用いずにレーザ光によるレーザ加工装置及び加工方法として、エキシマレーザを利用した場合で例えると、エキシマレーザは、化学結合を切断できる高いフォトンエネルギを有し、アブレーション(Abrasion)と呼ばれる光化学反応により、熱的な影響を抑えつつ加工対象物を除去することが出来る。このようなアブレーションによるレーザ加工は。エネルギ密度を調整したエキシマレーザ光を照射することにより、プラスチック、金属、セラミックス等、種々の物質をアブレーション加工することが出来る。この加工においては、レーザ照射を受けた被加工対象面からレーザ光を吸収して反応してできる生成物や、被加工材料の微小パーティクルであるデブリ(Debris)と呼ばれる飛散物が空気中を舞って拡散し、基板に再付着する。特に反応生成物は、基板に付着すると熱を奪われて凝固し、ブラシなどで物理的洗浄を行っても除去することができずに製品不良の原因となるレーザを用いたこれらの再付着は100%不良となるレベルのパーティクル(塵埃)である。よって、光レーザによって直接パターンニングする方法ではデブリやドロス・ミスト・ヒュームなどの微小パーティクルを抑制する技術が必須事項となっている。   As described above, when an excimer laser is used as a laser processing apparatus and processing method using laser light without using a photolithography method, the excimer laser has high photon energy capable of breaking chemical bonds, and ablation ( A chemical reaction called Abrasion) can remove the workpiece while suppressing the thermal effect. Laser processing by such ablation. By irradiating the excimer laser light with adjusted energy density, various materials such as plastic, metal, ceramics, and the like can be ablated. In this processing, products formed by absorbing and reacting with laser light from the surface to be processed that has been irradiated with laser, and scattered objects called debris, which are minute particles of the material to be processed, move in the air. Diffuses and reattaches to the substrate. Especially when reaction products adhere to the substrate, they are deprived of heat and solidify, and they cannot be removed even by physical cleaning with a brush or the like. Particles (dust) at a level that is 100% defective. Therefore, in the method of directly patterning with an optical laser, a technique for suppressing minute particles such as debris, dross, mist, and fume is an essential matter.

上述のようにデブリの抑制方法として、デブリ・ドロス・ミスト・ヒュームなどの微小パーティクル発生そのものを抑制する方法や、デブリ堆積を少なくする方法や、デブリの堆積後にデブリを回収する方法などが知られている。デブリの発生量を低減するためには、加工対象物へのレーザ光の照射と共にアシストガスを吹き付けることが有効であることが知られている。また、デブリ発生そのものを抑制する方法としては、所定の雰囲気ガスによって分解、あるいは再付着を防止する方法が知られている、更に、レーザ照射部エリアを物理的に覆い、エアーを流して回収する方法も特許文献2で開示されている。更に、またデブリが基板上へ堆積するのを少なくする方法として、加工領域近傍の表面に気体を噴出する流体送出装置を設け、反対側に流体を吸引する吸引ダクトを設置して加工飛散物やデブリを加工領域から吹き去り、同時にこれを吸引して除去する手法が特許文献3に開示されている。   As described above, as a debris suppression method, there are known a method for suppressing the generation of minute particles such as debris, dross, mist and fume, a method for reducing debris accumulation, and a method for collecting debris after debris deposition. ing. In order to reduce the amount of debris generated, it is known that it is effective to spray an assist gas together with the irradiation of the laser beam onto the workpiece. In addition, as a method of suppressing the occurrence of debris itself, a method of preventing decomposition or reattachment with a predetermined atmospheric gas is known. Further, the laser irradiation area is physically covered and collected by flowing air. The method is also disclosed in Patent Document 2. Furthermore, as a method of reducing the accumulation of debris on the substrate, a fluid delivery device for ejecting gas is provided on the surface in the vicinity of the processing region, and a suction duct for sucking fluid is installed on the opposite side, and processing scattered matter and Japanese Patent Application Laid-Open No. H10-228561 discloses a method of blowing off debris from the processing region and simultaneously sucking and removing the debris.

しかし、これらはデブリ・ドロス・ミスト・ヒュームなどの微小パーティクル回収の目的は人体に影響を与えない程度にデブリを回収するレベルであり、液晶パネルガラス基板に形成する透明導電膜の様なファインデバイスに適用できる数μ〜数10μオーダのレベルのパターンを制御し除去、回収するものでなく、微細加工が必要とされている次世代デバイスでは効果は低く問題となっていた。   However, the purpose of collecting fine particles such as debris, dross, mist, and fume is to collect debris to the extent that it does not affect the human body. Fine devices such as transparent conductive films formed on liquid crystal panel glass substrates However, the effect is low and problematic in the next-generation device that requires fine processing.

更に、またデブリ付着防止方法としてレーザ加工時に発生したデブリの付着を防止し、良好な加工表面を得ることのできるレーザ加工方法として、アブレーション加工すべき被加工対象物の表面に水などの液体を接触させ、この液体を通じてYAGもしくはYLFのレーザ光を加工対象物の表面に照射することにより、発生したデブリを液体中に浮遊させ加工終了後に液体と共にデブリを洗い流し、被加工対象物に表面にデブリが付着するのを防止するものが特許文献4されている。   Furthermore, as a laser processing method that prevents adhesion of debris generated during laser processing as a debris adhesion prevention method and can obtain a good processed surface, a liquid such as water is applied to the surface of the workpiece to be ablated. The surface of the object to be processed is irradiated with YAG or YLF laser light through this liquid, and the generated debris is suspended in the liquid. After the processing is completed, the debris is washed away together with the liquid, and the surface of the object to be processed is debris. Patent Document 4 discloses a technique for preventing the adhesion.

しかし、上記方法では、加工対象物の表面に接触した液体中に浮遊するデブリが加工対象物表面に再付着する可能性があり、加工対象物表面へのデブリの付着を完全に防止することが出来なかった。そこで、これ等の課題を解決し、本発明の基礎となるレーザ加工装置とレーザ加工方法を特許文献5で提案した。この特許文献5ではレーザ光照射によりアブレーション加工する際に生ずる加工飛散物が被加工対象物の表面に付着するのを防止するため、レーザ光源と、レーザ光源から出射されるレーザ光を被加工対象物の被加工面に所定パターンで光学的に投影する光学系とを有し、被加工面をアブレーションにより加工するものであって、レーザ光が照射される被加工面にレーザ光を透過する液体を供給し、液体を被加工面上で所定方向に移動させる液体供給機構を設けたレーザ加工方法とレーザ加工装置が開示されている。   However, in the above method, there is a possibility that debris floating in the liquid in contact with the surface of the workpiece will reattach to the surface of the workpiece, and it is possible to completely prevent the debris from adhering to the surface of the workpiece. I could not do it. Therefore, Patent Document 5 proposes a laser processing apparatus and a laser processing method that solve these problems and are the basis of the present invention. In Patent Document 5, a laser light source and a laser beam emitted from the laser light source are used for the object to be processed in order to prevent processing scattered matter generated when ablation processing is performed by laser light irradiation from adhering to the surface of the object to be processed. An optical system that optically projects a predetermined pattern on a processing surface of an object and processes the processing surface by ablation, and is a liquid that transmits laser light to the processing surface irradiated with laser light A laser processing method and a laser processing apparatus provided with a liquid supply mechanism for supplying a liquid and moving a liquid in a predetermined direction on a processing surface are disclosed.

上述の特許文献5に開示の構成を図6によって説明する。図6はレーザ加工装置のデブリ付着防止機構の構造を示す断面図であり、付着防止機構50は、被加工対象物51の被加工面51FへのレーザビームLBの照射中に、レーザビームLBを透過する液体を被加工面51Fに供給し、液体を被加工面5F上で所定方向に移動させることにより、アブレーション加工により発生するデブリを洗い流すようにしたもので、付着防止機構50は、保持機構53と、液体供給源54とを有している。保持機構53は、ステージ55上に設置され加工対象物51を保持している。この保持機構53は、加工容器56と、カバー部材57とを有している。   The configuration disclosed in Patent Document 5 will be described with reference to FIG. FIG. 6 is a cross-sectional view showing the structure of the debris adhesion prevention mechanism of the laser processing apparatus. The adhesion prevention mechanism 50 emits the laser beam LB during the irradiation of the laser beam LB onto the workpiece surface 51F of the workpiece 51. By supplying the permeating liquid to the processing surface 51F and moving the liquid in a predetermined direction on the processing surface 5F, the debris generated by the ablation processing is washed away. 53 and a liquid supply source 54. The holding mechanism 53 is installed on the stage 55 and holds the workpiece 51. The holding mechanism 53 includes a processing container 56 and a cover member 57.

上記加工容器56は、ステージ55上に設置されている。この加工容器56は、上端側が開口し、底部に被加工対象物51が設置される。カバー部材57は、加工容器56の開口側の内周に設置されており、加工容器56の開口端に固定された固定部材58により加工容器56に固定されている。固定部材58には、レーザビームLBを加工容器56内に導き入れるための開口59が形成されている。カバー部材57は、加工容器56の開口側から入射されるレーザビームLBを透過する材料たとえば、レーザ光源に波長が248nmのKrFエキシマレーザを用いた場合には、KrFエキシマレーザに対して透過率の高い合成石英ガラスやフッ化カルシウム等で形成されたものを使用する。また、カバー部材57は、加工容器56の底部に設置された被加工対象物51の被加工面51Fから所定の高さ、たとえば、1mm程度の位置に配置されている。すなわち、被加工対象物51の被加工面51Fとカバー部材57との間には、所定の隙間Gpが形成されている。この隙間Gpを液体60が通過する。カバー部材57が加工容器56の内周に設置されることにより、カバー部材57と加工容器56との間に閉空間Spが形成されている。この閉空間Spに液体60が供給され、閉空間Sp内には液体が充填される。   The processing container 56 is installed on a stage 55. The processing container 56 is opened at the upper end side, and the workpiece 51 is installed at the bottom. The cover member 57 is installed on the inner periphery of the processing container 56 on the opening side, and is fixed to the processing container 56 by a fixing member 58 fixed to the opening end of the processing container 56. An opening 59 for introducing the laser beam LB into the processing container 56 is formed in the fixing member 58. The cover member 57 is made of a material that transmits the laser beam LB incident from the opening side of the processing container 56. For example, when a KrF excimer laser having a wavelength of 248 nm is used as a laser light source, the cover member 57 has a transmittance with respect to the KrF excimer laser. The one made of high synthetic quartz glass or calcium fluoride is used. Further, the cover member 57 is disposed at a predetermined height, for example, about 1 mm from the processing surface 51F of the processing target object 51 installed at the bottom of the processing container 56. That is, a predetermined gap Gp is formed between the processed surface 51F of the workpiece 51 and the cover member 57. The liquid 60 passes through this gap Gp. By installing the cover member 57 on the inner periphery of the processing container 56, a closed space Sp is formed between the cover member 57 and the processing container 56. The liquid 60 is supplied to the closed space Sp, and the closed space Sp is filled with the liquid.

加工容器56には、液体60が供給される供給口61と加工容器53の閉空間Spに供給された液体60を外部に排出する排出口62とが形成されている。供給口61には、供給管63が接続されており、この供給管63はバルブ64を介して液体供給源54に接続されている。バルブ64は、供給管63の管路の開閉および液体供給源54から供給される液体60の流量調整を行う。排出口62には、排出管65が接続されており、この排出管65にはバルブ66が接続されている。バルブ66は、排出管66の管路の開閉および加工容器56から排出される液体60の流量調整を行う。液体供給源54は、液体60を所定の圧力、流量に調整して加工容器56に供給する。液体供給源54が供給する液体60は、レーザビームLBを透過する液体であり、たとえば、水が使用される。   The processing container 56 is formed with a supply port 61 for supplying the liquid 60 and a discharge port 62 for discharging the liquid 60 supplied to the closed space Sp of the processing container 53 to the outside. A supply pipe 63 is connected to the supply port 61, and the supply pipe 63 is connected to the liquid supply source 54 via a valve 64. The valve 64 opens and closes the conduit of the supply pipe 63 and adjusts the flow rate of the liquid 60 supplied from the liquid supply source 54. A discharge pipe 65 is connected to the discharge port 62, and a valve 66 is connected to the discharge pipe 65. The valve 66 opens and closes the conduit of the discharge pipe 66 and adjusts the flow rate of the liquid 60 discharged from the processing container 56. The liquid supply source 54 adjusts the liquid 60 to a predetermined pressure and flow rate and supplies the liquid 60 to the processing container 56. The liquid 60 supplied from the liquid supply source 54 is a liquid that transmits the laser beam LB. For example, water is used.

しかしながら、現在のディスプレイデバイスでは、収率を向上させるために基板サイズが大型となり、2メータ□が予定されているなど、上記方法では設備の大型化が避けられなくなってきている。したがって、上記した特許文献5に記載の構成によると大型化された被加工対象物51を収納するために大きな加工容器56を必要とし、次世代ディスプレイでは、その設計パターンルールが2ミクロンを切ろうとしている中で、回路パターンの微細化が進み被加工対象物51全体を液体6で包み込むような構成では液体60中に混入したデブリが他のパターンに再付着することが避けられず多くの設備コストと材料コストなどが費やされることになる課題を有していた。
特開2004−153171号公報 特開平9−271980号公報 特開平10−99978号公報 特開平9−141480号公報 特開2003−245791号公報
However, in the current display device, the size of the substrate is increased in order to improve the yield, and 2 meters □ are planned. For this reason, it is unavoidable to increase the size of the equipment by the above method. Therefore, according to the configuration described in the above-mentioned Patent Document 5, a large processing container 56 is required to accommodate the enlarged workpiece 51, and the design pattern rule of the next generation display will be less than 2 microns. In the configuration in which the circuit pattern is further miniaturized and the entire workpiece 51 is wrapped with the liquid 6, it is inevitable that the debris mixed in the liquid 60 is reattached to other patterns. There was a problem that costs and material costs would be consumed.
JP 2004-153171 A Japanese Patent Laid-Open No. 9-271980 Japanese Patent Laid-Open No. 10-99978 JP-A-9-141480 JP 2003-245791 A

本発明は上述の課題を解決するために成されたもので、本発明が解決しようとする課題は、アブレーション加工すべき被加工対象物の被加工表面のパターンなどに局所的に水などの液体を接触させ、この浸漬させた液体を通じてレーザ光を加工対象物の表面に照射することにより、発生したデブリを液体中に浮遊させ加工終了後に液体と共にデブリを洗い流し、加工対象物に表面にデブリが付着するのを防止したレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を得ようとするものである。   The present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is that a liquid such as water is locally applied to the pattern of the surface to be processed of the workpiece to be ablated. By irradiating the surface of the object to be processed with this immersed liquid, the generated debris is suspended in the liquid, and the debris is washed away together with the liquid after the processing is completed. It is an object of the present invention to obtain a laser processing apparatus, a processing method thereof, a debris recovery apparatus, and a recovery method thereof that are prevented from adhering.

本発明の第1の目的は、レーザ照射時に液体中で飛散するデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを抑制し、被加工対象物の基板や投影レンズへのデブリが再付着することがないレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を得るにある。   The first object of the present invention is to suppress minute particles such as debris, dross, mist, and fumes that are scattered in the liquid during laser irradiation, and to reattach the debris to the substrate or projection lens of the workpiece. There is no laser processing device and its processing method and debris recovery device and its recovery method.

本発明の第2の目的は、投影光学系終端部(投影レンズ)と被加工対象物の基板間に供給された液体を供給・回収(排出)するために液体の表面張力によって液浸部を形成した液浸漬型のレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を得るにある。   The second object of the present invention is to provide a liquid immersion portion by the surface tension of the liquid in order to supply / recover (discharge) the liquid supplied between the projection optical system terminal portion (projection lens) and the substrate of the workpiece. The liquid immersion type laser processing apparatus formed, a processing method thereof, a debris recovery apparatus, and a recovery method thereof are obtained.

本発明の第3の目的は、被加工基板の局所のみ液体を浸漬させたレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を得るにある。   A third object of the present invention is to obtain a laser processing apparatus, a processing method thereof, a debris recovery apparatus, and a recovery method thereof, in which a liquid is immersed only locally on a substrate to be processed.

本発明の第4の目的は、被加工基板のレーザ照射面のパターニングが成される局所のみに液体による液浸部を形成して、デブリを回収させたレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を得るにある。   A fourth object of the present invention is to provide a laser processing apparatus that recovers debris by forming a liquid immersion portion only in a local area where patterning of a laser irradiation surface of a substrate to be processed is performed, and a processing method and debris recovery thereof. To obtain the device and its recovery method.

第1の本発明のレーザ加工装置は、被加工対象物上に形成される透明樹脂層のパターニング加工時のレーザ光の照射で発生するデブリを除去回収するレーザ加工装置に於いて、被加工対象物の上方よりレーザ光を照射すると共に被加工対象物の上部に配設させたデブリ回収手段と、このデブリ回収手段内に配設された投影光学系終端部と被加工対象物の被加工面間に液体を送通させる液体送通手段と、を具備し、被加工対象物の被加工面を液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたものである。   A laser processing apparatus according to a first aspect of the present invention is a laser processing apparatus that removes and collects debris generated by irradiation of laser light during patterning of a transparent resin layer formed on an object to be processed. A debris collection unit that irradiates a laser beam from above the object and is disposed above the object to be processed, a projection optical system terminal disposed in the debris collection unit, and a surface to be processed of the object to be processed A liquid delivery means for passing a liquid between them, and the work surface of the work piece is locally immersed in the liquid so as to absorb and collect minute particles such as debris, dross, mist, and fume. It is a thing.

第2の本発明のレーザ加工方法は、被加工対象物上に形成される透明樹脂層・樹脂膜・金属薄膜のパターニング加工時のレーザ光の照射で発生するデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを除去回収するレーザ加工方法に於いて、被加工対象物の上方より前記レーザ光を照射すると共に被加工対象物の上部に配設させたデブリ回収手段と、このデブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、を具備し、被加工対象物の被加工面を液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたものである。   The laser processing method according to the second aspect of the present invention includes debris, dross, mist, fume, etc. generated by laser light irradiation during patterning processing of a transparent resin layer, a resin film, and a metal thin film formed on a workpiece. In a laser processing method for removing and collecting minute particles, a laser beam is irradiated from above the object to be processed and a debris collecting means disposed above the object to be processed, and a debris collecting means disposed in the debris collecting means. A liquid feeding means for feeding a liquid between the projection optical system terminal portion provided and the workpiece surface of the workpiece, and locally immersing the workpiece surface of the workpiece by the liquid In this way, fine particles such as debris, dross, mist, and fume are absorbed and recovered.

第3の本発明のデブリ回収装置は、被加工対象物上に形成される透明樹脂層・樹脂膜・金属薄膜のパターニング加工時のレーザ光の照射で発生するデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを除去回収するデブリ回収装置に於いて、被加工対象物の上方よりレーザ光を照射すると共に被加工対象物の上部に配設させたデブリ回収手段と、このデブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、を具備し、被加工対象物の被加工面を前記液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたものである。   The debris collection device of the third aspect of the present invention is a debris, dross, mist, fume, etc. generated by laser light irradiation during patterning of a transparent resin layer, resin film, or metal thin film formed on a workpiece. In a debris collection device that removes and collects microparticles, a laser beam is irradiated from above the object to be processed, and a debris collection means disposed above the object to be processed, and disposed in the debris collection means. And a liquid feeding means for feeding a liquid between the projection optical system terminal portion and the workpiece surface of the workpiece, and the workpiece surface of the workpiece is locally immersed in the liquid. In this way, fine particles such as debris, dross, mist, and fume are absorbed and recovered.

第4の本発明のデブリ回収方法は、被加工対象物上に形成される透明樹脂層・樹脂膜・金属薄膜のパターニング加工時のレーザ光の照射で発生するデブリを除去回収するデブリ回収方法に於いて、被加工対象物の上方よりレーザ光を照射すると共に被加工対象物の上部に配設させたデブリ回収手段と、このデブリ回収手段内に配設された投影光学系終端部と被加工対象物の被加工面間に液体を送通させる液体送通手段と、を具備し、被加工対象物の被加工面を液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたものである。   The debris collection method of the fourth aspect of the present invention is a debris collection method that removes and collects debris generated by laser light irradiation during patterning of a transparent resin layer, resin film, and metal thin film formed on a workpiece. In this case, the debris collecting means that is irradiated with laser light from above the workpiece and disposed on the top of the workpiece, the projection optical system terminal portion disposed in the debris collecting means, and the workpiece Liquid feeding means for passing a liquid between the work surfaces of the object, and the work surface of the work object is locally immersed in the liquid so that a minute amount of debris, dross, mist, fume, etc. Particles are absorbed and recovered.

本発明よると下記に示す効果を有するレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法を提供することが出来る。
1.レーザ光の照射によりアブレーション加工する際に生じるデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルが被加工対象物の表面に再付着するのを防止することが出来る。
2.レーザ光源から照射されるレーザ光を被加工対象物の被加工面に任意のパターンを光学的に投影する光学系で、その最終光学系(投影レンズシステムまたはカバーレンズ)と加工対象面とのわずかな間に、レーザを透過する液体を供給・回収できる液浸漬循環式のデブリ回収手段によりレーザ照射によってデブリが近接するパターンに影響を与えないので微細加工が可能となる。
3.レーザ照射によって微細加工をパターンングする場合、光学系の投影レンズに高いNAが要求されるため最終光学系と被加工対象物面との距離(ワークディスタンス)が近接するようになる。 このためレーザ光の照射により被加工対象物の被加工面よりアブレーションされた蒸気物質や飛散物により最終光学系が汚染される現象(二次汚染)を防ぐことが出来る。
4.2によって、レーザ照射により微細飛散する加工対象面材料の回収が容易となり、たとえばレア金属などのITO膜片を回収し、リサイクル出来る。
5.大型化したデブリ付着防止用の保持機構を作成すること無くデブリ回収をすることが出来る。
According to the present invention, it is possible to provide a laser processing apparatus, a processing method thereof, a debris recovery apparatus, and a recovery method thereof having the following effects.
1. It is possible to prevent fine particles such as debris, dross, mist, and fumes generated during ablation processing by laser light from being reattached to the surface of the workpiece.
2. An optical system that optically projects a laser beam emitted from a laser light source onto the work surface of an object to be processed. The final optical system (projection lens system or cover lens) and the surface to be processed are slightly In particular, the liquid immersion circulation type debris collection means capable of supplying and collecting the liquid that transmits the laser does not affect the pattern where the debris comes close by the laser irradiation, so that the fine processing becomes possible.
3. When patterning fine processing by laser irradiation, a high NA is required for the projection lens of the optical system, so that the distance (work distance) between the final optical system and the workpiece surface becomes close. For this reason, it is possible to prevent a phenomenon (secondary contamination) that the final optical system is contaminated by the vapor substance or the scattered matter ablated from the processing surface of the processing object by the laser light irradiation.
By 4.2, it becomes easy to collect the surface material to be processed that is finely scattered by laser irradiation. For example, ITO film pieces such as rare metals can be collected and recycled.
5. Debris can be collected without creating a large-sized holding mechanism for preventing debris adhesion.

以下、本発明の1形態例を図1乃至図5によって説明する。図1は本発明のガスレーザ加工装置の1形態例を示す全体的概念図、図2は本発明の固体レーザ加工装置の1形態例を示す全体的概念図、図3は本発明のレーザ加工装置の投影光学系終端部溶液浸漬循環機構の断面図、図4は本発明のレーザ加工装置のデブリ回収機構の動作説明用の要部断面図、図5は図4のA−A断面矢視平面図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an overall conceptual diagram showing an embodiment of a gas laser processing apparatus of the present invention, FIG. 2 is an overall conceptual diagram showing an embodiment of a solid-state laser processing apparatus of the present invention, and FIG. 3 is a laser processing apparatus of the present invention. 4 is a cross-sectional view of the projection immersion system solution immersion circulation mechanism of FIG. 4, FIG. 4 is a cross-sectional view of the main part for explaining the operation of the debris collection mechanism of the laser processing apparatus of the present invention, and FIG. FIG.

本発明は、被加工対象物であるガラスの基板に形成した多層膜上に透明導電膜の様な透明樹脂層を形成する際に透明樹脂層の表面にレーザ光を上面より照射して、アブレーション、熱溶融或いはそれらの複合作用によるレーザ加工時に発生する加工飛散物であるデブリを溶液を基板のパターニング部分に局所的に浸漬させてデブリを除去回収するレーザ加工装置及びレーザ加工方法並びにデブリ回収装置とその回収方法を提供するものである。   In the present invention, when a transparent resin layer such as a transparent conductive film is formed on a multilayer film formed on a glass substrate which is an object to be processed, the surface of the transparent resin layer is irradiated with laser light from the upper surface, and ablation is performed. Laser processing apparatus, laser processing method, and debris collection apparatus for removing and recovering debris by locally immersing a solution of debris, which is a scattered material generated during laser processing by heat melting or their combined action, in a patterning portion of a substrate And a method for collecting the same.

以下本発明のレーザ加工装置の1形態例を図1によって説明する。図1は本発明の概略的レーザ光学系とデブリ回収装置を示すもので、図1に於いて、15は液浸循環型のガスレーザ加工装置を示すもので、ガスレーザ光源を有するガスレーザ発振器11から出射したレーザ光16はミラー10を介して光路を直角に曲げられ、例えば、ホモジナイズ光学系や回折格子から構成される平坦化光学系9を通り、レーザ光源からのエネルギが一様となるよう平坦化される。レーザ光16のサイズを決定するマスク又は可変アパーチャー8で所望のサイズのレーザビーム17に整形される。又、マスクや可変アパーチャー8でサイズが決定されたレーザビーム17は投影レンズユニット7内の光学投影レンズ群18、19、720、21等により縮小集光されて、XYステージ1上に載置されたガラス等の基板2の上方より基板2の表面の多層膜上に形成される透明樹脂層22に照射される。基板2の上方に配設した投影レンズユニット7と透明樹脂層22との間には、デブリ回収装置を構成する投影光学系終端部兼液浸漬循環機構(以下デブリ回収部と記す)4が設置されており、発生する透明樹脂層22から発生するデブリ12をデブリ回収部4によって回収する。   An embodiment of the laser processing apparatus of the present invention will be described below with reference to FIG. FIG. 1 shows a schematic laser optical system and a debris recovery apparatus according to the present invention. In FIG. 1, reference numeral 15 denotes an immersion circulation type gas laser processing apparatus, which emits from a gas laser oscillator 11 having a gas laser light source. The laser beam 16 has its optical path bent at right angles via the mirror 10 and is flattened so that the energy from the laser light source becomes uniform through, for example, the flattening optical system 9 including a homogenizing optical system and a diffraction grating. Is done. The laser beam 16 is shaped into a laser beam 17 of a desired size by a mask or variable aperture 8 that determines the size of the laser beam 16. The laser beam 17 whose size is determined by the mask or the variable aperture 8 is reduced and condensed by the optical projection lens groups 18, 19, 720, 21, etc. in the projection lens unit 7 and placed on the XY stage 1. The transparent resin layer 22 formed on the multilayer film on the surface of the substrate 2 is irradiated from above the substrate 2 such as glass. Between the projection lens unit 7 disposed above the substrate 2 and the transparent resin layer 22, a projection optical system termination unit / liquid immersion circulation mechanism (hereinafter referred to as a debris collection unit) 4 constituting the debris collection device is installed. The debris 12 generated from the generated transparent resin layer 22 is collected by the debris collection unit 4.

略円筒状の筐体から成る投影レンズユニット7に連接して形成された略漏斗状の筐体で構成したデプリ回収部4は液体3を供給する液体供給口5と液体3を排出する液体排出口6を備えている。液体供給口5には図6と同様に液体供給源54から液体3が図示しないがバルブ64などを介して調整供給される。液体供給口5からの液体3は液浸型デブリ回収機構概略図の図3とデブリ回収機構の動作メカニズムを示す図4及び図5の様にデブリ回収部4の漏斗状の筐体壁内に形成した液体供給部5−供給路13を通りデブリ回収部4の底部に形成した開口部23上に嵌めこまれた光学系の終端レンズ21の下端を通って液体排出口6に連通する排出賂14に排出される。この際、XYステージ1上の基板2の透明樹脂層22とデプリ回収部4内に配設された光学系終端部のレンズ21(図3参照)間の開口部23の下端に液体3が液浸された状態で表面張力によって保持される液浸部24が構成される。   A deple collecting unit 4 formed of a substantially funnel-shaped housing formed in a manner connected to a projection lens unit 7 having a substantially cylindrical housing has a liquid supply port 5 for supplying the liquid 3 and a liquid drain for discharging the liquid 3. An outlet 6 is provided. Similarly to FIG. 6, the liquid 3 is supplied from the liquid supply source 54 to the liquid supply port 5 through a valve 64 (not shown). The liquid 3 from the liquid supply port 5 enters the funnel-shaped housing wall of the debris collection unit 4 as shown in FIG. 3 of the schematic diagram of the immersion type debris collection mechanism and FIGS. 4 and 5 showing the operation mechanism of the debris collection mechanism. A discharge rod communicating with the liquid discharge port 6 through the formed liquid supply unit 5 through the supply path 13 and passing through the lower end of the terminal lens 21 of the optical system fitted on the opening 23 formed at the bottom of the debris collection unit 4. 14 is discharged. At this time, the liquid 3 is applied to the lower end of the opening 23 between the transparent resin layer 22 of the substrate 2 on the XY stage 1 and the lens 21 (see FIG. 3) at the optical system terminal portion disposed in the deple collection unit 4. A liquid immersion part 24 that is held by surface tension in the immersed state is configured.

ここで、液浸循環型デブリ回収部4のメカニズムの動作を具体的な説明する。光学投影レンズ群18、19、20、21の終端レンズ21と基板2上の透明樹脂層22の距離が一定に保たれた開口部23の空間に、液体供給口5から液体3を一定量供給し、かつ液体排出口6から同じ量の液体3を排出して液体3を基板2上の加工面上で移動させ、液浸部24の状態を維持する。液体供給口5には、図示しないが流量調整機能が備わった流量ポンプや、液体排出口6には排出ポンプが備わっている。この液浸部24の液浸循環による連続動作を維持したまま、レーザビーム17を照射させ、アブレーション加工により発生するデブリ12を洗い流し、液排出口6によって基板2上の透明樹脂層22の加工面上の清浄性を保つ様に成される。   Here, the operation of the mechanism of the immersion circulation type debris collection unit 4 will be specifically described. A fixed amount of liquid 3 is supplied from the liquid supply port 5 into the space of the opening 23 in which the distance between the terminal lens 21 of the optical projection lens group 18, 19, 20, 21 and the transparent resin layer 22 on the substrate 2 is kept constant. In addition, the same amount of the liquid 3 is discharged from the liquid discharge port 6, and the liquid 3 is moved on the processing surface on the substrate 2 to maintain the state of the liquid immersion unit 24. Although not shown, the liquid supply port 5 is provided with a flow rate pump having a flow rate adjusting function, and the liquid discharge port 6 is provided with a discharge pump. While maintaining the continuous operation of the liquid immersion part 24 by the liquid immersion circulation, the laser beam 17 is irradiated to wash away the debris 12 generated by the ablation process, and the processed surface of the transparent resin layer 22 on the substrate 2 by the liquid discharge port 6. It is made to maintain the above cleanliness.

上記した液浸循環型のガスレーザ加工装置15では図1のガスレーザ発振器11からのレーザ光16はミラー10を介してホモジナイズ等の平坦化光学系9を通り平坦化されたレーザ光16は、マスク又は可変アパーチャー8によって任意の形状にパターン化されたレーザビーム17が投影レンズユニット7の光学投影レンズ群18、19、20、21を通じて基板2の被加工面である透明樹脂層22上にレーザ光を照射する。この際、あらかじめマスク又は可変アパーチャー8のパターンが投影レンズの縮小率に合わせてそのパターンやサイズが合致するように、デブリ回収部4の光学投影レンズ群18、19、20、21の終端レンズ21の高さ(位置)制御を行なうことで基板2の被加工面の透明樹脂層22上にレーザビーム17がフォーカシングされて、光学投影レンズ群の終端レンズ21と基板2上の透明樹脂層22の距離であるワーキングディスタンス(以下WDと記す)が一定に保たれる。   In the above-described immersion circulation type gas laser processing apparatus 15, the laser light 16 from the gas laser oscillator 11 of FIG. 1 passes through the mirror 10 through the flattening optical system 9 such as homogenization, and is then applied to the mask or A laser beam 17 patterned into an arbitrary shape by the variable aperture 8 emits a laser beam onto the transparent resin layer 22 that is the processing surface of the substrate 2 through the optical projection lens groups 18, 19, 20, and 21 of the projection lens unit 7. Irradiate. At this time, the terminal lens 21 of the optical projection lens group 18, 19, 20, 21 of the debris collection unit 4 is set so that the pattern or size of the pattern of the mask or variable aperture 8 matches the reduction ratio of the projection lens in advance. By controlling the height (position) of the laser beam 17, the laser beam 17 is focused on the transparent resin layer 22 on the processed surface of the substrate 2, and the terminal lens 21 of the optical projection lens group and the transparent resin layer 22 on the substrate 2 are aligned. The working distance (hereinafter referred to as WD), which is the distance, is kept constant.

たとえば、光学投影レンズの開口数NA(開口数は、対物レンズのレンズ径rと焦点距離fできまり、NA=n×sinθでnは光路の屈折率、θは焦点距離とレンズ径できまりθ=tan-1(r/f)である)とすると、 焦点深度はd=λ/(2×NA×NA)と成る。本例では上記したWDが50ミクロンから5ミリメートル位で、WD間の表面張力で釣り合った状態を液浸部24とする。この液浸部22に用いる液体3は、屈折率が1以上のもので、たとえば、純水(屈折率=1.14)を使用する事ができる。又、使用するレーザ光16の波長透過性が良く、液体に可溶な樹脂や界面活性剤を含有させて粘度や濡れ性をコントロールした液体でも良いことは明らかである。 For example, the numerical aperture NA of the optical projection lens (the numerical aperture is determined by the lens diameter r and the focal length f of the objective lens, where NA = n × sin θ, where n is the refractive index of the optical path, θ is the focal length and the lens diameter θ. = Tan −1 (r / f)), the depth of focus is d = λ / (2 × NA × NA). In this example, the liquid immersion part 24 is a state in which the above-mentioned WD is about 50 microns to 5 millimeters and is balanced by the surface tension between the WDs. The liquid 3 used in the liquid immersion unit 22 has a refractive index of 1 or more, and for example, pure water (refractive index = 1.14) can be used. In addition, it is obvious that the liquid having good wavelength transmittance of the laser beam 16 to be used and liquid or water-soluble resin or surfactant may be contained to control the viscosity or wettability.

図1に示すガスレーザ発振器11のガスレーザ光源には、例えば、エキシマレーザ等を用いることが出来る。エキシマレーザには、レーザ媒質の異なる複数の種類が存在し、波長の長い方からXeF(351nm)、XeCl(308nm)、KrF(248nm)、ArF(193nm)、F(157nm)が存在する。但し、レーザ源はエキシマレーザに限ることは無く、後述する図2の様に固体レーザ等であっても良い。平滑化光学系9は、ミラー10によって反射されたレーザ光源からのレーザ光16を整形、ビーム強度の均一化を行い出力する。可変アパーチャー8は、例えば金属材料で形成された所定アパーチャアの穴明きパーチャーマスク、透明なガラス材料や金属薄膜で形成されたフォトマスク、誘電体材料で形成された誘電体マスクやアパーャが可変可能な可変アパーチャーが用いられる。エキシマレーザはアブレーションといわれる光化学的な直接結合を解離して熱的な影響を受けにくい加工を行うため、加工面のエッジの仕上がりが非常にシャープである。これに対して、熱エネルギを利用したレーザ加工を行うYAGレーザ(1.06um)やCO2レーザ(1.06um)等は熱溶融後に蒸発を伴い、デブリの発生量も多くなる。 As the gas laser light source of the gas laser oscillator 11 shown in FIG. 1, for example, an excimer laser or the like can be used. There are a plurality of types of excimer lasers with different laser media, and XeF (351 nm), XeCl (308 nm), KrF (248 nm), ArF (193 nm), and F 2 (157 nm) exist from the longer wavelength. However, the laser source is not limited to the excimer laser and may be a solid-state laser or the like as shown in FIG. The smoothing optical system 9 shapes the laser light 16 from the laser light source reflected by the mirror 10, equalizes the beam intensity, and outputs it. For example, the variable aperture 8 is a perforated aperture mask of a predetermined aperture made of a metal material, a photomask formed of a transparent glass material or a metal thin film, or a dielectric mask or aperture formed of a dielectric material. Possible variable apertures are used. The excimer laser dissociates the photochemical direct bond, called ablation, and performs processing that is not easily affected by heat, so that the edge of the processed surface is very sharp. On the other hand, a YAG laser (1.06 μm), a CO 2 laser (1.06 μm), or the like that performs laser processing using thermal energy involves evaporation after thermal melting, and the amount of debris generated increases.

図1に示す構成のガスレーザ加工装置15では、レーザ発振器11にエキシマレーザを用いることにより、加工対象物である基板2の加工面に所定パターンのレーザビームが照射され、投影光学系終端部兼液浸循環機構部(デブリ回収部)4を通じて基板2との間に液体3の液浸部22を介して基板2上の加工面がアブレーション加工されるが、図2に示す様に固体レーザ発振器25からのレーザ光16をホモジナィズ光学系9aで平坦化した固体レーザ光16を用いても良い。この固体レーザ光16は軸28にモータ等の駆動源で揺動可能にされたガルバノミラー26によって略直交する様に折り曲げられ、かつ、基板2上の透明樹脂層22のパターンに沿って例えばX軸方向に走査される。対物レンズ29を透過したレーザビーム17は図3に示す光学投影レンズ群18、19、20、21を介して、基板2上の透明樹層22上に液体3によって形成される液浸部24を通じて被加工表面に所定のパターニングを施す。 図2には、液浸循環型固体レーザ加工装置30として半導体レーザを用いた場合であってもこの液浸型のデブリ回収部4は使用でき、各種レーザや波長別によるエッチング反応メカニズム(熱溶融、光化学反応、アブレーション、エクスプロージョン現象(膜崩壊)、多光子吸収)で発生するデブリやドロスなどの低減・抑制効果を発揮させることが出来る。   In the gas laser processing apparatus 15 having the configuration shown in FIG. 1, an excimer laser is used for the laser oscillator 11 to irradiate the processing surface of the substrate 2 as a processing target with a laser beam having a predetermined pattern. The processed surface on the substrate 2 is ablated between the substrate 2 and the substrate 2 through the immersion circulation mechanism unit (debris recovery unit) 4 via the liquid immersion unit 22. As shown in FIG. The solid-state laser beam 16 obtained by flattening the laser beam 16 from the laser beam 16 with the homogenization optical system 9a may be used. This solid-state laser light 16 is bent so as to be substantially orthogonal to a shaft 28 by a galvano mirror 26 that can be swung by a driving source such as a motor, and along the pattern of the transparent resin layer 22 on the substrate 2, for example, X Scanned in the axial direction. The laser beam 17 that has passed through the objective lens 29 passes through the liquid immersion lens 24 formed on the transparent tree layer 22 on the substrate 2 through the optical projection lens groups 18, 19, 20, and 21 shown in FIG. Predetermined patterning is performed on the surface to be processed. In FIG. 2, even when a semiconductor laser is used as the immersion circulation type solid-state laser processing apparatus 30, the immersion type debris collection unit 4 can be used, and etching reaction mechanisms (thermal melting) according to various lasers and wavelengths. Debris and dross generated by photochemical reaction, ablation, explosion phenomenon (film collapse), multiphoton absorption) can be exhibited.

勿論、この場合も、図5の拡大図に示す様に、デブリ回収部4の漏斗状の壁内に形成した供給路13を通りデブリ回収部4の底部に形成した開口部23上に嵌めこまれた光学系の終端レンズ21の下端を通って液体排出口6に連通する排出賂14に排出される。この際、XYステージ1上の基板2の透明樹脂層22とデプリ回収部4内に配設された光学系終端部のレンズ21(図3参照)間の開口部23の下端に液体3が液浸された状態で表面張力によって保持される液浸部24内にはレーザビーム17の照射のアプレーションによって生ずるデブリ12が液浸部24内に放出され液体供給源54(図6参照)から液体供給口5に供給され供給路13を通じて開口部13に循環する液体3に流入し、排出路14を介しテ液体排出口6を経由して、図示しないデブリ回収装置内に送出される。   Of course, also in this case, as shown in the enlarged view of FIG. 5, it fits on the opening 23 formed in the bottom of the debris collection unit 4 through the supply path 13 formed in the funnel-shaped wall of the debris collection unit 4. The liquid is discharged to a discharge rod 14 communicating with the liquid discharge port 6 through the lower end of the terminal lens 21 of the optical system. At this time, the liquid 3 is applied to the lower end of the opening 23 between the transparent resin layer 22 of the substrate 2 on the XY stage 1 and the lens 21 (see FIG. 3) at the optical system terminal portion disposed in the deple collection unit 4. In the liquid immersion part 24 held by the surface tension in the immersed state, the debris 12 generated by the application of the irradiation of the laser beam 17 is discharged into the liquid immersion part 24 and liquid is supplied from the liquid supply source 54 (see FIG. 6). It flows into the liquid 3 that is supplied to the supply port 5 and circulates in the opening 13 through the supply path 13, and is sent to the debris collection device (not shown) via the discharge path 14 and the liquid discharge port 6.

本発明のレーザ加工装置とその加工方法及びデブリ回収装置とその回収方法照射によれば、以下の効果が達成される。
1.レーザ光の照射によりアブレーション加工する際に生じるデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルが被加工対象物の表面に再付着するのを防止することが出来る。
2.レーザ光源から照射されるレーザ光を被加工対象物の被加工面に任意のパターンを光学的に投影する光学系で、その最終光学系(投影レンズシステムまたはカバーレンズ)と加工対象面とのわずかな間に、レーザを透過する液体を供給・回収できる液浸漬循環式のデブリ回収手段によりレーザ照射によってデブリが近接するパターンに影響を与えないので微細加工が可能となる。
3.レーザ照射によって微細加工をパターンングする場合、光学系の投影レンズに高いNAが要求されるため最終光学系と被加工対象物面との距離(ワークディスタンス)が近接するようになる。 このためレーザ光の照射により被加工対象物の被加工面よりアブレーションされた蒸気物質や飛散物により最終光学系が汚染される現象(二次汚染)を防ぐことが出来る。
4.2によって、レーザ照射により微細飛散する加工対象面材料の回収が容易となり、たとえばレア金属などのITO膜片を回収し、リサイクル出来る。
5.大型化したデブリ付着防止用の保持機構を作成すること無くデブリ回収をすることが出来る。
According to the laser processing apparatus, the processing method thereof, the debris recovery apparatus, and the recovery method irradiation of the present invention, the following effects are achieved.
1. It is possible to prevent fine particles such as debris, dross, mist, and fumes generated during ablation processing by laser light from being reattached to the surface of the workpiece.
2. An optical system that optically projects a laser beam emitted from a laser light source onto the work surface of an object to be processed. The final optical system (projection lens system or cover lens) and the surface to be processed are slightly In particular, the liquid immersion circulation type debris collection means capable of supplying and collecting the liquid that transmits the laser does not affect the pattern where the debris comes close by the laser irradiation, so that the fine processing becomes possible.
3. When patterning fine processing by laser irradiation, a high NA is required for the projection lens of the optical system, so that the distance (work distance) between the final optical system and the workpiece surface becomes close. For this reason, it is possible to prevent a phenomenon (secondary contamination) that the final optical system is contaminated by the vapor substance or the scattered matter ablated from the processing surface of the processing object by the laser light irradiation.
By 4.2, it becomes easy to collect the surface material to be processed that is finely scattered by laser irradiation. For example, ITO film pieces such as rare metals can be collected and recycled.
5. Debris can be collected without creating a large-sized holding mechanism for preventing debris adhesion.

本発明のレーザ加工装置の1形態例を示す全体的構成図である。It is a whole block diagram which shows one example of a laser processing apparatus of this invention. 本発明のレーザ加工装置の他の形態例を示す全体的構成図であるIt is a whole block diagram which shows the other example of a laser processing apparatus of this invention. 本発明のレーザ加工装置の投影光学系終端部の液体浸漬循環機構の断面図である。It is sectional drawing of the liquid immersion circulation mechanism of the projection optical system termination | terminus part of the laser processing apparatus of this invention. 本発明のレーザ加工装置のデブリ回収機構の動作説明用の要部断面図である。It is principal part sectional drawing for operation | movement description of the debris collection | recovery mechanism of the laser processing apparatus of this invention. 図5は図4のA−A断面矢視平面図である。5 is a plan view taken along the line AA in FIG. 従来のレーザ加工装置の1形態例を示す概略の構成図である。It is a schematic block diagram which shows one example of a conventional laser processing apparatus.

符号の説明Explanation of symbols

1・・・XYステージ、2・・・基板、3・・・液体(水)、4・・・投影光学系終端部兼液浸循環機構(デブリ回収部)、5・・・液体供給口、6・・・液体排出口、7・・・投影レンズユニット、8・・・マスク又は可変アパーチャー、9・・・平均化光学系、9a・・・ホモジナイズ光学系、10・・・ミラー、11・・・ガスレーザ発振器、12・・・デブリ、13・・・供給路、14・・・排出路、15・・・液浸循環型ガスレーザ加工装置、16・・・レーザ光、17・・・レーザビーム、18、19、20、21(終端レンズ)・・・光学投影レンズ群、22・・・透明樹脂層、23・・・開口部、24・・・液浸部、25・・・固体レーザ発振器、26・・・ガルバノミラー   DESCRIPTION OF SYMBOLS 1 ... XY stage, 2 ... Board | substrate, 3 ... Liquid (water), 4 ... Projection optical system termination | terminus part and immersion circulation mechanism (debris collection | recovery part), 5 ... Liquid supply port, 6 ... liquid discharge port, 7 ... projection lens unit, 8 ... mask or variable aperture, 9 ... averaging optical system, 9a ... homogenizing optical system, 10 ... mirror, 11. ..Gas laser oscillator, 12 ... debris, 13 ... supply path, 14 ... discharge path, 15 ... immersion circulation type gas laser processing apparatus, 16 ... laser beam, 17 ... laser beam , 18, 19, 20, 21 (terminal lens): optical projection lens group, 22: transparent resin layer, 23 ... opening, 24 ... liquid immersion part, 25 ... solid laser oscillator 26 ... Galvano mirror

Claims (8)

被加工対象物上に形成される透明樹脂層樹脂層・金属層などのパターニング加工時のレーザ光の照射で発生するデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを除去回収するレーザ加工装置に於いて、前記被加工対象物の上方より前記レーザ光を照射すると共に該被加工対象物の上部に配設させたデブリ回収手段と、
前記デブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、
を具備し、前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させてデブリを吸収回収する様にしたことを特徴とするレーザ加工装置。
In a laser processing device that removes and collects microparticles such as debris, dross, mist, and fumes generated by laser light irradiation during patterning of transparent resin layers, resin layers, and metal layers formed on the workpiece. And debris recovery means that irradiates the laser beam from above the workpiece and is disposed on top of the workpiece.
Liquid passing means for passing liquid between the projection optical system terminal portion disposed in the debris collecting means and the processing surface of the workpiece;
The laser processing apparatus is characterized in that the processing surface of the processing object is locally immersed in the liquid to absorb and recover debris.
被加工対象物上に形成される透明樹脂層・樹脂層・金属層などのパターニング加工時のレーザ光の照射で発生するデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを除去回収するレーザ加工方法に於いて、
前記被加工対象物の上方より前記レーザ光を照射すると共に該被加工対象物の上部に配設させたデブリ回収手段と、
前記デブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、
を具備し、
前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたことを特徴とするレーザ加工方法。
A laser processing method that removes and collects microparticles such as debris, dross, mist, and fumes generated by laser light irradiation during patterning of transparent resin layers, resin layers, metal layers, etc. formed on the workpiece. In
Debris collection means for irradiating the laser beam from above the workpiece and disposing the laser beam on the workpiece;
Liquid passing means for passing liquid between the projection optical system terminal portion disposed in the debris collecting means and the processing surface of the workpiece;
Comprising
A laser processing method characterized by absorbing and collecting minute particles such as debris, dross, mist, and fume by locally immersing the processing surface of the processing object with the liquid.
被加工対象物上に形成される透明樹脂層・樹脂層・金属層などのパターニング加工時のレーザ光の照射で発生するデブリを除去回収するデブリ回収装置に於いて、
前記被加工対象物の上方より前記レーザ光を照射すると共に該被加工対象物の上部に配設させたデブリ回収手段と、前記デブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、
前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させてデブリを吸収回収する様にしたことを特徴とするデブリ回収装置。
In a debris collection device that removes and collects debris generated by laser light irradiation during patterning of transparent resin layers, resin layers, metal layers, etc. formed on the workpiece,
The laser beam is irradiated from above the object to be processed and the debris collecting means disposed above the object to be processed, the projection optical system terminal section disposed in the debris collecting means, and the object to be processed Liquid passing means for passing liquid between the workpiece surfaces of the workpiece;
A debris collection apparatus, wherein the work surface of the work object is locally immersed in the liquid to absorb and collect debris.
被加工対象物上に形成される透明樹脂層・樹脂層・金属層などのパターニング加工時のレーザ光の照射で発生するデブリを除去回収するデブリ回収方法に於いて、
前記被加工対象物の上方より前記レーザ光を照射すると共に該被加工対象物の上部に配設させたデブリ回収手段と、
前記デブリ回収手段内に配設された投影光学系終端部と前記被加工対象物の被加工面間に液体を送通させる液体送通手段と、を具備し、
前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させてデブリ・ドロス・ミスト・ヒュームなどの微小パーティクルを吸収回収する様にしたことを特徴とするデブリ回収方法。
In a debris collection method for removing and collecting debris generated by laser light irradiation during patterning processing of a transparent resin layer, resin layer, metal layer, etc. formed on a workpiece,
Debris collection means for irradiating the laser beam from above the workpiece and disposing the laser beam on the workpiece;
A liquid sending means for sending a liquid between a projection optical system terminal portion disposed in the debris collecting means and a work surface of the work object;
A debris collection method characterized by absorbing and collecting fine particles such as debris, dross, mist, and fume by locally immersing the work surface of the work object with the liquid.
前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させる局所的部分が前記レーザ照射面の局所部であることを特徴とする請求項1記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein a local portion where the processing surface of the processing object is locally immersed by the liquid is a local portion of the laser irradiation surface. 前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させる局所的部分が前記レーザ照射面の局所部であることを特徴とする請求項2記載のレーザ加工方法。   The laser processing method according to claim 2, wherein a local portion where the processing surface of the processing object is locally immersed by the liquid is a local portion of the laser irradiation surface. 前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させる局所的部分が前記レーザ照射面の局所部であることを特徴とする請求項3記載のデブリ回収装置。   4. The debris collection apparatus according to claim 3, wherein a local portion where the processing surface of the processing object is locally immersed by the liquid is a local portion of the laser irradiation surface. 前記被加工対象物の前記被加工面を前記液体によって局部的に浸漬させる局所的部分が前記レーザ照射面の局所部であることを特徴とする請求項4記載のデブリ回収方法。   The debris collection method according to claim 4, wherein a local portion where the processing surface of the processing object is locally immersed by the liquid is a local portion of the laser irradiation surface.
JP2005214682A 2005-07-25 2005-07-25 Apparatus and method for laser beam machining, and apparatus and method for collecting debris Pending JP2007029973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214682A JP2007029973A (en) 2005-07-25 2005-07-25 Apparatus and method for laser beam machining, and apparatus and method for collecting debris

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214682A JP2007029973A (en) 2005-07-25 2005-07-25 Apparatus and method for laser beam machining, and apparatus and method for collecting debris

Publications (1)

Publication Number Publication Date
JP2007029973A true JP2007029973A (en) 2007-02-08

Family

ID=37789863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214682A Pending JP2007029973A (en) 2005-07-25 2005-07-25 Apparatus and method for laser beam machining, and apparatus and method for collecting debris

Country Status (1)

Country Link
JP (1) JP2007029973A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253499A (en) * 2009-04-23 2010-11-11 Disco Abrasive Syst Ltd Laser beam processing machine
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
JP2011121061A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Method and apparatus for laser beam machining
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
JP2012152788A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Laser processing method and laser processing system
JP2012245534A (en) * 2011-05-26 2012-12-13 Disco Corp Laser beam machining apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN103008885A (en) * 2012-12-31 2013-04-03 宁波市埃美仪表制造有限公司 Laser marking machine and laser engraving method thereof
WO2013111677A1 (en) * 2012-01-24 2013-08-01 澁谷工業株式会社 Laser processing device
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
JP2014033024A (en) * 2012-08-01 2014-02-20 Tokyo Seimitsu Co Ltd Laser dicing device and method and wafer processing method
JP2014126687A (en) * 2012-12-26 2014-07-07 Mitsubishi Cable Ind Ltd Optical fiber structure and manufacturing method for the same
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8902399B2 (en) 2004-10-05 2014-12-02 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
JP2015155105A (en) * 2014-02-20 2015-08-27 株式会社東芝 Laser processing device and method
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
JP2016036818A (en) * 2014-08-06 2016-03-22 株式会社ディスコ Laser processing device
WO2016084875A1 (en) * 2014-11-28 2016-06-02 株式会社トヨコー Laser irradiation device and surface treatment method
JP2016189491A (en) * 2016-08-03 2016-11-04 株式会社東京精密 Laser dicing device and method
JP2016195265A (en) * 2016-06-20 2016-11-17 株式会社東京精密 Laser dicing device and method
JP2016213056A (en) * 2015-05-08 2016-12-15 日本電気硝子株式会社 Production method of substrate having transparent conductive film
JP2017059843A (en) * 2016-11-16 2017-03-23 株式会社東京精密 Laser dicing device and method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
CN109676259A (en) * 2017-10-19 2019-04-26 株式会社迪思科 Laser processing device
JP2019217523A (en) * 2018-06-19 2019-12-26 株式会社ディスコ Laser processing device
JP2020157341A (en) * 2019-03-27 2020-10-01 株式会社オーク製作所 Dust collector and laser processor
KR20200130993A (en) * 2019-05-13 2020-11-23 디아이티 주식회사 System and method for treating the surface of semiconductor device
CN112570386A (en) * 2020-12-09 2021-03-30 云南电网有限责任公司临沧供电局 Microgravity environment dust-free laser cleaning device and method
EP3922742A1 (en) * 2020-06-10 2021-12-15 A&H Japan Corporation Method for recovering valuables
KR20220087214A (en) * 2020-12-17 2022-06-24 충남대학교산학협력단 Patterning method of electrode having metal nanowire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282194U (en) * 1985-11-08 1987-05-26
JPH07185844A (en) * 1993-12-28 1995-07-25 Ebara Corp Method and device for machining by laser beam
JPH09141480A (en) * 1995-11-20 1997-06-03 Sumitomo Heavy Ind Ltd Ablation machining method
JP2003245791A (en) * 2002-02-25 2003-09-02 Sony Corp Laser beam machining device and laser beam machining method
JP2004167590A (en) * 2002-11-22 2004-06-17 Tokyo Electron Ltd Machining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282194U (en) * 1985-11-08 1987-05-26
JPH07185844A (en) * 1993-12-28 1995-07-25 Ebara Corp Method and device for machining by laser beam
JPH09141480A (en) * 1995-11-20 1997-06-03 Sumitomo Heavy Ind Ltd Ablation machining method
JP2003245791A (en) * 2002-02-25 2003-09-02 Sony Corp Laser beam machining device and laser beam machining method
JP2004167590A (en) * 2002-11-22 2004-06-17 Tokyo Electron Ltd Machining apparatus

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902399B2 (en) 2004-10-05 2014-12-02 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010253499A (en) * 2009-04-23 2010-11-11 Disco Abrasive Syst Ltd Laser beam processing machine
JP2011121061A (en) * 2009-12-08 2011-06-23 Mitsubishi Electric Corp Method and apparatus for laser beam machining
JP2012152788A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Laser processing method and laser processing system
JP2012245534A (en) * 2011-05-26 2012-12-13 Disco Corp Laser beam machining apparatus
JP2013150995A (en) * 2012-01-24 2013-08-08 Shibuya Kogyo Co Ltd Laser processing device
WO2013111677A1 (en) * 2012-01-24 2013-08-01 澁谷工業株式会社 Laser processing device
JP2014033024A (en) * 2012-08-01 2014-02-20 Tokyo Seimitsu Co Ltd Laser dicing device and method and wafer processing method
JP2014126687A (en) * 2012-12-26 2014-07-07 Mitsubishi Cable Ind Ltd Optical fiber structure and manufacturing method for the same
CN103008885A (en) * 2012-12-31 2013-04-03 宁波市埃美仪表制造有限公司 Laser marking machine and laser engraving method thereof
JP2015155105A (en) * 2014-02-20 2015-08-27 株式会社東芝 Laser processing device and method
JP2016036818A (en) * 2014-08-06 2016-03-22 株式会社ディスコ Laser processing device
JP2016101596A (en) * 2014-11-28 2016-06-02 株式会社トヨコー Laser irradiation device and surface treatment method
WO2016084875A1 (en) * 2014-11-28 2016-06-02 株式会社トヨコー Laser irradiation device and surface treatment method
JP2016213056A (en) * 2015-05-08 2016-12-15 日本電気硝子株式会社 Production method of substrate having transparent conductive film
JP2016195265A (en) * 2016-06-20 2016-11-17 株式会社東京精密 Laser dicing device and method
JP2016189491A (en) * 2016-08-03 2016-11-04 株式会社東京精密 Laser dicing device and method
JP2017059843A (en) * 2016-11-16 2017-03-23 株式会社東京精密 Laser dicing device and method
CN109676259A (en) * 2017-10-19 2019-04-26 株式会社迪思科 Laser processing device
JP2019217523A (en) * 2018-06-19 2019-12-26 株式会社ディスコ Laser processing device
JP2020157341A (en) * 2019-03-27 2020-10-01 株式会社オーク製作所 Dust collector and laser processor
JP7224992B2 (en) 2019-03-27 2023-02-20 株式会社オーク製作所 Dust collector and laser processing equipment
KR20200130993A (en) * 2019-05-13 2020-11-23 디아이티 주식회사 System and method for treating the surface of semiconductor device
KR102225208B1 (en) 2019-05-13 2021-03-09 디아이티 주식회사 System and method for treating the surface of semiconductor device
EP3922742A1 (en) * 2020-06-10 2021-12-15 A&H Japan Corporation Method for recovering valuables
US20210388461A1 (en) * 2020-06-10 2021-12-16 A&H Japan Corporation Method for recovering valuables
TWI765719B (en) * 2020-06-10 2022-05-21 日商A和H日本股份有限公司 Method for recovering valuables
AU2021203602B2 (en) * 2020-06-10 2022-12-08 A&H Japan Corporation Method for recovering valuables
CN112570386A (en) * 2020-12-09 2021-03-30 云南电网有限责任公司临沧供电局 Microgravity environment dust-free laser cleaning device and method
KR20220087214A (en) * 2020-12-17 2022-06-24 충남대학교산학협력단 Patterning method of electrode having metal nanowire
KR102487098B1 (en) * 2020-12-17 2023-01-09 충남대학교산학협력단 Patterning method of electrode having metal nanowire

Similar Documents

Publication Publication Date Title
JP2007029973A (en) Apparatus and method for laser beam machining, and apparatus and method for collecting debris
US8809732B2 (en) Process and apparatus for ablation
JP5008849B2 (en) Laser processing method and manufacturing method of display device having transparent resin layer
TWI391200B (en) Laser processing apparatus
US8564759B2 (en) Apparatus and method for immersion lithography
US7921859B2 (en) Method and apparatus for an in-situ ultraviolet cleaning tool
KR101461437B1 (en) cleaning apparatus of photomask and cleaning method thereby
JP4861609B2 (en) Method and apparatus for removing organic substances
JP2022189840A (en) Photomask pellicle glue residue removal
JP3932930B2 (en) Laser processing apparatus and laser processing method
JP2000126704A (en) Method and apparatus for cleaning optical element
JP2004103991A (en) Surface cleaning device and surface cleaning method
JP2003303800A (en) Surface-cleaning equipment and surface-cleaning method
JP4292389B2 (en) Foreign matter removal method and foreign matter removal device
JP7038004B2 (en) Cleaning method and cleaning equipment for optical components
JP2010021370A (en) Immersion exposure equipment and method of manufacturing device
US10898932B2 (en) Method and apparatus for cleaning a substrate and computer program product
JP2013091069A (en) Apparatus and method for laser machining
TW202020551A (en) Photomask laser etch
GB2438527A (en) Laser processing apparatus,laser processing head and laser processing method
Lee et al. The dry laser cleaning of photoresist residues on Si and ITO substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106