JP4043841B2 - Manufacturing method of resin-coated optical fiber and apparatus used therefor - Google Patents

Manufacturing method of resin-coated optical fiber and apparatus used therefor Download PDF

Info

Publication number
JP4043841B2
JP4043841B2 JP2002148420A JP2002148420A JP4043841B2 JP 4043841 B2 JP4043841 B2 JP 4043841B2 JP 2002148420 A JP2002148420 A JP 2002148420A JP 2002148420 A JP2002148420 A JP 2002148420A JP 4043841 B2 JP4043841 B2 JP 4043841B2
Authority
JP
Japan
Prior art keywords
optical fiber
resin
die
coating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002148420A
Other languages
Japanese (ja)
Other versions
JP2003342043A (en
Inventor
吉之 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002148420A priority Critical patent/JP4043841B2/en
Publication of JP2003342043A publication Critical patent/JP2003342043A/en
Application granted granted Critical
Publication of JP4043841B2 publication Critical patent/JP4043841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は線引されたガラスファイバに高速で紫外線硬化樹脂等を被覆して、樹脂被覆光ファイバを製造しうる方法とそれに使用される光ファイバの樹脂被覆塗布装置に関するものである。
【0002】
【従来の技術】
光ファイバ樹脂被覆の工程の一例を図2に従って説明する。(なお、以下に言及する図面において同符号は同じものを示す。)光ファイバ母材8を加熱炉9で加熱溶融し、所定の外径寸法に線引した光ファイバガラス11の外周に一次被覆ダイス12で紫外線硬化型等から成る樹脂を塗布した後、紫外線照射装置13において紫外線照射をすることで一次被覆層を形成する。次いで一次被覆層を形成した光ファイバの外周に二次被覆ダイス15で紫外線硬化型等から成る樹脂を塗布した後、紫外線照射装置16において紫外線照射を受けることで二次被覆層を形成する。図2において、10及び14はHe冷却筒でありダイスに入るファイバの表面温度を調整することでダイス樹脂塗布量を調整し所定の外径を形成する。二次被覆層を形成した光ファイバはキャプスタン17で引取られリール18に巻き取られる。
【0003】
ところで近年光ファイバの生産性向上を目的に光ファイバの線引速度が急速に高速化されている。
その結果、以下に述べるような従来の光ファイバの線引では生じなかった新たな問題が生じるようになった。
図3に示す従来の樹脂被覆ダイス32は樹脂投入部6と溜まり部の樹脂7とファイバ導入部5で構成される。樹脂被覆される光ファイバ心線1はファイバ導入部5を通り、樹脂7中を通り、ダイス32の下部からひき出される。しかし、光ファイバ心線1の線引速度の高速化が進むにつれて、図4のように光ファイバ心線がダイス内の樹脂に挿入される部分の樹脂メニスカス(凹部)33が長くなる。そのためこの長いメニスカス面から空気が樹脂に巻き込まれ気泡となり良好な被覆層が得られないという問題が生じていた。また被覆内に気泡が混入する。その結果被覆された光ファイバ心線の伝送損失が悪化し、特に温度サイクル(-60℃〜+85℃)における低温領域での伝送損失が増大することが避けられなかった。
【0004】
これまで上記問題を解決するために、ダイスの温度及びダイス内の樹脂の温度を上げて樹脂の粘性を下げて光ファイバがダイス内の樹脂に挿入される部分の樹脂メニスカスを短くする手法がある。しかし粘性を下げた場合にダイス上部から樹脂が溢れ出し被覆異常が発生する問題がある。
またダイス上に接触した密閉パージ筒を設け、この中に低動粘性のガスを流し、ダイス内に空気が樹脂に巻き込まれないようにする手法が提案されている。しかし、この手法では、ガスが直接ファイバに当たり線振れが生じ、ダイス内のファイバが不安定となり樹脂溢れを生じる問題がある。また線振れによりダイス上部のファイバ導入部の孔壁に心線ファイバ接触することが起きた。そのためファイバ強度の低下の問題が発生した。
【0005】
【発明が解決しようとする課題】
したがって本発明の目的は、上記の従来の問題を克服し線引速度を高速化しうる樹脂被覆光ファイバの製造方法を提供することである。
また、本発明は上記の樹脂被覆光ファイバの高速線引による製造が可能な樹脂被覆光ファイバ製造方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は上記課題は以下の手段により達成された。
すなわち本発明は
(1)液状の樹脂を供給する光ファイバ樹脂塗布ダイスを用いて、樹脂被覆を行うに当り、光ファイバ心線の導入孔を有するダイスの上面に、光ファイバ心線の導入孔を底部に、開放口を上部に設けた凹部を設け、前記凹部に空気より重い低動粘性ガスを前記光ファイバ心線を周回するように吹込み、前記浴槽状凹部内を低動粘性ガス濃度75vol%以上97vol%以下に保つことを特徴とする樹脂被覆光ファイバの製造方
を提供するものである。
【0007】
【発明の実施の形態】
本発明において用いられる光ファイバの被覆方法によれば、ダイス上面の浴槽にCOガスなどの低動粘性ガスをファイバに直接当てないで流すことで光ファイバ心線の線振れを防止できる。また、低動粘性ガスが浴槽に溜まることによりダイス上部のファイバ導入部への空気の巻込みを防ぐことができる。ガスは線引中常時ダイス浴槽へ供給され、その結果空気が樹脂内に巻き込まれて気泡となることがない。そのため良好な被覆層を得ることができる。低動粘性ガスは0から50℃における動粘性率が好ましくは11.0×10-6以下、より好ましくは10.0×10-6(m2/s)以下であり、空気より重いガスであることが望ましい。このような低動粘性ガスは、上記のCOガスの他、フッ化炭化水素〔フレオン11(デュポン社製、商品名)やフレオン21(デュポン社製、商品名)〕、フッ素などがあげられる。
本発明に用いられる液状の樹脂を加圧供給する光ファイバ樹脂塗布ダイスにおいて、ダイス上面が開放口を上部に設けた断面浴槽状凹部を有している。その底面中心を光ファイバ心線が下方に貫通する。貫通した光ファイバ心線は被覆用樹脂液中に導入される。上記浴槽状凹部には低動粘性のガスを流す配管を設置出来る。接続された低動粘性ガスの出口は、ファイバに直接ガスが当たらないように適当な方向、場所に設置する。
【0008】
次に本発明の樹脂被覆光ファイバ製造装置の好ましい例を図面に参照して説明する。
本発明においては、前記図2の光ファイバ樹脂塗布ダイスとして12又は15の代わりに特別の樹脂塗布ダイスを用いる。この点以外は従来の樹脂被覆光ファイバ製造装置と同様のものでよい。
【0009】
図1は本発明に用いられる光ファイバ樹脂塗布ダイスの説明図であって(A)は断面図、(B)は平面図である。図中、1は光ファイバ心線、2は塗布ダイスであり、ダイスは樹脂投入部6と加圧供給された樹脂溜まり部7とファイバ導入部5から構成されている。ダイスファイバ導入部5の上部は配管4から流出される低動粘性ガスを溜めることができる浴槽状凹部3となっている。ダイス上部の浴槽状凹部の壁の高さは限定が無く出きるだけ高いほうが良い。本発明において浴槽状凹部の断面形状は特に制限はない。図示の2段式のものに限定されず、段部のない形状でもよく、またすりばち状でなく底部と上部開放口とが同径でもよい。
いずれにしても本発明の構造はダイス上が開放系でダイス上に筒を設ける必要がない。
図1(B)において4aは低動粘性ガスの流れを示す。低動粘性ガスはファイバ導入部5を通る光ファイバ心線1を周回する。
また本発明においては、光ファイバ心線とは、光ファイバ裸線の外、一次樹脂被覆後の二次被覆を施す前のファイバをいう。
【0010】
次に本発明を実施例に基づきさらに詳細に説明する。
【0011】
【実施例】
上記図1(A)(B)に構成された光ファイバの塗布ダイス2を、ダイス12、15の代りに用いた以外は図2に示す工程で石英系ガラスの光ファイバ母材を2000℃に加熱溶融して線引速度1000m/min 直径 0.125mmの光ファイバ心線1を引き取り、一次、二次樹脂被覆を施して外径245μmの光ファイバを線引製造した。
【0012】
なお用いた樹脂は次の通りである。
一次被覆樹脂 UV樹脂、JSR社製 厚さ 35μm
二次被覆樹脂 UV樹脂、JSR社製 厚さ 25μm
線引速度を一定として、ダイス浴槽状凹部3に溜まる低動粘性ガスの濃度(vol%)を変えて、被覆ファイバ1mに含まれる気泡の数を調査した結果を表1に示す。
【0013】
【表1】

Figure 0004043841
【0014】
表1に示した結果から明らかなように本発明の装置を用いて低動粘性ガスを浴槽にためることで空気が樹脂内に巻き込まれて気泡となることがなく良好な被覆層を得ることができる。さらに上記結果から浴槽内に溜まったガスの濃度は75vol%以上97vol%以下に保つことが好ましいことが分かる。
【0015】
【発明の効果】
本発明によれば光ファイバの樹脂被覆を高速線引き下で行うことができ、樹脂被覆光ファイバの生産性を高めることができる。さらに、ファイバがダイス上部のファイバ導入部からの空気の巻き込みを防止でき被覆中に気泡がない良好な被覆層を得ることができる。
また、接続された低動粘性ガスの出口がファイバに、直接、ガスが当たらないことにより線振れによるダイス上部のファイバ導入部へのファイバ接触によるファイバの弱強度化を防止することができる。
【図面の簡単な説明】
【図1】本発明に用いられる光ファイバ被覆樹脂塗布ダイスの好ましい一実施態様を示す断面図である。
【図2】従来の光ファイバの被覆方法の一般的な工程を示す説明図である。
【図3】従来の光ファイバ樹脂塗布ダイスを示す図である。
【図4】ダイス内樹脂のメニスカス現象の発生を示す図である。
【符号の説明】
1 光ファイバ心線
2 ダイス
3 ダイス上面浴槽状凹部
4 低動粘性ガス噴出し配管
4a 低動粘性ガス流
5 ファイバ導入部
6 樹脂投入口
7 貯留樹脂
8 光ファイバ母材
9 加熱炉
10 ファイバ冷却筒
11 光ファイバガラス
12 一次被覆ダイス
13 紫外線照射装置
14 一次被覆ファイバ冷却筒
15 二次被覆ダイス
16 紫外線照射装置
17 キャプスタン
18 リール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a resin-coated optical fiber by coating a drawn glass fiber with an ultraviolet curable resin at a high speed and an optical fiber resin coating and coating apparatus used therefor.
[0002]
[Prior art]
An example of the optical fiber resin coating process will be described with reference to FIG. (In the drawings referred to below, the same reference numerals indicate the same thing.) The optical fiber preform 8 is heated and melted in a heating furnace 9, and the outer periphery of the optical fiber glass 11 drawn to a predetermined outer diameter is primary coated. After a resin made of an ultraviolet curing type or the like is applied with the die 12, the primary coating layer is formed by irradiating with ultraviolet rays in the ultraviolet irradiation device 13. Next, after a resin such as an ultraviolet curing type is applied to the outer periphery of the optical fiber on which the primary coating layer has been formed with the secondary coating die 15, the secondary coating layer is formed by receiving ultraviolet irradiation in the ultraviolet irradiation device 16. In FIG. 2, reference numerals 10 and 14 denote He cooling cylinders, which adjust the surface temperature of the fiber entering the die to adjust the die resin coating amount to form a predetermined outer diameter. The optical fiber on which the secondary coating layer is formed is taken up by the capstan 17 and wound on the reel 18.
[0003]
Incidentally, in recent years, the drawing speed of optical fibers has been rapidly increased for the purpose of improving the productivity of optical fibers.
As a result, a new problem that has not occurred in the conventional optical fiber drawing as described below has arisen.
A conventional resin-coated die 32 shown in FIG. 3 includes a resin charging portion 6, a reservoir portion resin 7, and a fiber introducing portion 5. The optical fiber core wire 1 to be coated with resin passes through the fiber introducing portion 5, passes through the resin 7, and is pulled out from the lower portion of the die 32. However, as the drawing speed of the optical fiber core 1 increases, the resin meniscus (concave portion) 33 where the optical fiber core wire is inserted into the resin in the die becomes longer as shown in FIG. For this reason, there has been a problem in that air is entrained from the long meniscus surface to form bubbles and a good coating layer cannot be obtained. Air bubbles are mixed in the coating. As a result, the transmission loss of the coated optical fiber was deteriorated, and it was inevitable that the transmission loss increased particularly in the low temperature region in the temperature cycle (-60 ° C to + 85 ° C).
[0004]
In order to solve the above problem, there is a method of shortening the resin meniscus of the portion where the optical fiber is inserted into the resin in the die by increasing the temperature of the die and the temperature of the resin in the die to reduce the viscosity of the resin. . However, when the viscosity is lowered, there is a problem that the resin overflows from the upper part of the die and a coating abnormality occurs.
Also, a method has been proposed in which a closed purge cylinder in contact with the die is provided, and a low kinematic viscosity gas is allowed to flow through the die to prevent air from being caught in the resin. However, in this method, there is a problem that the gas directly hits the fiber and a line fluctuation occurs, the fiber in the die becomes unstable and the resin overflows. In addition, the core fiber contacted the hole wall of the fiber introduction part at the top of the die due to line runout. As a result, the problem of a decrease in fiber strength occurred.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a resin-coated optical fiber that can overcome the above-described conventional problems and increase the drawing speed.
Another object of the present invention is to provide a resin-coated optical fiber manufacturing method capable of manufacturing the resin-coated optical fiber by high-speed drawing.
[0006]
[Means for Solving the Problems]
The present invention has achieved the above-described object by the following means.
That is, according to the present invention, (1) when an optical fiber resin coating die for supplying a liquid resin is used for resin coating, an optical fiber core wire introduction hole is formed on the upper surface of a die having an optical fiber core wire introduction hole. the bottom of the recess having a mouth opening at the top is provided, before Ki凹 portion heavy low dynamic viscosity gas than air so as to surround the optical fiber in the blow, the pre-Symbol tub-shaped inner recess low is to provide a manufacturing how <br/> of the resin-coated optical fiber, characterized in that to keep the kinematic viscosity gas concentration 75 vol% or more 97 vol% or less.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
According to the coating method of the optical fiber used in the present invention, it is possible to prevent the fiber shake of the optical fiber core wire by flowing a low dynamic viscosity gas such as CO 2 gas directly on the fiber in the bathtub on the upper surface of the die. Moreover, it is possible to prevent air from being entrained in the fiber introduction part at the top of the die by collecting the low dynamic viscosity gas in the bathtub. Gas is always supplied to the die bath during drawing, so that air is not entrained in the resin and becomes bubbles. Therefore, a good coating layer can be obtained. The low kinematic gas has a kinematic viscosity at 0 to 50 ° C., preferably 11.0 × 10 −6 or less, more preferably 10.0 × 10 −6 (m 2 / s) or less, and is preferably a gas heavier than air. . Examples of such a low kinematic viscosity gas include fluorinated hydrocarbons [Freon 11 (manufactured by DuPont, trade name)], Freon 21 (manufactured by DuPont, trade name)], fluorine, and the like, in addition to the above-described CO 2 gas. .
In the optical fiber resin-coated die for pressurizing and supplying the liquid resin used in the present invention, the upper surface of the die has a cross-sectional bathtub-shaped concave portion provided with an opening at the top . The optical fiber core wire passes through the bottom center downward. The penetrated optical fiber core wire is introduced into the coating resin liquid. A pipe through which a low kinematic viscosity gas flows can be installed in the bathtub-shaped recess. Connect the outlet of the low-viscosity gas connected in an appropriate direction and place so that the gas does not directly hit the fiber.
[0008]
Next, a preferred example of the resin-coated optical fiber manufacturing apparatus of the present invention will be described with reference to the drawings.
In the present invention, a special resin coating die is used instead of 12 or 15 as the optical fiber resin coating die of FIG. Except this point, it may be the same as the conventional resin-coated optical fiber manufacturing apparatus.
[0009]
FIG. 1 is an explanatory view of an optical fiber resin coating die used in the present invention, in which (A) is a cross-sectional view and (B) is a plan view. In the figure, 1 is an optical fiber core wire, 2 is a coating die, and the die is composed of a resin charging part 6, a pressurized resin reservoir part 7 and a fiber introducing part 5. The upper part of the dice fiber introduction part 5 is a bathtub-shaped recess 3 in which low dynamic viscosity gas flowing out from the pipe 4 can be stored. There is no limitation on the height of the wall of the bathtub-shaped recess at the top of the die, and it should be as high as possible. In the present invention, the sectional shape of the bathtub-shaped recess is not particularly limited. The shape is not limited to the two-stage type shown in the figure, and may have a shape without a stepped portion, or may have a shape having a same diameter between the bottom portion and the upper opening , instead of a slab shape.
In any case, the structure of the present invention is an open system on the die, and there is no need to provide a cylinder on the die.
In FIG. 1 (B), 4a shows the flow of low dynamic viscosity gas. The low dynamic viscosity gas circulates in the optical fiber core wire 1 passing through the fiber introduction portion 5.
Moreover, in this invention, an optical fiber core wire means the fiber before giving the secondary coating after a primary resin coating in addition to a bare optical fiber.
[0010]
Next, the present invention will be described in more detail based on examples.
[0011]
【Example】
2A and 2B except that the optical fiber coating die 2 constructed as shown in FIGS. 1A and 1B is used in place of the dies 12 and 15, the optical fiber preform made of silica glass is heated to 2000 ° C. in the process shown in FIG. An optical fiber core wire 1 having a drawing speed of 1000 m / min and a diameter of 0.125 mm was drawn by heating and melting, and primary and secondary resin coatings were applied to produce an optical fiber having an outer diameter of 245 μm.
[0012]
The resins used are as follows.
Primary coating resin UV resin, JSR, thickness 35μm
Secondary coating resin UV resin, JSR, thickness 25μm
Table 1 shows the results of investigating the number of bubbles contained in 1 m of the coated fiber while changing the concentration (vol%) of the low kinematic viscosity gas accumulated in the die bath-shaped recess 3 while keeping the drawing speed constant.
[0013]
[Table 1]
Figure 0004043841
[0014]
As is clear from the results shown in Table 1, by using the apparatus of the present invention to accumulate a low kinematic viscosity gas in a bathtub, it is possible to obtain a good coating layer without air being entrained in the resin and forming bubbles. it can. Furthermore, it can be seen from the above results that the concentration of the gas accumulated in the bathtub is preferably maintained at 75 vol% or more and 97 vol% or less.
[0015]
【The invention's effect】
According to the present invention, resin coating of an optical fiber can be performed under high-speed drawing, and the productivity of the resin-coated optical fiber can be increased. In addition, it is possible to prevent the entrainment of air from the fiber introduction part above the die and to obtain a good coating layer without bubbles in the coating.
In addition, since the gas outlet does not directly hit the fiber at the outlet of the connected low dynamic viscosity gas, it is possible to prevent weakening of the fiber due to the fiber contact with the fiber introduction portion at the top of the die due to line runout.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a preferred embodiment of an optical fiber coating resin coating die used in the present invention.
FIG. 2 is an explanatory view showing a general process of a conventional optical fiber coating method.
FIG. 3 is a view showing a conventional optical fiber resin-coated die.
FIG. 4 is a diagram showing the occurrence of a meniscus phenomenon of resin in a die.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical fiber core wire 2 Dies 3 Dice upper surface bathtub-shaped recessed part 4 Low dynamic viscosity gas ejection piping 4a Low dynamic viscosity gas flow 5 Fiber introduction part 6 Resin inlet 7 Storage resin 8 Optical fiber preform 9 Heating furnace 10 Fiber cooling cylinder 11 Optical fiber glass 12 Primary coating die 13 Ultraviolet irradiation device 14 Primary coating fiber cooling cylinder 15 Secondary coating die 16 Ultraviolet irradiation device 17 Capstan 18 Reel

Claims (1)

液状の樹脂を供給する光ファイバ樹脂塗布ダイスを用いて、樹脂被覆を行うに当り、光ファイバ心線の導入孔を有するダイスの上面に、光ファイバ心線の導入孔を底部に、開放口を上部に設けた凹部を設け、前記凹部に空気より重い低動粘性ガスを前記光ファイバ心線を周回するように吹込み、前記浴槽状凹部内を低動粘性ガス濃度75vol%以上97vol%以下に保つことを特徴とする樹脂被覆光ファイバの製造方法 When performing resin coating using an optical fiber resin coating die for supplying a liquid resin, the optical fiber core wire introduction hole is at the bottom, and the opening is formed on the top surface of the die having the optical fiber core wire introduction hole. the concave portion provided on the top is provided, a heavy low dynamic viscosity gas than air blow so as to surround the optical fiber, low dynamic viscosity gas concentration 75 vol% or more of the previous SL tub-shaped internal recess before Ki凹 portion A method for producing a resin-coated optical fiber, which is maintained at 97 vol% or less .
JP2002148420A 2002-05-22 2002-05-22 Manufacturing method of resin-coated optical fiber and apparatus used therefor Expired - Fee Related JP4043841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148420A JP4043841B2 (en) 2002-05-22 2002-05-22 Manufacturing method of resin-coated optical fiber and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148420A JP4043841B2 (en) 2002-05-22 2002-05-22 Manufacturing method of resin-coated optical fiber and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2003342043A JP2003342043A (en) 2003-12-03
JP4043841B2 true JP4043841B2 (en) 2008-02-06

Family

ID=29766976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148420A Expired - Fee Related JP4043841B2 (en) 2002-05-22 2002-05-22 Manufacturing method of resin-coated optical fiber and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4043841B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386148B2 (en) * 2008-11-05 2014-01-15 株式会社フジクラ Manufacturing method and manufacturing apparatus for optical fiber
CN102272063B (en) 2009-04-16 2014-03-12 株式会社藤仓 Method for manufacturing optical fiber wire
US10036108B2 (en) * 2013-11-26 2018-07-31 Corning Incorporated Apparatus and method for applications of optical fiber coatings
US11661375B2 (en) 2020-05-20 2023-05-30 Lawrence Livermore National Security, Llc Applying protective coatings to optical fibers

Also Published As

Publication number Publication date
JP2003342043A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JPS59131546A (en) Manufacture of coated fiber
US4761168A (en) Optical fiber manufacturing technique
EP0733601B1 (en) Method and apparatus for coating fibers
US6576164B2 (en) Method of cooling an optical fiber while it is being drawn
US4349587A (en) Method for coating fiber waveguides
JPH0647090B2 (en) Fiber coating method and apparatus
CN1232682C (en) Method for spinning spinning solution and spinning head
JP2007197273A (en) Optical fiber strand and production method therefor
JP4043841B2 (en) Manufacturing method of resin-coated optical fiber and apparatus used therefor
US4894078A (en) Method and apparatus for producing optical fiber
CN1494663A (en) Refractive index grating mfg. process
RU2266265C2 (en) Method for drawing of optical fiber
JPH10101360A (en) Method for cooling optical fiber and device therefor
CN205844587U (en) A kind of stranded mould of optical cable core
US20030126890A1 (en) Optical fiber drawing method
JP4550333B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP2002274894A (en) Resin coating device for optical fiber
EP0052007A1 (en) Method of manufacturing glass fibers
CN211056958U (en) Improved 1550 low-loss optical fibre manufacturing equipment
US20040011084A1 (en) Cooling apparatus for high-speed drawing
JP4459858B2 (en) Optical fiber strand manufacturing method and optical fiber strand manufacturing apparatus
JPH11171582A (en) Optical fiber cooler
JPH07121820B2 (en) Optical fiber manufacturing method and device
JPH0699165B2 (en) Optical fiber manufacturing method
AU741579B2 (en) Method and apparatus for coating fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R151 Written notification of patent or utility model registration

Ref document number: 4043841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees