JP4043437B2 - Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor - Google Patents

Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor Download PDF

Info

Publication number
JP4043437B2
JP4043437B2 JP2003435141A JP2003435141A JP4043437B2 JP 4043437 B2 JP4043437 B2 JP 4043437B2 JP 2003435141 A JP2003435141 A JP 2003435141A JP 2003435141 A JP2003435141 A JP 2003435141A JP 4043437 B2 JP4043437 B2 JP 4043437B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
storage tank
water storage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003435141A
Other languages
Japanese (ja)
Other versions
JP2005195185A (en
Inventor
明志 毛笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003435141A priority Critical patent/JP4043437B2/en
Publication of JP2005195185A publication Critical patent/JP2005195185A/en
Application granted granted Critical
Publication of JP4043437B2 publication Critical patent/JP4043437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、家庭内の各温水使用場所への給湯や、ホテル等の各部屋の温水設備への給湯を集中熱源から経済的かつ利便性良く行うための貯湯槽分散設置型給湯システムおよびそれに用いる分散設置型貯湯ユニットに関する。   The present invention relates to a hot water supply system in which hot water is distributed to hot water supply places in a household and hot water supply to hot water facilities in each room of a hotel or the like from a concentrated heat source in an economical and convenient manner and a hot water supply system in which the hot water is distributed. The present invention relates to a distributed hot water storage unit.

従来、集中熱源から分散した給湯需要端へ湯待ち時間無く給湯を行うためには、復管配管を用いた給湯方法が、ホテル等の業務用用途では広く用いられてきた。ただし、家庭用としては、復管配管は配管からの放熱損失が大きくて経済的ではないため、殆ど使用されていない。
それに替わって、家庭用としては、小型の熱源付き貯湯槽を洗面化粧台やシンク下に設置して、給湯栓までの短距離を給湯配管で結ぶことで、湯待ち時間を無くせるようにすることが一部で試行されてきた。以下の文献は、それらの従来例に関するものである。
Conventionally, a hot water supply method using a return pipe has been widely used in business applications such as hotels in order to supply hot water without a waiting time to a hot water supply demand end dispersed from a concentrated heat source. However, for home use, the return pipe is rarely used because it has a large heat dissipation loss from the pipe and is not economical.
Instead, for home use, a small hot water storage tank with a heat source is installed under the bathroom vanity or sink, and the hot water waiting time is eliminated by connecting a short distance to the hot water tap with a hot water supply pipe. Some have been tried. The following documents relate to those conventional examples.

A.第1従来例
給湯機にて加熱された温水を一旦貯湯槽に蓄え、ヒートパイプを用いて保温もしくは加熱した後、温調弁を通して出湯栓から出湯させるように給湯装置が構成されている(特許文献1参照)。
A. First Conventional Example A hot water supply apparatus is configured so that hot water heated by a hot water heater is temporarily stored in a hot water storage tank, and then heated or heated using a heat pipe, and then discharged from a hot water tap through a temperature control valve (patent) Reference 1).

B.第2従来例
ガスまたは電気熱源で加熱される貯湯タンクに出湯管を介して蛇口が接続されて給湯装置が構成されている。貯湯タンクと出湯管とがバイパス管を介して接続され、出湯管内とバイパス管内とで生じる比重差に基づいて、バイパス管内の湯を貯湯タンクに戻す自然循環を起こさせ、出湯管内の湯温を貯湯タンク内の設定温度近くに保つように構成されている(特許文献2参照)。
実開昭64−1350号公報 特開平11−190557号公報
B. Second Conventional Example A hot water supply apparatus is configured by connecting a faucet to a hot water storage tank heated by a gas or an electric heat source via a hot water discharge pipe. The hot water storage tank and the hot water discharge pipe are connected via the bypass pipe. Based on the specific gravity difference between the hot water discharge pipe and the bypass pipe, the hot water in the bypass pipe is returned to the hot water storage tank, and the hot water temperature in the hot water discharge pipe is increased. It is comprised so that it may keep near the preset temperature in a hot water storage tank (refer patent document 2).
Japanese Utility Model Publication No. 64-1350 JP-A-11-190557

しかしながら、上述第1および第2従来例では、即湯性は確保できるものの、貯湯槽(貯湯タンク)に個別に熱源を持っているために、電気熱源ではランニングコストが割高になる問題、ガス熱源では排気筒やガス配管を設置するためのイニシャルコストや施工性の問題があった。   However, in the above-described first and second conventional examples, although the hot water property can be ensured, the hot water storage tank (hot water storage tank) has a separate heat source, so that the running cost of the electric heat source is high, the gas heat source However, there were problems in initial cost and workability for installing exhaust pipes and gas pipes.

また、別の従来例として、図9の全体概略構成図に示すような熱源機と集中貯湯槽からなる復管配管給湯システムもあった。
この従来例では、熱源01と貯湯槽02とが、第1の循環ポンプ03を介装した戻り配管04と給湯配管05とを介して接続され、熱源01で加熱された湯を貯湯槽02に供給して貯めるように構成されている。
As another conventional example, there is a return pipe hot water supply system including a heat source machine and a concentrated hot water storage tank as shown in the overall schematic configuration diagram of FIG.
In this conventional example, a heat source 01 and a hot water storage tank 02 are connected via a return pipe 04 and a hot water supply pipe 05 provided with a first circulation pump 03, and hot water heated by the heat source 01 is supplied to the hot water storage tank 02. It is configured to supply and store.

貯湯槽02に給湯往き配管06が接続され、その給湯往き配管06に、給湯需要端としての3個の給湯栓07,08,09を備えた短い分岐配管07a,08a,09aが直列に接続されている。給湯往き配管06の終端と貯湯槽02とが、逆止弁010と定流量弁011と第2の循環ポンプ012とを介装した給湯戻り配管013を介して接続されている。
上記構成により、出湯が無い状態でも、給湯往き配管06から給湯戻り配管013に常時湯を流して給湯往き配管06内の温水を適温に保ち、給湯栓07,08,09から即時に給湯できるようになっている。
A hot water supply pipe 06 is connected to the hot water storage tank 02, and short branch pipes 07a, 08a, 09a provided with three hot water taps 07, 08, 09 as hot water supply demand ends are connected in series to the hot water supply pipe 06. ing. The end of the hot water supply piping 06 and the hot water storage tank 02 are connected via a hot water supply return piping 013 provided with a check valve 010, a constant flow valve 011 and a second circulation pump 012.
With the above configuration, even when there is no hot water supply, hot water is always supplied from the hot water supply pipe 06 to the hot water return pipe 013 so that the hot water in the hot water supply pipe 06 is kept at an appropriate temperature, and hot water can be immediately supplied from the hot water taps 07, 08, 09. It has become.

ところが、給湯往き配管06においては、3個の給湯栓07,08,09から同時に出湯される可能性を考慮した口径の配管を施工する必要があり、しかも、給湯往き配管06内の温水を高温に維持するために比較的大流量の温水を常時循環しておく必要が生じる。このために、給湯往き配管06および給湯戻り配管013からの放熱損失が大きくなり、かつ、循環のためのポンプ動力も無視できない量となる点に課題があった。更には、大容量の集中貯湯槽を設置する必要もあって、設置性にも課題を残していた。
一方、給湯栓07,08,09ごとに熱源を備えた貯湯槽を設置する場合には、熱源を各貯湯槽に備えるための機器費用、燃料配管費用、及び排気筒施工費用が高額に付く点、あるいは、これらを安価にするために電気熱源とすると電気料金が高額になると言う点に課題があった。
However, in the hot water supply piping 06, it is necessary to construct a pipe having a diameter considering the possibility of simultaneous discharge from the three hot water taps 07, 08, 09, and the hot water in the hot water supply piping 06 is heated to a high temperature. Therefore, it is necessary to constantly circulate a relatively large flow rate of hot water in order to maintain the flow rate. For this reason, there has been a problem in that the heat dissipation loss from the hot water supply piping 06 and the hot water return piping 013 becomes large, and the pump power for circulation becomes an amount that cannot be ignored. Furthermore, it is necessary to install a large-capacity concentrated hot water storage tank, and there remains a problem in installability.
On the other hand, when installing hot water storage tanks with heat sources for each of the hot water taps 07, 08, 09, the equipment costs, fuel piping costs, and exhaust pipe construction costs for installing the heat sources in each hot water tank are expensive. Alternatively, there is a problem in that, if these are used as an electric heat source in order to make them cheaper, the electricity charge becomes high.

本発明は、上記の点に鑑みてなされたものであって、請求項1に係る発明は、即湯性に優れる給湯システムを安価にして提供するとともに省エネルギーを図ることができるようにすることを目的とし、請求項2に係る発明は、即湯性を損なうことなく、一層省エネルギーを図ることができるようにすることを目的とし、請求項3に係る発明は、温水戻り配管からの放熱を抑制し、省エネルギーを図ることができるようにすることを目的とし、請求項4に係る発明は、貯湯槽に温水を良好に満たすことができながら、給湯温度の低下を回避して良好に給湯できるようにすることを目的とし、請求項5に係る発明は、給湯需要端からの出湯に伴う給湯往き配管内の圧力変化にかかわらず、給湯温度の低下を回避して良好に給湯できるようにすることを目的とし、請求項6に係る発明は、混合給水のための構成を安価にできるようにすることを目的とし、請求項7に係る発明は、請求項2に係る発明の貯湯槽分散設置型給湯システムを容易に構築できるようにすることを目的とし、請求項8に係る発明は、請求項3に係る発明の貯湯槽分散設置型給湯システムを容易に構築できるようにすることを目的とし、請求項9に係る発明は、請求項4に係る発明の貯湯槽分散設置型給湯システムを容易に構築できるようにすることを目的とする。   This invention is made in view of said point, Comprising: The invention which concerns on Claim 1 makes it possible to aim at energy saving while providing the hot-water supply system which is excellent in instant hot water property cheaply. The purpose of the invention according to claim 2 is to enable further energy saving without impairing the hot water property, and the invention according to claim 3 suppresses heat radiation from the hot water return pipe. In order to save energy, the invention according to claim 4 is able to satisfactorily fill hot water in a hot water storage tank while avoiding a decrease in hot water supply temperature. Therefore, the invention according to claim 5 is capable of avoiding a decrease in the hot water temperature and providing a good hot water supply regardless of the pressure change in the hot water supply piping accompanying the hot water coming from the hot water supply demand end. The invention according to claim 6 aims to make the configuration for mixed water supply inexpensive, and the invention according to claim 7 is a hot water tank distributed installation type according to the invention according to claim 2. The purpose of the invention is to make it possible to easily construct a hot water supply system, and the invention according to claim 8 is to make it possible to easily construct the hot water tank distributed installation type hot water supply system of the invention according to claim 3, The invention according to claim 9 is to make it possible to easily construct the hot water tank distributed installation type hot water supply system of the invention according to claim 4.

請求項1に係る発明の貯湯槽分散設置型給湯システムは、上述のような目的を達成するために、
熱源に接続された給湯往き配管に、貯湯槽と、間欠的に使用されるとともに分散して設けられる複数の給湯需要端とを接続し、熱源より出力される温水を前記貯湯槽に供給して貯めるとともに、前記貯湯槽に貯めた温水を前記給湯需要端に供給可能に構成した給湯システムであって、
前記給湯需要端それぞれの直上流位置で、前記給湯往き配管に前記貯湯槽を接続するとともに、前記貯湯槽に貯湯時循環用の給湯戻り配管を接続し、かつ、前記給湯戻り配管に給水管を接続して給湯時に前記貯湯槽の下部から圧力を付与することにより前記給湯需要端に給湯可能に構成する。
ここで、給湯需要端とは、浴室や洗面化粧台や台所などに備えられる給湯栓などのことであり、例えば、浴槽用とシャワー等用など互いに近接して複数個の給湯栓が設けられる場合には、それらの複数個の給湯栓でもってひとつの給湯需要端と称する。
In order to achieve the above-described object, the hot water tank distributed installation type hot water supply system of the invention according to claim 1
A hot water supply pipe connected to a heat source is connected to a hot water storage tank and a plurality of hot water supply demand ends that are intermittently used and distributed, and hot water output from the heat source is supplied to the hot water storage tank. A hot water supply system configured to store hot water stored in the hot water storage tank so as to be supplied to the hot water supply demand end,
The hot water storage tank is connected to the hot water supply outlet pipe at a position immediately upstream of each of the hot water supply demand ends, a hot water return pipe for circulation during hot water storage is connected to the hot water storage tank, and a hot water supply pipe is connected to the hot water return pipe. By connecting and applying pressure from the lower part of the hot water storage tank at the time of hot water supply, the hot water supply demand end can be configured to supply hot water.
Here, the hot water demand end is a hot water tap provided in a bathroom, a bathroom vanity, a kitchen, etc., for example, when a plurality of hot water taps are provided close to each other such as for a bathtub and for a shower. Is called a single hot water demand end with a plurality of hot water taps.

(作用・効果)
請求項1に係る発明の貯湯槽分散設置型給湯システムの構成によれば、給湯時には、給水管からの給水圧力を給湯用の圧力として付与することにより、給湯需要端の直上流位置の貯湯槽から給湯することができる。
したがって、熱源を備えた貯湯槽を設けること無く、給湯需要端の直上流の貯湯槽に貯められた湯を湯待ち時間無しに給湯することができ、いわゆる即湯性に優れる。
しかも、給湯需要が複数の給湯需要端で生じた場合でも、給湯需要端の直上流の貯湯槽からの給湯によって賄うことができ、大能力の熱源を備える必要も無いうえに、大容量の集中貯湯槽を設置する必要が無く、システム施工費用を可及的に低減できる。
また、給湯往き配管の口径を複数の給湯需要端の同時使用を見越した大きな口径のものにせずに小口径にできるから、配管材料等に要する費用を低減できるとともに給湯往き配管からの放熱を減少でき、省エネルギーを図ることができる。すなわち、配管からの放熱は、配管の表面積に比例するため、例えば、口径を半分にできれば、放熱量は1/2にできるわけであり、省エネルギーを図ることができる。
更に、熱源から貯湯槽への貯湯時に、給湯戻り配管には貯湯槽内下部の常温水が流れることになり、給湯戻り配管内に高温の温水を流さないから、給湯戻り配管からの放熱はほとんど無く、省エネルギーを図ることができる。
そのうえ、給湯需要端からの給湯を、給水管からの給水圧力を利用して行うから、給湯のためのポンプ等の圧送装置の追加もしくは能力増強を不要にでき、コスト低減と故障の低減を図ることができる。
(Action / Effect)
According to the structure of the hot water storage tank distributed installation type hot water supply system of the invention according to claim 1, at the time of hot water supply, the hot water storage tank at the position immediately upstream of the hot water supply demand end is provided by applying the water supply pressure from the water supply pipe as the pressure for hot water supply. Hot water can be supplied from.
Therefore, the hot water stored in the hot water storage tank immediately upstream of the hot water supply demand end can be supplied without a hot water waiting time without providing a hot water storage tank equipped with a heat source, and so-called instant hot water properties are excellent.
Moreover, even when hot water supply demand occurs at multiple hot water supply demand ends, it can be covered by hot water supply from a hot water storage tank immediately upstream from the hot water supply demand end, and it is not necessary to provide a large-capacity heat source, and a large concentration There is no need to install a hot water tank, and system construction costs can be reduced as much as possible.
In addition, since the diameter of the hot water supply piping can be reduced to a small diameter without allowing for the simultaneous use of multiple hot water supply demand ends, the cost required for piping materials can be reduced and the heat radiation from the hot water supply piping is reduced. Can save energy. That is, since the heat radiation from the pipe is proportional to the surface area of the pipe, for example, if the diameter can be halved, the heat radiation amount can be halved and energy saving can be achieved.
Furthermore, when hot water is stored in the hot water storage tank from the heat source, room temperature water in the lower part of the hot water tank flows through the hot water supply return pipe, and high temperature hot water does not flow in the hot water return pipe, so there is almost no heat dissipation from the hot water return pipe. Energy saving.
In addition, since hot water is supplied from the end of hot water supply using the water supply pressure from the water supply pipe, it is not necessary to add a pumping device such as a pump for hot water supply or to increase the capacity, thereby reducing costs and failure. be able to.

請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管に、貯湯槽から前記給湯戻り配管側への流量を制限するとともに前記給水管から前記貯湯槽側への流動には制限を加えない流動制御機構を介装して構成する。
In order to achieve the above-described object, the invention according to claim 2
The hot water storage tank distributed installation type hot water supply system according to claim 1,
The hot water supply return pipe is configured to include a flow control mechanism that restricts the flow rate from the hot water storage tank to the hot water supply return pipe and does not limit the flow from the water supply pipe to the hot water storage tank.

(作用・効果)
請求項2に係る発明の貯湯槽分散設置型給湯システムの構成によれば、熱源から貯湯槽への貯湯時に、給水管側への流量を制限することにより、複数の貯湯槽に対して、その容量に応じた状態で同時的に満たされるように温水を供給でき、一方、給湯需要端からの給湯時には、制限無く迅速に給水管からの給水圧力による給湯のための圧力を付与することができる。
したがって、給湯需要端からの給湯時には、低圧損にて水を通過させて迅速に給湯のための圧力を付与するから、大量の出湯に対しても即応できながら、貯湯時には、偏流によって蓄熱できない貯湯槽が生じることを防止するとともに、給湯戻り配管に貯湯槽から高温の湯が流動して無駄に放熱することを抑制でき、即湯性を損なうことなく、一層省エネルギーを図ることができる。
(Action / Effect)
According to the configuration of the hot water tank distributed installation type hot water supply system of the invention according to claim 2, by restricting the flow rate to the water supply pipe side during hot water storage from the heat source to the hot water storage tank, Hot water can be supplied so that it can be filled simultaneously in a state corresponding to the capacity, while when hot water is supplied from the end of hot water supply, pressure for hot water supply from the water supply pipe can be quickly applied without limitation. .
Therefore, when hot water is supplied from the end of hot water supply, water is passed through at a low pressure loss to quickly apply pressure for hot water supply. In addition to preventing the tank from being generated, it is possible to suppress high-temperature hot water flowing from the hot water storage tank to the hot water supply return pipe and dissipate heat unnecessarily, and further energy saving can be achieved without impairing the hot water property.

請求項3に係る発明は、前述のような目的を達成するために、
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
貯湯槽に貯蔵された温水量を検知する温水量検知手段と、
貯湯槽に流入する温水の流量を制御する流量制御手段と、
前記温水量検知手段が所定量以上の温水量の貯蔵を検知した場合には、前記貯湯槽に流入する温水流量を通常貯湯時よりも少ない設定流量に抑制する流量低減制御機構とを備えて構成する。
設定流量としては、短時間は零にまで減少させても良いが、温水往き配管中の温水温度を維持するためには、放熱損失を補うに足る微小流量を常時流し続けることが望ましい。
In order to achieve the above-described object, the invention according to claim 3
The hot water storage tank distributed installation type hot water supply system according to claim 1,
Hot water amount detecting means for detecting the amount of hot water stored in the hot water tank;
Flow rate control means for controlling the flow rate of hot water flowing into the hot water storage tank;
A flow rate reduction control mechanism that suppresses the flow rate of hot water flowing into the hot water storage tank to a set flow rate that is smaller than that during normal hot water storage when the hot water amount detection means detects storage of a hot water amount of a predetermined amount or more. To do.
The set flow rate may be reduced to zero for a short time. However, in order to maintain the hot water temperature in the hot water outgoing pipe, it is desirable to keep a minute flow rate sufficient to compensate for heat dissipation loss.

(作用・効果)
請求項3に係る発明の貯湯槽分散設置型給湯システムの構成によれば、貯湯槽に温水が満たされた場合に、そのことを温水量検知手段で検知して、その貯湯槽への温水流量を減少することができる。
したがって、貯湯槽に温水が満たされた後には、既に温水で満たされた貯湯槽への温水供給を抑え、その抑えた量の温水をまだ温水で満たされていない貯湯槽に振り向けることができるため、能率良く貯湯することができ、同時に、温水戻り配管に流す温水の流量を少なくするから、温水戻り配管からの放熱を抑制し、省エネルギーを図ることができる。
(Action / Effect)
According to the configuration of the hot water tank distributed installation type hot water supply system of the invention according to claim 3, when hot water is filled in the hot water tank, this is detected by the hot water amount detecting means, and the hot water flow rate to the hot water tank Can be reduced.
Therefore, after the hot water tank is filled with hot water, the hot water supply to the hot water tank already filled with hot water can be suppressed, and the reduced amount of hot water can be directed to the hot water tank not yet filled with hot water. Therefore, hot water can be stored efficiently, and at the same time, the flow rate of hot water flowing through the hot water return pipe is reduced, so that heat radiation from the hot water return pipe can be suppressed and energy saving can be achieved.

請求項4に係る発明は、前述のような目的を達成するために、
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
各給湯需要端に付設されてその給湯需要端からの出湯を検知する出湯検知手段と、
各貯湯槽に付設されてその貯湯槽から前記給湯需要端への水の流出を遮断する遮断機構と、
前記各貯湯槽に付設されてその貯湯槽に貯蔵された温水が無くなったことを検知する無湯検知手段と、
いずれかの出湯検知手段が出湯を検知した場合には、直上流を含む近傍またはすべての前記遮断機構を開放して前記貯湯槽から温水を送出し、かつ、その遮断機構の開放中に、いずれかの無湯検知手段が前記貯湯槽内に湯が無くなったことを検知した場合には、当該貯湯槽の遮断機構を作動させる貯湯槽制御機構とを備えて構成する。
ここで、貯湯槽制御機構とは、検知手段ならびに遮断機構相互のデータの授受を行う通信装置をも含むものである。
In order to achieve the above-described object, the invention according to claim 4
The hot water storage tank distributed installation type hot water supply system according to claim 1,
Hot water detection means attached to each hot water supply demand end for detecting hot water from the hot water supply demand end;
A shut-off mechanism attached to each hot water storage tank to block outflow of water from the hot water storage tank to the hot water supply demand end;
No hot water detection means for detecting that the hot water stored in the hot water tank attached to each hot water tank is gone,
When any hot water detection means detects hot water, the hot water is sent from the hot water tank by opening the shut-off mechanism in the vicinity or immediately including the upstream, and while the shut-off mechanism is open, When the hot water detecting means detects that no hot water is in the hot water storage tank, the hot water storage tank is configured to include a hot water tank control mechanism that operates a shut-off mechanism of the hot water tank.
Here, the hot water tank control mechanism includes a communication device that exchanges data between the detection means and the shut-off mechanism.

(作用・効果)
請求項4に係る発明の貯湯槽分散設置型給湯システムの構成によれば、給湯需要端での出湯を検知するに伴い、貯湯槽に湯が存在する間は、遮断機構を開放、あるいは、開放状態に維持して給湯需要端から出湯することができる。
貯湯槽のいずれかにおいて温水の貯蔵が無くなれば、遮断機構を作動し、その貯湯槽を通過した常温の給水が給湯往き配管内に混入し、給湯温度が低下することを回避することができる。
なお、いずれの出湯検知手段も出湯を検知していない場合には、遮断機構を開放して、温水を貯湯槽に流入させて、温水の貯蔵を行う。
したがって、貯湯槽に温水を良好に満たすことができながら、その貯蔵温水が無くなった後には、給湯圧力付与に起因して常温水が給湯往き配管内に混入することを防止して、給湯温度を所定温度に維持し、良好に給湯することができる。
(Action / Effect)
According to the configuration of the hot water storage tank distributed installation type hot water supply system according to the fourth aspect of the invention, the shut-off mechanism is opened or opened while hot water is present in the hot water storage tank as hot water is detected at the hot water supply demand end. The hot water can be discharged from the hot water supply demand end while maintaining the state.
If hot water is no longer stored in any of the hot water storage tanks, the shut-off mechanism is actuated, and normal temperature water supply that has passed through the hot water storage tanks can be mixed into the hot water supply piping, and the hot water supply temperature can be prevented from decreasing.
In addition, when none of the hot water detection means detects hot water, the shut-off mechanism is opened, hot water is allowed to flow into the hot water storage tank, and hot water is stored.
Therefore, while hot water can be satisfactorily filled in the hot water storage tank, after the stored hot water is exhausted, normal temperature water is prevented from mixing into the hot water supply piping due to the supply of hot water pressure, and the hot water temperature is reduced. It is possible to maintain a predetermined temperature and to supply hot water well.

請求項5に係る発明は、前述のような目的を達成するために、
請求項1、2、3、4のいずれかに記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管における、給水管との接続箇所と熱源との間に、流量を一定にする定流量機構または前記熱源の入口―出口間の差圧を一定にする整圧機構を介装して構成する。
In order to achieve the above-described object, the invention according to claim 5
In the hot water storage tank distributed installation type hot water supply system according to any one of claims 1, 2, 3, and 4,
In the hot water supply return pipe, a constant flow mechanism that makes the flow rate constant or a pressure regulation mechanism that makes the differential pressure between the inlet and outlet of the heat source constant between the connection point of the water supply pipe and the heat source To do.

(作用・効果)
請求項5に係る発明の貯湯槽分散設置型給湯システムの構成によれば、給湯需要端から出湯があって、給水管よりも給湯往き配管内の圧力が低下した場合にも、定流量機構により流量を一定値に維持する、または、整圧機構により熱源の入口―出口間の差圧を一定にすることができる。これにより、出湯の有無にかかわらず、給湯循環温度を一定に維持することができ、安定した給湯温度を維持することができる。
したがって、給湯需要端からの出湯の有無にかかわらず、給湯往き配管内の圧力低下に起因して熱源を流れる水の流量が増加し、熱源から出力される温水の温度が変動することを回避でき、給湯温度を一定に維持し、良好に給湯することができる。
(Action / Effect)
According to the structure of the hot water storage tank distributed installation type hot water supply system of the invention according to claim 5, even when there is hot water from the hot water supply demand end and the pressure in the hot water supply piping is lower than the water supply pipe, the constant flow mechanism The flow rate can be maintained at a constant value, or the pressure difference between the inlet and outlet of the heat source can be made constant by a pressure regulating mechanism. Thereby, irrespective of the presence or absence of hot water, the hot water supply circulation temperature can be maintained constant, and the stable hot water supply temperature can be maintained.
Therefore, regardless of the presence or absence of hot water from the hot water supply demand end, it is possible to avoid fluctuations in the temperature of the hot water output from the heat source due to an increase in the flow rate of the water flowing through the heat source due to a pressure drop in the hot water supply piping. The hot water supply temperature can be kept constant and hot water can be supplied satisfactorily.

請求項6に係る発明は、前述のような目的を達成するために、
請求項1、2、3、4、5のいずれかに記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管と給湯需要端とにわたって混合給水管を接続して構成する。
In order to achieve the above object, the invention according to claim 6 provides:
In the hot water storage tank distributed installation type hot water supply system according to any one of claims 1, 2, 3, 4, and 5,
A mixed water supply pipe is connected across the hot water supply return pipe and the hot water supply demand end.

(作用・効果)
請求項6に係る発明の貯湯槽分散設置型給湯システムの構成によれば、給湯戻り配管を通じて給水管からの給水圧力による給湯のための圧力を付与する構成を利用し、出湯時において、混合給水管を通じて給湯需要端に給水することができる。
したがって、給湯戻り配管を混合給水に利用できるから、給湯温度の調整のための給水配管系の構成を簡略化できて、混合給水のための構成を安価にできる。
(Action / Effect)
According to the configuration of the hot water tank distributed installation type hot water supply system of the invention according to claim 6, mixed hot water supply is used at the time of hot water supply using a configuration in which the pressure for hot water supply by the water supply pressure from the water supply pipe is applied through the hot water supply return pipe. Water can be supplied to the hot water demand end through a pipe.
Therefore, since the hot water supply return pipe can be used for mixed water supply, the structure of the water supply pipe system for adjusting the hot water supply temperature can be simplified, and the structure for mixed water supply can be made inexpensive.

請求項7に係る発明は、前述のような目的を達成するために、
請求項2に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、流動制御機構を付設して構成する。
In order to achieve the above object, the invention according to claim 7 provides:
A distributed installation type hot water storage tank unit used in the hot water storage tank distributed installation type hot water supply system according to claim 2,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, a water supply connection port connected to the hot water return pipe is provided on the other end side, and flows between the hot water supply connection port and the water supply connection port. A control mechanism is attached and configured.

(作用・効果)
請求項7に係る発明の分散設置型貯湯槽ユニットの構成によれば、給湯接続口を給湯往き配管に接続し、給水接続口を給湯戻り配管に接続することによって、請求項2に係る発明の貯湯槽分散設置型給湯システムを構築することができる。
したがって、請求項2に係る発明の貯湯槽分散設置型給湯システムを容易に構築することができる。
(Action / Effect)
According to the configuration of the distributed installation type hot water storage tank unit of the invention according to claim 7, the hot water supply connection port is connected to the hot water supply outgoing pipe, and the water supply connection port is connected to the hot water supply return pipe. It is possible to construct a hot water storage system in which hot water storage tanks are distributed.
Therefore, the hot water tank distributed installation type hot water supply system of the invention according to claim 2 can be easily constructed.

請求項8に係る発明は、前述のような目的を達成するために、
請求項3に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、温水量検知手段と、流量制御手段と、流量低減制御機構とを付設して構成する。
In order to achieve the above object, the invention according to claim 8 provides:
A distributed hot water storage tank unit used in the hot water storage tank distributed hot water supply system according to claim 3,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, a water supply connection port connected to the hot water return pipe is provided on the other end side, and hot water is provided between the hot water supply connection port and the water supply connection port. An amount detection unit, a flow rate control unit, and a flow rate reduction control mechanism are provided.

(作用・効果)
請求項8に係る発明の分散設置型貯湯槽ユニットの構成によれば、給湯接続口を給湯往き配管に接続し、給水接続口を給湯戻り配管に接続することによって、請求項3に係る発明の貯湯槽分散設置型給湯システムを構築することができる。
したがって、請求項3に係る発明の貯湯槽分散設置型給湯システムを容易に構築することができる。
(Action / Effect)
According to the configuration of the dispersion-installed hot water storage tank unit of the invention according to claim 8, the hot water connection port is connected to the hot water supply piping, and the water supply connection port is connected to the hot water return piping. It is possible to construct a hot water storage system in which hot water storage tanks are distributed.
Therefore, the hot water tank distributed installation type hot water supply system of the invention according to claim 3 can be easily constructed.

請求項9に係る発明は、前述のような目的を達成するために、
請求項4に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、遮断機構と、無湯検知手段と、出湯検知手段からの信号を受信して、出湯検知手段が出湯を検知した場合には、前記遮断機構を開放して前記貯湯槽から温水を送出し、かつ、前記遮断機構の開放中に、無湯検知手段が前記貯湯槽内に湯が無くなったことを検知した場合には、前記遮断機構を作動させる貯湯槽制御機構とを付設して構成する。
In order to achieve the above object, the invention according to claim 9 provides:
A distributed hot water storage tank unit used in the hot water storage tank distributed hot water supply system according to claim 4,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, and a water supply connection port connected to the hot water return pipe is provided on the other end side, and is cut off between the hot water supply connection port and the water supply connection port. A mechanism, no hot water detection means, and a signal from the hot water detection means, and when the hot water detection means detects hot water, the hot water is sent out from the hot water storage tank by opening the shut-off mechanism; and When the shut-off mechanism is opened, when the hot water detecting means detects that no hot water is in the hot water storage tank, a hot water storage tank control mechanism for operating the shut-off mechanism is provided.

(作用・効果)
請求項9に係る発明の分散設置型貯湯槽ユニットの構成によれば、給湯接続口を給湯往き配管に接続し、給水接続口を給湯戻り配管に接続することによって、請求項4に係る発明の貯湯槽分散設置型給湯システムを構築することができる。
したがって、請求項4に係る発明の貯湯槽分散設置型給湯システムを容易に構築することができる。
(Action / Effect)
According to the configuration of the dispersion-installed hot water storage tank unit of the invention according to claim 9, the hot water connection port is connected to the hot water supply piping, and the water supply connection port is connected to the hot water return piping. It is possible to construct a hot water storage system in which hot water storage tanks are distributed.
Therefore, the hot water tank distributed installation type hot water supply system of the invention according to claim 4 can be easily constructed.

請求項1に係る発明の貯湯槽分散設置型給湯システムの構成によれば、給湯時には、給水管からの給水圧力を給湯用の圧力として付与することにより、給湯需要端の直上流位置の貯湯槽から給湯することができる。
したがって、熱源を備えた貯湯槽を設けること無く、給湯需要端の直上流の貯湯槽に貯められた湯を湯待ち時間無しに給湯することができ、いわゆる即湯性に優れる。
しかも、給湯需要が複数の給湯需要端で生じた場合でも、給湯需要端の直上流の貯湯槽からの給湯によって賄うことができ、大能力の熱源を備える必要も無いうえに、大容量の集中貯湯槽を設置する必要が無く、システム施工費用を可及的に低減できる。
また、給湯往き配管の口径を複数の給湯需要端の同時使用を見越した大きな口径のものにせずに小口径にできるから、配管材料等に要する費用を低減できるとともに給湯往き配管からの放熱を減少でき、省エネルギーを図ることができる。すなわち、配管からの放熱は、配管の表面積に比例するため、例えば、口径を半分にできれば、放熱量は1/2にできるわけであり、省エネルギーを図ることができる。
更に、熱源から貯湯槽への貯湯時に、給湯戻り配管には貯湯槽内下部の常温水が流れることになり、給湯戻り配管内に高温の温水を流さないから、給湯戻り配管からの放熱はほとんど無く、省エネルギーを図ることができる。
そのうえ、給湯需要端からの給湯を、給水管からの給水圧力を利用して行うから、給湯のためのポンプ等の圧送装置の追加もしくは能力増強を不要にでき、コスト低減と故障の低減を図ることができる。
According to the structure of the hot water storage tank distributed installation type hot water supply system of the invention according to claim 1, at the time of hot water supply, the hot water storage tank at the position immediately upstream of the hot water supply demand end is provided by applying the water supply pressure from the water supply pipe as the pressure for hot water supply. Hot water can be supplied from.
Therefore, the hot water stored in the hot water storage tank immediately upstream of the hot water supply demand end can be supplied without a hot water waiting time without providing a hot water storage tank equipped with a heat source, and so-called instant hot water properties are excellent.
Moreover, even if hot water supply demand occurs at multiple hot water supply demand ends, it can be covered by hot water supply from a hot water storage tank immediately upstream of the hot water supply demand end, and it is not necessary to provide a large-capacity heat source, and a large concentration There is no need to install a hot water tank, and system construction costs can be reduced as much as possible.
In addition, the diameter of the hot water supply piping can be reduced to a small diameter without considering the simultaneous use of multiple hot water supply demand ends, so the cost required for piping materials can be reduced and heat dissipation from the hot water supply piping is reduced. Can save energy. That is, since the heat radiation from the pipe is proportional to the surface area of the pipe, for example, if the diameter can be halved, the heat radiation amount can be halved and energy saving can be achieved.
Furthermore, when hot water is stored in the hot water storage tank from the heat source, room temperature water in the lower part of the hot water tank flows through the hot water supply return pipe, and high temperature hot water does not flow in the hot water return pipe, so there is almost no heat dissipation from the hot water return pipe. Energy saving.
In addition, since hot water is supplied from the end of the hot water supply using the water supply pressure from the water supply pipe, it is not necessary to add a pumping device such as a pump for hot water supply or to increase the capacity, thereby reducing costs and failure. be able to.

次に、本発明の実施例を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の貯湯槽分散設置型給湯システムに係る実施例1を貯湯時の状態で示す全体概略構成図、図2は、給湯時の状態で示す全体概略構成図であり、熱源1に給湯往き配管2が接続され、その給湯往き配管2に、間欠的に使用されるとともに分散して設けられる複数の給湯需要端としての給湯栓3…が分岐配管4を介して接続されている。   FIG. 1 is an overall schematic configuration diagram showing Example 1 of a hot water storage tank distributed installation type hot water supply system according to the present invention in a hot water storage state, FIG. 2 is an overall schematic configuration diagram showing a hot water supply state, and FIG. A hot-water supply pipe 2 is connected to the hot-water supply pipe 2, and a plurality of hot-water taps 3 serving as hot-water supply demand ends, which are used intermittently and provided in a distributed manner, are connected via the branch pipe 4. .

給湯栓3…それぞれの直上流位置で、給湯往き配管2に貯湯槽5の上部が高温側接続配管6を介して接続され、その貯湯槽5の下部に貯湯時循環用の給湯戻り配管7が低温側接続配管8を介して接続されている。   Hot water taps 3... At the upstream positions of the hot water supply pipes 2, the upper part of the hot water storage tank 5 is connected to the hot water supply pipe 2 through the high temperature side connection pipe 6, and the hot water supply return pipe 7 for circulating hot water is provided at the lower part of the hot water storage tank 5. It is connected via a low temperature side connection pipe 8.

給湯戻り配管7が、熱源1に接続された給水管9に接続されている。給湯往き配管2の熱源1からの出口箇所に、熱源1から出る温水の温度を測定する第1の温度計10が設けられている。給水管9において、給湯戻り配管7との接続箇所と熱源1との間に、流量を一定にする定流量機構としての整圧弁11と、回転数制御可能なポンプ12とが設けられている。
第1の温度計10とポンプ12とがコントローラ(図示せず)を介して接続され、第1の温度計10で測定される温度が設定温度(60〜90℃程度で設定される)になるようにポンプの回転数を制御し、設定温度の温水をすべての貯湯槽5に並列供給しながら、温度成層による蓄熱を行う状態で貯めていくように構成されている。
A hot water supply return pipe 7 is connected to a water supply pipe 9 connected to the heat source 1. The 1st thermometer 10 which measures the temperature of the hot water which comes out of the heat source 1 is provided in the exit location from the heat source 1 of the hot water supply going-out pipe 2. In the water supply pipe 9, a pressure regulating valve 11 as a constant flow rate mechanism for making the flow rate constant and a pump 12 capable of controlling the number of revolutions are provided between a connection point of the hot water supply return pipe 7 and the heat source 1.
The first thermometer 10 and the pump 12 are connected via a controller (not shown), and the temperature measured by the first thermometer 10 becomes a set temperature (set at about 60 to 90 ° C.). Thus, the rotational speed of the pump is controlled, and hot water at a set temperature is supplied in parallel to all the hot water storage tanks 5 while being stored in a state where heat is stored by temperature stratification.

低温側接続配管8に、貯湯槽5側への流動のみを許容する第1の逆止弁13が設けられるとともに、その第1の逆止弁13と並列になるように第1の定流量弁14を介装した第1のバイパス配管15が設けられ、貯湯槽5から給水管9側への流量を制限するとともに給水管9から貯湯槽5側への流動には制限を加えないように流動制御機構16が構成されている。
上記3個の第1の定流量弁14は、それらの合計設定流量がポンプ12の定常状態での吐出流量と等しくなるように設定されている。ポンプ12の流量は、回転数制御によって変動するため、バイパス配管によるバイパス流路を設け、その流量過剰分を吸収できるように構成するのが望ましい。
The low temperature side connecting pipe 8 is provided with a first check valve 13 that allows only the flow toward the hot water tank 5, and the first constant flow valve so as to be in parallel with the first check valve 13. 14 is provided to restrict the flow rate from the hot water storage tank 5 to the hot water supply pipe 9 side, and flow so as not to limit the flow from the hot water supply pipe 9 to the hot water storage tank 5 side. A control mechanism 16 is configured.
The three first constant flow valves 14 are set so that their total set flow rate becomes equal to the discharge flow rate in the steady state of the pump 12. Since the flow rate of the pump 12 varies depending on the rotational speed control, it is desirable to provide a bypass flow path by a bypass pipe so as to absorb the excess flow rate.

上記構成により、貯湯時には、図1に示すように、第1の定流量弁14を通じて流し、温度成層による蓄熱を行う状態で貯めながら、給湯時には、図2に示すように、第1の逆止弁13を通じて抵抗少なく給水管9からの給水圧力を給湯用の圧力として付与し、出湯のあった給湯栓3に最も近い貯湯槽5から即座に給湯できるように、すなわち、即湯性に優れるようになっている。このとき、給湯栓3には、最も近い貯湯槽5からはもちろんのこと、熱源1および他の貯湯槽5からと3方向から温水を供給できる。そのため、給湯往き配管2の配管径を細くでき、費用を低減できるとともに表面積減少により放熱量を減少して省エネルギーを図ることができる。また、直上流の貯湯槽5の湯が無くなった場合に、その貯湯槽5からの水が給湯往き配管2内に混入するが、熱源1および他の貯湯槽5からの温水を供給でき、給湯栓3に供給される湯の温度低下を抑えて最低限必要な温度(例えば、45℃)に近い湯を確保できる。   With the above configuration, when hot water is stored, as shown in FIG. 1, the first check valve 14 flows through the first constant flow valve 14 and stores in a state where heat is stored by temperature stratification. The supply water pressure from the water supply pipe 9 is applied through the valve 13 with less resistance as the pressure for hot water supply, so that hot water can be immediately supplied from the hot water storage tank 5 closest to the hot water tap 3 where hot water has come out, that is, excellent in hot water characteristics. It has become. At this time, hot water can be supplied to the hot-water tap 3 not only from the closest hot water storage tank 5 but also from the heat source 1 and other hot water storage tanks 5 from three directions. Therefore, the pipe diameter of the hot water supply pipe 2 can be reduced, the cost can be reduced, and the heat radiation can be reduced by reducing the surface area, thereby saving energy. In addition, when the hot water in the hot water storage tank 5 immediately upstream runs out, the water from the hot water storage tank 5 is mixed into the hot water supply piping 2, but hot water from the heat source 1 and other hot water storage tanks 5 can be supplied. The temperature drop of the hot water supplied to the stopper 3 can be suppressed and hot water close to the minimum necessary temperature (for example, 45 ° C.) can be secured.

また、貯湯槽5内に温水が満たされた後には、給湯戻り配管7から熱源1に還る水の温度が高くなるに伴って熱源1による加熱を一時的に停止したり加熱能力を減少させたりし、省エネルギー性を図ることができるようになっている。
また、その後には、ポンプ12の回転数を減少して、微少量の温水が循環され、給湯往き配管2および給湯戻り配管7での放熱による湯温の低下を防止し、省エネルギー性を図りながら、即湯性に優れるようになっている。
In addition, after the hot water tank 5 is filled with warm water, the heating by the heat source 1 is temporarily stopped or the heating capacity is reduced as the temperature of the water returning from the hot water supply return pipe 7 to the heat source 1 increases. In addition, energy saving can be achieved.
Further, after that, the rotation speed of the pump 12 is decreased, and a small amount of hot water is circulated to prevent a decrease in hot water temperature due to heat dissipation in the hot water supply going-out pipe 2 and the hot water supply return pipe 7, while saving energy. It is designed to have excellent hot water properties.

図中17は、給湯栓3が湯水混合水栓である場合に用いられる混合給水管を示し、この混合給水管17が、給湯戻り配管7と給湯栓3とにわたって接続され、給湯戻り配管7を利用して、給湯栓3に温度調整用の給水を行えるように構成されている。   In the figure, reference numeral 17 denotes a mixed water supply pipe used when the hot water tap 3 is a hot and cold water mixing tap. The mixed water supply pipe 17 is connected across the hot water supply return pipe 7 and the hot water tap 3, and the hot water supply return pipe 7 is connected. Utilizing this, the hot water tap 3 can be supplied with water for temperature adjustment.

図3は、本発明の貯湯槽分散設置型給湯システムに係る実施例2を貯湯時の状態で示す全体概略構成図であり、実施例1と異なるところは、次の通りである。   FIG. 3 is an overall schematic configuration diagram showing a second embodiment of the hot water tank distributed installation type hot water supply system of the present invention in a state of hot water storage, and the differences from the first embodiment are as follows.

すなわち、低温側接続配管8に、第1の逆止弁13と、第1の定流量弁14を介装した第1のバイパス配管15とに加え、第1の逆止弁13および第1の定流量弁14それぞれと並列になるように、第1の開閉弁21を介装した第2のバイパス配管22が接続されるとともに、蓄熱のための貯湯時において低温側接続配管8内を流れる設定温度の温水を検知して貯湯槽5内に貯蔵された温水量を検知する温水量検知手段としての第1の温度検知手段(例えば、サーミスタ、熱電対、バイメタルなど)23が設けられている。   That is, in addition to the first check valve 13 and the first bypass pipe 15 having the first constant flow valve 14 interposed in the low temperature side connection pipe 8, the first check valve 13 and the first check valve 13. The second bypass pipe 22 having the first on-off valve 21 is connected so as to be in parallel with each of the constant flow valves 14 and the setting is made to flow through the low temperature side connection pipe 8 when storing hot water for heat storage. First temperature detection means (for example, thermistor, thermocouple, bimetal, etc.) 23 is provided as hot water amount detection means for detecting the temperature of hot water and detecting the amount of hot water stored in the hot water tank 5.

第1の開閉弁21および第1の温度検知手段23がコントローラ(図示せず)に接続され、貯湯時において、第1の温度検知手段23が設定温度の温水を検知しないときには第1の開閉弁21を開き、第1の温度検知手段23が設定温度の温水を検知したときには第1の開閉弁21を閉じ、貯湯時には貯湯槽5内に流す温水量を増加させ、貯湯槽5内に温水が満たされるに伴って温水量を減少させ、他の貯湯槽5に供給する温水量を増加してすべての貯湯槽5への貯湯を迅速に行えるように流量低減制御機構24が構成されている。他の構成は実施例1と同じであり、同一図番を付すことにより、その説明は省略する。上記第1の逆止弁13と第1の定流量弁14と第1の開閉弁21とから成る構成をして流量制御手段と称する。   The first on-off valve 21 and the first temperature detecting means 23 are connected to a controller (not shown), and when the first temperature detecting means 23 does not detect hot water at a set temperature during hot water storage, the first on-off valve 21 is opened, the first on-off valve 21 is closed when the first temperature detecting means 23 detects the hot water at the set temperature, the amount of hot water flowing into the hot water tank 5 is increased during hot water storage, and hot water is stored in the hot water tank 5. The flow rate reduction control mechanism 24 is configured to reduce the amount of hot water as it is filled and increase the amount of hot water supplied to other hot water tanks 5 so that hot water can be quickly stored in all the hot water tanks 5. Other configurations are the same as those of the first embodiment, and the description thereof is omitted by assigning the same reference numerals. The first check valve 13, the first constant flow valve 14, and the first on-off valve 21 are configured and referred to as flow control means.

図4は、本発明の貯湯槽分散設置型給湯システムに係る実施例3を貯湯時の状態で示す全体概略構成図、図5は、最も近い貯湯槽から出湯している状態で示す全体概略構成図、図6は、最も近い貯湯槽が空になって他の貯湯槽から出湯している状態で示す全体概略構成図であり、実施例1と異なるところは、次の通りである。   FIG. 4 is an overall schematic configuration diagram showing a third embodiment of the hot water tank distributed installation type hot water supply system of the present invention in a hot water storage state, and FIG. 5 is an overall schematic configuration shown in a state where the hot water is discharged from the nearest hot water storage tank. FIG. 6 and FIG. 6 are overall schematic configuration diagrams showing a state in which the closest hot water storage tank is empty and the hot water is discharged from another hot water storage tank. The differences from the first embodiment are as follows.

すなわち、各分岐配管4それぞれに、給湯栓3からの出湯を検知する出湯検知手段としてのフロースイッチ31が設けられている。この出湯検知手段としては、圧力スイッチや、流量センサを用いて給湯栓3が開いたことを検出するような構成など、各種の構成が採用できる。   That is, each branch pipe 4 is provided with a flow switch 31 as hot water detection means for detecting hot water from the hot water tap 3. As the hot water detection means, various configurations such as a configuration in which a hot water tap 3 is detected to be opened using a pressure switch or a flow rate sensor can be employed.

また、高温側接続配管6に、そこを流れる温水の温度が低温になったことを検知することにより貯湯槽5に貯蔵された温水が無くなったことを検知する無湯検知手段(例えば、サーミスタ、熱電対、バイメタルなど)32が設けられている。
更に、低温側接続配管8には、流動制御機構16に代えて、蓄熱のための貯湯時において低温側接続配管8内を流れる設定温度の温水を検知する第2の温度検知手段(例えば、サーミスタ、温度計、熱電対など)33と、貯湯槽5から給湯栓3への水の流出を遮断する遮断機構としての第2の開閉弁34とが設けられている。
Further, no hot water detecting means (for example, a thermistor, for detecting that the hot water stored in the hot water storage tank 5 has disappeared by detecting that the temperature of the hot water flowing through the high temperature side connecting pipe 6 has become low. (Thermocouple, bimetal, etc.) 32 is provided.
Further, in the low temperature side connection pipe 8, instead of the flow control mechanism 16, a second temperature detection means (for example, a thermistor) that detects hot water at a set temperature that flows in the low temperature side connection pipe 8 during hot water storage for heat storage. , A thermometer, a thermocouple, etc.) 33 and a second on-off valve 34 as a shut-off mechanism for shutting off the outflow of water from the hot water tank 5 to the hot water tap 3.

給湯往き配管2の終端と給湯戻り配管7の始端とが、第3のバイパス配管35を介して接続され、その第3のバイパス配管35に、給湯往き配管2側から給湯戻り配管7側への温水の流動のみを許容する第2の逆止弁36と第2の定流量弁37とが介装され、すべての貯湯槽5内に温水が満たされた状態でも給湯戻り配管7側に微少量の温水を流し、給湯往き配管2内の温水の温度が低下することを防止するように構成されている。   The end of the hot water supply piping 2 and the start of the hot water return piping 7 are connected via a third bypass piping 35, and the third bypass piping 35 is connected from the hot water supply piping 2 to the hot water return piping 7. A second check valve 36 and a second constant flow valve 37 that allow only the flow of hot water are interposed, and even when all the hot water tanks 5 are filled with hot water, a small amount is placed on the hot water supply return pipe 7 side. This is configured to prevent the temperature of the hot water in the hot water supply piping 2 from decreasing.

フロースイッチ31、無湯検知手段32および第2の温度検出手段33がコントローラ(図示せず)に接続され、そのコントローラに第2の開閉弁34が接続されている。
コントローラにおいて、フロースイッチ31からの信号を受信し、いずれかのフロースイッチ31が出湯を検知した場合には、その直上流の貯湯槽5に対する第2の開閉弁34と近傍の貯湯槽5に対する第2の開閉弁34あるいはすべての第2の開閉弁34を開放して貯湯槽5から温水を送出し、かつ、その第2の開閉弁34の開放中に、いずれかの無湯検知手段32が貯湯槽5内に湯が無くなったことを検知した場合には、当該貯湯槽5の第2の開閉弁34を作動させて閉じるように貯湯槽制御機構が構成されている。
また、貯湯時には、第2の開閉弁34を開き、その貯湯状態で第2の温度検出手段33が温水を検知するに伴い、当該貯湯槽5の第2の開閉弁34を作動させて閉じるように構成されている。他の構成は実施例1と同じであり、同一図番を付すことにより、その説明は省略する。
A flow switch 31, no hot water detection means 32 and second temperature detection means 33 are connected to a controller (not shown), and a second on-off valve 34 is connected to the controller.
When the controller receives a signal from the flow switch 31 and any one of the flow switches 31 detects hot water, the second on-off valve 34 for the hot water storage tank 5 immediately upstream thereof and the second hot water tank 5 for the adjacent hot water storage tank 5 are used. 2 open / close valves 34 or all of the second open / close valves 34 to send hot water from the hot water storage tank 5, and any non-hot water detecting means 32 is open while the second open / close valve 34 is open. The hot water storage tank control mechanism is configured to operate and close the second on-off valve 34 of the hot water storage tank 5 when it is detected that the hot water has disappeared in the hot water storage tank 5.
During hot water storage, the second on-off valve 34 is opened, and the second on-off valve 34 of the hot water storage tank 5 is operated and closed as the second temperature detecting means 33 detects hot water in the hot water storage state. It is configured. Other configurations are the same as those of the first embodiment, and the description is omitted by giving the same reference numerals.

上記構成により、すべてのフロースイッチ31が出湯を検知していなくて出湯が無い状態で、第2の温度検出手段33が温水の温度を検知していないときには、第2の開閉弁34を開き、図4に示すように、熱源1からの温水を貯湯槽5に供給し、温水を貯蔵できるようになっている。
また、ひとつのフロースイッチ31が出湯を検知して出湯があると、図5に示すように、第2の開閉弁34のすべてを開放し、直上流の貯湯槽5からの温水に加えて、熱源1からの温水と他のすべての貯湯槽5からの温水とを、出湯を検知した給湯栓3に供給して即座に給湯するようになっている。
その後、第2の開閉弁34の開放中に、いずれかの無湯検知手段32が貯湯槽5内に湯が無くなったことを検知した場合には、図6に示すように、当該貯湯槽5の第2の開閉弁34を作動させて閉じ、それ以外の貯湯槽5からの温水と熱源1からの温水とを供給し続けるようになっている。
With the above configuration, when all the flow switches 31 have not detected hot water and there is no hot water, and the second temperature detecting means 33 has not detected the temperature of the hot water, the second on-off valve 34 is opened, As shown in FIG. 4, the hot water from the heat source 1 is supplied to the hot water tank 5 so that the hot water can be stored.
Also, when one flow switch 31 detects the hot water and there is hot water, as shown in FIG. 5, all the second on-off valves 34 are opened, and in addition to the hot water from the hot water storage tank 5 immediately upstream, Hot water from the heat source 1 and hot water from all other hot water storage tanks 5 are supplied to the hot-water tap 3 that has detected the hot water supply to supply hot water immediately.
Thereafter, when any hot water detection means 32 detects that no hot water is present in the hot water storage tank 5 while the second on-off valve 34 is open, as shown in FIG. The second on-off valve 34 is operated and closed, and the other hot water from the hot water storage tank 5 and the hot water from the heat source 1 are continuously supplied.

図7は、具体例を示す全体概略構成図であり、浴室Bに浴槽用の給湯栓3およびシャワー等用の給湯栓3が設けられ、それらの給湯栓3に近い箇所に、互いに共用する状態で比較的容量の大きい貯湯槽5が設置されるとともに、洗面化粧台Wおよび台所Kそれぞれに給湯栓3が設けられ、それらの給湯栓3それぞれに近い箇所に小容量の貯湯槽5が設置されている。
比較的容量の大きい貯湯槽5に近い箇所に熱源1が設置され、その熱源1と各貯湯槽5とが給湯往き配管2および給湯戻り配管7を介して接続されるとともに、給湯往き配管2と各給湯栓3とが分岐配管4を介して接続されている。また、各給湯栓3それぞれと給湯戻り配管7とが混合給水管17を介して接続されている。
FIG. 7 is an overall schematic configuration diagram showing a specific example, in which a hot-water tap 3 for a bathtub and a hot-water tap 3 for a shower are provided in the bathroom B, and are shared with each other at locations close to the hot-water tap 3 In addition, a hot water storage tank 5 having a relatively large capacity is installed, a hot water tap 3 is provided in each of the bathroom vanity W and the kitchen K, and a small capacity hot water storage tank 5 is installed in a location close to each of the hot water taps 3. ing.
A heat source 1 is installed near a hot water storage tank 5 having a relatively large capacity. The heat source 1 and each hot water storage tank 5 are connected to each other via a hot water supply pipe 2 and a hot water return pipe 7, and the hot water supply pipe 2 Each hot water tap 3 is connected via a branch pipe 4. Each hot water tap 3 and the hot water return pipe 7 are connected via a mixed water supply pipe 17.

図8は、本発明に係る分散設置型貯湯槽ユニットの実施例を示す全体概略構成図である。
図8の(a)は、実施例1の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットU1を示し、高温側接続配管6の先端に、給湯往き配管2に接続する給湯接続口41が設けられ、一方、低温側接続配管8の先端に、給湯戻り配管7に接続する給水接続口42が設けられている。
低温側接続配管8において、第1の逆止弁13と第1の定流量弁14と第1のバイパス配管15とから成る流動制御機構16が備えられている。
貯湯槽5の大きさが異なるものについても同様である。
FIG. 8 is an overall schematic configuration diagram showing an embodiment of a distributed installation type hot water tank unit according to the present invention.
(A) of FIG. 8 shows the dispersion | distribution installation type hot water storage tank unit U1 used for the hot water storage tank dispersion | distribution installation type hot water supply system of Example 1, and the hot water supply connection port connected to the hot water supply piping 2 at the front-end | tip of the high temperature side connection piping 6 is shown. On the other hand, a water supply connection port 42 connected to the hot water supply return pipe 7 is provided at the tip of the low temperature side connection pipe 8.
In the low temperature side connection pipe 8, a flow control mechanism 16 including a first check valve 13, a first constant flow valve 14, and a first bypass pipe 15 is provided.
The same applies to the hot water tank 5 having different sizes.

この構成により、給湯往き配管2に給湯接続口41を接続し、給湯戻り配管7に給水接続口42を接続することにより、給湯往き配管2と給湯戻り配管7との間に、流動制御機構16を備えた分散設置型貯湯槽ユニットU1を組み込むことができ、実施例1の貯湯槽分散設置型給湯システムを容易に構築できる。   With this configuration, the flow control mechanism 16 is connected between the hot water supply return pipe 2 and the hot water supply return pipe 7 by connecting the hot water supply connection port 41 to the hot water supply return pipe 2 and connecting the water supply connection port 42 to the hot water supply return pipe 7. Can be incorporated, and the hot water storage tank distributed installation type hot water supply system of the first embodiment can be easily constructed.

図8の(b)は、実施例2の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットU2を示し、高温側接続配管6の先端に、給湯往き配管2に接続する給湯接続口51が設けられ、一方、低温側接続配管8の先端に、給湯戻り配管7に接続する給水接続口52が設けられている。
低温側接続配管8において、第1の逆止弁13と第1の定流量弁14と第1のバイパス配管15と第1の開閉弁21と第2のバイパス配管22と第1の温度検知手段23とから成る流量低減制御機構24が備えられている。
貯湯槽5の大きさが異なるものについても同様である。
(B) of FIG. 8 shows the dispersion | distribution installation type hot water storage tank unit U2 used for the hot water storage tank dispersion | distribution installation type hot water supply system of Example 2, and the hot water supply connection port connected to the hot water supply discharge pipe 2 at the front-end | tip of the high temperature side connection piping 6 is shown. On the other hand, a water supply connection port 52 connected to the hot water supply return pipe 7 is provided at the tip of the low temperature side connection pipe 8.
In the low temperature side connection pipe 8, the first check valve 13, the first constant flow valve 14, the first bypass pipe 15, the first on-off valve 21, the second bypass pipe 22, and the first temperature detection means. 23, a flow rate reduction control mechanism 24 is provided.
The same applies to the hot water tank 5 having different sizes.

この構成により、給湯往き配管2に給湯接続口51を接続し、給湯戻り配管7に給水接続口52を接続することにより、給湯往き配管2と給湯戻り配管7との間に、流量低減制御機構24を備えた分散設置型貯湯槽ユニットU2を組み込むことができ、実施例2の貯湯槽分散設置型給湯システムを容易に構築できる。   With this configuration, by connecting the hot water supply connection port 51 to the hot water supply return pipe 2 and connecting the water supply connection port 52 to the hot water supply return pipe 7, a flow rate reduction control mechanism is provided between the hot water supply return pipe 2 and the hot water supply return pipe 7. The distributed installation type hot water tank unit U2 provided with 24 can be incorporated, and the hot water storage tank distributed installation type hot water supply system of the second embodiment can be easily constructed.

図8の(c)は、実施例3の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットU3を示し、高温側接続配管6の先端に、給湯往き配管2に接続する給湯接続口61が設けられ、一方、低温側接続配管8の先端に、給湯戻り配管7に接続する給水接続口62が設けられている。
高温側接続配管6に無湯検知手段32が備えられ、一方、低温側接続配管8において、第2の温度検知手段33と第2の開閉弁34とが備えられている。
貯湯槽5の大きさが異なるものについても同様である。
(C) of FIG. 8 shows the dispersion | distribution installation type hot water storage tank unit U3 used for the hot water storage tank dispersion | distribution installation type hot water supply system of Example 3, and the hot water supply connection port connected to the hot water supply outgoing pipe 2 at the front-end | tip of the high temperature side connection piping 6 is shown. On the other hand, a water supply connection port 62 connected to the hot water supply return pipe 7 is provided at the tip of the low temperature side connection pipe 8.
The high temperature side connection pipe 6 is provided with no hot water detection means 32, while the low temperature side connection pipe 8 is provided with second temperature detection means 33 and a second on-off valve 34.
The same applies to the hot water tank 5 having different sizes.

この構成により、給湯往き配管2に給湯接続口61を接続し、給湯戻り配管7に給水接続口62を接続することにより、給湯往き配管2と給湯戻り配管7との間に、無湯検知手段32と第2の温度検知手段33と第2の開閉弁34とを備えた分散設置型貯湯槽ユニットU3を組み込むことができ、実施例3の貯湯槽分散設置型給湯システムを容易に構築できる。   With this configuration, the hot water supply connection port 61 is connected to the hot water supply return pipe 2, and the water supply connection port 62 is connected to the hot water supply return pipe 7, so that no hot water detection means is provided between the hot water supply return pipe 2 and the hot water supply return pipe 7. The distributed installation type hot water storage tank unit U3 provided with 32, the second temperature detection means 33, and the second on-off valve 34 can be incorporated, and the hot water storage tank distributed installation type hot water supply system of the third embodiment can be easily constructed.

また、図示しないが、この実施例3の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットU3に対しては、それらの複数個と次のようなコントローラとを備え、分散設置型貯湯槽ユニット群としてセット化しても良い。
すなわち、コントローラとして、3個以上のフロースイッチ31、無湯検知手段32および第2の温度検出手段33それぞれに対する信号線の接続端子が備えられている。
また、コントローラにおいて、フロースイッチ31からの信号を受信し、いずれかのフロースイッチ31が出湯を検知した場合には、その直上流の貯湯槽5に対する第2の開閉弁34と近傍の貯湯槽5に対する第2の開閉弁34あるいはすべての第2の開閉弁34を開放して貯湯槽5から温水を送出し、かつ、その第2の開閉弁34の開放中に、いずれかの無湯検知手段32が貯湯槽5内に湯が無くなったことを検知した場合には、当該貯湯槽5の第2の開閉弁34を作動させて閉じるように設定した貯湯槽制御機構が組み込まれている。
このような分散設置型貯湯槽ユニット群とすれば、配管接続と配線接続とを行うだけで実施例3の貯湯槽分散設置型給湯システムを一層容易に構築できる。
Moreover, although not shown in figure, with respect to the dispersion | distribution installation type hot water storage tank unit U3 used for the hot water storage tank dispersion | distribution installation type hot water supply system of this Example 3, these plural and the following controllers are provided, and a dispersion | distribution installation type hot water storage is provided. You may set it as a tank unit group.
That is, as a controller, signal line connection terminals for three or more flow switches 31, no hot water detection means 32, and second temperature detection means 33 are provided.
When the controller receives a signal from the flow switch 31 and any one of the flow switches 31 detects hot water, the second on-off valve 34 for the hot water tank 5 immediately upstream thereof and the hot water tank 5 in the vicinity thereof. The second on-off valve 34 or all of the second on-off valves 34 are opened to supply hot water from the hot water storage tank 5, and any hot water detection means during the opening of the second on-off valve 34 When the hot water tank 32 detects that hot water has run out, the hot water tank control mechanism is set so that the second on-off valve 34 of the hot water tank 5 is closed by operating.
With such a distributed installation type hot water storage tank unit group, it is possible to more easily construct the hot water storage tank distributed installation type hot water supply system of Example 3 simply by performing pipe connection and wiring connection.

前述の第1および第2の定流量弁14,37としては、単なる絞り弁や整圧弁に置き換えることも可能ではあるが、流量設定を行うためには、定流量弁の使用が望ましい。
また、上述実施例では、温度成層による蓄熱を行う状態で貯めるために、温水循環流量をポンプ12の回転数制御で調整し、加熱開始初期に、熱源1からの温水の出口温度(第1の温度計10で検知される温度)が設定温度になるように構成しているが、温水循環流量をポンプ12の回転数制御もしくは弁の絞り制御等で減少させる、バイパスを設けてバイパス通路を循環させながら昇温させる、もしくは熱源機の加熱能力を増大させる等の立ち上がり制御などによって調整するように構成しても良い。
Although the first and second constant flow valves 14 and 37 can be replaced with simple throttle valves or pressure regulating valves, it is desirable to use constant flow valves in order to set the flow rate.
Further, in the above-described embodiment, in order to store heat in a state where temperature stratification is performed, the hot water circulation flow rate is adjusted by controlling the rotational speed of the pump 12, and the outlet temperature of the hot water from the heat source 1 (the first temperature) The temperature detected by the thermometer 10) is set to the set temperature, but the hot water circulation flow rate is reduced by the rotational speed control of the pump 12 or the valve throttle control, etc., and a bypass is provided to circulate the bypass passage. The temperature may be adjusted while the temperature is increased, or the temperature may be adjusted by rising control such as increasing the heating capacity of the heat source device.

上述実施例における貯湯槽5としては、家庭用の場合、流しのシンク下や、洗面ボウルの下の無駄な空間を利用して設置すれば良い。また、戸建て住宅の場合であれば、床下を利用するなどしても良い。このため、熱源1側に大容量の貯湯槽を設置する従来の場合に比べ、設置性に優れる利点を有している。   The hot water storage tank 5 in the above-described embodiment may be installed using a useless space under a sink or under a wash bowl in the case of home use. Moreover, in the case of a detached house, you may use under the floor. For this reason, compared with the conventional case where a large-capacity hot water storage tank is installed on the heat source 1 side, there is an advantage that the installation is excellent.

上記実施例2では、貯湯槽5内に温水が満たされるまで流量を減少させずに温水を流し、温水が満たされた後に流量を減少させるように構成するために、第1の温度検知手段23と第1の開閉弁21と第1の定流弁14とを用いているが、それらに代えて、設定温度以上で閉止する弁(サーモバルブ)を用いることも可能である。   In the second embodiment, since the hot water is allowed to flow without decreasing the flow rate until the hot water tank 5 is filled with the hot water and the flow rate is decreased after the hot water is filled, the first temperature detecting means 23 is used. The first on-off valve 21 and the first constant flow valve 14 are used, but instead of them, a valve (thermo valve) that closes at a set temperature or higher can also be used.

熱源1としては、コージェネレーションシステムのガスエンジンなどからの排熱、温水ボイラー、ヒートポンプ等が採用できる。   As the heat source 1, exhaust heat from a gas engine of a cogeneration system, a hot water boiler, a heat pump, or the like can be used.

本発明としては、熱源1の近くに温水温度を安定化するための小型の貯湯槽を備えるように構成しても良い。例えば、コージェネレーションシステムのガスエンジンなどからの排熱を熱源1に利用し、電力需要を主体として運転する場合に、排熱量の変動に起因して熱源1による加熱出力が変動して熱源1からの温水の温度が変動する。このような加熱出力の変動を貯湯槽の温水との混合によって吸収し、温水温度を安定化するためである。   As this invention, you may comprise so that the small hot water tank for stabilizing a warm water temperature near the heat source 1 may be provided. For example, when exhaust heat from a gas engine or the like of a cogeneration system is used as a heat source 1 and is operated mainly by electric power demand, the heating output from the heat source 1 varies due to fluctuations in the amount of exhaust heat. The temperature of hot water fluctuates. This is because the fluctuation of the heating output is absorbed by mixing with the hot water in the hot water tank to stabilize the hot water temperature.

本発明の貯湯槽分散設置型給湯システムに係る実施例1を貯湯時の状態で示す全体概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole schematic block diagram which shows Example 1 which concerns on the hot water storage tank dispersion | distribution installation type hot water supply system of this invention in the state at the time of hot water storage. 実施例1を給湯時の状態で示す全体概略構成図である。It is a whole schematic block diagram which shows Example 1 in the state at the time of hot-water supply. 本発明の貯湯槽分散設置型給湯システムに係る実施例2を貯湯時の状態で示す全体概略構成図である。It is a whole schematic block diagram which shows Example 2 which concerns on the hot water storage tank dispersion | distribution installation type hot water supply system of this invention in the state at the time of hot water storage. 本発明の貯湯槽分散設置型給湯システムに係る実施例3を貯湯時の状態で示す全体概略構成図である。It is a whole schematic block diagram which shows Example 3 which concerns on the hot water storage tank dispersion | distribution installation type hot water supply system of this invention in the state at the time of hot water storage. 実施例3を最も近い貯湯槽から出湯している状態で示す全体概略構成図である。It is a whole schematic block diagram which shows Example 3 in the state which has taken out hot water from the nearest hot water storage tank. 実施例3を最も近い貯湯槽が空になって他の貯湯槽から出湯している状態で示す全体概略構成図である。It is a whole schematic block diagram which shows Example 3 in the state from which the nearest hot water storage tank is empty and is discharged from another hot water storage tank. 具体例を示す全体概略構成図である。It is a whole schematic block diagram which shows a specific example. 本発明に係る分散設置型貯湯槽ユニットの実施例を示す全体概略構成図である。It is a whole schematic block diagram which shows the Example of the dispersion | distribution installation type hot water storage tank unit which concerns on this invention. 従来例を示す全体概略構成図である。It is a whole schematic block diagram which shows a prior art example.

符号の説明Explanation of symbols

1…熱源
2…給湯往き配管
3…給湯栓(給湯需要端)
5…貯湯槽
7…給湯戻り配管
9…給水管
16…流動制御機構
17…混合給水管
21…第1の開閉弁
23…第1の温度検知手段(温水量検知手段)
24…流量低減制御機構
31…フロースイッチ(出湯検知手段)
32…無湯検知手段
33…第2の温度検知手段
34…第2の開閉弁(遮断機構)
1 ... Heat source
2 ... Hot water supply piping
3 ... Hot water tap (end of hot water demand)
5 ... Hot water tank
7 ... Hot water supply return piping
DESCRIPTION OF SYMBOLS 9 ... Water supply pipe 16 ... Flow control mechanism 17 ... Mixed water supply pipe 21 ... 1st on-off valve 23 ... 1st temperature detection means (warm water amount detection means)
24 ... Flow rate reduction control mechanism 31 ... Flow switch (hot water detection means)
32 ... No hot water detection means 33 ... Second temperature detection means 34 ... Second on-off valve (shut-off mechanism)

Claims (9)

熱源に接続された給湯往き配管に、貯湯槽と、間欠的に使用されるとともに分散して設けられる複数の給湯需要端とを接続し、熱源より出力される温水を前記貯湯槽に供給して貯めるとともに、前記貯湯槽に貯めた温水を前記給湯需要端に供給可能に構成した給湯システムであって、
前記給湯需要端それぞれの直上流位置で、前記給湯往き配管に前記貯湯槽を接続するとともに、前記貯湯槽に貯湯時循環用の給湯戻り配管を接続し、かつ、前記給湯戻り配管に給水管を接続して給湯時に前記貯湯槽の下部から圧力を付与することにより前記給湯需要端に給湯可能に構成してあることを特徴とする貯湯槽分散設置型給湯システム。
A hot water supply pipe connected to a heat source is connected to a hot water storage tank and a plurality of hot water supply demand ends that are intermittently used and distributed, and hot water output from the heat source is supplied to the hot water storage tank. A hot water supply system configured to store hot water stored in the hot water storage tank so as to be supplied to the hot water supply demand end,
The hot water storage tank is connected to the hot water supply outlet pipe at a position immediately upstream of each of the hot water supply demand ends, a hot water return pipe for circulation during hot water storage is connected to the hot water storage tank, and a hot water supply pipe is connected to the hot water return pipe. A hot water storage tank distributed installation type hot water supply system that is configured to be connected to the hot water supply demand end by applying pressure from the lower part of the hot water storage tank during hot water supply.
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管に、貯湯槽から前記給湯戻り配管側への流量を制限するとともに前記給水管から前記貯湯槽側への流動には制限を加えない流動制御機構を介装してある貯湯槽分散設置型給湯システム。
The hot water storage tank distributed installation type hot water supply system according to claim 1,
The hot water supply return pipe has a hot water tank distributed installation that is equipped with a flow control mechanism that restricts the flow rate from the hot water tank to the hot water return pipe side and does not restrict the flow from the water supply pipe to the hot water tank side. Type hot water supply system.
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
貯湯槽に貯蔵された温水量を検知する温水量検知手段と、
貯湯槽に流入する温水の流量を制御する流量制御手段と、
前記温水量検知手段が所定量以上の温水量の貯蔵を検知した場合には、前記貯湯槽に流入する温水流量を通常貯湯時よりも少ない設定流量に抑制する流量低減制御機構と、
を備えている貯湯槽分散設置型給湯システム。
The hot water storage tank distributed installation type hot water supply system according to claim 1,
Hot water amount detecting means for detecting the amount of hot water stored in the hot water tank;
Flow rate control means for controlling the flow rate of hot water flowing into the hot water storage tank;
A flow rate reduction control mechanism that suppresses the flow rate of hot water flowing into the hot water storage tank to a set flow rate that is smaller than that during normal hot water storage when the hot water amount detection means detects storage of a hot water amount of a predetermined amount or more;
Hot water storage system with hot water tanks distributed.
請求項1に記載の貯湯槽分散設置型給湯システムにおいて、
各給湯需要端に付設されてその給湯需要端からの出湯を検知する出湯検知手段と、
各貯湯槽に付設されてその貯湯槽から前記給湯需要端への水の流出を遮断する遮断機構と、
前記各貯湯槽に付設されてその貯湯槽に貯蔵された温水が無くなったことを検知する無湯検知手段と、
いずれかの出湯検知手段が出湯を検知した場合には、直上流を含む近傍またはすべての前記遮断機構を開放して前記貯湯槽から温水を送出し、かつ、その遮断機構の開放中に、いずれかの無湯検知手段が前記貯湯槽内に湯が無くなったことを検知した場合には、当該貯湯槽の遮断機構を作動させる貯湯槽制御機構と、
を備えている貯湯槽分散設置型給湯システム。
The hot water storage tank distributed installation type hot water supply system according to claim 1,
Hot water detection means attached to each hot water supply demand end for detecting hot water from the hot water supply demand end;
A shut-off mechanism attached to each hot water storage tank to block outflow of water from the hot water storage tank to the hot water supply demand end;
No hot water detection means for detecting that the hot water stored in the hot water tank attached to each hot water tank is gone,
When any hot water detection means detects hot water, the hot water is sent from the hot water tank by opening the shut-off mechanism in the vicinity or immediately including the upstream, and while the shut-off mechanism is open, When the hot water detection means detects that no hot water is in the hot water tank, a hot water tank control mechanism that operates a shut-off mechanism of the hot water tank,
Hot water storage system with hot water tanks distributed.
請求項1、2、3、4のいずれかに記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管における、給水管との接続箇所と熱源との間に、流量を一定にする定流量機構または前記熱源の入口―出口間の差圧を一定にする整圧機構を介装してある貯湯槽分散設置型給湯システム。
In the hot water storage tank distributed installation type hot water supply system according to any one of claims 1, 2, 3, and 4,
In the hot water supply return pipe, a constant flow mechanism that makes the flow rate constant or a pressure regulation mechanism that makes the differential pressure between the inlet and outlet of the heat source constant is interposed between the connection point with the water supply pipe and the heat source. Hot water storage system with distributed hot water storage tanks.
請求項1、2、3、4、5のいずれかに記載の貯湯槽分散設置型給湯システムにおいて、
給湯戻り配管と給湯需要端とにわたって混合給水管を接続してある貯湯槽分散設置型給湯システム。
In the hot water storage tank distributed installation type hot water supply system according to any one of claims 1, 2, 3, 4, and 5,
A hot water storage system in which hot water supply pipes are connected across a hot water supply return pipe and a hot water supply demand end.
請求項2に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、流動制御機構を付設してあることを特徴とする分散設置型貯湯槽ユニット。
A distributed installation type hot water storage tank unit used in the hot water storage tank distributed installation type hot water supply system according to claim 2,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, a water supply connection port connected to the hot water return pipe is provided on the other end side, and flows between the hot water supply connection port and the water supply connection port. A distributed hot water storage tank unit having a control mechanism attached thereto.
請求項3に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、温水量検知手段と、流量制御手段と、流量低減制御機構とを付設してあることを特徴とする分散設置型貯湯槽ユニット。
A distributed hot water storage tank unit used in the hot water storage tank distributed hot water supply system according to claim 3,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, a water supply connection port connected to the hot water return pipe is provided on the other end side, and hot water is provided between the hot water supply connection port and the water supply connection port. A distributed installation type hot water storage tank unit comprising a volume detection unit, a flow rate control unit, and a flow rate reduction control mechanism.
請求項4に記載の貯湯槽分散設置型給湯システムに用いる分散設置型貯湯槽ユニットであって、
貯湯槽の一端側に給湯往き配管と接続する給湯接続口を、他端側に給湯戻り配管と接続する給水接続口を設け、かつ、前記給湯接続口と前記給水接続口との間に、遮断機構と、無湯検知手段と、出湯検知手段からの信号を受信して、出湯検知手段が出湯を検知した場合には、前記遮断機構を開放して前記貯湯槽から温水を送出し、かつ、前記遮断機構の開放中に、無湯検知手段が前記貯湯槽内に湯が無くなったことを検知した場合には、前記遮断機構を作動させる貯湯槽制限制御機構とを付設してあることを特徴とする分散設置型貯湯槽ユニット。
A distributed hot water storage tank unit used in the hot water storage tank distributed hot water supply system according to claim 4,
A hot water supply connection port connected to the hot water supply outlet pipe is provided on one end side of the hot water storage tank, and a water supply connection port connected to the hot water return pipe is provided on the other end side, and is cut off between the hot water supply connection port and the water supply connection port. A mechanism, no hot water detection means, and a signal from the hot water detection means, and when the hot water detection means detects hot water, the hot water is sent out from the hot water storage tank by opening the shut-off mechanism; and A hot water tank limiting control mechanism for operating the shut-off mechanism when the no-hot water detecting means detects that hot water has run out in the hot water tank while the shut-off mechanism is open is provided. Distributed water storage tank unit.
JP2003435141A 2003-12-26 2003-12-26 Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor Expired - Fee Related JP4043437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435141A JP4043437B2 (en) 2003-12-26 2003-12-26 Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435141A JP4043437B2 (en) 2003-12-26 2003-12-26 Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor

Publications (2)

Publication Number Publication Date
JP2005195185A JP2005195185A (en) 2005-07-21
JP4043437B2 true JP4043437B2 (en) 2008-02-06

Family

ID=34815350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435141A Expired - Fee Related JP4043437B2 (en) 2003-12-26 2003-12-26 Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor

Country Status (1)

Country Link
JP (1) JP4043437B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225205A (en) * 2006-02-24 2007-09-06 Noritz Corp Hot water supply system
JP5069490B2 (en) * 2006-08-29 2012-11-07 大阪瓦斯株式会社 Open air heat storage device
JP4877033B2 (en) * 2007-04-20 2012-02-15 パナソニック電工株式会社 Hot water system
JP2008309384A (en) * 2007-06-14 2008-12-25 Sanyo Electric Co Ltd Hot water supply device
JP5494059B2 (en) * 2010-03-16 2014-05-14 三菱電機株式会社 Hot water storage water heater system
CN104390254B (en) * 2014-11-17 2017-02-08 福建工程学院 Push-pull storage-variable hot water storing device

Also Published As

Publication number Publication date
JP2005195185A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP2007017083A (en) Circulating storage hot water supply system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP4043437B2 (en) Distributed hot water storage system for hot water storage tank and distributed hot water storage unit used therefor
US20180306463A1 (en) Water supply system that is selectively supplied with heated water
JP2007003125A (en) Hot water supply system
JP6055356B2 (en) Heat source equipment
JP2008151450A (en) Heat storage type hot water supply apparatus
JP5038641B2 (en) Heat source device, control method and control program for flow rate of heat medium
JP2007198624A (en) Hot water storage type hot water supply heat source device
JP2007271237A (en) Hot water storage type water heater
JP2007139201A (en) Hot water storage type water heater
JP6197452B2 (en) Hot water system
JP6362469B2 (en) Hot water storage system
JP6147541B2 (en) Heat source equipment
JPS6044757A (en) Constant pressure and constant temperature apparatus in hot water supply system
JP4890125B2 (en) Hot water storage water heater
JP6125877B2 (en) Heat source equipment
JP6286312B2 (en) Hot water storage system
JP7174911B2 (en) electric heating device
JP2011112255A (en) Temperature control system for heating object fluid
NL2022590B1 (en) Electric boiler, central heating system comprising an electric boiler, tap water heating system comprising an electric boiler and method for operating the same
JP4727680B2 (en) Water heater
JP2011158207A (en) Storage water heater
JP2005315523A (en) Hot-water supply device
JP6498133B2 (en) Hot water storage type water heater and hot water supply method with hot water storage type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees