JP4043378B2 - Sterilizer - Google Patents

Sterilizer Download PDF

Info

Publication number
JP4043378B2
JP4043378B2 JP2003031244A JP2003031244A JP4043378B2 JP 4043378 B2 JP4043378 B2 JP 4043378B2 JP 2003031244 A JP2003031244 A JP 2003031244A JP 2003031244 A JP2003031244 A JP 2003031244A JP 4043378 B2 JP4043378 B2 JP 4043378B2
Authority
JP
Japan
Prior art keywords
electron beam
flow
liquid
liquid flow
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003031244A
Other languages
Japanese (ja)
Other versions
JP2004236968A (en
Inventor
幸彦 大野
晋 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003031244A priority Critical patent/JP4043378B2/en
Publication of JP2004236968A publication Critical patent/JP2004236968A/en
Application granted granted Critical
Publication of JP4043378B2 publication Critical patent/JP4043378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、殺菌装置に関し、特に、液体中の微生物の生理活性を無効化する殺菌装置に関する。
【0002】
【従来の技術】
地球規模的にネットワーク化される市場に投入される医薬品、食料品のような人体内投入医学生理学的物質は、その量がますますに増大している。複雑にネット化される近未来の量産システムは、生産、管理、流通、販売の任意のプロセスで、人体内投入医学生理学的物質が無菌状態に一分の隙なしに保持されることが肝要である。そのような無菌状態の保持のためには、初期のプロセスで無菌化されることが重要である。ここで、無菌化は、人体内で増殖し人体に悪影響を与える物質の医学生理学的作用の無効化を意味する。ここで、菌は、カビ、その他の菌類を含む細菌、ウイルスのような自己増殖物質を意味する。
【0003】
無菌化技術又は殺菌技術として、加熱殺菌、急冷殺菌、乾燥殺菌、水洗浄、化学薬品投入が知られている。これらの殺菌技術は、化学薬品、水、加熱・冷却用媒体が必須に用いられ、使用後の処理(例示:水排水)が困難であり、設備コストとランニングコストの増大を招いている。このような化学的処理技術に代わって、X線照射、γ線照射による物理的殺菌の技術が有望視されている。高エネルギー線であるX線又はγ線は、微生物透過性が高くそのエネルギーの高さの割には殺菌効果が弱く、殺菌のために使われずに透過する高エネルギー線は周囲環境を放射性物質に変える環境悪化効果が顕著に現れる。高エネルギー線発生装置は、その設備コストが顕著に大きい。電荷を持たない光粒子であるX線、γ線は、減衰せずに物体を透過する。
【0004】
電子線の殺菌効果の顕著性は、余り気づかれていない実状である。電子線を生成する電子線生成器のコストは、X線生成器、γ線生成器のコストに比べて桁外れに低い。X線は、電子線の制動放射により生成される。γ線は、放射性物質の崩壊により生成される。電子線は、電荷を持ち物質に対する透過性が低く、1個の電子は、微生物の細胞を一撃で破壊する。そのような電子線のエネルギー(電子1個のエネルギー)は、300keV以下であることが好ましい。高エネルギー線は透過性が高いが、透過性が低い低エネルギー線はその微生物破壊効果が高い。
【0005】
透過性が低い低エネルギー電子線は、厚い物体の中に浸透しない。300keV以下の電子線は、殺菌が強く求められ大量に市場に投入される飲料水がその通常の流通過程におかれる状態の0.5mm以上の厚みの液層を貫通しない。電子線により水流に対して殺菌処理を行う技術には、後掲特許文献1で知られている最近の技術がある。
【0006】
このような技術では、液流の電子線有効距離を一定に保持するために、液流速度を一定に保持し、又は、ノズル形状を適宜に変化させる必要があり、照射電子線が連続ビームではないため、液流のような流体に内在する速度分布に起因する時間的な無効照射液の発生が危惧される。
【0007】
【特許文献1】
特開平3−109986号
【0008】
【発明が解決しようとする課題】
本発明の課題は、連続ビームが得られる低エネルギー電子線で無菌化効率を向上させる技術を確立することができる殺菌装置を提供することにある。
本発明の他の課題は、無菌化効率を向上させることができる状態の殺菌対象物質に対して低エネルギー電子線が適用される殺菌装置を提供することにある。
本発明の更に他の課題は、完全無菌化されないが菌数の顕著な減少を実現する殺菌装置を提供することにある。
【0009】
【課題を解決するための手段】
その課題を解決するための手段が、下記のように表現される。その表現中に現れる技術的事項には、括弧()つきで、番号、記号等が添記されている。その番号、記号等は、本発明の実施の複数の形態又は複数の実施例のうちの少なくとも1つの実施の形態又は複数の実施例を構成する技術的事項、特に、その実施の形態又は実施例に対応する図面に表現されている技術的事項に付せられている参照番号、参照記号等に一致している。このような参照番号、参照記号は、請求項記載の技術的事項と実施の形態又は実施例の技術的事項との対応・橋渡しを明確にしている。このような対応・橋渡しは、請求項記載の技術的事項が実施の形態又は実施例の技術的事項に限定されて解釈されることを意味しない。
【0010】
本発明による殺菌装置は、液流を通すダクト(2)と、ダクト(2)の中の液流に電子線透過窓(5)を介して電子線流を導入する電子線生成器(3)とから構成されている。確実に有効に殺菌効果を発揮する電子線ビームは、連続ビームに限られる。連続ビームの生成のために、出力の低エネルギー化が必須である。電子線流は液流の流れ方向に概ね直交し、液流の流れ方向に直交する直交方向の幅は、電子線流の有効飛行距離に概ね等しい。電子線流の有効飛行距離は、電子線のエネルギーによって異なる。電子線エネルギーが連続ビームの生成が可能である最大エネルギーである300keVである場合に、電子線流の有効飛行距離は0.5mmである。従って、その直交方向の幅は、0.5mm又は0.5mmより狭いことが重要である。このように、液流の幅を狭く設定することにより、低エネルギー電子線が有効に利用される。本発明は、このような低エネルギーにより確実に殺菌効果を発揮することができる。
【0011】
液流は、直交方向の幅が狭い第1液流部位(7)と、直交方向の幅が第1液流部位(7)の幅より広い第2液流部位(8)とから形成され、電子線流は第1液流部位(7)に照射される。部分的に狭い幅の流路の形成は、電子線エネルギーの有効利用のために効果的である。第1液流部位(7)は第2液流部位(8)より上流側に形成されている。液流は、直交方向の幅が第1液流部位(7)の幅より広い第3液流部位(9)を更に形成する。この場合には、第3液流部位(9)は第2液流部位(8)より下流側に形成されている。流れが対称的に形成されその流れ抵抗が低減される。
【0012】
直交方向の幅が狭い第1液流部位(7)の幅を広げ、その処理量を増大させるために、以下の手段がある。電子線流は、液流の両側から液流に直交方向に対向して照射される。このような両側から照射することは、電子線エネルギーを増大させることなく、直交方向の幅を倍増させることができる。この場合には、電子線生成器(3)と電子線透過窓(5)は、鏡面対称に配置されることが効果的であり、その直交方向の幅は、1.0mm又は1.0mmより狭いことが重要である。両側から照射することは、直交方向の幅が一定である場合に、電子線エネルギーを半分に低減することができることを意味する。電子線流のエネルギーは、電子線透過窓(5)を透過した時点で200keVより小さく設定され得る。電子線透過窓(5)に対向する側で液流に接触し電子線流を反射する電子線反射板が配置されることは、エネルギーの有効利用を更に促進する。
【0013】
液流に対して確実な電子線照射を指向した装置の構成は、既述の通りである。循環型水路に対する殺菌では、殺菌済み液流は、十分な殺菌がなされていないプールのような液溜まりに合流する。このため、殺菌レベルは、統計学に立脚して考えることが大事である。液流を完全に殺菌することは意味をなさない。従って、直交方向の幅を電子線流の有効飛行距離以上にすることはかえって有効である。
【0014】
本発明による殺菌装置は、液流を通すダクト(2)と、ダクト(2)の中の液流に電子線透過窓(5)を介して電子線流を導入する電子線生成器(3)とから構成されている。液流は、その液流に直交する直交方向の幅が狭い第1液流部位と、その直交方向の幅が第1液流部位の幅より広い第2液流部位とから形成されている。電子線流は、第1液流部位に照射される。その狭い流路が照射を受ける部位であり、流体抵抗の増大が抑制される。第1液流部位は、第2液流部位より上流側に形成される。液流は、直交方向の幅が第1液流部位の幅より広い第3液流部位を更に形成し、第3液流部位は第1液流部位より下流側に形成されている。照射を受ける狭い流路は、流路全体のうちの一部分に限られ、流体抵抗の低減が最大限に抑制される。第1液流部位の幅は0.5mm又は0.5mmより狭いことが重要である。
【0015】
【発明の実施の形態】
図に対応して、本発明による殺菌装置は、液流ダクトに電子線生成器が併設されている。その電子線生成器1は、図1に示されるように、液流ダクト2に電子線透過窓5を介して結合している。電子線生成器1は、真空容器本体3と、真空容器本体3の中の真空室に電子を放出する電子離脱電極を有する電子離脱器4と、その真空室の中で電子離脱器4から離脱する電子をその真空室の中で加速して電子線を生成する加速電極(図示されず)とを構成している。その真空室は、電子線透過窓5を介して液流ダクト2の中の液体流路6に接続している。電子線透過窓5を形成する材料として、Ti薄膜が好適に例示される。そのTi薄膜の薄さとして、0.02mm以下であることが特に好ましい。液体として、医薬品等の原料水が好適に例示される。
【0016】
電子線は、そのような原料水の流れ方向に対して概ね直交する直交方向にその飲料水に照射される。液流ダクト2は、電子線が照射される部位である第1部位7と、第1部位7より上流側に位置する第2部位8と、第1部位7より下流側に位置する第3部位とを形成している。第2部位8の流れ方向に直交する直交方向の幅は、第1部位7の流れ方向に直交する直交方向の幅より広い。第3部位9の流れ方向に直交する直交方向の幅は、第1部位7の流れ方向に直交する直交方向の幅より広い。電子線のエネルギーは、電子線透過窓5を透過した時点で300keV又はそれより低いことが顕著に好ましい。この場合には、第1部位7の流れ方向に直交する直交方向の幅は、0.5mm又は0.5mmより狭いことが重要である。このような制限は、水に限られず多様な液体に対して有効である。
【0017】
第1部位7に位置対応する流れ部分の流速は、他の部位の流速より速い。電子線の面密度を増大させることは電子線生成器1のコストの増大を招くが、そのコスト増の影響の度合いは無視できる程度に小さい。
【0018】
電子線透過窓5を透過した時点の電子線のエネルギーの最大値は、300keVより小さい。このような低エネルギー電子線は透過力が小さく、原料水の水分子に衝突して散乱し、図2に示されるように、任意の一点で有効散乱範囲角度θを持って散乱的に液層を透過する。このような散乱的透過は、現象としては、電子波の回折現象に類似している。水分子に衝突しない電子は、徐々にそのエネルギーを減衰させながら透過を続け有効飛行距離(飛程)を飛行して対向側のダクト壁で吸収される。このように散乱的に透過する電子線は、飲料水中の微生物に衝突し、一撃でその微生物の生理活性を無効化する。電子線は、エネルギー的に減衰し、ますますに非透過性を増大してより多くが微生物に吸収され、最後まで吸収されない電子線は電子線透過窓5の対向面にようやく到達する。
【0019】
このような電子線の有効利用のための第2形態として、電子線生成器1が流路の中心面Sに対して鏡面対称に配置されることが顕著に有効である。この追加は、顕著に効果的である。電子線生成器1の追加は、2つの電子線生成器1の出力エネルギーを更に弱くすることができ、装置コストを更に低減し、且つ、液流ダクト2の周面に現れる電子を消去する消去技術又は電子線が放出するX線を遮蔽する遮蔽技術の装置負担を軽減することができる。更に、このような追加は、流路層の厚さを2倍に拡大することを許容し、又は、電子線のエネルギーが150keV〜200keの範囲に低下することを許容する。更に、このような追加は、流速の2倍化を許容する。
【0020】
電子線生成器1の追加が実施されない場合には、電子線透過窓5の対向面に電子線を反射させる電子線反射板(図示されず)を液流ダクト2の内面側に配置することが顕著に好ましい。電子線反射板で反射する電子線は、殺菌用電子線として液体流路6の中に再度に浸透して再入射する。
【0021】
3つの電子線生成器1が液流ダクト2の周囲に等角度間隔で配置されることは好ましい。この場合には、液流ダクト2は、その断面が正三角形又は円に形成される。電子線ビームは、その断面が液体流路6の中で円形又は矩形になるように、既述の電子離脱電極は、広域的グリッド電極又は格子状電極として形成され、電子線は、電子線束状電子ビームとして加速成形されることが可能である。
【0022】
本発明による殺菌装置は、液体が医薬品等の原料水に限られず、液体一般に適用され得る。本発明による殺菌装置は、飲料水に限られず、工業用純水、内服医薬品、医薬用点滴液、水溶性タンパク質のような医学生理学活性物質、微生物培養液、その他の液状物質に適用され得る。
【0023】
【発明の効果】
本発明による殺菌装置は、低エネルギー電子線で無菌化効率を向上させることができる。
【図面の簡単な説明】
【図1】図1は、本発明による殺菌装置の実施の形態を示す断面図である。
【図2】図2は、図1の一部の拡大図である。
【符号の説明】
2…ダクト
3…電子線生成器
5…電子線透過窓
7…第1液流部位
8…第2液流部位
9…第3液流部位
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sterilizer, and more particularly, to a sterilizer that invalidates the physiological activity of microorganisms in a liquid.
[0002]
[Prior art]
Increasing amounts of medical physiological substances are introduced into the human body, such as pharmaceuticals and foodstuffs, that are introduced into globally networked markets. In the near-future mass production system that is complexly networked, it is important that the medical physiological substances in the human body be kept in a sterile state without any gaps in any process of production, management, distribution, and sales. is there. In order to maintain such sterility, it is important to sterilize in an initial process. Here, sterilization means the invalidation of the medical physiological action of a substance that grows in the human body and adversely affects the human body. Here, the fungus means a self-propagating substance such as a mold, a bacterium including other fungi, and a virus.
[0003]
As sterilization techniques or sterilization techniques, heat sterilization, rapid sterilization, dry sterilization, water washing, and chemical introduction are known. In these sterilization techniques, chemicals, water, and a heating / cooling medium are indispensable, and it is difficult to perform treatment after use (for example, water drainage), resulting in an increase in equipment cost and running cost. Instead of such chemical treatment techniques, physical sterilization techniques by X-ray irradiation and γ-ray irradiation are considered promising. X-rays or γ rays, which are high energy rays, are highly permeable to microorganisms and have a low sterilizing effect for their high energy. High energy rays that are transmitted without being used for sterilization make the surrounding environment a radioactive substance. The changing environmental deterioration effect appears remarkably. The equipment cost of the high energy beam generator is significantly high. X-rays and γ-rays, which are light particles having no charge, pass through the object without being attenuated.
[0004]
The saliency of the sterilizing effect of the electron beam is not actually noticed. The cost of an electron beam generator for generating an electron beam is extremely low compared to the costs of an X-ray generator and a γ-ray generator. X-rays are generated by bremsstrahlung of electron beams. Gamma rays are generated by decay of radioactive materials. An electron beam has a charge and low permeability to a substance, and one electron destroys a microbial cell with a single blow. The energy of such an electron beam (energy of one electron) is preferably 300 keV or less. High energy rays have high permeability, but low energy rays with low permeability have a high microbial destruction effect.
[0005]
Low energy electron beams with low transparency do not penetrate into thick objects. An electron beam of 300 keV or less does not penetrate a liquid layer having a thickness of 0.5 mm or more in a state where drinking water that is strongly sterilized and is put into the market in a large amount is placed in the normal distribution process. As a technique for performing a sterilization treatment on a water stream by an electron beam, there is a recent technique known in Patent Document 1 described later.
[0006]
In such a technique, in order to keep the electron beam effective distance of the liquid flow constant, it is necessary to keep the liquid flow velocity constant or to change the nozzle shape appropriately. Therefore, there is a concern about the generation of a temporally invalid irradiation liquid due to the velocity distribution inherent in the fluid such as a liquid flow.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-109986
[Problems to be solved by the invention]
The subject of this invention is providing the sterilizer which can establish the technique which improves sterilization efficiency with the low energy electron beam from which a continuous beam is obtained.
Another object of the present invention is to provide a sterilization apparatus in which a low-energy electron beam is applied to a sterilization target substance in a state where sterilization efficiency can be improved.
Still another object of the present invention is to provide a sterilizing apparatus that is not completely sterilized but realizes a significant reduction in the number of bacteria.
[0009]
[Means for Solving the Problems]
Means for solving the problem is expressed as follows. Technical matters appearing in the expression are appended with numbers, symbols, etc. in parentheses. The numbers, symbols, and the like are technical matters constituting at least one embodiment or a plurality of embodiments of the present invention or a plurality of embodiments, in particular, the embodiments or examples. This corresponds to the reference numbers, reference symbols, and the like attached to the technical matters expressed in the drawings corresponding to. Such reference numbers and reference symbols clarify the correspondence and bridging between the technical matters described in the claims and the technical matters of the embodiments or examples. Such correspondence or bridging does not mean that the technical matters described in the claims are interpreted as being limited to the technical matters of the embodiments or examples.
[0010]
The sterilizer according to the present invention includes a duct (2) for passing a liquid flow, and an electron beam generator (3) for introducing an electron beam flow into the liquid flow in the duct (2) through an electron beam transmission window (5). It consists of and. The electron beam that reliably exhibits the bactericidal effect is limited to a continuous beam. In order to generate a continuous beam, it is essential to reduce the output energy. The electron beam flow is substantially orthogonal to the flow direction of the liquid flow, and the width in the orthogonal direction orthogonal to the flow direction of the liquid flow is approximately equal to the effective flight distance of the electron beam flow. The effective flight distance of the electron beam flow varies depending on the energy of the electron beam. When the electron beam energy is 300 keV, which is the maximum energy capable of generating a continuous beam, the effective flight distance of the electron beam flow is 0.5 mm. Therefore, it is important that the width in the orthogonal direction is 0.5 mm or narrower than 0.5 mm. Thus, a low energy electron beam is effectively utilized by setting the width of the liquid flow narrow. The present invention can reliably exert a sterilizing effect by such low energy.
[0011]
The liquid flow is formed from a first liquid flow portion (7) having a narrow width in the orthogonal direction and a second liquid flow portion (8) having a width in the orthogonal direction wider than the width of the first liquid flow portion (7), The electron beam flow is applied to the first liquid flow site (7). The formation of a partially narrow channel is effective for effective use of electron beam energy. The first liquid flow site (7) is formed upstream of the second liquid flow site (8). The liquid flow further forms a third liquid flow part (9) whose width in the orthogonal direction is wider than the width of the first liquid flow part (7). In this case, the third liquid flow site (9) is formed downstream of the second liquid flow site (8). A flow is formed symmetrically and its flow resistance is reduced.
[0012]
In order to increase the width of the first liquid flow portion (7) having a narrow width in the orthogonal direction and increase the processing amount, there are the following means. The electron beam flow is irradiated from both sides of the liquid flow so as to face the liquid flow in the orthogonal direction. Irradiating from both sides can double the width in the orthogonal direction without increasing the electron beam energy. In this case, it is effective that the electron beam generator (3) and the electron beam transmission window (5) are arranged in mirror symmetry, and the width in the orthogonal direction is from 1.0 mm or 1.0 mm. Narrow is important. Irradiating from both sides means that the electron beam energy can be reduced to half when the width in the orthogonal direction is constant. The energy of the electron beam current can be set to be smaller than 200 keV at the time of transmission through the electron beam transmission window (5). The arrangement of the electron beam reflector that contacts the liquid flow and reflects the electron beam flow on the side facing the electron beam transmission window (5) further promotes the effective use of energy.
[0013]
The configuration of the apparatus directed to reliable electron beam irradiation with respect to the liquid flow is as described above. In sterilization of a circulation channel, the sterilized liquid stream joins a pool such as a pool that is not sufficiently sterilized. For this reason, it is important to consider the sterilization level based on statistics. It does not make sense to completely sterilize the liquid stream. Therefore, it is effective to set the width in the orthogonal direction to be longer than the effective flight distance of the electron beam flow.
[0014]
The sterilizer according to the present invention includes a duct (2) for passing a liquid flow, and an electron beam generator (3) for introducing an electron beam flow into the liquid flow in the duct (2) through an electron beam transmission window (5). It consists of and. The liquid flow is formed of a first liquid flow portion having a narrow width in the orthogonal direction orthogonal to the liquid flow and a second liquid flow portion having a width in the orthogonal direction wider than the width of the first liquid flow portion. The electron beam flow is applied to the first liquid flow site. The narrow flow path is a part that receives irradiation, and an increase in fluid resistance is suppressed. The first liquid flow site is formed upstream of the second liquid flow site. The liquid flow further forms a third liquid flow site whose width in the orthogonal direction is wider than the width of the first liquid flow site, and the third liquid flow site is formed downstream of the first liquid flow site. The narrow flow path that receives the irradiation is limited to a part of the entire flow path, and the reduction of the fluid resistance is suppressed to the maximum. It is important that the width of the first liquid flow site is 0.5 mm or narrower than 0.5 mm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Corresponding to the figure, the sterilizer according to the present invention is provided with an electron beam generator in the liquid flow duct. As shown in FIG. 1, the electron beam generator 1 is coupled to a liquid flow duct 2 through an electron beam transmission window 5. The electron beam generator 1 includes a vacuum vessel body 3, an electron detacher 4 having an electron detachment electrode that emits electrons to a vacuum chamber in the vacuum vessel body 3, and a detachment from the electron detacher 4 in the vacuum chamber. An accelerating electrode (not shown) for generating an electron beam by accelerating electrons to be generated in the vacuum chamber is constituted. The vacuum chamber is connected to the liquid flow path 6 in the liquid flow duct 2 through the electron beam transmission window 5. A Ti thin film is preferably exemplified as a material for forming the electron beam transmission window 5. The thickness of the Ti thin film is particularly preferably 0.02 mm or less. As the liquid, raw material water such as pharmaceuticals is preferably exemplified.
[0016]
The electron beam is applied to the drinking water in an orthogonal direction generally orthogonal to the flow direction of such raw water. The liquid flow duct 2 includes a first part 7 that is a part irradiated with an electron beam, a second part 8 that is located upstream from the first part 7, and a third part that is located downstream from the first part 7. And form. The width in the orthogonal direction orthogonal to the flow direction of the second part 8 is wider than the width in the orthogonal direction orthogonal to the flow direction of the first part 7. The width in the orthogonal direction orthogonal to the flow direction of the third portion 9 is wider than the width in the orthogonal direction orthogonal to the flow direction of the first portion 7. It is significantly preferable that the energy of the electron beam is 300 keV or lower when it passes through the electron beam transmission window 5. In this case, it is important that the width in the orthogonal direction orthogonal to the flow direction of the first portion 7 is 0.5 mm or narrower than 0.5 mm. Such a restriction is effective not only for water but also for various liquids.
[0017]
The flow velocity of the flow portion corresponding to the first portion 7 is faster than the flow velocity of other portions. Increasing the surface density of the electron beam increases the cost of the electron beam generator 1, but the degree of the effect of the increased cost is so small that it can be ignored.
[0018]
The maximum value of the energy of the electron beam at the time of transmission through the electron beam transmission window 5 is smaller than 300 keV. Such a low energy electron beam has a small transmission power and collides with the water molecules of the raw material water and scatters, and as shown in FIG. 2, the liquid layer is scattered with an effective scattering range angle θ at an arbitrary point. Transparent. Such scattering transmission is similar in phenomenon to the diffraction phenomenon of electron waves. Electrons that do not collide with water molecules continue to permeate while gradually attenuating their energy, fly over an effective flight distance (range), and are absorbed by the opposite duct wall. In this way, the electron beam penetrating in a colliding manner collides with a microorganism in the drinking water and invalidates the physiological activity of the microorganism with a single blow. The electron beam attenuates energetically and becomes increasingly more impervious, more is absorbed by the microorganisms, and the electron beam that is not absorbed to the end finally reaches the opposite surface of the electron beam transmission window 5.
[0019]
As a second form for effective use of such an electron beam, it is remarkably effective that the electron beam generator 1 is arranged mirror-symmetrically with respect to the center plane S of the flow path. This addition is remarkably effective. The addition of the electron beam generator 1 can further reduce the output energy of the two electron beam generators 1, further reduce the apparatus cost, and erase the electrons appearing on the peripheral surface of the liquid flow duct 2. It is possible to reduce the burden on the apparatus of the shielding technique for shielding the X-rays emitted by the technique or the electron beam. Furthermore, such addition allows the thickness of the flow path layer to be doubled or allows the energy of the electron beam to be reduced to a range of 150 keV to 200 ke. Furthermore, such addition allows for a doubling of the flow rate.
[0020]
When the addition of the electron beam generator 1 is not performed, an electron beam reflector (not shown) that reflects the electron beam to the opposite surface of the electron beam transmission window 5 may be disposed on the inner surface side of the liquid flow duct 2. Remarkably preferred. The electron beam reflected by the electron beam reflecting plate penetrates again into the liquid flow path 6 as a sterilizing electron beam and is incident again.
[0021]
It is preferable that the three electron beam generators 1 are arranged at equiangular intervals around the liquid flow duct 2. In this case, the cross section of the liquid flow duct 2 is formed in an equilateral triangle or a circle. The electron beam electrode described above is formed as a wide area grid electrode or a grid electrode so that the cross section of the electron beam is circular or rectangular in the liquid flow path 6, and the electron beam is in the form of an electron beam bundle. It can be accelerated as an electron beam.
[0022]
In the sterilization apparatus according to the present invention, the liquid is not limited to raw water such as pharmaceuticals, and can be generally applied to liquid. The sterilizing apparatus according to the present invention is not limited to drinking water, but can be applied to industrial pure water, internal medicines, pharmaceutical drops, medical physiologically active substances such as water-soluble proteins, microbial cultures, and other liquid substances.
[0023]
【The invention's effect】
The sterilization apparatus according to the present invention can improve the sterilization efficiency with a low energy electron beam.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a sterilizer according to the present invention.
FIG. 2 is an enlarged view of a part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Duct 3 ... Electron beam generator 5 ... Electron beam transmission window 7 ... 1st liquid flow site | part 8 ... 2nd liquid flow site | part 9 ... 3rd liquid flow site | part

Claims (3)

液流を通すダクトと、
前記ダクトの中の前記液流に電子線透過窓を介して電子線流を導入する電子線生成器とを具え、
前記電子線流は前記液流の流れ方向に概ね直交し、
前記液流は循環型液流であり、
前記液流の前記流れ方向に直交する直交方向の幅は、前記電子線流の有効飛行距離より広く、
前記電子線流は、前記液流に直交方向に対向する両側から前記液流に照射され、
前記液流の前記流れ方向に直交する直交方向の幅は、前記電子線流の有効飛行距離の2倍に概ね等しい
殺菌装置。
A duct through which the liquid flows,
An electron beam generator for introducing an electron beam flow into the liquid flow in the duct through an electron beam transmission window;
The electron beam flow is substantially orthogonal to the flow direction of the liquid flow,
The liquid stream is a circulating liquid stream;
The width of the orthogonal direction perpendicular to the flow direction of the liquid flow is wider than the effective flight distance of the electron beam flow,
The electron beam flow is applied to the liquid flow from both sides facing the liquid flow in a direction orthogonal to the liquid flow,
The width of the liquid flow in the direction orthogonal to the flow direction is approximately equal to twice the effective flight distance of the electron beam flow.
液流を通すダクトと、
前記ダクトの中の前記液流に電子線透過窓を介して電子線流を導入する電子線生成器とを具え、
前記電子線流は前記液流の流れ方向に概ね直交し、
前記液流は循環型液流であり、
前記液流の前記流れ方向に直交する直交方向の幅は、前記電子線流の有効飛行距離より広く、
前記液流は、
前記液流の前記流れ方向に直交する直交方向の幅が狭い第1液流部位と、
前記直交方向の幅が前記第1液流部位の前記幅より広い第2液流部位とを備え、
前記電子線流は前記第1液流部位に照射される
殺菌装置。
A duct through which the liquid flows,
An electron beam generator for introducing an electron beam flow into the liquid flow in the duct through an electron beam transmission window;
The electron beam flow is substantially orthogonal to the flow direction of the liquid flow,
The liquid stream is a circulating liquid stream;
The width of the orthogonal direction perpendicular to the flow direction of the liquid flow is wider than the effective flight distance of the electron beam flow,
The liquid flow is
A first liquid flow portion having a narrow width in an orthogonal direction orthogonal to the flow direction of the liquid flow;
A second liquid flow site having a width in the orthogonal direction wider than the width of the first liquid flow site,
The electron beam flow is applied to the first liquid flow site.
液流を通すダクトと、
前記ダクトの中の前記液流に電子線透過窓を介して電子線流を導入する電子線生成器と、
前記電子線透過窓に対向する側で前記液流に直接に接触し前記電子線流を反射する電子線反射板とを具え、
前記電子線流は前記液流の流れ方向に概ね直交し、
前記液流は循環型液流であり、
前記液流の前記流れ方向に直交する直交方向の幅は、前記電子線流の有効飛行距離より広い
殺菌装置。
A duct through which the liquid flows,
An electron beam generator for introducing an electron beam flow into the liquid flow in the duct through an electron beam transmission window;
An electron beam reflector that directly contacts the liquid flow on the side facing the electron beam transmission window and reflects the electron beam flow;
The electron beam flow is substantially orthogonal to the flow direction of the liquid flow,
The liquid stream is a circulating liquid stream;
The width of the liquid flow in the direction orthogonal to the flow direction is wider than the effective flight distance of the electron beam flow.
JP2003031244A 2003-02-07 2003-02-07 Sterilizer Expired - Fee Related JP4043378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031244A JP4043378B2 (en) 2003-02-07 2003-02-07 Sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031244A JP4043378B2 (en) 2003-02-07 2003-02-07 Sterilizer

Publications (2)

Publication Number Publication Date
JP2004236968A JP2004236968A (en) 2004-08-26
JP4043378B2 true JP4043378B2 (en) 2008-02-06

Family

ID=32957900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031244A Expired - Fee Related JP4043378B2 (en) 2003-02-07 2003-02-07 Sterilizer

Country Status (1)

Country Link
JP (1) JP4043378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289522B2 (en) 2012-02-28 2016-03-22 Life Technologies Corporation Systems and containers for sterilizing a fluid
JP6803735B2 (en) * 2016-12-07 2020-12-23 日立造船株式会社 Inner electron beam sterilization equipment
JP7195134B2 (en) * 2018-12-20 2022-12-23 スタンレー電気株式会社 Fluid sterilizer
CN114772842A (en) * 2022-03-23 2022-07-22 中国人民解放军陆军军医大学第一附属医院 High-efficient purification treatment system of nuclear medical facilities sewage

Also Published As

Publication number Publication date
JP2004236968A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US3779706A (en) Process for bulk sterilization, minimizing chemical and physical damage
Silindir et al. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization
JP5571751B2 (en) Decontamination and sterilization system using large area X-ray source
Pérez Davila et al. How to sterilize polylactic acid based medical devices?
ES2215149T3 (en) WHITE FOR X-RAY PRODUCTION.
US3708263A (en) Method for continuous sterilization at low temperature
US3837805A (en) Apparatus for continuous sterilization at low temperature
KR100738174B1 (en) Method of Estimating Elimination of Microorganisms and Apparatus for Estimating Elimination of Microorganisms
US7189978B2 (en) Air sterilizing system
JPS6012057B2 (en) Method for sterilizing packaging materials and equipment for sterilizing packaging materials
JP4043378B2 (en) Sterilizer
Choi et al. Plasma bioscience for medicine, agriculture and hygiene applications
US6628750B1 (en) System for electron and x-ray irradiation of product
US20020011405A1 (en) Air sterilizing system
JPH1119190A (en) Method and device for sterilization with electron beams
Guettari et al. Coronavirus disinfection physical methods
JP2004041381A (en) Sterilizer and sterilization type air-conditioning system
Focea et al. Bacteria response to non-thermal physical factors: A study on Staphylococcus aureus
Ülkütaş et al. Designing and application of a new medical instrument sterilization system using reactive oxygen species
JPH06317700A (en) Electron beam radiating device
US8357329B1 (en) Method and apparatus for destroying pathogenic bacteria
JP4586159B2 (en) X-ray diffraction contrast device using microcapsules
JPH0716286A (en) Sterilizing method using electron beam
JP2004105300A (en) Sterilizer
Neuber Non-thermal atmospheric-pressure plasma for sterilization of surfaces and biofilms

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees