JP4041895B2 - Micro flow sensor - Google Patents

Micro flow sensor Download PDF

Info

Publication number
JP4041895B2
JP4041895B2 JP2003390358A JP2003390358A JP4041895B2 JP 4041895 B2 JP4041895 B2 JP 4041895B2 JP 2003390358 A JP2003390358 A JP 2003390358A JP 2003390358 A JP2003390358 A JP 2003390358A JP 4041895 B2 JP4041895 B2 JP 4041895B2
Authority
JP
Japan
Prior art keywords
flow path
passive
fluid
opening
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003390358A
Other languages
Japanese (ja)
Other versions
JP2005156157A (en
Inventor
振 楊
壮平 松本
俊杰 曹
龍太郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003390358A priority Critical patent/JP4041895B2/en
Publication of JP2005156157A publication Critical patent/JP2005156157A/en
Application granted granted Critical
Publication of JP4041895B2 publication Critical patent/JP4041895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、各種流体の流速を測定する流速計に関し、特に細い流体流路中を流れる微小な流体の流速を正確に測定することができるようにしたマイクロ流速センサーに関する。   The present invention relates to a flowmeter that measures the flow velocity of various fluids, and more particularly to a micro flow velocity sensor that can accurately measure the flow velocity of a minute fluid flowing in a narrow fluid flow path.

従来より管内を流れる流体の流量を測定するに際しては、例えば特開2003−130703号公報に示されるように、流体中にトレーサーを供給し、管内の2点間を移動するトレーサーの流速を計測して流量測定を行っている。   Conventionally, when measuring the flow rate of a fluid flowing in a pipe, for example, as disclosed in Japanese Patent Application Laid-Open No. 2003-130703, a tracer is supplied into the fluid and the flow velocity of the tracer moving between two points in the pipe is measured. To measure the flow rate.

しかしながら、この方法では流体中に何らかのトレーサーを混入させる必要があり、例えば化学反応用流体の流量測定を行う際、或いは高速流体クロマトグラフィー(HPLC)のように流体の組成、特性分析を行う流体を精密に供給する部分に用いる際、更にはバイオ研究のためのバイオリアクターのように微小流体を正確に供給しなければならないときに、流体中に他の物質を混入することが好ましくない分野では、上記のようなトレーサーを利用した流量測定を行うことは適切ではない。   However, in this method, it is necessary to mix some kind of tracer in the fluid. For example, when measuring the flow rate of a chemical reaction fluid, or using a fluid for analyzing the composition and characteristics of the fluid, such as high performance fluid chromatography (HPLC). In the field where it is not preferable to mix other substances in the fluid when it is necessary to accurately supply the microfluid, such as a bioreactor for bioresearch, when it is used for a precise supply part, It is not appropriate to measure the flow rate using the tracer as described above.

それに対して、例えば特表平2−503597号公報に示されるように、流体の管路中に渦流発生用の筒を配置し、流体の流速、即ち流量に応じて発生する渦によって生じる筒の振動を、その筒内に設けた光学的測定部で計測し、それにより流量を測定することも行われている。   On the other hand, as shown in, for example, Japanese Translation of PCT International Publication No. 2-503597, a cylinder for generating eddy currents is arranged in a fluid pipeline, and the cylinder generated by the vortex generated in accordance with the flow velocity of the fluid, that is, the flow rate is used. Vibration is also measured by an optical measuring unit provided in the cylinder, thereby measuring the flow rate.

しかしながら、このような渦流式流量計においては、管内を流れる流体が所定以上の流速にならないと渦は発生せず、したがって微小管路を流れる流体の微小流量を測定するのには適していない。   However, in such a vortex flow meter, the vortex is not generated unless the fluid flowing in the tube has a flow velocity higher than a predetermined flow rate, and therefore, it is not suitable for measuring the minute flow rate of the fluid flowing through the micropipe.

その他、例えば特公平9−348573号公報に示されるように、流体管路の周壁の一部にヒーターを設け、このヒーターと離れた位置に感熱抵抗を設け、ヒーターにより加熱した流体の温度変化を感熱抵抗によって検出することにより質量流量を計測する方式も存在する。   In addition, for example, as shown in Japanese Patent Publication No. 9-348573, a heater is provided on a part of the peripheral wall of the fluid pipe line, a thermal resistance is provided at a position away from the heater, and the temperature change of the fluid heated by the heater is changed. There is also a method for measuring the mass flow rate by detecting the thermal resistance.

しかしながら、上記の感熱抵抗を用いた方式においても、流体を加熱することにより流体の温度上昇を招き、化学反応用流体の流量測定等には適さない場合が多い。このように従来より種々の流量測定方法が存在するが、いずれも上記のような化学反応用流体の流量測定や、HPLC、或いはバイオリアクターにおける流量測定に適している流量計は未だ存在しない。また、前記のような各種従来技術においては、流れ方向が逆になったときに同一の装置で対応することはできなかった。
特開2003−130703号公報号公報 特表平2−503597号公報 特開平11−160120号公報
However, even in the method using the above-described thermal resistance, the temperature of the fluid is increased by heating the fluid, which is often not suitable for measuring the flow rate of the chemical reaction fluid. As described above, various flow rate measuring methods have conventionally existed. However, none of the flow meters suitable for the flow rate measurement of the chemical reaction fluid as described above, the flow rate measurement in the HPLC, or the bioreactor yet exist. Moreover, in the various prior arts as described above, when the flow direction is reversed, it is not possible to cope with the same apparatus.
JP 2003-130703 A JP-T-2-503597 JP-A-11-160120

本発明が解決しようとする課題は、流体中に不純物を混入させたり、温度変化を起こさせたりする必要が無く、流体の流動によって作動する機械量を直接測定することにより、微小流量を正確に測定することができるとともに、流れ方向が逆になった場合でも容易に対応することができるマイクロ流量計を得る点にある。   The problem to be solved by the present invention is that there is no need to introduce impurities into the fluid or cause a temperature change, and the minute flow rate can be accurately measured by directly measuring the amount of the machine that operates by the fluid flow. It is possible to obtain a micro flow meter that can measure and easily cope with the case where the flow direction is reversed.

本発明によるマイクロ流速センサは、上記課題を解決するため、外部に連通する開口を端面に備え、該開口を流れる流体と直角方向に流れて受動部本体の流路に連通する流体流路を形成した基板と、内部に基板の開口及び流路カバーの開口を流れる流体と直角方向に流れる流体流路を備え、該流体流路中に配置して流体によって変位する受動板を備えた受動部本体と、前記基板の開口を備えた端面と反対側に位置する端面に外部に連通する開口を備え、該開口を流れる流体と直角方向に流れて前記受動部本体の流路に連通する流体流路を形成した透明な流路カバーとからなり、前記基板と受動部本体と流路カバーとを順に積層して、一連の流路を形成する流路形成本体を構成し、前記流路カバーを透して前記受動部本体の受動板の変位を計測するレーザー干渉計を備え、前記レーザー干渉計による受動板の計測変位により流路中の流体の流速を検出するようにしたものである。 In order to solve the above problems, the micro flow rate sensor according to the present invention has an opening that communicates with the outside at the end face, and forms a fluid flow path that flows in a direction perpendicular to the fluid flowing through the opening and communicates with the flow path of the passive unit body. And a passive part body comprising a passive plate disposed in the fluid flow path and displaced by the fluid, the fluid flow path flowing in a direction perpendicular to the fluid flowing through the opening of the substrate and the flow path cover. And an end surface located on the opposite side of the end surface having the opening of the substrate, and an opening communicating with the outside, and a fluid flow path that flows in a direction perpendicular to the fluid flowing through the opening and communicates with the flow path of the passive unit body A transparent flow path cover that forms a flow path forming body that forms a series of flow paths by sequentially stacking the substrate, the passive portion main body, and the flow path cover. To measure the displacement of the passive plate That includes a laser interferometer, in which to detect the flow velocity of the fluid flow path in the measurement displacement of the driven plate by the laser interferometer.

また、本発明による他のマイクロ流速センサは、前記受動板を、受動部本体に形成した流路室の開口中に配置し、前記開口の周縁から延びる可撓性の受動板支持部材により支持したものである。   Further, in another micro flow rate sensor according to the present invention, the passive plate is disposed in an opening of a flow channel chamber formed in the passive portion main body, and is supported by a flexible passive plate support member extending from a peripheral edge of the opening. Is.

また、本発明による他のマイクロ流速センサは、前記受動板支持部材及び受動板を、前記受動部本体と一体形成したものである。   In another micro flow rate sensor according to the present invention, the passive plate support member and the passive plate are integrally formed with the passive portion main body.

本発明は上記のように構成したので、流体中にトレーサー等を混合する必要が無く、しかも微小な流体流量を簡単な手段により、正確に測定することができ、更に流れ方向が逆になった場合でも容易に対応することができる双方向性を備えている、という利点がある。   Since the present invention is configured as described above, it is not necessary to mix a tracer or the like in the fluid, and a minute fluid flow rate can be accurately measured by simple means, and the flow direction is reversed. There is an advantage of having bidirectionality that can be easily handled even in cases.

本発明は、トレーサー等を混入することなく微小な流体流量を簡単な手段により正確に測定するため、流体流路中に配置して流体によって変位する受動板に対してレーザーを照射し、レーザー干渉計によって受動板の変位を計測する。   In order to accurately measure a minute fluid flow rate by a simple means without mixing a tracer or the like, the present invention irradiates a laser on a passive plate that is arranged in a fluid flow path and is displaced by the fluid. The displacement of the passive plate is measured by a meter.

基板2は図2の斜視図に示すように端面6に形成した開口7を備え、この開口7に通じる基板流路溝8を基板2の図中上面側に設けている。なお、この基板2は種々の素材から形成することができるが、一例としてガラスを用いることができる。 Substrate 2 is provided with apertures 7 formed in the end surface 6 as shown in the perspective view of FIG. 2, is provided with a substrate flow grooves 8 communicating with the opening 7 on the upper surface side in the figure in the substrate 2. In addition, although this board | substrate 2 can be formed from a various raw material, glass can be used as an example.

基板2は図2の斜視図に示すように端面6に形成したの開口7を備え、この開口7に通じる基板流路溝8を基板2の図中上面側に設けている。なお、この基板2は種々の素材から形成することができるが、一例としてガラスを用いることができる。   As shown in the perspective view of FIG. 2, the substrate 2 includes an opening 7 formed in the end surface 6, and a substrate flow path groove 8 leading to the opening 7 is provided on the upper surface side of the substrate 2 in the drawing. In addition, although this board | substrate 2 can be formed from a various raw material, glass can be used as an example.

流路カバー4も同様に、前記基板2の開口7を形成した端面6とは反対側に面する端面10に開口11を備え、この開口10に通じるカバー流路溝12を流路カバー4の図中下面側に設けている。この流路カバー4はその上方に配置するレーザー干渉計からの光を透過する必要があるため、ガラスで作られれることが好ましい。   Similarly, the flow path cover 4 is provided with an opening 11 on an end surface 10 facing the end surface 6 opposite to the end surface 6 on which the opening 7 of the substrate 2 is formed. It is provided on the lower surface side in the figure. Since the flow path cover 4 needs to transmit light from a laser interferometer disposed above, the flow path cover 4 is preferably made of glass.

受動部本体3は図2及び図3に示すように、図中の下端面13に開口する中心流路室14を備え、この中心流路室14には受動部本体3の上端面15側に厚さtの受動板16をえている。この受動板16は、中心流路室14の上端における矩形の開口縁17の四隅から延びる4本の受動板支持部材18によって、中心流路室14の上方中心部に支持されている。上記の受動板16は、実際には150μm四方で、その厚さtは1.75μm程度に製造される。このような構造は受動部本体3としてシリコン素材を用いることによって、半導体の製造技術分野におけるエッチング技術によって容易に形成することができる。 As shown in FIGS. 2 and 3, the passive part main body 3 includes a central flow path chamber 14 that opens at the lower end surface 13 in the figure, and the central flow path chamber 14 is disposed on the upper end face 15 side of the passive part main body 3. Bei Eteiru passive plate 16 having a thickness of t. The passive plate 16 is supported at the upper center portion of the central flow channel chamber 14 by four passive plate support members 18 extending from the four corners of the rectangular opening edge 17 at the upper end of the central flow channel chamber 14. The above-mentioned passive plate 16 is actually 150 μm square, and the thickness t is manufactured to about 1.75 μm. Such a structure can be easily formed by etching technology in the field of semiconductor manufacturing technology by using a silicon material as the passive portion main body 3.

上記4本の受動板支持部材18により4つの流路開口20が形成され、その結果図3(a)に示すように、基板2の開口7、基板流路溝8、受動部本体3の中心流路室14、受動板支持部材18間の流路開口20、流路カバー4のカバー流路溝12、流路カバー4の開口11からなる一連の流体流路が形成される。図3に示す例においてはこの順で流体を流す例を示しており、また図1にはこれと逆の流路で流体を流す例を示している。   Four passage openings 20 are formed by the four passive plate support members 18, and as a result, as shown in FIG. 3A, the openings 7 of the substrate 2, the substrate passage grooves 8, and the center of the passive portion main body 3. A series of fluid flow paths including a flow path opening 20 between the flow path chamber 14 and the passive plate support member 18, a cover flow path groove 12 of the flow path cover 4, and an opening 11 of the flow path cover 4 are formed. In the example shown in FIG. 3, an example is shown in which fluid flows in this order, and FIG. 1 shows an example in which fluid flows in a flow path opposite to this.

図1に示されるように、レーザー干渉計5はレーザー光をガラス製の透明な流路カバー4を透し、また流路カバー4のカバー流路溝12及びこのカバー流路溝12を流れる流体を透して受動板16の上端面21に照射し、その反射光を受光することができるように配置し、その受光信号をパソコン6に出力している。このレーザー干渉計5としては種々の干渉計を使用することができるが、受動板16の動きを高速で検出するため、レーザードップラー干渉計を用いることが好ましい。現在、このようなレーザー干渉計は、47mm×38mm×19mm程度の小型のものが利用可能となっており、500μm四方程度の上記のような微小な流路における微小な可動板の移動を検出することが容易に行われるようになっている。   As shown in FIG. 1, the laser interferometer 5 allows laser light to pass through a transparent flow channel cover 4 made of glass, and covers the flow channel groove 12 of the flow channel cover 4 and the fluid flowing through the cover flow channel groove 12. Is arranged so that the reflected light can be received, and the light reception signal is output to the personal computer 6. Various laser interferometers can be used as the laser interferometer 5, but a laser Doppler interferometer is preferably used in order to detect the movement of the passive plate 16 at high speed. At present, such a laser interferometer having a small size of about 47 mm × 38 mm × 19 mm is available, and detects the movement of a minute movable plate in the minute channel as described above of about 500 μm square. It has become easy to do.

上記のような構造からなる本発明によるマイクロ流速センサの使用に際して、図1に示す例においては流路カバー4の開口11から流体を導入し、流路開口20を通って中心流路室14に流入し、基板2の開口7から排出するようにしているものであるが、このような流体の流れにおいて、受動板16は流体の速度に応じて下方に変位する。その変位はレーザー干渉計5によって検出され、パソコンに取り込まれ信号処理されて流量の検出が行われる。なお、レーザー干渉計5としては従来から各種分野で用いられている例えばマイケルソン干渉計を初めとする種々の干渉計を用いることができ、用いるレーザ光線についても、単一周波数のホモダイン型、或いは2つの周波数を用いるヘテロダイン型等の干渉計を用いることもできる。   When using the micro flow rate sensor according to the present invention having the above-described structure, in the example shown in FIG. Inflow and discharge from the opening 7 of the substrate 2 are performed. In such a fluid flow, the passive plate 16 is displaced downward in accordance with the fluid velocity. The displacement is detected by the laser interferometer 5, taken into a personal computer, processed by a signal, and the flow rate is detected. As the laser interferometer 5, various interferometers such as a Michelson interferometer that have been used in various fields can be used, and the laser beam used is also a single-frequency homodyne type or A heterodyne type interferometer using two frequencies can also be used.

なお、流体の流動方向が図3に示すように前記実施例とは逆の時には、受動板16は流体の流れによって上方に変位し、その変位をレーザー干渉計5によって検出することにより流量の測定を行うことができる。   When the fluid flow direction is opposite to that of the above embodiment as shown in FIG. 3, the passive plate 16 is displaced upward by the fluid flow, and the displacement is detected by the laser interferometer 5 to measure the flow rate. It can be performed.

図4には本発明からなるマイクロ流速センサを実際に製作し、測定実験を行った結果を示している。同図のグラフは蠕動性のチューブポンプを用い、種々の回転数で駆動してパルス的に水を流したときに、光干渉計で得られる受動板の変位を示している。同グラフの実験においてはポンプのスタート後、ポンプのパルス的な作動の周波数を順に上昇させ、その後順に降下させたものであり、ポンプの作動駆動周波数が少ないときはその周波数に対応して流速が遅く、受動板の変位が小さい。このときも同グラフに示されるように、ポンプのパルス周期による圧力変化によって流体が変化している状態まで明瞭に検出できていることがわかる。   FIG. 4 shows the result of actually producing a micro flow rate sensor according to the present invention and conducting a measurement experiment. The graph in the figure shows the displacement of the passive plate obtained by the optical interferometer when a peristaltic tube pump is used and the water is pulsed by driving at various rotational speeds. In the experiment of the graph, after starting the pump, the frequency of the pulse operation of the pump was increased in order, and then decreased in order. When the pump operating frequency is low, the flow rate is corresponding to that frequency. Slow and passive plate displacement is small. Also at this time, as shown in the graph, it can be seen that even the state where the fluid is changing due to the pressure change due to the pulse period of the pump can be clearly detected.

また、ポンプの駆動周波数を変化させると、それに合わせて変位が変化しており、このことから、予めこの受動板の変位特性のデータを得ておくことにより、レーザー干渉計5で計測した受動板の変位測定結果から、流路を流れる流体の流速を精密に計測することができ、正確な流量を測定することができる。   Moreover, when the drive frequency of the pump is changed, the displacement changes accordingly. From this, the passive plate measured by the laser interferometer 5 is obtained by obtaining the displacement characteristic data of the passive plate in advance. From the displacement measurement result, the flow velocity of the fluid flowing through the flow path can be accurately measured, and the accurate flow rate can be measured.

本発明によるマイクロ流速センサーは、微小な流路を流れる流体の流速を正確に測定することができるので、直径数μm〜数mmの微小空間内の現象を利用した化学反応・物質生産の為の混合・反応・分離等の単位操作の集積化システムである化学反応用流体を計測する技術分野や、バイオ技術分野、その他同様の各種の技術分野に有効に利用することができる。   The micro flow rate sensor according to the present invention can accurately measure the flow rate of a fluid flowing through a minute flow path, so that chemical reaction and substance production using a phenomenon in a minute space with a diameter of several μm to several mm is possible. The present invention can be effectively used in the technical field of measuring a chemical reaction fluid, which is an integrated system of unit operations such as mixing, reaction, and separation, in the biotechnological field, and in other similar technical fields.

本発明の全体概要を示す説明図である。It is explanatory drawing which shows the whole outline | summary of this invention. 本発明における流路形成本体の分解斜視図である。It is a disassembled perspective view of the flow-path formation main body in this invention. (a)は同流路形成本体の断面図であり、(b)は同平面図である。(A) is sectional drawing of the flow path formation main body, (b) is the top view. 本発明によるマイクロ流速センサーを製作し実験を行った結果を示すグラフである。It is a graph which shows the result of having manufactured the micro flow rate sensor by this invention, and having conducted experiment.

符号の説明Explanation of symbols

1 流路形成本体
2 基板
3 受動部本体
4 流路カバー
5 レーザ干渉計
6 パソコン
7 開口
8 基板流路溝
10 端面
11 開口
12 カバー流路溝
13 下端面
14 中心流路室
15 上端面
16 受動板
17 開口縁
18 受動板支持部材
20 流路開口
21 上端面
DESCRIPTION OF SYMBOLS 1 Flow path formation body 2 Board | substrate 3 Passive part main body 4 Flow path cover 5 Laser interferometer 6 Personal computer 7 Opening 8 Substrate flow path groove 10 End surface 11 Opening 12 Cover flow path groove 13 Lower end surface 14 Central flow path chamber 15 Upper end surface 16 Passive Plate 17 Opening edge 18 Passive plate support member 20 Flow path opening 21 Upper end surface

Claims (3)

外部に連通する開口を端面に備え、該開口を流れる流体と直角方向に流れて受動部本体の流路に連通する流体流路を形成した基板と、
内部に基板の開口及び流路カバーの開口を流れる流体と直角方向に流れる流体流路を備え、該流体流路中に配置して流体によって変位する受動板を備えた受動部本体と、
前記基板の開口を備えた端面と反対側に位置する端面に外部に連通する開口を備え、該開口を流れる流体と直角方向に流れて前記受動部本体の流路に連通する流体流路を形成した透明な流路カバーとからなり、
前記基板と受動部本体と流路カバーとを順に積層して、一連の流路を形成する流路形成本体を構成し、
前記流路カバーを透して前記受動部本体の受動板の変位を計測するレーザー干渉計を備え、
前記レーザー干渉計による受動板の計測変位により流路中の流体の流速を検出することを特徴するマイクロ流速センサ。
An end surface having an opening that communicates with the outside, a substrate that forms a fluid flow path that flows in a direction perpendicular to the fluid flowing through the opening and communicates with the flow path of the passive unit body;
A passive section body including a fluid flow path that flows in a direction perpendicular to the fluid flowing through the opening of the substrate and the flow path cover, and a passive plate that is disposed in the fluid flow path and is displaced by the fluid;
An end face located opposite to the end face provided with the opening of the substrate is provided with an opening communicating with the outside, and a fluid flow path is formed which flows in a direction perpendicular to the fluid flowing through the opening and communicates with the flow path of the passive part body. With a transparent flow path cover ,
Laminating the substrate, the passive part main body and the flow path cover in order to form a flow path forming body that forms a series of flow paths,
A laser interferometer that measures the displacement of the passive plate of the passive unit body through the flow path cover,
A micro flow rate sensor that detects a flow rate of a fluid in a flow path by measuring displacement of a passive plate by the laser interferometer.
前記受動板は、受動部本体に形成した流路室の開口中に配置し、前記開口の周縁から延びる可撓性の受動板支持部材により支持されていることを特徴とする請求項1記載のマイクロ流速センサ。   The said passive board is arrange | positioned in the opening of the flow-path chamber formed in the passive part main body, and is supported by the flexible passive board support member extended from the periphery of the said opening. Micro flow rate sensor. 前記受動板支持部材及び受動板は、前記受動部本体と一体形成していることを特徴とする請求項記載のマイクロ流速センサ。 3. The micro flow rate sensor according to claim 2, wherein the passive plate support member and the passive plate are integrally formed with the passive portion main body.
JP2003390358A 2003-11-20 2003-11-20 Micro flow sensor Expired - Lifetime JP4041895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390358A JP4041895B2 (en) 2003-11-20 2003-11-20 Micro flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390358A JP4041895B2 (en) 2003-11-20 2003-11-20 Micro flow sensor

Publications (2)

Publication Number Publication Date
JP2005156157A JP2005156157A (en) 2005-06-16
JP4041895B2 true JP4041895B2 (en) 2008-02-06

Family

ID=34717762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390358A Expired - Lifetime JP4041895B2 (en) 2003-11-20 2003-11-20 Micro flow sensor

Country Status (1)

Country Link
JP (1) JP4041895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092216A (en) * 2015-03-24 2016-11-09 Avl列表有限责任公司 The system of the time-resolved discharge process of fluid for measuring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092216A (en) * 2015-03-24 2016-11-09 Avl列表有限责任公司 The system of the time-resolved discharge process of fluid for measuring

Also Published As

Publication number Publication date
JP2005156157A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US7290441B2 (en) Micro slit viscometer with monolithically integrated pressure sensors
US20220333966A1 (en) Thermal fluid flow sensor
EP1754036B1 (en) Micro slit viscometer with monolithically integrated pressure sesonrs
US6458325B1 (en) Apparatus for analyzing liquid samples automatically and continually
Cavaniol et al. Flowmetering for microfluidics
Lee et al. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate
Smith et al. A MEMS-based Coriolis mass flow sensor for industrial applications
JP6691234B2 (en) Substrate assembly and related methods
JP2003524183A (en) Multi-reservoir pressure control system
Bamshad et al. Capillary-based micro-optofluidic viscometer
CN1323287C (en) Flexible plate wave differential pressure type micro flow transducer and fabricating method thereof
Huang Microfluidic flow sensing approaches
CN101140165A (en) Micro-heat current gyroscopes
JP4041895B2 (en) Micro flow sensor
US6722209B1 (en) Coriolis force type flow meter using optical interferometer
JP2008128706A (en) Microchip inspection system and program used for the microchip inspection system
KR20130007697A (en) Micro viscometer using an attenuation of acoustic waves and manufacturing method therefor
JPWO2009069449A1 (en) Inspection device and control method of inspection device
JP2009062911A (en) Reaction detecting device
CN2752730Y (en) Flexible flat-plate wave differential type micro-flow sensor
Blom et al. A differential viscosity detector for use in miniaturized chemical separation systems
Kikutani et al. Flowing thermal lens micro-flow velocimeter
Hao et al. Multi-position measurable flow velocity sensor for microfluidic applications
Wiegerink et al. Thermal and Coriolis type micro flow sensors based on surface channel technology
JP2005140756A (en) Flow velocity meter for fine channel, microchip, and microfluid operating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4041895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term