JP4041313B2 - Battery inspection method and battery inspection apparatus - Google Patents

Battery inspection method and battery inspection apparatus Download PDF

Info

Publication number
JP4041313B2
JP4041313B2 JP2002010640A JP2002010640A JP4041313B2 JP 4041313 B2 JP4041313 B2 JP 4041313B2 JP 2002010640 A JP2002010640 A JP 2002010640A JP 2002010640 A JP2002010640 A JP 2002010640A JP 4041313 B2 JP4041313 B2 JP 4041313B2
Authority
JP
Japan
Prior art keywords
current
charging
voltage
battery
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002010640A
Other languages
Japanese (ja)
Other versions
JP2003217683A (en
Inventor
茂樹 橋本
聡 森川
清 氏平
明生 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2002010640A priority Critical patent/JP4041313B2/en
Publication of JP2003217683A publication Critical patent/JP2003217683A/en
Application granted granted Critical
Publication of JP4041313B2 publication Critical patent/JP4041313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工場生産された電池の充放電試験工程における電池検査方法及び検査装置に関する。
【0002】
【従来の技術】
携帯電話などの二次電池は工場で大量生産された後、1回目の充電で化成処理されて電池としての機能が付与され、その後、何回かの充放電検査が行われてから検査合格品が工場出荷される。この二次電池の化成処理を含む充放電検査は、図4に示すように定電流充電と定電圧充電による充電動作と、定電流による放電動作を数サイクル繰り返すことで実施される。
【0003】
工場生産された大量の二次電池(以下、単に電池と称する)を図5に示すような充放電回路にセットして、まず目標となる定電流(目標充電電流Ia)で電池を充電して電池電圧を上昇させ、電池電圧が目標となる定電圧(目標電圧Va)まで上昇する[定電流領域T1の終点]と、目標電圧Vaを保つように定電圧充電に切り換える。定電圧充電が所定の終了条件に到達すると充電動作を終了させ[定電圧領域T2の終点]、その直ぐ後に、或いは所望時間経過後に定電流放電に切り換える。定電流放電は所定の目標放電電流Ibで実行されて、電池が過放電とならない所定の電池電圧値に達するか、又は、所定の終了条件に到達すると定電流放電を終了する[定電流領域T3の終点]。
【0004】
図5は多数の電池5を同時に充放電検査する電池検査装置の一般的な充放電回路で、比較回路6などのアナログデバイスとCPU内蔵の制御部10を備える。1つの制御部10には、多数の電池5がセットされる。電池5の各々は、個々の充放電回路20を介して共通の制御部10に接続される。個々の充放電回路20は直流電源1と充電用スイッチング素子2、放電用スイッチング素子3、電流検出用デバイス4、電流検出部7及び電圧検出部8を有し、充放電回路20と制御部10の電流経路にADコンバータ及びDAコンバータ9が配置される。
【0005】
電池5の充放電動作は、電池5に流れて電流検出部7で計測される現在電流Ixに基づく実電流値と、電圧検出部8で計測される電池5の現在電圧Vxに基づく実電圧値をアナログデバイスを介してハードループによってフィードバックして行われる。例えば充電用スイッチング素子2を導通させて電流検出用デバイス4を介して電池5に充電電流を流す定電流充電動作時には、制御部10のCPUから設定(目標充電)電流を出力し、この出力された電流値指令信号と現在電流Ixが比較回路6で比較検出されて、アナログの比較信号が充電用スイッチング素子2に入力され、この入力電圧を制御することで、電池5の充電電流制御が行われる。また、放電用スイッチング素子3を導通させて電池5を放電させる放電動作時には、制御部10のCPUから設定(目標放電)電流を出力し、この出力された電流値指令信号と現在電流Ixが比較回路6で比較検出されて、アナログの比較信号が放電用スイッチング素子3に入力され、この入力電圧を制御することで、電池5の放電電流制御が行われる。
【0006】
【発明が解決しようとする課題】
上記のような二次電池の充放電検査で重要視される電流・電圧精度に、定電流充電時の電流精度、定電圧充電時の電圧精度、定電流放電時の電流精度、放電時の終了電圧精度があり、これら精度の良否で電池検査装置の信頼性が決まる。図5の電池検査装置の場合、電池の充放電時の電流・電圧制御を比較回路などのアナログデバイスを用いたハードループフィードバック制御で行うため、充放電時の電流値や電圧値は図4の波形に似た良好なものとなって、上記4つの重要な電流・電圧精度が常に高精度に確保できて、電池の充放電検査の信頼性が良い。しかし、アナログデバイスを用いたハードループ構造に伴う次なる(1)〜(4)の問題がある。
【0007】
(1)、工場で大量生産された多数の電池を同時に充放電検査する電池検査装置は、数千や数万の多数の電池と同数以上のアナログデバイスを用いた充放電回路が必要であるため、検査装置全体の回路部品点数が多くなって検査装置全体が大型かつ高価となる。
【0008】
(2)、検査装置全体の回路部品点数が多くなるために、個々の回路部品の故障、品質劣化による保守・点検の頻度が高くなり、また、個々の回路部品の品質のバラツキを校正する調整時間が膨大となって、電池検査装置の稼動率が低下する。
【0009】
(3)、回路部品点数が多くなるため、電池の種類変更に伴う電池充放電の制御アルゴリズムの変更が難しい。
【0010】
(4)、電池の種類変更に伴うアナログデバイスの配線変更が工数多くて困難となり、この困難さから電池の種類変更への充放電制御アルゴリズムの対応性が悪くて汎用性に欠ける。
【0011】
本発明の目的とするところは、アナログデバイスの回路部品点数を低減させてコストダウンを容易にした、また、電池の種類変更への充放電制御アルゴリズムの対応性を改善した電池検査方法と検査装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明の請求項1の発明は、充電用スイッチング素子を介し電池を所定の目標充電電流で所定の目標電圧まで定電流充電してから目標電圧を保持して定電圧充電する充電動作と、この充電動作後に電池を放電用スイッチング素子を介して所定の終了条件に到達するまで所定の目標放電電流にて定電流放電させる放電動作とを、コンピュータのCPUで制御する電池検査方法であって、定電流充電時の電池に流れる現在電流と目標充電電流の差、及び、定電圧充電時の電池の現在電圧と目標電圧の差をCPUで演算し、演算された電流差信号、及び、電圧差信号をCPUで決められた所定のサイクルタイムで充電用スイッチング素子にデジタルの充電電流指令信号として出力して電池の充電動作を制御し、さらに、定電流放電時の電池に流れる現在電流と目標放電電流の差をCPUで演算し、この演算された電流差信号をCPUで決められた所定のサイクルタイムで放電用スイッチング素子にデジタルの放電電流指令信号として出力して電池の放電動作を制御することを特徴とする。
【0013】
ここでの電池は二次電池などで、この電池の定電流充電と定電圧充電の充電動作と、定電流放電の放電動作を上記のようにCPUのソフトループでデジタル制御することによって、従来のアナログデバイスを用いたハードループのアナログ制御による検査方法に比べてCPUがより有効利用され、その分、アナログデバイスが削減できて電池検査装置が小型となり、コストダウンが容易となる。
【0014】
本発明の請求項2の発明は、定電流充電時及び定電流放電時の電池の現在電流と目標充電又は放電電流の差に乗算することで現在電流が目標充電又は放電電流に近付く度合いを決める電流操作係数を、現在電流と目標充電又は放電電流の差に対して可変できる演算係数としてCPUに設定し、さらに、定電圧充電時の電池の現在電圧と目標充電電圧の差に乗算することで現在電圧が目標充電電圧に近付く度合いを決める電圧操作係数を、現在電圧と目標充電電圧の差に対して可変できる演算係数としてCPUに設定したことを特徴とする。
【0015】
ここで、一方の電流操作係数は、小さくなるほど電池の現在電流が目標充電又は放電電流に到達しにくくなり、大きくなるほど電池の現在電流が目標充電又は放電電流をオーバーシュートして目標充電又は放電電流の許容範囲内に収束しがたくなることから、電流操作係数をCPUで監視して自動的に最適値に可変制御するようにして、電池の現在電流が短時間で目標充電又は放電電流の許容範囲に到達するようにする。他方の電圧操作係数の場合は、小さくなるほど電池の現在電圧が目標充電電圧に到達しにくくなり、大きくなるほど電池の現在電圧が目標充電電圧をオーバーシュートして目標充電電圧の許容範囲内に収束しがたくなることから、電圧操作係数もCPUで監視して自動的に最適値に可変制御するようにして、電池の現在電圧が短時間で目標充電電圧の許容範囲内に到達するように充電電流を制御する。
【0016】
また、請求項3の発明は、定電流充電時及び定電流放電時の電池の目標充電又は放電電流を、この目標充電又は放電電流より小さくて段階的に増大して最終的に目標充電又は放電電流に達する複数の仮目標充電又は放電電流に分け、定電流充電又は放電時に最も小さい仮目標充電又は放電電流から順に電池の現在電流をステップアップさせて段階的に定電流充電又は放電するようにしたことを特徴とする。
【0017】
つまり、定電流充電又は放電のスタートアップを複数ステップで行うようにすることで、電池の現在電流が小ステップずつで仮目標充電又は放電電流に達し、複数の各仮目標充電又は放電電流に達する毎にオーバーシュート現象が抑制されて、最終的な目標充電又は放電電流に達するときのオーバーシュートが防止される。
【0018】
本発明の請求項4の発明は電池検査装置で、上記本発明のCPUのソフトループによる電池検査方法において、定電流充電時の電池に流れる現在電流と目標充電電流の差、及び、定電圧充電時の電池の現在電圧と目標電圧の差をCPUで演算し、この演算された電流差信号、及び、電圧差信号をCPUで決められた所定のサイクルタイムで充電用スイッチング素子にデジタルの充電電流指令信号として出力して電池の充電動作を制御する充電回路に、充電用スイッチング素子に入力される充電電流指令信号のデジタル電圧を前記サイクルタイムの間保持する電圧保持回路を付設したこと、及び、定電流放電時の電池の現在電流と目標放電電流の差をCPUで演算し、この演算された電圧差信号をCPUで決められた所定のサイクルタイムで放電用スイッチング素子にデジタルの放電電流指令信号として出力して電池の放電動作を制御する放電回路に、放電用スイッチング素子に入力される放電電流指令信号のデジタル電圧を前記サイクルタイムの間保持する電圧保持回路を付設したことを特徴とする。
【0019】
すなわち、充電用スイッチング素子にCPUで設定された所定のサイクルタイムでデジタルの充電電流指令信号を入力してから、次の充電電流指令信号が入力されるまでの時間帯(CPUが1サイクルタイムをスキャンニング動作する時間)はスイッチング素子に充電電流指令信号のデジタル電圧が入力されない時間帯となり、この時間帯が長くなるとスイッチング素子の動作が不安定になることから、充電用スイッチング素子に電圧保持回路を付設してCPUのスキャンニング時間帯での動作を安定したものにし、これにより定電流充電時の電流精度を確保する。また、放電用スイッチング素子にも電圧保持回路を付設して、定電流放電時の電流精度を確保する。これら電圧保持回路は、電子部品を使用した簡単で安価な回路で構成できる。
【0020】
【発明の実施の形態】
図1に本発明の電池検査装置の実施の形態を示すと、同図の電池検査装置は多数の電池5を同時に充放電するもので、CPU内蔵の1つの制御部30と、制御部30に2つのADコンバータ31c、31dと2つのDAコンバータ31a、31bと4つのオペアンプ32a〜32dを介して4つのチャネル切換素子33a〜33dが接続された充放電回路40を有する。各チャネル切換素子33a〜33dの各々にはN個(数十〜数百程度の多数個)の電池5が接続される。各電池5には、図5と同様な充電用スイッチング素子2と放電用スイッチング素子3、電流検出用デバイス4からなる充放電回路が接続され、この複数の電池充放電回路が共通の直流電源1に接続される。
【0021】
4つのチャネル切換素子33a〜33dは、充電用チャネル切換素子33aと放電用チャネル切換素子33b、及び、充電電流検出用チャネル切換素子33cと電池電圧検出用チャネル切換素子33dである。各チャネル切換素子33a〜33dは制御部30のCPUから1サイクルタイムで1パルスずつ出力されるチャンネルセレクト信号fの入力毎にN個のスイッチ切換のスキャンニング動作をする。充電用チャネル切換素子33aはN個の充電用スイッチング素子2に接続されるN個の出力端子を有し、この各出力端子と各スイッチング素子2のゲートの間に電圧保持回路50が接続される。放電用チャネル切換素子33bはN個の放電用スイッチング素子3に接続されるN個の出力端子を有し、この出力端子とスイッチング素子3のゲートの間に電子部品で構成された電圧保持回路51が接続される。
【0022】
充電電流検出用チャネル切換素子33cはN個の電池5に流れる電流を順次に計測するためのもので、ここで計測された充電電流(現在電流)はチャネル切換素子33cのスキャンニング動作のタイミングでオペアンプ32cとADコンバータ31cに出力されてデジタル値に変換された電流モニターとして制御部30のCPUに送られる。電池電圧検出用チャネル切換素子33dはN個の電池5の端子電圧を順次に計測するためのもので、ここで計測された電池電圧(現在電圧)はチャネル切換素子33dのスキャンニング動作のタイミングでオペアンプ32dとADコンバータ31dに出力されてデジタル値に変換された電圧モニターとして制御部30のCPUに送られる。
【0023】
制御部30のCPUは、電流モニターと電圧モニターをフィードバック制御して充電電流指令信号と放電電流指令信号をDAコンバータ31a、31bを介してチャネル切換素子33a、33bに出力するソフトループの制御を行う。この制御部30のCPUは、電池5の定電流充電時に電池5に流れる現在電流と目標充電電流の差、及び、定電圧充電時の電池5の現在電圧と目標電圧の差を演算し、演算された電流差信号、及び、電圧差信号をCPUで決められた所定のサイクルタイムで充電用スイッチング素子2にデジタルの充電電流指令信号として出力して電池5の充電動作を制御するソフトループ機能と、定電流放電時の電池5の現在電流と目標放電電流の差を演算し、演算された電圧差信号をCPUで決められた所定のサイクルタイムで放電用スイッチング素子3にデジタルの放電電流指令信号として出力して電池の放電動作を制御するソフトループ機能を有する。
【0024】
制御部30のCPUから充電用チャネル切換素子33aに入力された充電電流指令信号は、CPUによるチャネル切換素子33aの1スキャンニングサイクル毎に1パルス分が充電用スイッチング素子2のベース(またはゲート)に入力される。この1パルス分の入力電圧は電圧保持回路50で保持されて、結果的にCPUのスキャンニング時間中にもスイッチング素子2のベース(またはゲート)に充電電流指令信号が継続して入力された形となって電池5の定電流充電と定電圧充電が実行される。この定電流充電時の電流制御と定電圧充電時の電圧制御は、CPUからの充電電流指令信号で従来同様に高精度で行われる。
【0025】
また、制御部30のCPUから放電用チャネル切換素子33bに入力された放電電流指令信号は、CPUによるチャネル切換素子33bの1スキャンニングサイクル毎に1パルス分が放電用スイッチング素子2のベース(またはゲート)に入力され、この1パルス分の入力電圧が電圧保持回路51で保持されて、この場合も結果的にCPUのスキャンニング時間中にもスイッチング素子3のベース(またはゲート)に放電電流指令信号が継続して入力された形となって、電池5の定電流放電が実行され、定電流放電時の電流制御がCPUからの放電電流指令信号で高精度に行われる。
【0026】
以上のように電池検出装置を構成することで、1つの充放電回路40で複数の電池の充放電制御ができて、充放電回路の回路部品の低減、特にアナログデバイスの大幅な低減が容易となる。実際、従来のアナログタイプの電池検査装置に比べてアナログデバイスが数量で約70%削減できて、大幅なコストダウンが可能となる。また、制御部30のCPUに多くの充放電のソフトループ機能を持たせたので、IC特性などのハード的な要因による不安定さやトラブルが減少すると共に、CPUのハード部分を簡単な構成にすることができる。また、制御部30のCPUを主体とするソフトウエアーによる充放電制御のために、電池の種類変更などに伴う充放電の制御アルゴリズムの変更がCPUのソフト変更だけで簡単に実行できるようになる。また、さらに必要とあらば各電池個別に電流・電圧の設定を変えて充放電を実行することもできる。
【0027】
本発明の電池検査方法の場合、電池の充放電がデジタルの充放電指令信号で制御されることから充放電時に計測される現在電流と現在電圧が目標値をオーバーシュートして振動したり、目標値に到達するのに時間を要するなどの不安定要因が発生することがある。例えば図1の電池検査装置の制御部30のCPUは、定電流充電時に電池5に流れる現在電流Ixと所定の目標充電電流Ia(図2参照)の差(Ia−Ix)に電流操作係数Kiを乗算して電流制御を行うが、このときの電流操作係数Kiが小さすぎると図2(B)に示すように現在電流Ixが目標充電電流Iaの許容範囲Iyに入らない場合がある。逆に電流操作係数Kiが大き過ぎると図2(C)に示すように定電流充電のスタートアップ時に現在電流Ixが許容範囲Iyを大きく逸脱して振動するオーバーシュート現象が発生し、現在電流Ixが許容範囲Iy内に収束しないか、完全に収束するまでに長時間を要することがある。
【0028】
上記電流操作係数Kiは、現在電流Ixが目標充電電流Iaに近付く度合いを決める演算係数であり、図5の従来のアナログループ方式の充放電回路においては固有係数が適用されていたのに対して、本発明においては現在電流Ixと目標充電電流Iaの差に対して可変できる係数としてCPUに設定して、図2(A)に示すように現在電流Ixを許容範囲Iyに短時間で収束させるようにする。すなわち、現在電流Ixが許容範囲Iyに近付くまでは電流操作係数Kiを大きくして定電流充電時のスタートアップ時間を短縮させ、大きな電流操作係数Kiで現在電流Ixが許容範囲Iyをオーバーシュートするところで電流操作係数KiをCPUで小さく自動制御して現在電流Ixの許容範囲Iyでの上下振動を抑制する。この電流操作係数Kiの増減制御で、現在電流Ixは段階的に振動が抑制されて許容範囲Iy内で収束し、定電流制御が短時間に高精度で行われるようになる。
【0029】
以上のような電流操作係数による電流制御は図4の定電流領域T3での電流制御にも適用される。さらに、図2(A)の許容範囲Iyで収束した現在電流Ixが周囲温度変化や電池種類変更など何らかの原因で許容範囲Iyを逸脱して振動することもあるが、このような場合にも上記電流操作係数の設定でもって逸脱した現在電流の振動が抑制される効果もある。このような効果は、次の電圧操作係数Kvの設定においても同様に発揮される。
【0030】
また、本発明においては、定電圧充電時の電池の現在電圧と目標充電電圧Va(図4参照)の差に乗算することで現在電圧が目標充電電圧Vaに近付く度合いを決める電圧操作係数Kvを、CPUに現在電圧と目標充電電圧Vaの差に比例して可変する演算係数として設定する。この場合、定電圧充電時に現在電流が所定の目標充電電圧Vaの許容範囲をオーバーシュートするところで電圧操作係数KvをCPUで小さく自動制御して、電圧制御が短時間に高精度で行われるようにする。
【0031】
さらに、本発明においては、定電流充電時のスタートアップを良好なものにするため、図3に示すように定電流充電時の電池5の目標充電電流Iaを、この目標充電電流Iaより小さくて段階的に増大して最終的に目標充電電流Iaに達する複数の仮目標充電電流I1y、I2y、…に分けて設定する。定電流充電のスタートアップを最も小さい仮目標充電電流I1yから始めて、電池5の現在電流Ixが上昇して始めの仮目標充電電流I1yの許容範囲に収束すると、仮目標充電電流I1yに電流増加量を加えた仮目標充電電流I2yに向けて充電ステップアップを行い、この充電ステップアップを順に繰り返して最終的に目標充電電流Iaの許容範囲Iyに現在電流Ixを収束させる。
【0032】
図3の充電ステップアップ動作において、現在電流Ixがゼロから最初の仮目標充電電流I1yに達するときのオーバーシュートは、現在電流Ixがゼロから最大の目標充電電流Iaに達するときのオーバーシュートより十分に小さく現れる。そして、各仮目標充電電流I1y、I2y、…の間のステップアップ電流量をステップアップするほど順に小さくなるように設定すると、現在電流Ixが各仮目標充電電流I1y、I2y、…でオーバーシュートする量が順に小さくなって、最終的な目標充電電流Iaではオーバーシュートせずに一気に目標充電電流Iaの許容範囲Iyに収束する。そのため、定電流充電を高速でスタートアップさせてもオーバーシュートする可能性が無くてスタートアップの高速化が容易になり、かつ、円滑なスタートアップが実現される。また、図3の各仮目標充電電流I1y、I2y、…における現在電流Ixの振動による収束領域に図2で説明した電流操作係数のソフトを適用すれば、この収束領域の時間短縮が可能となって尚一層のスタートアップの改善が図れる。
【0033】
【発明の効果】
請求項1の発明は、定電流充電時の電池に流れる現在電流と目標充電電流の差をコンピュータのCPUでソフトループにて演算し、演算された電流差信号をCPUで決められたサイクルタイムで充電用スイッチング素子にデジタルの充電電流指令信号として出力して定電流充電の動作を制御し、同様にして電圧充電や定電流放電の動作を制御するようにしたので、従来のアナログデバイスを用いたハードループのアナログ制御による電池検査方法のアナログデバイスの機能をCPUが受け持ってCPUの有効利用が図れ、その分、アナログデバイスが大幅に削減できて電池検査装置の部品点数の低減による小型化とコストダウンが可能となり、部品の保守点検や配線変更の作業が容易になる。また、電池の充放電制御がCPUのソフトループで行われるために、電池の種類変更に伴う充放電の制御アルゴリズムの変更とその校正作業が容易であり、多品種の電池への対応が容易で汎用性に優れる効果がある。
【0034】
請求項2の発明は、充放電時の電池の現在電流と現在電圧を目標値に近付ける操作係数をCPU側で可変係数としたので、CPUで操作係数が常に最適値となるように制御することで、充放電時の電池の現在電流や現在電圧を常に効率よく目標値の許容範囲内に収束させることができて、電池検査の高速化、性能改善が図れる。
【0035】
請求項3の発明は、定電流充電時に電池の現在電流を仮目標充電電流から段階的に最終の目標充電電流まで上げるようにしたので、定電流充電時のスタートアップを速めても現在電流が目標充電電流を大きくオーバーシュートする不具合が解消でき、したがって、円滑でオーバーシュートの少ないスタートアップ動作ができる効果がある。また、定電流充電時のオーバーシュートが抑制できることで、オーバーシュートによる電池への異常な電流によるストレスが軽減されて、特に携帯電話の二次電池のような小型軽量の電池にストレスを与えない信頼性の高い電池検査が実行できる効果がある。
【0036】
請求項4の発明の電池検査装置は、充放電用スイッチング素子に付設された電圧保持回路がスイッチング素子に時間間隔を置いて入力されるデジタルの指令信号の電圧値を保持して、スイッチング素子の動作を安定したものにするので、定電流充電時の電流精度や電圧充電時の電圧精度、定電流放電時の電流精度が常に安定して確保できる効果がある。また、電圧保持回路は電子部品を使用した簡単で安価な回路が適用できる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す電池検査装置の回路図である。
【図2】(A)は図1回路の制御部CPUで定電流充電を制御したときの電流波形図、(B)と(C)は(A)の電流波形の有効性を対比して説明するための電流波形図である。
【図3】図1回路の制御部CPUによる定電流充電及び放電スタートアップ時の電流波形図である。
【図4】一般的な電池の充放電検査を説明するための充放電電流波形図と電圧波形図である。
【図5】従来の電池検査装置の回路図である。
【符号の説明】
1 直流電源
2 充電用スイッチング素子
3 放電用スイッチング素子
4 電流検出用抵抗
5 電池
20 充放電回路
30 制御部
31a、31b ADコンバータ
31c、31d DAコンバータ
32a〜32d オペアンプ
33a〜33d チャネル切換素子
40 充放電回路
50 電圧保持回路
51 電圧保持回路
Ib 目標放電電流
Ix 現在電流
Iy 許容範囲
I1y 仮目標充電電流
I2y 仮目標充電電流
Va 目標電圧
Vx 現在電圧
f チャンネルセレクト信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery inspection method and an inspection apparatus in a charge / discharge test process for a battery produced in a factory.
[0002]
[Prior art]
Secondary batteries such as mobile phones are mass-produced at the factory, and after the first charge, they are subjected to chemical conversion treatment to give the function as a battery. Is shipped from the factory. The charge / discharge inspection including the chemical conversion treatment of the secondary battery is performed by repeating a charging operation by constant current charging and constant voltage charging and a discharging operation by constant current for several cycles as shown in FIG.
[0003]
A large amount of secondary batteries (hereinafter simply referred to as batteries) produced in the factory are set in a charge / discharge circuit as shown in FIG. 5, and the batteries are first charged with a target constant current (target charge current Ia). When the battery voltage is raised and the battery voltage rises to a target constant voltage (target voltage Va) [end point of constant current region T1], switching to constant voltage charging is performed so as to keep the target voltage Va. When the constant voltage charging reaches a predetermined end condition, the charging operation is terminated [end point of constant voltage region T2], and immediately after that or after a desired time has elapsed, switching to constant current discharging is performed. The constant current discharge is executed at a predetermined target discharge current Ib, and when the battery reaches a predetermined battery voltage value at which the battery is not overdischarged or reaches a predetermined end condition, the constant current discharge is terminated [constant current region T3. End point].
[0004]
FIG. 5 shows a general charge / discharge circuit of a battery inspection apparatus for simultaneously charging / discharging a large number of batteries 5, and includes an analog device such as a comparison circuit 6 and a control unit 10 with a built-in CPU. A large number of batteries 5 are set in one control unit 10. Each of the batteries 5 is connected to a common control unit 10 via an individual charge / discharge circuit 20. Each charging / discharging circuit 20 includes a DC power source 1, a charging switching element 2, a discharging switching element 3, a current detection device 4, a current detection unit 7, and a voltage detection unit 8, and the charging / discharging circuit 20 and the control unit 10. The AD converter and the DA converter 9 are arranged in the current path.
[0005]
The charging / discharging operation of the battery 5 includes an actual current value based on the current current Ix that flows through the battery 5 and is measured by the current detector 7, and an actual voltage value that is based on the current voltage Vx of the battery 5 that is measured by the voltage detector 8. This is done by feedback through a hard loop through an analog device. For example, during the constant current charging operation in which the charging switching element 2 is turned on and the charging current is supplied to the battery 5 via the current detection device 4, the setting (target charging) current is output from the CPU of the control unit 10 and output. The current value command signal and the current current Ix are compared and detected by the comparison circuit 6, and an analog comparison signal is input to the charging switching element 2. By controlling this input voltage, the charging current of the battery 5 is controlled. Is called. Further, during a discharging operation in which the discharging switching element 3 is conducted to discharge the battery 5, a set (target discharge) current is output from the CPU of the control unit 10, and the output current value command signal is compared with the current current Ix. The comparison detection is performed by the circuit 6, and an analog comparison signal is input to the discharging switching element 3. The discharge current of the battery 5 is controlled by controlling the input voltage.
[0006]
[Problems to be solved by the invention]
Current / voltage accuracy that is regarded as important in charge / discharge inspection of secondary batteries as described above, current accuracy during constant current charge, voltage accuracy during constant voltage charge, current accuracy during constant current discharge, termination at discharge There is voltage accuracy, and the reliability of the battery inspection device is determined by the quality. In the case of the battery inspection apparatus of FIG. 5, since current / voltage control during charging / discharging of the battery is performed by hard loop feedback control using an analog device such as a comparison circuit, the current value and voltage value during charging / discharging are as shown in FIG. It becomes a good one resembling a waveform, the above four important current / voltage accuracies can always be ensured with high accuracy, and the reliability of the battery charge / discharge inspection is good. However, there are the following problems (1) to (4) associated with a hard loop structure using an analog device.
[0007]
(1) Since a battery inspection apparatus for simultaneously charging and discharging a large number of batteries mass-produced at a factory requires a charge / discharge circuit using thousands or tens of thousands of batteries and the same or more analog devices. As a result, the number of circuit parts in the entire inspection apparatus increases, and the entire inspection apparatus becomes large and expensive.
[0008]
(2) Since the number of circuit parts in the entire inspection device increases, the frequency of maintenance and inspection due to failure of individual circuit parts and quality deterioration increases, and adjustment to calibrate variations in the quality of individual circuit parts The time becomes enormous and the operating rate of the battery inspection device decreases.
[0009]
(3) Since the number of circuit components increases, it is difficult to change the control algorithm for battery charge / discharge accompanying the change in battery type.
[0010]
(4) It is difficult to change the wiring of the analog device due to the change of the battery type, and due to this difficulty, the charge / discharge control algorithm is not compatible with the change of the battery type and lacks versatility.
[0011]
The object of the present invention is to reduce the number of circuit parts of an analog device to facilitate cost reduction, and to improve the compatibility of the charge / discharge control algorithm for changing the type of battery. Is to provide.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a charging operation in which a battery is constant-current charged to a predetermined target voltage with a predetermined target charging current via a charging switching element, and then the constant voltage is charged while holding the target voltage. A battery inspection method in which a discharge operation of a constant current discharge at a predetermined target discharge current is controlled by a CPU of a computer until a predetermined end condition is reached via a discharge switching element after the charging operation is performed. The CPU calculates the difference between the current current flowing through the battery during current charging and the target charging current, and the difference between the battery current voltage and target voltage during constant voltage charging, and the calculated current difference signal and voltage difference signal. Is output as a digital charging current command signal to the charging switching element at a predetermined cycle time determined by the CPU to control the battery charging operation, and further flows to the battery during constant current discharge. The difference between the current and the target discharge current is calculated by the CPU, and the calculated current difference signal is output as a digital discharge current command signal to the discharge switching element at a predetermined cycle time determined by the CPU to discharge the battery. The operation is controlled.
[0013]
The battery here is a secondary battery, etc., and the conventional constant current charging and constant voltage charging charging operation and the constant current discharging discharging operation are digitally controlled by the CPU soft loop as described above. Compared with the inspection method by analog control of the hard loop using an analog device, the CPU is used more effectively, and accordingly, the analog device can be reduced, the battery inspection apparatus becomes small, and the cost can be easily reduced.
[0014]
According to the second aspect of the present invention, the degree of the current current approaching the target charging or discharging current is determined by multiplying the difference between the current current of the battery and the target charging or discharging current during constant current charging and constant current discharging. By setting the current operation coefficient in the CPU as a calculation coefficient that can be varied with respect to the difference between the current current and the target charging or discharging current, and further multiplying the difference between the current voltage of the battery and the target charging voltage during constant voltage charging. A voltage operation coefficient that determines the degree to which the current voltage approaches the target charging voltage is set in the CPU as a calculation coefficient that can be varied with respect to the difference between the current voltage and the target charging voltage.
[0015]
Here, the smaller the current operation coefficient is, the more difficult the current current of the battery reaches the target charging or discharging current, and the larger the current operating coefficient, the more the current current of the battery overshoots the target charging or discharging current and the target charging or discharging current. Therefore, it is difficult to converge within the permissible range, so the current operation coefficient is automatically controlled to the optimum value by monitoring the current operation coefficient with the CPU, so that the current current of the battery can be allowed for the target charge or discharge current in a short time. Try to reach the range. In the case of the other voltage operation coefficient, the current voltage of the battery is less likely to reach the target charge voltage as the voltage becomes smaller, and the current voltage of the battery overshoots the target charge voltage and converges within the allowable range of the target charge voltage as the value increases. Since the voltage operation coefficient is also monitored by the CPU and automatically controlled to an optimum value, the charging current is adjusted so that the current voltage of the battery reaches the allowable range of the target charging voltage in a short time. To control.
[0016]
Further, the invention of claim 3 is directed to increase the target charge or discharge current of the battery at the time of constant current charge and constant current discharge in a stepwise manner smaller than the target charge or discharge current, and finally target charge or discharge. It is divided into a plurality of temporary target charging or discharging currents that reach the current, and the current of the battery is stepped up in order from the smallest temporary target charging or discharging current during constant current charging or discharging so that constant current charging or discharging is performed step by step. It is characterized by that.
[0017]
In other words, by starting up constant current charging or discharging in a plurality of steps, the current current of the battery reaches a temporary target charging or discharging current in small steps, and each time a plurality of temporary target charging or discharging currents are reached. Thus, the overshoot phenomenon is suppressed, and overshoot when the final target charge or discharge current is reached is prevented.
[0018]
According to a fourth aspect of the present invention, there is provided a battery inspection apparatus, wherein in the battery inspection method using the CPU soft loop according to the present invention, the difference between the current and the target charging current flowing in the battery during constant current charging, and constant voltage charging. The difference between the current voltage of the battery at the time and the target voltage is calculated by the CPU, and the calculated current difference signal and the voltage difference signal are digitally charged to the charging switching element at a predetermined cycle time determined by the CPU. A charging circuit that outputs a command signal and controls the charging operation of the battery, a voltage holding circuit that holds the digital voltage of the charging current command signal input to the switching element for charging during the cycle time; and The difference between the current battery current and the target discharge current during constant current discharge is calculated by the CPU, and the calculated voltage difference signal is released at a predetermined cycle time determined by the CPU. A discharge circuit that outputs a digital discharge current command signal to the switching element for control and controls the discharge operation of the battery, and holds the digital voltage of the discharge current command signal input to the discharge switching element for the cycle time. A circuit is attached.
[0019]
That is, the time period from when a digital charging current command signal is input to the charging switching element at a predetermined cycle time set by the CPU until the next charging current command signal is input (the CPU has one cycle time). The scanning operation time) is a time zone in which the digital voltage of the charging current command signal is not input to the switching element. If this time period becomes longer, the operation of the switching element becomes unstable. Is added to stabilize the operation of the CPU in the scanning time zone, thereby ensuring current accuracy during constant current charging. In addition, a voltage holding circuit is also attached to the discharge switching element to ensure current accuracy during constant current discharge. These voltage holding circuits can be configured with simple and inexpensive circuits using electronic components.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the battery inspection apparatus according to the present invention. The battery inspection apparatus of the same figure charges and discharges a large number of batteries 5 at the same time. It has a charge / discharge circuit 40 to which four channel switching elements 33a to 33d are connected via two AD converters 31c and 31d, two DA converters 31a and 31b, and four operational amplifiers 32a to 32d. N (a large number of several tens to several hundreds) batteries 5 are connected to each of the channel switching elements 33a to 33d. Each battery 5 is connected to a charging / discharging circuit comprising a charging switching element 2, a discharging switching element 3, and a current detection device 4 similar to those in FIG. 5, and the plurality of battery charging / discharging circuits share a common DC power source 1. Connected to.
[0021]
The four channel switching elements 33a to 33d are a charging channel switching element 33a and a discharging channel switching element 33b, a charging current detecting channel switching element 33c, and a battery voltage detecting channel switching element 33d. Each of the channel switching elements 33a to 33d performs a scanning operation for switching N switches for each input of the channel select signal f output from the CPU of the control unit 30 one pulse at a time in one cycle time. The charging channel switching element 33 a has N output terminals connected to the N charging switching elements 2, and a voltage holding circuit 50 is connected between the output terminals and the gates of the switching elements 2. . The discharge channel switching element 33 b has N output terminals connected to the N discharge switching elements 3, and a voltage holding circuit 51 formed of an electronic component between the output terminal and the gate of the switching element 3. Is connected.
[0022]
The charging current detection channel switching element 33c is for sequentially measuring the current flowing through the N batteries 5, and the charging current (current current) measured here is the timing of the scanning operation of the channel switching element 33c. A current monitor output to the operational amplifier 32c and the AD converter 31c and converted into a digital value is sent to the CPU of the control unit 30. The battery voltage detection channel switching element 33d is for sequentially measuring the terminal voltages of the N batteries 5, and the battery voltage (current voltage) measured here is the timing of the scanning operation of the channel switching element 33d. A voltage monitor output to the operational amplifier 32d and the AD converter 31d and converted into a digital value is sent to the CPU of the control unit 30.
[0023]
The CPU of the control unit 30 performs feedback control of the current monitor and voltage monitor to control a soft loop that outputs the charge current command signal and the discharge current command signal to the channel switching elements 33a and 33b via the DA converters 31a and 31b. . The CPU of the control unit 30 calculates the difference between the current and target charging current flowing through the battery 5 when the battery 5 is charged with constant current, and the difference between the current voltage and target voltage of the battery 5 when charging with constant voltage. A soft loop function for controlling the charging operation of the battery 5 by outputting the current difference signal and the voltage difference signal as a digital charging current command signal to the charging switching element 2 at a predetermined cycle time determined by the CPU. The difference between the current current of the battery 5 and the target discharge current during constant current discharge is calculated, and the calculated voltage difference signal is digitally sent to the discharge switching element 3 at a predetermined cycle time determined by the CPU. As a soft loop function for controlling the discharging operation of the battery.
[0024]
The charging current command signal input from the CPU of the control unit 30 to the charging channel switching element 33a is one base for each scanning cycle of the channel switching element 33a by the CPU. Is input. The input voltage for one pulse is held by the voltage holding circuit 50. As a result, the charging current command signal is continuously input to the base (or gate) of the switching element 2 even during the scanning time of the CPU. Thus, constant current charging and constant voltage charging of the battery 5 are performed. The current control at the time of constant current charging and the voltage control at the time of constant voltage charging are performed with high accuracy as in the prior art by a charging current command signal from the CPU.
[0025]
Further, the discharge current command signal input from the CPU of the control unit 30 to the discharge channel switching element 33b is equivalent to one base for each scanning cycle of the channel switching element 33b by the CPU. The input voltage for one pulse is held by the voltage holding circuit 51. As a result, the discharge current command is also sent to the base (or gate) of the switching element 3 even during the scanning time of the CPU. The signal is continuously input and constant current discharge of the battery 5 is executed, and current control at the time of constant current discharge is performed with high accuracy by a discharge current command signal from the CPU.
[0026]
By configuring the battery detection device as described above, it is possible to control charging / discharging of a plurality of batteries with one charging / discharging circuit 40, and it is easy to reduce circuit components of the charging / discharging circuit, in particular, to greatly reduce analog devices. Become. In fact, the number of analog devices can be reduced by about 70% in comparison with the conventional analog type battery inspection apparatus, and the cost can be greatly reduced. In addition, since the CPU of the controller 30 has many charge / discharge soft loop functions, instability and trouble due to hardware factors such as IC characteristics are reduced, and the hardware part of the CPU is simplified. be able to. In addition, because of the charge / discharge control by software mainly composed of the CPU of the control unit 30, the change of the charge / discharge control algorithm accompanying the change of the battery type or the like can be easily executed only by changing the CPU software. Further, if necessary, charging / discharging can be executed by changing the current / voltage setting for each battery individually.
[0027]
In the case of the battery inspection method of the present invention, since the charge / discharge of the battery is controlled by a digital charge / discharge command signal, the current and voltage measured at the time of charge / discharge vibrate overshooting the target value, Instability factors may occur, such as it takes time to reach the value. For example, the CPU of the control unit 30 of the battery inspection apparatus in FIG. 1 sets the current operation coefficient Ki to the difference (Ia−Ix) between the current current Ix flowing through the battery 5 during constant current charging and a predetermined target charging current Ia (see FIG. 2). In this case, if the current operation coefficient Ki is too small, the current current Ix may not fall within the allowable range Iy of the target charging current Ia as shown in FIG. On the other hand, if the current operation coefficient Ki is too large, as shown in FIG. 2C, an overshoot phenomenon occurs in which the current current Ix oscillates greatly deviating from the allowable range Iy at the start-up of constant current charging, and the current current Ix It may take a long time to not converge within the allowable range Iy or to converge completely.
[0028]
The current operation coefficient Ki is an arithmetic coefficient that determines the degree to which the current current Ix approaches the target charging current Ia, whereas the inherent coefficient is applied in the conventional analog loop charging / discharging circuit of FIG. In the present invention, the CPU sets a coefficient that can be varied with respect to the difference between the current current Ix and the target charging current Ia so that the current current Ix converges to the allowable range Iy in a short time as shown in FIG. Like that. That is, until the current current Ix approaches the allowable range Iy, the current operation coefficient Ki is increased to shorten the start-up time during constant current charging, and the current current Ix overshoots the allowable range Iy with a large current operation coefficient Ki. The current operation coefficient Ki is automatically controlled to be small by the CPU to suppress the vertical vibration within the allowable range Iy of the current current Ix. With this increase / decrease control of the current operation coefficient Ki, the current current Ix is suppressed in a stepwise manner and converges within the allowable range Iy, and constant current control is performed with high accuracy in a short time.
[0029]
The current control using the current operation coefficient as described above is also applied to the current control in the constant current region T3 in FIG. Furthermore, the current Ix that has converged within the allowable range Iy in FIG. 2A may oscillate out of the allowable range Iy for some reason, such as a change in ambient temperature or a change in battery type. There is also an effect of suppressing the deviation of the current current that deviates by setting the current operation coefficient. Such an effect is also exhibited in the next setting of the voltage operation coefficient Kv.
[0030]
In the present invention, the voltage operation coefficient Kv that determines the degree to which the current voltage approaches the target charging voltage Va by multiplying the difference between the current voltage of the battery during constant voltage charging and the target charging voltage Va (see FIG. 4) is obtained. , The CPU is set as a calculation coefficient that varies in proportion to the difference between the current voltage and the target charging voltage Va. In this case, when the current current overshoots the allowable range of the predetermined target charging voltage Va during constant voltage charging, the voltage operation coefficient Kv is automatically controlled to be small by the CPU so that the voltage control is performed with high accuracy in a short time. To do.
[0031]
Furthermore, in the present invention, in order to improve start-up during constant current charging, the target charging current Ia of the battery 5 during constant current charging is set smaller than the target charging current Ia as shown in FIG. .., And finally set to a plurality of temporary target charging currents I1y, I2y,... That reach the target charging current Ia. Starting up the constant current charging from the smallest temporary target charging current I1y, when the current current Ix of the battery 5 rises and converges to the allowable range of the initial temporary target charging current I1y, the current increase amount is added to the temporary target charging current I1y. The charging step-up is performed toward the added temporary target charging current I2y, and this charging step-up is repeated in order to finally converge the current current Ix to the allowable range Iy of the target charging current Ia.
[0032]
In the charging step-up operation of FIG. 3, the overshoot when the current current Ix reaches the first temporary target charging current I1y from zero is more than the overshoot when the current current Ix reaches the maximum target charging current Ia from zero. Appear small. When the step-up current amount between the temporary target charging currents I1y, I2y,... Is set so as to decrease in order, the current current Ix overshoots at the temporary target charging currents I1y, I2y,. The amount decreases in order, and the final target charging current Ia converges to the allowable range Iy of the target charging current Ia at once without overshooting. Therefore, even if constant current charging is started up at high speed, there is no possibility of overshooting, it is easy to speed up startup, and smooth startup is realized. Further, if the current operation coefficient software described in FIG. 2 is applied to the convergence region due to the oscillation of the current current Ix in each of the temporary target charging currents I1y, I2y,... In FIG. This will further improve the startup.
[0033]
【The invention's effect】
The invention of claim 1 calculates the difference between the current flowing through the battery during constant current charging and the target charging current in a soft loop by the CPU of the computer, and calculates the calculated current difference signal at a cycle time determined by the CPU. The constant current charging operation is controlled by outputting it as a digital charging current command signal to the switching element for charging, and the constant voltage charging and constant current discharging operations are similarly controlled. The CPU takes charge of the analog device function of the battery inspection method by analog control of the hard loop that has been used, and the CPU can be used effectively, and the analog device can be greatly reduced, and the size of the battery inspection device can be reduced by reducing the number of parts. Costs can be reduced, and maintenance and inspection of parts and wiring changes are facilitated. In addition, since the battery charge / discharge control is performed by the CPU soft loop, it is easy to change the charge / discharge control algorithm accompanying the change of the battery type and to calibrate it, making it easy to handle a wide variety of batteries. There is an effect of excellent versatility.
[0034]
According to the second aspect of the present invention, since the operation coefficient that brings the current current and current voltage of the battery at the time of charging / discharging closer to the target value is a variable coefficient on the CPU side, the CPU controls the operation coefficient so that it always becomes the optimum value. Thus, the current and voltage of the battery at the time of charging / discharging can always be efficiently converged within the allowable range of the target value, and the battery inspection can be speeded up and the performance can be improved.
[0035]
In the invention of claim 3, since the current current of the battery is increased stepwise from the temporary target charging current to the final target charging current at the time of constant current charging, the current current is targeted even if the start-up at constant current charging is accelerated. The problem of large overshooting of the charging current can be solved, and therefore there is an effect that a start-up operation with smooth and low overshoot can be performed. In addition, because overshoot during constant current charging can be suppressed, stress due to abnormal current to the battery due to overshoot is reduced, and reliability that does not give stress to small and lightweight batteries such as secondary batteries of mobile phones in particular There is an effect that a high-performance battery inspection can be executed.
[0036]
According to a fourth aspect of the present invention, there is provided a battery inspection apparatus in which a voltage holding circuit attached to a charging / discharging switching element holds a voltage value of a digital command signal inputted to the switching element with a time interval, Since the operation is stabilized, there is an effect that current accuracy during constant current charging, voltage accuracy during constant voltage charging, and current accuracy during constant current discharging can be constantly secured. The voltage holding circuit can be a simple and inexpensive circuit using electronic components.
[Brief description of the drawings]
1 is a circuit diagram of a battery testing device showing an embodiment of the present invention.
2A is a current waveform diagram when constant current charging is controlled by the control unit CPU of the circuit in FIG. 1, and FIGS. 2B and 2C are explanatory diagrams comparing the effectiveness of the current waveform of FIG. FIG.
FIG. 3 is a current waveform diagram at the time of constant current charging and discharging start-up by the control unit CPU of the circuit of FIG. 1;
FIG. 4 is a charge / discharge current waveform diagram and a voltage waveform diagram for explaining a general battery charge / discharge test.
FIG. 5 is a circuit diagram of a conventional battery inspection apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Charging switching element 3 Discharging switching element 4 Current detection resistor 5 Battery 20 Charge / discharge circuit 30 Control unit 31a, 31b AD converter 31c, 31d DA converter 32a-32d Operational amplifier 33a-33d Channel switching element 40 Charging / discharging Circuit 50 Voltage holding circuit 51 Voltage holding circuit Ib Target discharge current Ix Current current Iy Allowable range I1y Temporary target charging current I2y Temporary target charging current Va Target voltage Vx Current voltage f Channel select signal

Claims (4)

充電用スイッチング素子を介し電池を所定の目標充電電流で所定の目標電圧まで定電流充電してから目標電圧を保持して定電圧充電する充電動作と、この充電動作後に電池を放電用スイッチング素子を介して所定の終了条件に到達するまで所定の目標放電電流にて定電流放電する放電動作とを、コンピュータのCPUで制御する電池検査方法であって、
定電流充電時の電池に流れる現在電流と前記目標充電電流の差、及び、定電圧充電時の電池の現在電圧と前記目標電圧の差をCPUで演算し、この演算された電流差信号、及び、電圧差信号をCPUで決められた所定のサイクルタイムで充電用スイッチング素子にデジタルの充電電流指令信号として出力して電池の充電動作を制御し、
また、定電流放電時の電池に流れる現在電流と前記目標放電電流の差をCPUで演算し、この演算された電流差信号をCPUで決められた所定のサイクルタイムで放電用スイッチング素子にデジタルの放電電流指令信号として出力して電池の放電動作を制御することを特徴とする電池検査方法。
A charging operation in which the battery is constant-current charged to a predetermined target voltage with a predetermined target charging current via the charging switching element, and then the target voltage is maintained and constant voltage charging is performed. A battery testing method in which a discharge operation of discharging a constant current at a predetermined target discharge current is controlled by a CPU of a computer until a predetermined end condition is reached.
The CPU calculates the difference between the current flowing through the battery during constant current charging and the target charging current, and the difference between the current voltage of the battery during constant voltage charging and the target voltage, and the calculated current difference signal, and The voltage difference signal is output as a digital charging current command signal to the charging switching element at a predetermined cycle time determined by the CPU to control the charging operation of the battery.
Further, the CPU calculates the difference between the current flowing through the battery during constant current discharge and the target discharge current, and the calculated current difference signal is digitally transmitted to the discharge switching element at a predetermined cycle time determined by the CPU. A battery inspection method comprising: outputting a discharge current command signal to control a discharge operation of the battery.
定電流充電時及び定電流放電時の電池の現在電流と目標充電又は放電電流の差に乗算することで現在電流が目標充電又は放電電流に近付く度合いを決める電流操作係数を、現在電流と目標充電又は放電電流の差に対して可変できる演算係数としてCPUに設定し、
また、定電圧充電時の電池の現在電圧と目標充電電圧の差に乗算することで現在電圧が目標充電電圧に近付く度合いを決める電圧操作係数を、現在電圧と目標充電電圧の差に対して可変できる演算係数としてCPUに設定した請求項1記載の電池検査方法。
By multiplying the difference between the current battery current and the target charging or discharging current during constant current charging and constant current discharging, the current operation coefficient that determines the degree to which the current current approaches the target charging or discharging current is determined as the current current and the target charging. Or set it in the CPU as a calculation coefficient that can be varied with respect to the difference in discharge current,
In addition, the voltage operation coefficient that determines the degree to which the current voltage approaches the target charging voltage by multiplying the difference between the current voltage of the battery and the target charging voltage during constant voltage charging can be varied with respect to the difference between the current voltage and the target charging voltage. The battery inspection method according to claim 1, wherein the calculation coefficient is set in the CPU.
定電流充電時及び定電流放電時の電池の目標充電電流を、この目標充電電流より小さくて段階的に増大して最終的に目標充電電流に達する複数の仮目標充電電流に分け、定電流充電時に最も小さい仮目標充電電流から順に電池の現在電流をステップアップさせて段階的に定電流充電するようにした請求項1又は2記載の電池検査方法。The target charging current of the battery during constant current charging and constant current discharging is divided into a plurality of temporary target charging currents that are smaller than this target charging current and gradually increase to finally reach the target charging current. 3. The battery inspection method according to claim 1 or 2, wherein the current of the battery is stepped up in order from the smallest temporary target charging current to perform constant current charging step by step. 充電用スイッチング素子を介し電池を所定の目標充電電流で所定の目標電圧まで定電流充電してから目標電圧を保持して定電圧充電する充電動作と、この充電動作後に電池を放電用スイッチング素子を介して所定の終了条件に到達するまで所定の目標放電電流にて定電流放電させる放電動作とを、コンピュータのCPUで制御するようにした電池検査装置であって、
定電流充電時の電池に流れる現在電流と前記目標充電電流の差、及び、定電圧充電時の電池の現在電圧と前記目標電圧の差をCPUで演算し、この演算された電流差信号、及び、電圧差信号をCPUで決められた所定のサイクルタイムで充電用スイッチング素子にデジタルの充電電流指令信号として出力して電池の充電動作を制御する充電回路に、充電用スイッチング素子に入力される充電電流指令信号のデジタル電圧を前記サイクルタイムの間保持する電圧保持回路を付設し、
定電流放電時の電池の現在電流と目標放電電流の差をCPUで演算し、この演算された電圧差信号をCPUで決められた所定のサイクルタイムで放電用スイッチング素子にデジタルの放電電流指令信号として出力して電池の放電動作を制御する放電回路に、放電用スイッチング素子に入力される放電電流指令信号のデジタル電圧を前記サイクルタイムの間保持する電圧保持回路を付設したことを特徴とする電池検査装置。
A charging operation in which the battery is constant-current charged to a predetermined target voltage with a predetermined target charging current via the charging switching element, and then the target voltage is maintained and constant voltage charging is performed. A battery inspection device in which a discharge operation of constant current discharge at a predetermined target discharge current is controlled by a CPU of a computer until a predetermined end condition is reached via
The CPU calculates the difference between the current flowing through the battery during constant current charging and the target charging current, and the difference between the current voltage of the battery during constant voltage charging and the target voltage, and the calculated current difference signal, and The charging signal input to the charging switching element is output to the charging circuit that controls the charging operation of the battery by outputting the voltage difference signal as a digital charging current command signal to the charging switching element at a predetermined cycle time determined by the CPU. A voltage holding circuit for holding the digital voltage of the current command signal for the cycle time is attached,
The difference between the current battery current and the target discharge current during constant current discharge is calculated by the CPU, and the calculated voltage difference signal is digitally supplied to the discharge switching element at a predetermined cycle time determined by the CPU. A voltage holding circuit for holding the digital voltage of the discharge current command signal input to the discharge switching element for the cycle time is added to the discharge circuit that outputs the output of the battery and controls the discharge operation of the battery. Inspection device.
JP2002010640A 2002-01-18 2002-01-18 Battery inspection method and battery inspection apparatus Expired - Fee Related JP4041313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010640A JP4041313B2 (en) 2002-01-18 2002-01-18 Battery inspection method and battery inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010640A JP4041313B2 (en) 2002-01-18 2002-01-18 Battery inspection method and battery inspection apparatus

Publications (2)

Publication Number Publication Date
JP2003217683A JP2003217683A (en) 2003-07-31
JP4041313B2 true JP4041313B2 (en) 2008-01-30

Family

ID=27648325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010640A Expired - Fee Related JP4041313B2 (en) 2002-01-18 2002-01-18 Battery inspection method and battery inspection apparatus

Country Status (1)

Country Link
JP (1) JP4041313B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079911B2 (en) * 2004-05-31 2008-04-23 三洋電機株式会社 Charger
JP5050999B2 (en) * 2008-05-23 2012-10-17 三菱電機株式会社 Test method for battery and electrode
JP5379450B2 (en) * 2008-11-05 2013-12-25 株式会社明電舎 Charge / discharge test system and charge / discharge test method for power storage device
JP5191002B2 (en) * 2009-07-14 2013-04-24 富士通テレコムネットワークス株式会社 Charging device, discharging device and mode switching control method thereof
JP2012105467A (en) * 2010-11-11 2012-05-31 Diamond Electric Mfg Co Ltd Charger
CA2848164C (en) * 2011-09-05 2018-01-23 Kabushiki Kaisha Nihon Micronics Evaluation apparatus and evaluation method of sheet type cell
AT511270B1 (en) 2012-05-24 2015-07-15 Avl List Gmbh Method and device for testing electric energy storage systems for driving vehicles
JP6017848B2 (en) * 2012-06-14 2016-11-02 住友重機械工業株式会社 Charging / discharging inspection device, calibration device for calibrating charging / discharging inspection device, and calibration method
JP2018091631A (en) * 2016-11-30 2018-06-14 株式会社日本マイクロニクス Screening method, screening apparatus, and manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP2003217683A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP4041313B2 (en) Battery inspection method and battery inspection apparatus
US10547297B2 (en) Digital clock duty cycle correction
US7345464B2 (en) PWM power supply controller having multiple PWM signal assertions and method therefor
US8212599B2 (en) Temperature-stable oscillator circuit having frequency-to-current feedback
KR101858258B1 (en) Power supply apparatus and method of controlling the same, and test apparatus using the apparatus and the method
US8659362B2 (en) Relaxation oscillator circuit with reduced sensitivity of oscillation frequency to comparator delay variation
JP2006087288A (en) Method and apparatus for calibrating ramp signal
CN105305819A (en) Switch-mode DC-DC converter with improved discontinuous conduction mode efficiency
TWI710781B (en) System and method for low current sensing
JP2006203369A (en) Voltage-frequency converting device and reference voltage generating method of the voltage-frequency converting device
US20090097287A1 (en) Inverter control circuit and control method thereof
US6765422B1 (en) High resolution fan control at high PWM frequency with a low clock frequency input
US20140132314A1 (en) Triangular waveform generating apparatus
JP2005127765A (en) Semiconductor test module and test method of semiconductor device
JP2013193030A (en) Frequency adjusting circuit and frequency adjusting method
CN110880933B (en) On-chip correction circuit and method with half-step resolution
US6549081B1 (en) Integrator/ comparator control of ring oscillator frequency and duty cycle
US6686862B1 (en) Apparatus and method for duty cycle conversion
CN113824429B (en) Oscillation circuit, control method, and electronic device
US7551041B2 (en) Oscillator and method for operating an oscillator
JPH09178820A (en) Test device for electronic circuit
KR20160123958A (en) Circuit for measuring flicker noise and method of using the same
US7654756B2 (en) Actuator drive circuit and actuator device
US20230283252A1 (en) Method for compensating for an internal voltage offset between two inputs of an amplifier
JP2019220824A (en) Oscillator and control method of oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees