JP4040961B2 - Reciprocating piston engine - Google Patents

Reciprocating piston engine Download PDF

Info

Publication number
JP4040961B2
JP4040961B2 JP2002348942A JP2002348942A JP4040961B2 JP 4040961 B2 JP4040961 B2 JP 4040961B2 JP 2002348942 A JP2002348942 A JP 2002348942A JP 2002348942 A JP2002348942 A JP 2002348942A JP 4040961 B2 JP4040961 B2 JP 4040961B2
Authority
JP
Japan
Prior art keywords
attached
reciprocating piston
piston engine
region
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002348942A
Other languages
Japanese (ja)
Other versions
JP2003184550A (en
Inventor
ハルロ・アンドレアス・ヘーグ
Original Assignee
エムエーエヌ・ディーゼル・エーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムエーエヌ・ディーゼル・エーエス filed Critical エムエーエヌ・ディーゼル・エーエス
Publication of JP2003184550A publication Critical patent/JP2003184550A/en
Application granted granted Critical
Publication of JP4040961B2 publication Critical patent/JP4040961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F2007/0097Casings, e.g. crankcases or frames for large diesel engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、往復ピストン機関、特に2サイクル大型ディーゼルエンジンであって、燃焼室を含む少なくとも1つのシリンダを備え、このシリンダのシリンダヘッドは排気バルブハウジングを支持し、この排気バルブハウジングは、燃焼室に続く、排気バルブハウジング側の着座部と協働するバルブによって燃焼室に対して閉止可能な排気ポート、前記バルブに付属する案内装置及び操作装置を含み、円周側に配置されていて半径方向の突起を貫通する通しボルトがシリンダヘッドに取り付けられ、シリンダヘッドに係合する、弁座を含む領域と、排気バルブハウジングの、案内装置を含む領域とに、冷却水を供給可能な、特に周回する冷却通路がそれぞれ付属している形式のものに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来技術によれば、このような種類の構成は公知である。この公知の構成では、弁座領域又はバルブガイド領域に付属するそれぞれの周回する冷却通路の間の領域に、排気ポートに付属する別の冷却装置は設けられていない。そのために、排気バルブハウジング全体の非常に激しい加熱が起こることがある。したがってこの場合には、排気ポートの内側表面の壁面温度が排気ガスの露点温度を下回ることは予想されず、このことは、低温腐蝕を防止するためには望ましい。しかしその一方では、排気バルブハウジング及び特に通しボルトに付属する支承領域の非常に激しい加熱は、その結果として生じる激しい熱膨張にもつながり、このことは、初期応力をかけられている通しボルトの過度の伸長や、それに伴う通しボルトの初期応力の損失につながる可能性がある。その結果、排気バルブハウジングがもはや確実にシリンダヘッドに圧着されないために、当接面および封止面の領域で、いわゆるブローバイ又はバーンアウトが生じる恐れがある。そのため公知の構成は、十分には信頼性が高くないことが判明している。この点を度外視しても、この場合には内燃機関の最大の表面温度に関する規定を守るため、排気バルブハウジングのほぼ全体に、強力な保護断熱を設けることも必要である(例えば、特許文献1参照)。
【0003】
【特許文献1】
欧州特許第0076348号明細書
【0004】
そこで、以上を前提とする本発明の課題は、冒頭に述べた種類の構成を、その欠点を回避するとともに利点を維持しながら改良して、高い信頼性が得られるようにすることである。
【0005】
【課題を解決するための手段】
この課題は本発明によれば、シリンダヘッドに係合する領域に付属する冷却通路と、案内装置を含んでいる領域に付属する、排気バルブハウジングの冷却通路とが、少なくとも排気ポートに近い半径方向の突起の領域で、付属の通しボルトの半径方向内側に設けた少なくとも1つの連絡配管によって相互につながれていることによって解決される。
【0006】
周回するそれぞれの冷却通路の間の前述した連絡通路はそれ自体も同じように、少なくとも排気バルブハウジングの特別に危険な排気ポートに近い領域で、通しボルトの過度の伸長につながる、通しボルトに付属するハウジング側の支承領域の熱膨張が起こらない程度に、流入する熱を逃がすことができる冷却通路として機能する。このようにして通しボルトの初期応力が維持され、これに伴って排気バルブハウジングとシリンダヘッドの間の確実な封止が維持されることが保証される。このとき、周回する冷却通路と連絡配管とによって形成される冷却システムに供給される冷却水が、100℃を明らかに下回る比較的低い温度を有することができるという利点があり、それにより、冷却システム内部でのベーパロックや、これに伴う冷却効果の低下が起こらない。それにもかかわらず、排気ポート全体を包含する冷却通路を備える構成の場合には起こる恐れがある、排気ポートの内側表面で排気ガスの露点温度を下回るという状況を回避することができる。上述した利点にもかかわらず、比較的簡単な製造と比較的少ない構造重量とを実現することができる。さらに、表面に必要な保護断熱も比較的少なくてよい。したがって、本発明によって達成可能な利点は卓越した経済性にもあるとみなすことができる。
【0007】
独立請求項の構成要件の有利な実施形態、および目的に適った発展例は、従属請求項に記載されている。例えば、それぞれの半径方向の突起の領域に、それぞれ連絡配管を設けると好都合である。このことは、すべての突起の領域における格別に良好な熱排出につながるので、すべての突起が排気ポートの比較的近くに位置決めされていてよく、このことはコンパクトな設計様式を生む。
【0008】
冷却される突起に、それぞれ複数の平行する連絡配管を付属させると有利な場合がしばしばある。このことは、連絡配管の断面積を比較的小さく具体化することを可能にするという利点があり、このことは、所定の流量のときに冷却水の比較的高い速度につながり、それに伴って、冷却水の過度の加熱が起こらない良好な熱排出につながる。
【0009】
さらに、少なくとも連絡配管の下側領域が、半径方向の突起の範囲外に設けた排気ポートの壁厚にほぼ相当する、排気ポートの内側表面からの間隔で延びていると有利であることが判明している。それにより、冷却水温度が比較的低いときでも、排気ポートの内側で表面排気ガスの露点温度を下回ることを確実に回避することができる。その一方で、通常の壁厚の半径方向外側にある、通しボルトに付属する支承領域は、許容されない加熱に対して確実に防護される。
【0010】
さらに別の好都合な方策は、周回する両方の冷却通路の一方だけに少なくとも1つの冷却剤供給配管が付属し、周回する両方の冷却通路の他方には少なくとも1つの冷却剤排出配管が付属することである。それにより、冷却剤の循環運動およびこれに伴う連絡配管の確実な貫流が強制的に実現される。
【0011】
連絡配管は、周回する冷却通路と連通する、弁棒と平行及び/又は付属の通しボルトと平行に延びる穴状の通路を有するのが好ましい。この通路は穿孔加工または鋳造加工されていてよい。いずれの場合でも、前述した構成は簡単かつ正確な製造を容易にする。
【0012】
独立請求項の構成要件のその他の有利な実施形態、および目的に適った発展例は残りの従属請求項に記載されており、図面を参照した以下の実施形態の説明の中で詳しく説明する。
【0013】
【発明の実施の形態】
2サイクル大型ディーゼルエンジンの基本的な構造と作動形式はそれ自体公知であり、したがって本発明との関連では詳しく説明する必要がない。このような種類のエンジンは、通例、図1に示す形式の複数のシリンダ1を含み、これらのシリンダには、燃焼室を区切る、ここには詳しくは図示しないピストンがそれぞれ付属し、このピストンはピストンロッドを介してクロスヘッドと連結され、クロスヘッドはコネクティングロッドを介してクランクシャフトと協働する。
【0014】
シリンダ1はシリンダライナ3を含み、このシリンダライナは少なくとも1つの噴射バルブ5を受容するとともに、排気バルブハウジング7を収容するための段差のある中央の切欠き6を備える。排気バルブハウジング7は、その下側領域で切欠き6に係合するとともに、フランジ状の支持面で、切欠き6の段差部によって形成されたシリンダヘッド側の支承面8の上に載っている。支承面8の領域で有効となる十分な圧着力を得るために、シリンダヘッド4の切欠き6の半径方向外側に設けられた、下側端部でシリンダヘッドにねじ込み可能な通しボルト9が設けられており、これらの通しボルトは、排気バルブハウジング7のそれぞれ付属の差込通路10を貫通するとともに、その上側端部は、排気バルブハウジング7の付属の支持面11の上に載っているナット12をそれぞれ受容する。
【0015】
排気バルブハウジング7は、燃焼室2を起点として延びる排気ポート13を含み、この排気ポートは、排気バルブハウジング7の上に受容された操作装置20によって上下動可能な、排気ポート13の入口領域に設けた弁座と協働するバルブ14によって、燃焼室2に対して閉止可能である。前述した弁座を受容するために、排気バルブハウジング7はここでは適当な材料からなる下側の着座部15を備え、この着座部は、シリンダヘッド側の支持面の上に載った支持フランジを含む。着座部15は、周回する溝によって、通しボルト9に付属する上側の支持面11を含む、全体として符号7が付された排気バルブハウジングのハウジング部分16に続いている。
【0016】
着座部15は、支持面8に付属しているフランジの上側に、シリンダヘッド4の切欠き6の相応の拡張によって形成された冷却通路17を含み、この冷却通路は、上側のハウジング部分16の下側端部に設けられていてシリンダヘッド4の切欠き6に係合するフランジによって、上方に向かって閉じられている。
【0017】
バルブ14は、その弁体から上方に向かって屹立する弁棒18を有しており、この弁棒は、排気ポート13と、上側のハウジング部分16の排気ポート13を取り囲む領域に配置された案内ブッシュ19とを貫通し、案内ブッシュ19の上側で、付属の操作装置20と協働する。案内ブッシュ19を含む、排気バルブハウジング7の上側のハウジング部分16の領域は、周回する冷却通路21を同じく備える。
【0018】
通しボルト9を受容するために、上側のハウジング部分16は、通しボルト9に付属する、切欠き6を含むシリンダヘッド4の縁部領域から半径方向に突き出したリブ状の突起22を備え、これらの突起がそれぞれ垂直方向の差込通路10を含む。突起22の上面は、通しボルト9のナット12に付属する支持面11を形成する。突起22の下面は、上側のハウジング部分16の下側の端部領域まで斜め内側に向かって下がるように延びているので、それによって突起22のコンソール状の支持部ができる。
【0019】
通しボルト9、及びこれに付属する差込通路10は、図2に最も良く示すように、弁軸に対して同心的な部分円の上に分散されるように配置されている。図示した例では、弁軸と排気ポート13の中心線とによって規定される対称面Sに関して、組をなすように互いに対向して配置された4つの通しボルト9又は差込通路10が設けられている。同じことは突起22についても当てはまり、その個数および角度間隔は、通しボルト9の個数及び角度間隔に対応している。したがって図示した例では、対称面Sに関して組をなすように互いに対向して配置された4つの突起22が設けられている。このとき、それぞれ互いに隣接する、対称面Sの同じ側に配置された突起22の角度間隔は、対称面Sに関してそれぞれ互いに対向する突起22の角度間隔よりも短い。このようにして、実質的に排気ポート13の両側に並ぶ突起の2つの組ができる。
【0020】
突起22は、排気ガスから排気ポート13の壁部に放出された熱の負荷を受ける、排気ポート13に付属する冷却用リブとしても機能する。その結果として生じる熱膨張が、ナット12の相応の締付によって初期応力をかけられた通しボルト9の過度の伸長につながるほど、突起22が強く加熱されるのを防止するために、突起22は、それぞれ付属の差込通路10の半径方向内側に、周回する下側の着座部側の冷却通路17と、周回する上側の案内ブッシュ側の冷却通路22とをつなぐ連絡配管23として構成された冷却装置を備える。冷却剤としては、流れの矢印で図示するように、周回する下側の冷却通路17に付属する供給配管24を介して供給され、同じく流れの矢印で図示しているように、周回する上側の冷却通路21に付属する処理配管25を介して排出される冷却水が使用される。このようにして、実質的に一方向に貫流する、冷却通路17および21と連絡配管23とによって形成された冷却システムが得られる。
【0021】
連絡配管23は、図1に示すように、冷却通路17,21の高さ距離を橋渡ししてこれらを連通させる、弁軸又は通しボルト軸に対して平行な穴状の通路を含む。この穴状の通路は、鋳造成形品として構成された上側のハウジング部分16の鋳造のとき既に設けてもよく、または切削加工で穿孔によって製作してもよい。連絡配管23の穴状の通路は、図2に示すように、通しボルト9又は差込切欠き10に付属する、弁軸に対して同心的な部分円の内側に位置する部分円の上に配置されており、後者の部分円の半径は、差込通路10に付属する部分円の半径に対して2:3の比率になっている。このとき冷却通路として機能する連絡配管23の穴状の通路は、実質的に、半径方向の突起22が、排気ポート13を含む上側のハウジング部分16の中心部に付加されている領域にある。連絡配管23の前述した軸平行な通路の半径方向の位置決めは、図1からわかるように、上側のハウジング部分16の、ほぼ弁軸と平行な内壁を有している下側領域で、排気ポート13の内側表面と、連絡配管23の前述した軸平行な通路との間に、わずかに壁厚dよりも短い間隔aが生じるように行うのが好都合である。
【0022】
連絡配管23の軸平行な通路の下側端部は、周回する下側の冷却通路17の半径方向下側にあり、冷却通路17からアクセス可能である。そのために軸平行な通路は、周回する下側の冷却通路17の方に向かって開いた周回する溝とつながっていてよい。図示した例では、連絡配管23の軸平行な通路の下側端部は、図1からわかるように、これに付属する半径方向の分岐穴26によって冷却通路17とつながっている。分岐穴の代わりにスリット状のフライス削り部を設けてもよい。連絡配管23の上側の軸平行な端部は、図2に示すように、周回する上側の冷却通路21の底面の円周側の縁部領域で、この冷却通路に通じている。
【0023】
図示した例では、それぞれの半径方向の突起22に2つの平行な連絡配管23が付属している。しかしながら、特別に強い熱負荷にさらされる、排気ポート13の最も近くに位置する突起22、すなわち通常であれば排気ポート13の流出断面付近に位置する、図2で下方を向いている突起22だけに、冷却装置として機能する連絡配管23が付属しているだけで十分な場合も多い。同様に、1つの突起について複数ではなく、ただ1つの連絡配管23を設ければしばしば十分である。
【0024】
連絡配管23の断面積は、それぞれ付属の突起22の断面積に比べて小さい。連絡配管23の本数および断面積は、排気ポート13の内側表面に発生する壁面温度が排気ガスの露点温度よりも高くなるように、かつ連絡配管23を貫流する冷却水の温度が気化温度よりも明らかに低く保たれるように選択するのが目的に適っている。
【0025】
以上に有利な実施例を説明したが、この実施例で限定を行おうとするものではない。例えば本発明の方策は、当然ながら、特定数の通しボルト又はこれに付属する突起に拘束されるものではない。当然ながら、図示した例よりも多い、または少ない通しボルト、あるいはこれに付属する突起を設けてもよい。図面は次のとおりである。
【図面の簡単な説明】
【図1】 2サイクル大型ディーゼルエンジンのシリンダの上側領域を示す垂直方向の断面図である。
【図2】 図1の構成の排気バルブハウジングを示す、図1のII/II線に沿った水平方向の断面図である。
【符号の説明】
1 シリンダ
2 燃焼室
4 シリンダヘッド
7 排気バルブハウジング
9 通しボルト
13 排気ポート
14 バルブ
17、21 冷却通路
19 案内ブッシュ(案内装置)
20 操作装置
22 半径方向の突起(排気バルブハウジングの突起)
23 連絡配管
24 供給配管(冷却剤供給配管)
25 処理配管(冷却剤処理配管)
26 分岐穴(半径方向の配管部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention is a reciprocating piston engine, in particular a two-cycle large diesel engine, comprising at least one cylinder including a combustion chamber, the cylinder head of which supports an exhaust valve housing, the exhaust valve housing comprising a combustion chamber Including an exhaust port that can be closed with respect to the combustion chamber by a valve that cooperates with a seating portion on the exhaust valve housing side, a guide device and an operation device attached to the valve, and is arranged on the circumferential side in the radial direction A through bolt that penetrates the projection of the cylinder is attached to the cylinder head and engages with the cylinder head. The region including the valve seat and the region including the guide device of the exhaust valve housing can supply cooling water. It is related with the type which each has a cooling passage attached.
[0002]
[Prior art and problems to be solved by the invention]
According to the prior art, this kind of configuration is known. In this known arrangement, no additional cooling device associated with the exhaust port is provided in the region between the respective circulating cooling passages associated with the valve seat region or the valve guide region. This can cause very intense heating of the entire exhaust valve housing. Therefore, in this case, the wall surface temperature of the inner surface of the exhaust port is not expected to be lower than the dew point temperature of the exhaust gas, which is desirable to prevent low temperature corrosion. On the other hand, however, the very intense heating of the exhaust valve housing and in particular the bearing area attached to the through-bolts also leads to the resulting intense thermal expansion, which is an excess of the initial-stressed through-bolts. May lead to a loss of initial stress of the through-bolt and accompanying stress. As a result, the exhaust valve housing can no longer be securely crimped to the cylinder head, and so-called blow-by or burnout can occur in the area of the abutment surface and the sealing surface. Therefore, it has been found that the known configuration is not sufficiently reliable. Even if this point is ignored, in this case, in order to comply with the regulations regarding the maximum surface temperature of the internal combustion engine, it is also necessary to provide strong protective heat insulation on almost the entire exhaust valve housing (for example, Patent Document 1). reference).
[0003]
[Patent Document 1]
EP 0076348 Specification [0004]
Accordingly, an object of the present invention based on the above is to improve the structure of the type described at the beginning while avoiding the drawbacks and maintaining the advantages so as to obtain high reliability.
[0005]
[Means for Solving the Problems]
According to the present invention, the object is that the cooling passages attached to the region engaging the cylinder head and the cooling passages of the exhaust valve housing attached to the region containing the guide device are at least radially close to the exhaust port. This is solved by being connected to each other by at least one connecting pipe provided radially inward of the attached through-bolt in the region of the protrusions.
[0006]
The aforementioned communication passages between the respective cooling passages that circulate in the same way are attached to the through bolts, which lead to excessive extension of the through bolts, at least in the area close to the specially dangerous exhaust port of the exhaust valve housing. It functions as a cooling passage that can release the inflowing heat to such an extent that thermal expansion of the bearing area on the housing side does not occur. In this way, the initial stress of the through-bolts is maintained, and with this it is ensured that a positive seal between the exhaust valve housing and the cylinder head is maintained. At this time, there is an advantage that the cooling water supplied to the cooling system formed by the circulating cooling passages and the communication pipes can have a relatively low temperature that is clearly below 100 ° C., whereby the cooling system The internal vapor lock and the accompanying cooling effect do not occur. Nevertheless, it is possible to avoid the situation where the dew point temperature of the exhaust gas is below the inner surface of the exhaust port, which may occur in the case of a configuration including a cooling passage including the entire exhaust port. Despite the advantages described above, relatively simple manufacturing and relatively low structural weight can be achieved. Furthermore, relatively little protective insulation is required on the surface. Therefore, the advantages achievable by the present invention can be considered to be excellent economics.
[0007]
Advantageous embodiments of the features of the independent claims and developments suitable for the purpose are described in the dependent claims. For example, it is advantageous to provide a connecting pipe in each radial projection area. This leads to exceptionally good heat dissipation in the area of all protrusions, so that all protrusions can be positioned relatively close to the exhaust port, which results in a compact design style.
[0008]
It is often advantageous to attach a plurality of parallel connecting pipes to each of the projections to be cooled. This has the advantage of allowing the cross-sectional area of the connecting pipe to be embodied relatively small, which leads to a relatively high rate of cooling water at a given flow rate, It leads to good heat discharge without excessive cooling water heating.
[0009]
Furthermore, it has proved advantageous if at least the lower region of the connecting pipe extends at a distance from the inner surface of the exhaust port, which corresponds approximately to the wall thickness of the exhaust port provided outside the radial projection. is doing. Thereby, even when the cooling water temperature is relatively low, it can be reliably avoided that the dew point temperature of the surface exhaust gas falls below the exhaust port. On the other hand, the bearing area attached to the through-bolt, which is radially outside the normal wall thickness, is reliably protected against unacceptable heating.
[0010]
Yet another advantageous measure is that at least one coolant supply pipe is attached to only one of both circulating cooling passages and at least one coolant discharge pipe is attached to the other of both circulating cooling passages. It is. This forcibly realizes the circulating movement of the coolant and the associated flow through the connecting pipe.
[0011]
The communication pipe preferably has a hole-like passage extending in parallel with the valve stem and / or in parallel with the attached through bolt, which communicates with the circulating cooling passage. This passage may be perforated or cast. In any case, the configuration described above facilitates simple and accurate manufacturing.
[0012]
Other advantageous embodiments of the constituent elements of the independent claims and developments suitable for the purpose are described in the remaining dependent claims and are explained in detail in the following description of the embodiments with reference to the drawings.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The basic structure and mode of operation of a two-cycle large diesel engine are known per se and therefore need not be described in detail in the context of the present invention. This type of engine typically includes a plurality of cylinders 1 of the type shown in FIG. 1, each of which is accompanied by a piston, not shown in detail, that delimits the combustion chamber. The piston is connected to the crosshead via a piston rod, and the crosshead cooperates with the crankshaft via a connecting rod.
[0014]
The cylinder 1 includes a cylinder liner 3, which receives at least one injection valve 5 and is provided with a stepped central notch 6 for receiving an exhaust valve housing 7. The exhaust valve housing 7 engages with the notch 6 in the lower region thereof, and rests on the support surface 8 on the cylinder head side formed by the stepped portion of the notch 6 with a flange-like support surface. . In order to obtain a sufficient crimping force effective in the region of the bearing surface 8, a through bolt 9 provided on the radially outer side of the notch 6 of the cylinder head 4 and screwed into the cylinder head at the lower end is provided. These through bolts pass through the respective insertion passages 10 attached to the exhaust valve housing 7, and the upper ends of the through bolts are nuts mounted on the attached support surface 11 of the exhaust valve housing 7. Accept 12 each.
[0015]
The exhaust valve housing 7 includes an exhaust port 13 extending from the combustion chamber 2, and this exhaust port is located in an inlet region of the exhaust port 13 that can be moved up and down by an operating device 20 received on the exhaust valve housing 7. The combustion chamber 2 can be closed by a valve 14 that cooperates with the provided valve seat. In order to receive the aforementioned valve seat, the exhaust valve housing 7 is here provided with a lower seating part 15 made of a suitable material, this seating part having a support flange resting on the support surface on the cylinder head side. Including. The seating part 15 continues with a housing part 16 of the exhaust valve housing, generally designated 7, including an upper support surface 11 attached to the through-bolt 9 by a circumferential groove.
[0016]
The seat 15 includes a cooling passage 17 formed by a corresponding expansion of the notch 6 of the cylinder head 4 on the upper side of the flange attached to the support surface 8, which cooling passage is formed in the upper housing part 16. It is closed upward by a flange which is provided at the lower end and engages with the notch 6 of the cylinder head 4.
[0017]
The valve 14 has a valve stem 18 that rises upward from the valve body, and this valve stem is a guide disposed in a region surrounding the exhaust port 13 and the exhaust port 13 of the upper housing portion 16. It penetrates the bush 19 and cooperates with the attached operating device 20 above the guide bush 19. The region of the housing part 16 on the upper side of the exhaust valve housing 7, including the guide bush 19, also comprises a cooling passage 21 that circulates.
[0018]
In order to receive the through-bolt 9, the upper housing part 16 is provided with rib-like projections 22 which are attached to the through-bolt 9 and project radially from the edge region of the cylinder head 4 including the notches 6. Each of the projections includes a vertical insertion passage 10. The upper surface of the protrusion 22 forms a support surface 11 attached to the nut 12 of the through bolt 9. The lower surface of the protrusion 22 extends obliquely inwardly to the lower end region of the upper housing portion 16, thereby forming a console-like support for the protrusion 22.
[0019]
The through-bolt 9 and the insertion passage 10 attached thereto are arranged so as to be distributed on a partial circle concentric with the valve shaft, as best shown in FIG. In the illustrated example, four through bolts 9 or insertion passages 10 are provided so as to be opposed to each other so as to form a set with respect to a plane of symmetry S defined by the valve shaft and the center line of the exhaust port 13. Yes. The same is true for the protrusions 22, and the number and angular interval thereof correspond to the number of through-bolts 9 and the angular interval. Accordingly, in the illustrated example, four protrusions 22 are provided so as to face each other so as to form a set with respect to the symmetry plane S. At this time, the angular intervals of the projections 22 arranged on the same side of the symmetry plane S adjacent to each other are shorter than the angular intervals of the projections 22 facing each other with respect to the symmetry plane S. In this way, two sets of protrusions substantially arranged on both sides of the exhaust port 13 are formed.
[0020]
The protrusion 22 also functions as a cooling rib attached to the exhaust port 13 that receives a load of heat released from the exhaust gas to the wall portion of the exhaust port 13. In order to prevent the protrusion 22 from being heated so strongly that the resulting thermal expansion leads to excessive stretching of the through-bolt 9 which is initially stressed by the corresponding tightening of the nut 12, the protrusion 22 is Cooling configured as a connecting pipe 23 that connects the cooling passage 17 on the lower seating portion that circulates and the cooling passage 22 on the upper guide bush side that circulates inside the attached insertion passage 10 in the radial direction. Equipment. The coolant is supplied through the supply pipe 24 attached to the lower cooling passage 17 that circulates as shown by the flow arrow, and the upper circuit that circulates also as shown by the flow arrow. Cooling water discharged through the processing pipe 25 attached to the cooling passage 21 is used. In this way, a cooling system formed by the cooling passages 17 and 21 and the connecting pipe 23 that flows substantially in one direction is obtained.
[0021]
As shown in FIG. 1, the connecting pipe 23 includes a hole-like passage parallel to the valve shaft or the through bolt shaft that bridges the height distances of the cooling passages 17 and 21 to communicate with each other. This hole-shaped passage may already be provided when casting the upper housing part 16 configured as a cast product, or it may be produced by drilling in a cutting process. As shown in FIG. 2, the hole-like passage of the connecting pipe 23 is on a partial circle that is attached to the through bolt 9 or the insertion notch 10 and that is located inside the partial circle concentric with the valve shaft. The radius of the latter partial circle is 2: 3 with respect to the radius of the partial circle attached to the insertion passage 10. At this time, the hole-shaped passage of the connecting pipe 23 functioning as a cooling passage is substantially in a region where the radial protrusion 22 is added to the center portion of the upper housing portion 16 including the exhaust port 13. As can be seen from FIG. 1, the radial positioning of the aforementioned axially parallel passage of the connecting pipe 23 is carried out in the lower region of the upper housing part 16 having an inner wall substantially parallel to the valve shaft. It is expedient to carry out an interval a slightly shorter than the wall thickness d between the inner surface of 13 and the aforementioned axis-parallel passage of the connecting pipe 23.
[0022]
The lower end portion of the passage parallel to the axis of the connecting pipe 23 is located on the lower side in the radial direction of the lower cooling passage 17 that circulates and is accessible from the cooling passage 17. For this purpose, the axially parallel passage may be connected to a circulating groove that opens towards the lower cooling passage 17 that rotates. In the illustrated example, the lower end portion of the passage parallel to the axis of the connecting pipe 23 is connected to the cooling passage 17 by a radial branch hole 26 attached thereto, as can be seen from FIG. You may provide a slit-shaped milling part instead of a branch hole. As shown in FIG. 2, the upper end of the connecting pipe 23 that is parallel to the axis communicates with the cooling passage in the circumferential edge region of the bottom surface of the circulating upper cooling passage 21.
[0023]
In the illustrated example, two parallel connecting pipes 23 are attached to each radial protrusion 22. However, only the protrusion 22 located closest to the exhaust port 13 that is exposed to a particularly strong heat load, ie normally the protrusion 22 that is located near the outflow cross section of the exhaust port 13 and faces downward in FIG. In many cases, it is sufficient to attach the connecting pipe 23 functioning as a cooling device. Similarly, it is often sufficient to provide only one connecting pipe 23 rather than a plurality of protrusions.
[0024]
The cross-sectional area of the connecting pipe 23 is smaller than the cross-sectional area of the attached protrusion 22. The number and cross-sectional area of the connecting pipe 23 are such that the wall surface temperature generated on the inner surface of the exhaust port 13 is higher than the dew point temperature of the exhaust gas, and the temperature of the cooling water flowing through the connecting pipe 23 is higher than the vaporization temperature. Choosing to keep it clearly low is suitable for the purpose.
[0025]
Although an advantageous embodiment has been described above, it is not intended that the embodiment be limited. For example, the measures of the present invention are not, of course, constrained to a specific number of through bolts or protrusions attached thereto. Of course, more or fewer through bolts, or protrusions attached thereto, may be provided than in the illustrated example. The drawings are as follows.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an upper region of a cylinder of a two-cycle large diesel engine.
2 is a horizontal cross-sectional view taken along the line II / II of FIG. 1, showing the exhaust valve housing having the configuration of FIG. 1;
[Explanation of symbols]
1 Cylinder 2 Combustion chamber 4 Cylinder head 7 Exhaust valve housing 9 Through bolt 13 Exhaust port 14 Valves 17 and 21 Cooling passage 19 Guide bush (guide device)
20 Operating device 22 Radial protrusion (exhaust valve housing protrusion)
23 Connecting piping 24 Supply piping (coolant supply piping)
25 Processing piping (coolant processing piping)
26 Branch hole (radial piping member)

Claims (11)

往復ピストン機関、特に2サイクル大型ディーゼルエンジンであって、燃焼室(2)を含む少なくとも1つのシリンダ(1)を備え、該シリンダのシリンダヘッド(4)は排気バルブハウジング(7)を支持し、該排気バルブハウジングは、燃焼室(2)に続く、排気バルブハウジング側の弁座と協働するバルブ(14)によって燃焼室に対して閉止可能な排気ポート(13)、前記バルブ(14)に付属する案内装置(19)及び操作装置(20)を含み、円周側に配置されていて半径方向の突起(22)を貫通する通しボルト(9)がシリンダヘッド(4)に取り付けられており、シリンダヘッド(4)に係合する、弁座を含む領域と、排気バルブハウジング(7)の、案内装置(19)を含む領域とに、冷却水を供給可能な、特に周回する冷却通路(17)又は(21)がそれぞれ付属する形式のものにおいて、
シリンダヘッド(4)に係合する領域に付属する冷却通路(17)と、案内装置(19)を含む領域に付属する、排気バルブハウジング(7)の冷却通路(21)とが、少なくとも排気ポートに近い半径方向の突起(22)の領域で、付属の通しボルト(9)の半径方向内側に設けた少なくとも1つの連絡配管(23)によって相互につながれていることを特徴とする往復ピストン機関。
A reciprocating piston engine, in particular a two-cycle large diesel engine, comprising at least one cylinder (1) including a combustion chamber (2), the cylinder head (4) of the cylinder carrying an exhaust valve housing (7); The exhaust valve housing is connected to the exhaust port (13), which can be closed to the combustion chamber by a valve (14) that cooperates with the valve seat on the exhaust valve housing side, following the combustion chamber (2). A through bolt (9) including an attached guide device (19) and an operation device (20), arranged on the circumferential side and penetrating the radial projection (22), is attached to the cylinder head (4). The cooling water can be supplied to the region including the valve seat, which engages with the cylinder head (4), and the region including the guide device (19) of the exhaust valve housing (7). Cooling passages (17) or (21) in those of the type included respectively that,
The cooling passage (17) attached to the region engaging with the cylinder head (4) and the cooling passage (21) of the exhaust valve housing (7) attached to the region including the guide device (19) are at least an exhaust port. The reciprocating piston engine is characterized in that it is connected to each other by at least one connecting pipe (23) provided radially inward of the attached through-bolt (9) in the area of the radial protrusion (22) close to.
それぞれの突起(22)にそれぞれ少なくとも1つの連絡配管(23)が付属する、請求項1に記載の往復ピストン機関。The reciprocating piston engine according to claim 1, wherein at least one connecting pipe (23) is attached to each projection (22). 少なくとも排気ポートに近いそれぞれの突起(22)に、特にすべての突起(22)に、それぞれ複数の、特に2つの平行な連絡配管(23)が付属する、請求項1または請求項2に記載の往復ピストン機関。3. A plurality of, in particular two parallel connecting pipes (23), each attached to each projection (22) at least close to the exhaust port, in particular to all projections (22), respectively. Reciprocating piston engine. 連絡配管(23)が、弁軸及び/又は通しボルトに対して平行に延びる、冷却通路(17,21)と連通する領域を有する、請求項1から請求項3までのいずれか1項に記載の往復ピストン機関。4. The communication pipe (23) according to any one of claims 1 to 3, wherein the communication pipe (23) has a region communicating with the cooling passage (17, 21) extending parallel to the valve shaft and / or the through bolt. Reciprocating piston engine. 排気ポート(13)の内側表面から、連絡配管(23)の下側領域までの半径方向の間隔が、長くとも、突起(22)の範囲外の排気ポート(13)の壁厚に一致する、請求項1から請求項4までのいずれか1項に記載の往復ピストン機関。The radial distance from the inner surface of the exhaust port (13) to the lower region of the connecting pipe (23) matches the wall thickness of the exhaust port (13) outside the range of the protrusion (22) at the longest. The reciprocating piston engine according to any one of claims 1 to 4. 連絡配管(23)の断面積が、付属の突起(22)の断面積に比べて比較的小さい、請求項1から請求項5までいずれか1項に記載の往復ピストン機関。The reciprocating piston engine according to any one of claims 1 to 5, wherein a cross-sectional area of the communication pipe (23) is relatively smaller than a cross-sectional area of the attached protrusion (22). 連絡配管(23)の本数および断面積が、これを貫流する冷却水の温度が100℃を明らかに下回るように、かつ排気ポート(13)の内側表面の壁面温度が排気ガスの露点温度よりも明らかに上回ったままに保たれるように選択される、請求項1から請求項6までのいずれか1項に記載の往復ピストン機関。The number and the cross-sectional area of the connecting pipe (23) are such that the temperature of the cooling water flowing therethrough is clearly below 100 ° C., and the wall surface temperature of the inner surface of the exhaust port (13) is higher than the dew point temperature of the exhaust gas. 7. A reciprocating piston engine according to any one of claims 1 to 6, wherein the reciprocating piston engine is selected to remain clearly above. 連絡配管(23)の軸平行な領域が穴状の通路として構成される、請求項1から請求項7までのいずれか1項に記載の往復ピストン機関。The reciprocating piston engine according to any one of claims 1 to 7, wherein an axially parallel region of the communication pipe (23) is configured as a hole-shaped passage. 連絡配管(23)の軸平行な通路が、その下側の、隣接する冷却通路(17)の半径方向内側にある端部の領域で、半径方向の配管部材(26)を介して隣接する冷却通路(17)と連通するとともに、上側端部では、隣接する冷却通路(21)の底面の円周側の縁部領域を貫く、請求項4から請求項8までのいずれか1項に記載の往復ピストン機関。The passage parallel to the axis of the connecting pipe (23) is adjacent to the lower side through the radial pipe member (26) in the region of the end portion on the radially inner side of the adjacent cooling passage (17). The communication device according to any one of claims 4 to 8, which communicates with the passage (17) and penetrates a circumferential edge region of a bottom surface of the adjacent cooling passage (21) at the upper end portion. Reciprocating piston engine. 周回する両方の冷却通路(17)又は(21)の一方だけに少なくとも1つの冷却剤供給配管(24)が付属し、周回する両方の冷却通路(17)又は(21)の他方には少なくとも1つの冷却剤処理配管(25)が付属する、請求項1から請求項9までのいずれか1項に記載の往復ピストン機関。At least one coolant supply pipe (24) is attached to only one of the circulating cooling passages (17) or (21), and the other of the circulating cooling passages (17) or (21) is at least one. The reciprocating piston engine according to any one of claims 1 to 9, wherein one coolant processing pipe (25) is attached. それぞれ1つの通しボルト(9)に付属する4つの突起(22)が設けられており、これらの突起は、弁軸と排気ポート(13)の中心線とによって規定される対称面Sに関して組をなすように互いに対向して配置されており、互いに隣接する突起(22)は、互いに対向する突起(22)よりも短い相互の角度間隔を有する、請求項1から請求項10までのいずれか1項に記載の往復ピストン機関。Four protrusions (22) are provided, each attached to one through bolt (9), and these protrusions are paired with respect to a plane of symmetry S defined by the valve stem and the center line of the exhaust port (13). 11. The projections (22) adjacent to each other so as to form each other, the mutually adjacent projections (22) having a shorter mutual angular interval than the projections (22) facing each other. The reciprocating piston engine according to the item.
JP2002348942A 2001-12-01 2002-11-29 Reciprocating piston engine Expired - Fee Related JP4040961B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159100.4 2001-12-01
DE10159100A DE10159100B4 (en) 2001-12-01 2001-12-01 reciprocating engine

Publications (2)

Publication Number Publication Date
JP2003184550A JP2003184550A (en) 2003-07-03
JP4040961B2 true JP4040961B2 (en) 2008-01-30

Family

ID=7707739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348942A Expired - Fee Related JP4040961B2 (en) 2001-12-01 2002-11-29 Reciprocating piston engine

Country Status (4)

Country Link
JP (1) JP4040961B2 (en)
KR (1) KR100881094B1 (en)
CN (1) CN1281863C (en)
DE (1) DE10159100B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249941B4 (en) * 2002-10-26 2005-11-10 Man B & W Diesel A/S Method and device for cooling a valve
DE10332226B4 (en) * 2003-07-16 2006-03-30 Man B & W Diesel A/S Two-stroke diesel engine
CN114352428B (en) * 2021-12-16 2022-11-08 中国船舶集团有限公司第七一一研究所 Split type cylinder head and cylinder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259232B1 (en) * 1974-01-29 1976-06-25 Semt
CH614014A5 (en) * 1977-01-28 1979-10-31 Sulzer Ag
DE2737689A1 (en) * 1977-08-20 1979-02-22 Maschf Augsburg Nuernberg Ag VALVE ARRANGEMENT
CH627820A5 (en) * 1978-03-21 1982-01-29 Sulzer Ag Valve cage with cooled valve seat for the exhaust valve of a diesel engine
DE3127122C2 (en) * 1981-07-03 1984-10-31 Gebrüder Sulzer AG, Winterthur Liquid-cooled valve seat for an exhaust valve of a reciprocating internal combustion engine
DK147131C (en) * 1981-07-09 1984-10-01 Int Power Eng As COOLED VALVE SEED INSTALLATION, SPECIFICALLY FOR EXHAUST VALVES FOR DIESEL ENGINES
DE3171601D1 (en) * 1981-10-12 1985-09-05 Mitsubishi Heavy Ind Ltd Exhaust valve casing
JPS60102406U (en) * 1983-12-19 1985-07-12 波田 寿秋 exhaust valve device
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
NO306074B1 (en) * 1997-08-27 1999-09-13 Kvaerner Asa Exhaust gas valve for internal combustion engines
KR19990052982A (en) * 1997-12-23 1999-07-15 정몽규 Device to prevent eccentric operation of valve during high speed operation
KR200175771Y1 (en) * 1997-12-31 2000-04-15 정몽규 Temperature controlling device of suction and exhaust valve seat

Also Published As

Publication number Publication date
KR20030045600A (en) 2003-06-11
DE10159100A1 (en) 2003-06-12
CN1281863C (en) 2006-10-25
JP2003184550A (en) 2003-07-03
KR100881094B1 (en) 2009-01-30
CN1423044A (en) 2003-06-11
DE10159100B4 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US4106444A (en) Individual cylinder head
US6279516B1 (en) Cylinder head with two-plane water jacket
US20170175611A1 (en) Cooling structure for multi-cylinder engine
US6470867B2 (en) Multi cylinder internal combustion engine comprising a cylinder head internally defining exhaust passages
US6295963B1 (en) Four cycle engine for a marine propulsion system
WO2006047206A1 (en) Engine power assembly
US7520257B2 (en) Engine cylinder head
JPS6346261B2 (en)
US6899063B2 (en) Cylinder head for a multicylinder liquid-cooled internal combustion engine
US4523555A (en) Reciprocating internal combustion engine with a wet cylinder sleeve inserted into a cylinder crank housing
JP3012796U (en) Exhaust liner and seal assembly
KR102110588B1 (en) A cylinder liner for a two-stroke crosshead engine
JP4040961B2 (en) Reciprocating piston engine
US20060124765A1 (en) Fuel injection nozzle
KR20170051361A (en) A cylinder liner for a two-stroke crosshead engine
US20170156891A1 (en) Cylinder head, element and flange of a piston engine
CN113423927B (en) Cylinder head for an internal combustion engine and method for cooling a cylinder head
US5755190A (en) Reciprocating machine with cooling jacket
US6874479B2 (en) Internal combustion engine
US6584947B2 (en) Cylinder head gasket
US11525419B1 (en) Engine power module and cylinder head for same
KR101860474B1 (en) A cylinder liner for a two-stroke crosshead engine
US7225767B1 (en) Conversion of an air-cooled engine to liquid cooling
JPH0861060A (en) Liquid-cooled piston
JP2001200753A (en) Cylinder head structure of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4040961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees