JP4040529B2 - Wheel tread increasing adhesion method and apparatus - Google Patents

Wheel tread increasing adhesion method and apparatus Download PDF

Info

Publication number
JP4040529B2
JP4040529B2 JP2003139891A JP2003139891A JP4040529B2 JP 4040529 B2 JP4040529 B2 JP 4040529B2 JP 2003139891 A JP2003139891 A JP 2003139891A JP 2003139891 A JP2003139891 A JP 2003139891A JP 4040529 B2 JP4040529 B2 JP 4040529B2
Authority
JP
Japan
Prior art keywords
wheel tread
wheel
magnet
block
railway vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003139891A
Other languages
Japanese (ja)
Other versions
JP2004338648A (en
Inventor
清 川口
薫 大野
卓 笹川
伸雄 寺内
努 鈴木
順一 荒井
博 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Ogura Clutch Co Ltd
KYB Corp
Original Assignee
Railway Technical Research Institute
Ogura Clutch Co Ltd
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Ogura Clutch Co Ltd, KYB Corp filed Critical Railway Technical Research Institute
Priority to JP2003139891A priority Critical patent/JP4040529B2/en
Publication of JP2004338648A publication Critical patent/JP2004338648A/en
Application granted granted Critical
Publication of JP4040529B2 publication Critical patent/JP4040529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車輪踏面増粘着方法およびその装置に関するものである。
【0002】
【従来の技術】
従来の車輪踏面増粘着方法としては、車輪踏面研磨子や車輪踏面清掃子と称する摩擦材の車輪踏面への押し付けや、セラミックス粒子を車輪踏面へ噴射して車輪踏面に粗さを得る方法が用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した従来の車輪踏面増粘着方法では、車輪踏面へ摩擦材による摩耗が生じたり、力行時の連続使用による損失や消耗が大であり、また、長時間連続使用ができない等の問題があった。
【0004】
本発明は、上記状況に鑑みて、保守作業の低減を図るとともに、長時間連続使用を可能とした車輪踏面の粘着力を制御することができる車輪踏面増粘着方法およびその装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕車輪踏面増粘着方法において、鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記車輪踏面と前記磁石ブロック間のギャップを変更することを特徴とする。
【0006】
〔2〕鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックの通電電流を制御することを特徴とする。
【0007】
〔3〕鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、前記磁石ブロックは電磁石であり、該電磁石ブロックに印加する周波数が1kHz以上の高周波数であり、車両の状態に応じて周波数を調整することを特徴とする。
【0008】
〕鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記車輪踏面と前記磁石ブロック間のギャップを変更するギャップ変更機構を具備することを特徴とする。
【0009】
〕鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックに供給される周波数を制御することによって前記車輪の鉄損を調整する周波数制御手段を具備することを特徴とする。
【0010】
〕鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックへの通電電流を制御する通電電流制御手段を具備することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0012】
図1は本発明の第1実施例を示す車輪踏面増粘着装置の模式図である。
【0013】
この図において、1はレール、2は車輪、3は車輪踏面、4は隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック、5は電源、6は隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4の極数を切り換える、電源5に接続した極数制御器である。
【0014】
ここで、車輪踏面3に対向するように隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4が配置されている。この隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4は、車輪踏面3に対向する側(左側)では磁力が強め合うが、その反対側(右側)では互いに打ち消し合う。そこで、車輪踏面3と隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4との間の電磁誘導作用により車輪踏面3に集中して誘導電流が発生し、車輪踏面3の鉄損による熱が発生する。この熱により、車輪踏面3が電磁誘導により加熱されることになる。車輪踏面3が加熱されると、車輪2とレール1間に介在する雨水などの流体粘度が下がるため排水性が促進され、車輪踏面3の粘着力が高くなる。
【0015】
このように、車輪踏面3の加熱によって、車輪2はレール1と車輪踏面3間の粘着力を高めることができる。
【0016】
かかる車輪踏面増粘着効果は、電磁誘導作用によるため、車輪踏面を効果的に加熱させ、損失を低減するとともに、長時間連続使用を可能にする。
【0017】
かかる電磁誘導による車輪踏面の加熱の制御は、極数制御器6による隣合う磁石の磁極の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4の極数の変更によって車輪踏面と永久磁石ブロック4間のギャップが大きい状況においても行うことができる。また、極数制御器6による電源5から供給される通電電流の制御によることもできる。
【0018】
図2は本発明の第2実施例を示す車輪踏面増粘着装置の模式図である。
【0019】
この実施例では、第1実施例に示した隣合う磁石の方向を90°回転させた磁石群の配列に構成した永久磁石ブロック4に代えて、隣合う磁石の方向を90°回転させた磁石群の配列に構成した電磁石ブロック9を用いる。また、前記電磁石ブロック9に印加する周波数は新幹線電車の場合は数kHzの高周波数であり、電源7に接続される周波数制御器8では、車両が低速であっても高周波を印加することができる。
【0020】
このように、磁石ブロック9に印加する周波数を制御することにより、電磁誘導による車輪踏面の加熱の制御を行うことができる。
【0021】
したがって、第1実施例と同様に、車輪踏面3の加熱によって、車輪2はレール1と車輪踏面3間の粘着力を高めることができる。
【0022】
かかる車輪踏面増粘着効果は、電磁誘導作用によるため、車輪踏面を効果的に加熱させ、損失を低減するとともに、長時間連続使用を可能にする。
【0023】
かかる電磁誘導による車輪踏面の加熱の制御は、周波数制御器8による隣合う磁石の方向を90°回転させた磁石群の配列に構成した電磁石ブロック9の周波数制御に代えて、極数の変更によって行うようにしたり、制御器による電源7から供給される通電電流の制御によることもできる。
【0024】
図3は本発明の第3実施例を示す車輪踏面増粘着装置の模式図、図4は図3のA−A線の断面図である。
【0025】
これらの図において、11はレール、12は車輪、13は車輪踏面、14は隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック、15は電源、16は隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック(永久磁石でも電磁石でもよい)14の極数を切り換えたり、電源15からの電力や周波数を制御する制御器であり、上記した第1又は第2実施例と同様の構成である。また、制御器16はブレーキシリンダ圧、増粘着噴射の有無を検出して制御することも可能である。
【0026】
この実施例では、更に、電子制御装置21、空転・滑走センサー22、ノッチ情報センサー23、車両速度計24、車輪踏面又はその周囲温度を計測する温度センサー25、ギャップ変更機構26等を設けて、車両の種々の情報をセンサー22〜25(またはブレーキシリンダ圧、増粘着噴射の有無)などによって検出して、それらの情報に基づいて、隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック14によって車輪踏面13に生成される鉄損による熱量を加減することにより、車輪踏面増粘着の度合を制御できるようにしている。
【0027】
例えば、空転・滑走センサー22により、車輪12が空転・滑走していることが検知できた場合には、これを電子制御装置21に取り込んで、制御器16により隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック14の極数の変更、この場合は、極数を増加させることにより、車輪踏面13の鉄損を増加させて、車輪踏面13をより加熱させることにより、車輪踏面13の粘着力を高めるようにすることができる。
【0028】
なお、極数の変更に代えて、電源15からの電力量を増加させて、車輪踏面13の鉄損を増加させて、車輪踏面13をより加熱させることにより、車輪踏面13の粘着力を高めるようにしてもよい。
【0029】
また、図3に示す磁石ブロック14が電磁石ブロックである場合には、この電磁石ブロック14に印加する周波数は新幹線電車の場合は数kHzの高周波数であり、第2実施例と同様に車両の状態に応じてその周波数を調整することにより車輪踏面13の粘着力を制御するようにしてもよい。
【0030】
さらに、電子制御装置21が空転・滑走センサー22から空転・滑走の情報を受けて、ギャップ変更機構26を駆動させて、隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック14と車輪踏面13との距離を近づけることにより、車輪踏面13の鉄損を増加させて、車輪踏面13をより加熱させることにより、車輪踏面13の粘着力を高めるようにすることもできる。
【0031】
ギャップ変更機構26は、例えば、図4に示すような構成とすることができる。すなわち、隣合う磁石の方向を90°毎に回転させた磁石群の配列に構成した磁石ブロック14と一体化された駆動軸27には図示しないが切り換えレバーを連結するようにする。この駆動軸27は車体(図示なし)に固定される支持体28によって支持され、切り換えレバーの動作により、駆動軸27を矢印方向に移動させることにより、車輪踏面13と磁石ブロック14間のギャップを変更することができるようにしている。
【0032】
さらに、ノッチ情報センサー23により、力行ノッチ、ブレーキノッチの状態にあることが検出されると、上記と同様に、制御器16の制御により隣合う磁石の方向を90°毎に回転させた磁石群の配列に構成した磁石ブロック14の極数の変更、又は電源15からの電力量の制御、磁石ブロック14が電磁石ブロックの場合は、それに印加される周波数の制御により鉄損を加減させたり、ギャップ変更機構26を駆動させて、隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック14をより車輪踏面13に近づけることにより、車輪踏面の粘着力を高めるようにすることができる。
【0033】
また、車両速度計24により車両速度が早いことが検出されると、ブレーキが利き難くなるので、上記手段により、車輪踏面の粘着力を高めるように、設定することができる。
【0034】
因みに、実験の結果、車輪踏面と磁石ブロック間のギャップが5mmの場合、車輪踏面の温度は、スタート時には10℃、150km/hで18℃、250km/hで40℃、350km/hで70℃であった。
【0035】
また、車輪踏面と磁石ブロック間のギャップが2mmの場合、車輪面の温度は、スタート時には30℃、150km/hで90℃、250km/hで205℃であった。
【0036】
上記からして、ギャップ5mmの場合で効果を高めるには、磁界φの増大と車両速度vが高くなることが望ましい。
【0037】
なお、図3に示した隣合う磁石の方向を90°回転させた磁石群の配列に構成した磁石ブロック14は、2cm角の磁石を11個用いて構成した磁石ブロックであるが、この磁石ブロックを車輪踏面の周囲に3列または2列配置することが望ましい。
【0038】
図5は本発明の第4実施例を示す磁石ブロックによる車輪踏面の粘着力の制御態様を示す図である。
【0039】
この図において、車輪踏面31に対して磁石ブロック32によって生成される磁界の分布が図5(a)に示すような場合には、電磁誘導による車輪踏面31の加熱が大になり、より車輪踏面の粘着力を増大させることができる。一方、車輪踏面31に対して磁石ブロック32によって生成される磁界の分布が図5(b)に示すような場合には、電磁誘導による車輪踏面31の加熱は小さくなり、車輪踏面の粘着力は低減することになる。
【0040】
上記したように、車輪踏面の温度の制御要因は種々存在する。
【0041】
車輪踏面の温度の切り換え条件を表1に示す。
【0042】
【表1】

Figure 0004040529
【0043】
また、車輪踏面の温度の切り換え方法を表2に示す。
【0044】
【表2】
Figure 0004040529
【0045】
さらに、車輪踏面又は車輪踏面の周囲の温度を計測する温度センサー25からの情報により、車輪踏面の粘着力を制御するように、設定することができる。または季節によって前述したギャップ変更機構26の切り換えレバーで車輪踏面と磁石ブロック間のギャップを変更するようにしてもよい。
【0046】
上記のように構成したので、従来のように、摩擦摩耗に伴う車輪や研磨子の保守、セラミックスの補充といった保守作業の低減を図ることができる。また、セラミックス粒子の噴射と併用することにより、効果を高めることもできる。
【0047】
また、車両の走行状態に応じて、力行・駆動時の粘着力の増大を図ることができる。
【0048】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0049】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0050】
(A)保守作業の低減を図るとともに、長時間連続使用を可能とした車輪踏面の粘着力を制御することができる。
【0051】
(B)車両の走行状況に応じて、車輪踏面の加熱の制御を行うことにより、有効な車輪踏面の粘着力の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す車輪踏面増粘着装置の模式図である。
【図2】 本発明の第2実施例を示す車輪踏面増粘着装置の模式図である。
【図3】 本発明の第3実施例を示す車輪踏面増粘着装置の模式図である。
【図4】 図3のA−A線断面図である。
【図5】 本発明の第4実施例を示す磁石ブロックによる車輪踏面の粘着力の制御態様を示す図である。
【符号の説明】
1,11 レール
2,12 車輪
3,13,31 車輪踏面
4 隣合う磁石の方向を90°毎に回転させた磁石群の配列に構成した永久磁石ブロック
5,7,15 電源
6 極数制御器
8 周波数制御器
16 制御器
9 電磁石ブロック
14,32 磁石ブロック
21 電子制御装置
22 空転・滑走センサー
23 ノッチ情報センサー
24 車両速度計
25 温度センサー
26 ギャップ変更機構
27 駆動軸
28 支持体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wheel tread increasing adhesion method and an apparatus therefor.
[0002]
[Prior art]
As conventional wheel tread increasing adhesion methods, a friction material called a wheel tread polisher or wheel tread cleaner is pressed against the wheel tread, or a method of obtaining roughness on the wheel tread by injecting ceramic particles onto the wheel tread. It has been.
[0003]
[Problems to be solved by the invention]
However, in the conventional wheel tread increasing adhesion method described above, there are problems such as wear on the wheel tread caused by friction material, loss and wear due to continuous use during power running, and inability to use continuously for a long time. there were.
[0004]
In view of the above situation, the present invention provides a wheel tread surface increasing adhesion method and apparatus capable of reducing the maintenance work and controlling the adhesive force of the wheel tread surface that enables continuous use for a long time. Objective.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In the wheel tread increasing adhesion method, a magnet block constituted by an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet is arranged opposite to the wheel tread of the railway vehicle. During running, the temperature of the wheel tread surface is raised by the iron loss of the wheel caused by electromagnetic induction from the magnet block, and the temperature rise lowers the fluid viscosity of the fluid interposed between the wheel and the rail, thereby increasing the adhesion of the wheel tread surface. A wheel tread increasing adhesion method to raise, based on the state of the wheel tread or the surrounding temperature of the wheel of the rolling wheel of the railway vehicle, idling, power running notch, brake notch, vehicle speed, brake cylinder pressure, presence of increased adhesion injection, The gap between the wheel tread and the magnet block is changed.
[0006]
[2] A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet facing the wheel tread surface of the railway vehicle is disposed, and the temperature of the wheel tread surface during traveling of the railway vehicle is arranged. Is increased by the iron loss of the wheel caused by electromagnetic induction from the magnet block, the fluid viscosity of the fluid intervening between the wheel and the rail is lowered due to the temperature rise, and the wheel tread increasing adhesion method is used to increase the adhesion of the wheel tread. The magnet block is an electromagnet, and is based on the state of the idling / sliding or power running notch, brake notch, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature of a rail vehicle. The method is characterized in that an energization current of the electromagnet block is controlled.
[0007]
[3] A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet facing the wheel tread of the railway vehicle is disposed, and the temperature of the wheel tread surface during traveling of the railway vehicle is arranged. Is increased by the iron loss of the wheel caused by electromagnetic induction from the magnet block, the fluid viscosity of the fluid intervening between the wheel and the rail is lowered due to the temperature rise, and the wheel tread increasing adhesion method is used to increase the adhesion of the wheel tread. The magnet block is an electromagnet, the frequency applied to the electromagnet block is a high frequency of 1 kHz or higher, and the frequency is adjusted according to the state of the vehicle.
[0008]
[ 4 ] A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet arranged to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during traveling of the railway vehicle A wheel tread increasing adhesive device comprising a control means for raising the wheel by the iron loss of the wheel generated by electromagnetic induction from the magnet block, and the idling / sliding or power running notch, brake notch, vehicle speed, A gap changing mechanism is provided that changes the gap between the wheel tread and the magnet block based on the brake cylinder pressure, the presence or absence of increased adhesion injection, and the state of the wheel tread or the ambient temperature.
[0009]
[ 5 ] A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet disposed to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during travel of the railway vehicle And a wheel tread increasing adhesive device having a control means for raising the wheel by the iron loss of the wheel caused by electromagnetic induction from the magnet block, wherein the magnet block is an electromagnet, and the wheels of the railway vehicle are idling, sliding and powering. Adjusting the iron loss of the wheel by controlling the frequency supplied to the electromagnet block based on notch, brake notch, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature The frequency control means is provided.
[0010]
[ 6 ] A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet arranged to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during travel of the railway vehicle And a wheel tread increasing adhesive device having a control means for raising the wheel by the iron loss of the wheel caused by electromagnetic induction from the magnet block, wherein the magnet block is an electromagnet, and the wheels of the railway vehicle are idling, sliding and powering. An energizing current control means is provided for controlling the energizing current to the electromagnet block based on notches, brake notches, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature. And
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0012]
FIG. 1 is a schematic view of a wheel tread increasing adhesive device showing a first embodiment of the present invention.
[0013]
In this figure, 1 is a rail, 2 is a wheel, 3 is a wheel tread, 4 is a permanent magnet block configured in an array of magnets rotated by 90 ° in the direction of an adjacent magnet, 5 is a power source, and 6 is an adjacent magnet. The pole number controller connected to the power source 5 switches the number of poles of the permanent magnet block 4 configured in an array of magnet groups rotated by 90 °.
[0014]
Here, the permanent magnet blocks 4 configured in an array of magnet groups in which the directions of adjacent magnets are rotated by 90 ° so as to face the wheel tread surface 3 are arranged. The permanent magnet block 4 configured in an array of magnet groups in which the directions of the adjacent magnets are rotated by 90 ° increases the magnetic force on the side facing the wheel tread surface 3 (left side), but on the opposite side (right side) Negate each other. Therefore, an induced current is generated concentrated on the wheel tread 3 due to electromagnetic induction between the wheel tread 3 and the permanent magnet block 4 configured in an array of magnets rotated 90 degrees in the direction of the adjacent magnet. Heat is generated due to iron loss of the tread surface 3. With this heat, the wheel tread 3 is heated by electromagnetic induction. When the wheel tread 3 is heated, fluid viscosity such as rain water interposed between the wheel 2 and the rail 1 is lowered, so that drainage is promoted and the adhesive strength of the wheel tread 3 is increased.
[0015]
Thus, the wheel 2 can increase the adhesive force between the rail 1 and the wheel tread 3 by heating the wheel tread 3.
[0016]
Since the wheel tread increasing adhesive effect is due to electromagnetic induction, the wheel tread is effectively heated to reduce loss and enable continuous use for a long time.
[0017]
The heating of the wheel tread by electromagnetic induction is controlled by changing the number of poles of the permanent magnet block 4 configured in a magnet group arrangement in which the direction of the magnetic poles of adjacent magnets is rotated by 90 ° by the pole number controller 6. It can also be performed in a situation where the gap between the permanent magnet block 4 and the permanent magnet block 4 is large. It is also possible to control the energization current supplied from the power source 5 by the pole number controller 6.
[0018]
FIG. 2 is a schematic view of a wheel tread increasing adhesive device showing a second embodiment of the present invention.
[0019]
In this embodiment, instead of the permanent magnet block 4 configured in an array of magnet groups in which the directions of adjacent magnets shown in the first embodiment are rotated by 90 °, magnets in which the directions of adjacent magnets are rotated by 90 °. An electromagnet block 9 configured in a group arrangement is used. Further, the frequency applied to the electromagnet block 9 is a high frequency of several kHz in the case of a Shinkansen train, and the frequency controller 8 connected to the power source 7 can apply a high frequency even when the vehicle is at a low speed. .
[0020]
In this way, by controlling the frequency applied to the magnet block 9, it is possible to control the heating of the wheel tread by electromagnetic induction.
[0021]
Therefore, as in the first embodiment, the wheel 2 can increase the adhesive force between the rail 1 and the wheel tread 3 by heating the wheel tread 3.
[0022]
Since the wheel tread increasing adhesive effect is due to electromagnetic induction, the wheel tread is effectively heated to reduce loss and enable continuous use for a long time.
[0023]
The control of the heating of the wheel tread by electromagnetic induction is performed by changing the number of poles instead of the frequency control of the electromagnet block 9 configured in the arrangement of the magnet group in which the direction of the adjacent magnet is rotated by 90 ° by the frequency controller 8. It can also be performed, or it can be controlled by the energization current supplied from the power source 7 by the controller.
[0024]
FIG. 3 is a schematic view of a wheel tread increasing adhesive device showing a third embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line AA of FIG.
[0025]
In these figures, 11 is a rail, 12 is a wheel, 13 is a wheel tread, 14 is a magnet block configured by an array of magnets rotated by 90 ° in the direction of the adjacent magnet, 15 is a power source, and 16 is an adjacent magnet. This is a controller that switches the number of poles of a magnet block (which may be a permanent magnet or an electromagnet) 14 arranged in an array of magnet groups rotated by 90 °, and controls the power and frequency from the power source 15. The configuration is the same as in the first or second embodiment. The controller 16 can also detect and control the brake cylinder pressure and the presence or absence of increased adhesion injection.
[0026]
In this embodiment, an electronic control device 21, an idling / sliding sensor 22, a notch information sensor 23, a vehicle speedometer 24, a temperature sensor 25 for measuring a wheel tread surface or its surrounding temperature, a gap changing mechanism 26, and the like are further provided. An array of magnet groups in which various types of vehicle information are detected by sensors 22 to 25 (or brake cylinder pressure, presence / absence of increased adhesion injection), and the direction of adjacent magnets is rotated by 90 ° based on the information. By adjusting the amount of heat due to the iron loss generated on the wheel tread 13 by the magnet block 14 configured as described above, the degree of the wheel tread increasing adhesion can be controlled.
[0027]
For example, when the idling / sliding sensor 22 detects that the wheel 12 is idling / sliding, it is taken into the electronic control unit 21 and the controller 16 rotates the direction of the adjacent magnet by 90 °. By changing the number of poles of the magnet block 14 configured in the arrangement of the magnet groups, in this case, by increasing the number of poles, the iron loss of the wheel tread 13 is increased and the wheel tread 13 is further heated. The adhesive force of the wheel tread 13 can be increased.
[0028]
Instead of changing the number of poles, the amount of power from the power source 15 is increased, the iron loss of the wheel tread 13 is increased, and the wheel tread 13 is further heated, thereby increasing the adhesive strength of the wheel tread 13. You may do it.
[0029]
When the magnet block 14 shown in FIG. 3 is an electromagnet block, the frequency applied to the electromagnet block 14 is a high frequency of several kHz in the case of a Shinkansen train, and the state of the vehicle is the same as in the second embodiment. The adhesive force of the wheel tread 13 may be controlled by adjusting the frequency according to the above.
[0030]
Further, the electronic control device 21 receives the information of idling / sliding from the idling / sliding sensor 22, drives the gap changing mechanism 26, and magnets configured in an array of magnet groups in which the directions of adjacent magnets are rotated by 90 ° By making the distance between the block 14 and the wheel tread 13 closer, the iron loss of the wheel tread 13 can be increased and the wheel tread 13 can be further heated to increase the adhesive force of the wheel tread 13.
[0031]
For example, the gap changing mechanism 26 can be configured as shown in FIG. That is, a switching lever (not shown) is coupled to the drive shaft 27 integrated with the magnet block 14 configured in an array of magnet groups in which the directions of adjacent magnets are rotated every 90 °. The drive shaft 27 is supported by a support 28 fixed to a vehicle body (not shown), and the drive shaft 27 is moved in the direction of the arrow by the operation of the switching lever, so that the gap between the wheel tread 13 and the magnet block 14 is increased. You can change it.
[0032]
Further, when it is detected by the notch information sensor 23 that the power running notch and the brake notch are in a state, a magnet group in which the directions of adjacent magnets are rotated every 90 ° under the control of the controller 16 as described above. If the magnet block 14 is an electromagnet block, the iron loss can be increased or decreased by controlling the frequency applied to the magnet block 14 or the gap of the gap. Driving the change mechanism 26 to increase the adhesive force of the wheel tread by bringing the magnet block 14 configured in an array of magnet groups in which the directions of adjacent magnets are rotated by 90 ° closer to the wheel tread 13. Can do.
[0033]
Further, when the vehicle speed meter 24 detects that the vehicle speed is high, the brake becomes difficult to work. Therefore, the above means can be set so as to increase the adhesive force of the wheel tread.
[0034]
Incidentally, as a result of the experiment, when the gap between the wheel tread and the magnet block is 5 mm, the temperature of the wheel tread is 10 ° C. at start, 18 ° C. at 150 km / h, 40 ° C. at 250 km / h, 70 ° C. at 350 km / h. Met.
[0035]
Further, when the gap between the wheel tread and the magnet block is 2 mm, the temperature of the wheel Stepping plane, 30 ° C. at the time of start, 90 ° C. at 150 km / h, it was 205 ° C. at 250km / h.
[0036]
From the above, in order to enhance the effect in the case of the gap of 5 mm, it is desirable that the magnetic field φ is increased and the vehicle speed v is increased.
[0037]
In addition, although the magnet block 14 comprised in the arrangement | sequence of the magnet group which rotated the direction of the adjacent magnet shown in FIG. 3 by 90 degrees is a magnet block comprised using 11 2cm square magnets, this magnet block It is desirable to arrange three or two rows around the wheel tread.
[0038]
FIG. 5 is a diagram showing a control mode of the adhesive force of the wheel tread by the magnet block according to the fourth embodiment of the present invention.
[0039]
In this figure, when the distribution of the magnetic field generated by the magnet block 32 with respect to the wheel tread 31 is as shown in FIG. 5 (a), the heating of the wheel tread 31 by electromagnetic induction is increased, and the wheel tread is further increased. It is possible to increase the adhesive strength. On the other hand, when the distribution of the magnetic field generated by the magnet block 32 with respect to the wheel tread 31 is as shown in FIG. 5B, the heating of the wheel tread 31 by electromagnetic induction is reduced, and the adhesion of the wheel tread is Will be reduced.
[0040]
As described above, there are various factors for controlling the temperature of the wheel tread.
[0041]
Table 1 shows the switching conditions of the wheel tread temperature.
[0042]
[Table 1]
Figure 0004040529
[0043]
Table 2 shows the method of switching the wheel tread temperature.
[0044]
[Table 2]
Figure 0004040529
[0045]
Furthermore, it is possible to set so that the adhesive force of the wheel tread is controlled by the information from the temperature sensor 25 that measures the temperature of the wheel tread or the surrounding temperature of the wheel tread. Or you may make it change the gap between a wheel tread and a magnet block with the switching lever of the gap change mechanism 26 mentioned above according to a season.
[0046]
Since it comprised as mentioned above, it can aim at reduction of maintenance work, such as maintenance of the wheel and abrasives accompanying friction wear, and replenishment of ceramics like the past. Further, the effect can be enhanced by using it together with ceramic particle injection.
[0047]
Further, it is possible to increase the adhesive force during power running / driving according to the running state of the vehicle.
[0048]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0049]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0050]
(A) While reducing maintenance work, the adhesive force of the wheel tread which enabled continuous use for a long time can be controlled.
[0051]
(B) By controlling the heating of the wheel tread according to the traveling state of the vehicle, it is possible to improve the effective adhesion of the wheel tread.
[Brief description of the drawings]
FIG. 1 is a schematic view of a wheel tread increasing adhesive device showing a first embodiment of the present invention.
FIG. 2 is a schematic view of a wheel tread increasing adhesive device showing a second embodiment of the present invention.
FIG. 3 is a schematic view of a wheel tread increasing adhesive device showing a third embodiment of the present invention.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is a diagram showing a control mode of an adhesive force of a wheel tread by a magnet block according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Rail 2,12 Wheel 3,13,31 Wheel tread 4 Permanent magnet block comprised in the arrangement of the magnet group which rotated the direction of the adjacent magnet every 90 degrees 5, 7, 15 Power supply 6 Pole controller DESCRIPTION OF SYMBOLS 8 Frequency controller 16 Controller 9 Electromagnet block 14, 32 Magnet block 21 Electronic controller 22 Idling / sliding sensor 23 Notch information sensor 24 Vehicle speedometer 25 Temperature sensor 26 Gap change mechanism 27 Drive shaft 28 Support body

Claims (6)

鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記車輪踏面と前記磁石ブロック間のギャップを変更することを特徴とする車輪踏面増粘着方法。  A magnet block arranged in an array of magnets whose direction of the magnetic pole is rotated by 90 ° for each adjacent magnet facing the wheel tread of the railway vehicle is disposed, and the temperature of the wheel tread surface is measured when the railway vehicle is running. A wheel tread increasing adhesion method that increases by the iron loss of the wheel caused by electromagnetic induction from the block, lowers the fluid viscosity of the fluid interposed between the wheel and the rail due to the temperature rise, and increases the adhesion of the wheel tread, The gap between the wheel tread and the magnet block based on the state of the idling / sliding or power running notch, brake notch, vehicle speed, brake cylinder pressure, presence of increased adhesion injection, wheel tread or ambient temperature of the rail vehicle wheel The wheel tread increasing adhesion method characterized by changing. 鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックの通電電流を制御することを特徴とする車輪踏面増粘着方法。  A magnet block arranged in an array of magnets whose direction of the magnetic pole is rotated by 90 ° for each adjacent magnet facing the wheel tread of the railway vehicle is disposed, and the temperature of the wheel tread surface is measured when the railway vehicle is running. A wheel tread increasing adhesion method that increases by the iron loss of the wheel caused by electromagnetic induction from the block, lowers the fluid viscosity of the fluid interposed between the wheel and the rail due to the temperature rise, and increases the adhesion of the wheel tread, The magnet block is an electromagnet, and the electromagnet is based on the idling / sliding or power running notch, brake notch, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature of railroad vehicle wheels. A wheel tread increasing adhesion method characterized by controlling an energization current of a block. 鉄道車両の車輪踏面に対向して、隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックを配置し、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させ、その温度上昇により車輪とレールの間に介在する流体の流体粘度を下げ、車輪踏面の粘着力を高める車輪踏面増粘着方法であって、前記磁石ブロックは電磁石であり、該電磁石ブロックに印加する周波数が1kHz以上の高周波数であり、車両の状態に応じて周波数を調整することを特徴とする車輪踏面増粘着方法。  A magnet block arranged in an array of magnets whose direction of the magnetic pole is rotated by 90 ° for each adjacent magnet facing the wheel tread of the railway vehicle is disposed, and the temperature of the wheel tread surface is measured when the railway vehicle is running. A wheel tread increasing adhesion method that increases by the iron loss of the wheel caused by electromagnetic induction from the block, lowers the fluid viscosity of the fluid interposed between the wheel and the rail due to the temperature rise, and increases the adhesion of the wheel tread, The wheel tread increasing adhesion method characterized in that the magnet block is an electromagnet, the frequency applied to the electromagnet block is a high frequency of 1 kHz or more, and the frequency is adjusted according to the state of the vehicle. 鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記車輪踏面と前記磁石ブロック間のギャップを変更するギャップ変更機構を具備することを特徴とする車輪踏面増粘着装置。  A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet disposed to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during travel of the railway vehicle A wheel tread increasing adhesive device having a control means for raising by iron loss of a wheel generated by electromagnetic induction from a block, and the idling / sliding or power running notch, brake notch, vehicle speed, brake cylinder pressure of a wheel of a railway vehicle A wheel tread increasing adhesive device comprising a gap changing mechanism for changing a gap between the wheel tread and the magnet block based on the presence or absence of increased adhesion injection, the state of the wheel tread or the ambient temperature thereof. 鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックに供給される周波数を制御することによって前記車輪の鉄損を調整する周波数制御手段を具備することを特徴とする車輪踏面増粘着装置。  A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet disposed to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during travel of the railway vehicle A wheel tread increasing adhesive device having a control means for raising by iron loss of the wheel generated by electromagnetic induction from the block, wherein the magnet block is an electromagnet, and the wheel of the railway vehicle is idled / sliding, powering notch, brake Frequency control that adjusts the iron loss of the wheel by controlling the frequency supplied to the electromagnet block based on the notch, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature state A wheel tread increasing adhesive device comprising means. 鉄道車両の車輪踏面に対向して配置される隣合う磁石毎に磁極の方向を90°回転させた磁石群の配列に構成した磁石ブロックと、鉄道車両の走行時に車輪踏面表面の温度を前記磁石ブロックからの電磁誘導により生じる車輪の鉄損によって上昇させる制御手段とを具備する車輪踏面増粘着装置であって、前記磁石ブロックは電磁石であり、鉄道車両の車輪の空転・滑走や力行ノッチ、ブレーキノッチ、車両速度、ブレーキシリンダ圧、増粘着噴射の有無、車輪踏面又はその周囲温度の状態に基づいて、前記電磁石ブロックへの通電電流を制御する通電電流制御手段を具備することを特徴とする車輪踏面増粘着装置。  A magnet block configured in an array of magnet groups in which the direction of the magnetic pole is rotated by 90 ° for each adjacent magnet disposed to face the wheel tread of the railway vehicle, and the temperature of the wheel tread surface during travel of the railway vehicle A wheel tread increasing adhesive device having a control means for raising by iron loss of the wheel generated by electromagnetic induction from the block, wherein the magnet block is an electromagnet, and the wheel of the railway vehicle is idled / sliding, powering notch, brake A wheel comprising an energizing current control means for controlling an energizing current to the electromagnet block on the basis of a notch, vehicle speed, brake cylinder pressure, presence / absence of increased adhesion injection, wheel tread surface or ambient temperature thereof. Tread increase adhesive device.
JP2003139891A 2003-05-19 2003-05-19 Wheel tread increasing adhesion method and apparatus Expired - Fee Related JP4040529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139891A JP4040529B2 (en) 2003-05-19 2003-05-19 Wheel tread increasing adhesion method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139891A JP4040529B2 (en) 2003-05-19 2003-05-19 Wheel tread increasing adhesion method and apparatus

Publications (2)

Publication Number Publication Date
JP2004338648A JP2004338648A (en) 2004-12-02
JP4040529B2 true JP4040529B2 (en) 2008-01-30

Family

ID=33528773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139891A Expired - Fee Related JP4040529B2 (en) 2003-05-19 2003-05-19 Wheel tread increasing adhesion method and apparatus

Country Status (1)

Country Link
JP (1) JP4040529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947251B2 (en) * 2005-03-31 2012-06-06 シンフォニアテクノロジー株式会社 Wheel tread increase adhesion device
JP4908027B2 (en) * 2006-03-27 2012-04-04 公益財団法人鉄道総合技術研究所 Non-contact wheel tread increasing adhesive activator

Also Published As

Publication number Publication date
JP2004338648A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US5299504A (en) Self-propelled rail heater car with movable induction heating coils
KR100840927B1 (en) System of railway vehicle using Linear motor and Non-contact electric power supply system
CA2452838A1 (en) Apparatus, systems and methods for levitating and moving objects
KR940005452A (en) Maglev Transfer Device
CN114734826B (en) Permanent magnet electric suspension system and guiding method thereof
JP4040529B2 (en) Wheel tread increasing adhesion method and apparatus
WO2002029813A3 (en) Hybrid burnish/glide head with advanced air bearing fly height control rails
JP4947251B2 (en) Wheel tread increase adhesion device
JP2009215764A (en) Rail corrective griding apparatus, rail corrective grinding-correcting method, and rail corrective grinding vehicle
KR100875945B1 (en) Railway Vehicle System Using Optimum Airflow Control Linear Motor and Non-Contact Feeding System
CN111071268A (en) Secondary block type magnetic flux switching linear motor driven train system
CN113415171A (en) Suspension driving integrated magnetic suspension system and suspension driving method
CN110498236B (en) Conveying system
US3506862A (en) Dynamic and eddy current railway brake device
CN103692309B (en) Deformed steel flats cutting member burr automatic sander
CN112124084B (en) Suspension, guide and drive integrated electromagnet device for magnetic-levitation train
CN210221513U (en) Rail eddy current brake performance testing device
CN209159437U (en) A kind of electrically driven, magnetically levitated automobile to suspend entirely
KR101329363B1 (en) Estimanted position apparatus of magnetic levitation train for phase control in propelled invertor of the train based by ls-lsm
KR100783723B1 (en) Non-contact electric power supply system
JPH08244601A (en) Magnetic levitation type rolling stock truck control device
KR100769047B1 (en) Linear motor
US5996196A (en) Speed adjusting apparatus for plastic drawing installations
JP4444379B2 (en) Control or adjustment method of eddy current brake
JP2007051009A (en) Shelf operating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees