JP4039058B2 - Vehicle shock absorption structure - Google Patents

Vehicle shock absorption structure Download PDF

Info

Publication number
JP4039058B2
JP4039058B2 JP2001397952A JP2001397952A JP4039058B2 JP 4039058 B2 JP4039058 B2 JP 4039058B2 JP 2001397952 A JP2001397952 A JP 2001397952A JP 2001397952 A JP2001397952 A JP 2001397952A JP 4039058 B2 JP4039058 B2 JP 4039058B2
Authority
JP
Japan
Prior art keywords
load
vehicle
collision
shock absorbing
absorbing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001397952A
Other languages
Japanese (ja)
Other versions
JP2003191806A (en
Inventor
史彦 杵島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001397952A priority Critical patent/JP4039058B2/en
Publication of JP2003191806A publication Critical patent/JP2003191806A/en
Application granted granted Critical
Publication of JP4039058B2 publication Critical patent/JP4039058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両の衝撃吸収構造に係り、特に、衝突時に衝突荷重を吸収する衝撃吸収手段を有する車両の衝撃吸収構造に関する。
【0002】
【従来の技術】
従来、衝突時に衝突荷重を吸収する衝撃吸収手段を有する車両の衝撃吸収構造においては、その一例が特開平11−208389号公報に示されている。
【0003】
図12に示される如く、この従来の技術では、バンパリインフォースメント(バンパーアーマチュアともいう)100の前部とバンパフェイス(バンパーフェイシャともいう)102との間に衝撃吸収手段(衝突エネルギー吸収体ともいう)104を配設しており、図13に示される如く、この衝撃吸収手段104は、下側ブロック106と、その上に複数個の分離体108を車幅方向に適宜間隔で列設配置して構成した上側ブロック110とを備えている。このため、バンパが、歩行者の脚部に衝突した際には、図14(A)、(B)に示される如く、脚部112が、隣接する分離体108の間にそれらの車幅方向への撓み変形で入り込んで衝撃力の増大を抑えるようになっている。一方、バンパが、壁に衝突した際には、下側ブロック106と上側ブロック110とが前後方向に圧縮変形して衝突エネルギー吸収量を増大するようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、この車両の衝撃吸収構造においては、壁・車両等の質量の大きな被衝突体に衝突した場合に、下側ブロック106と上側ブロック110とが前後方向に圧縮変形するため、バンパリインフォースメント100を支持するサイドメンバ等の車両端部の骨格部材への荷重伝達が遅くなり、骨格部材によるエネルギー吸収が遅れることが考えられる。また、上側ブロック110においては、図14(A)、(B)に示される如く、変形が容易であるため、衝突時に衝撃力を発生することができない。
【0005】
本発明は上記事実を考慮し、歩行者保護と乗員保護とを両立できる車両の衝撃吸収構造を得ることが目的である。
【0006】
【課題を解決するための手段】
請求項1に記載の本発明における車両の衝撃吸収構造は、車両のフロントサイドメンバからなる第1衝撃吸収手段と、樹脂材からなり車両のバンパリインフォースメントを覆うバンパフェイスである第2衝撃吸収手段と、前記車両のバンパリインフォースメントに設けられ、車両上下方向から見た形状が、車幅方向に延びる長手方向の略中央部から車幅方向両側の荷重入力部がそれぞれ円弧状に前方へ延設された湾曲形状とされ、前壁部の車幅方向中央部には凹部が形成されており、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を前記第1衝撃吸収手段と前記第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、を有し、前記荷重伝達手段は、前記バンパリインフォースメントに水平面内で回転可能に軸支され、前記第2衝撃吸収手段に接近して長手方向の略中央部を回転中心とする回転部材であり、被衝突体との衝突の際に接触する前記車幅方向両側の荷重入力部の双方に略同等の衝突荷重が入力された場合には、前記第1衝撃吸収手段に衝突荷重を伝達すると共に、前記車幅方向両側の荷重入力部の一方にのみ衝突荷重が入力された場合には、他方の荷重入力部を介して、前記第2衝撃吸収手段に前記衝突荷重入力方向とは反対方向へ衝突荷重を伝達することを特徴とする。
【0007】
従って、車両が被衝突体に衝突した場合には、荷重伝達手段が、被衝突体の衝突部位における車幅方向の長さの違いによって、車両のフロントサイドメンバからなる第1衝撃吸収手段と、樹脂材からなり車両のバンパリインフォースメントを覆うバンパフェイスである第2衝撃吸収手段とに、主たる衝突荷重の伝達部位を変える。この結果、例えば、車幅方向の長さが小さい歩行者の脚部等の被衝突体と衝突した場合には、樹脂材からなり車両のバンパリインフォースメントを覆うバンパフェイスである第2衝撃吸収手段に主たる衝突荷重が作用することで、歩行者の脚部等の被衝突体へ与える衝撃を低減することができる。一方、車幅方向の長さが大きい壁・車両等の被衝突体と衝突した場合には、車両のフロントサイドメンバからなる第1衝撃吸収手段に主たる衝突荷重を迅速且つ効率的に伝達することができるため、第1衝撃吸収手段による衝撃吸収を迅速且つ効率的に行うことができる。この結果、歩行者保護と乗員保護とを両立できる。また、荷重伝達手段が車幅方向に延びる長手方向の略中央部においてバンパリインフォースメントに水平面内で回転可能に軸支され、第2衝撃吸収手段に接近しており、軸支された部位の車幅方向両側に荷重入力部を有する回転部材である。このため、少なくとも2箇所の荷重入力部の双方に略同等の衝突荷重が入力された場合には、第1衝撃吸収手段に衝突荷重を伝達する。また、荷重入力部のうちの一方にのみ衝突荷重が入力された場合には、他の荷重入力部を介して、第2衝撃吸収手段に衝突荷重入力方向とは反対方向へ衝突荷重を伝達する。この結果、歩行者保護と乗員保護とを効率的に両立できる。さらに、回転部材の車両上下方向から見た形状が、車幅方向に延びる長手方向の略中央部から車幅方向両側の荷重入力部がそれぞれ円弧状に前方へ延設された湾曲形状とされており、回転部材の前壁部の車幅方向中央部には凹部が形成されている。このため、荷重入力部の何れか一方に、衝突部位における車幅方向の長さが小さい、歩行者の脚部等の被衝突体が衝突した場合には、回転部材が軸を中心に回転する。この結果、荷重入力部の何れか他方から第2衝撃吸収手段に主たる衝突荷重が作用することで、歩行者の脚部等の被衝突体へ与える衝撃を低減することができる。
【0012】
請求項2記載の本発明は、車両のフロントサイドメンバからなる第1衝撃吸収手段と、車両のフロントサイドメンバ以外からなる第2衝撃吸収手段と、前記車両のバンパリインフォースメントに設けられ、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を前記第1衝撃吸収手段と前記第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、を有し、前記荷重伝達手段は、被衝突体との衝突の際に接触する少なくとも2箇所の荷重入力部を有しており、前記荷重入力部の全てに略同等の衝突荷重が入力された場合には、前記第1衝撃吸収手段に衝突荷重を伝達すると共に、前記荷重入力部のうちの一部にのみ衝突荷重が入力された場合には、他の荷重入力部を介して、前記第2衝撃吸収手段に前記衝突荷重入力方向とは反対方向へ衝突荷重を伝達すると共に、前記荷重伝達手段は、車幅方向に延びる連結部によって互いに連結された少なくとも一組の荷重入力部を備え、該一組の荷重入力部は前記連結部の車幅方向両側に配置され、内部に流体を充填した伸縮部材であることを特徴とする。
【0013】
従って、車両が被衝突体に衝突した場合には、車両のバンパリインフォースメントに設けられた荷重伝達手段が、被衝突体の衝突部位における車幅方向の長さの違いによって、車両のフロントサイドメンバからなる第1衝撃吸収手段と、車両のフロントサイドメンバ以外からなる第2衝撃吸収手段とに、主たる衝突荷重の伝達部位を変える。この結果、例えば、車幅方向の長さが小さい歩行者の脚部等の被衝突体と衝突した場合には、車両のフロントサイドメンバ以外からなる第2衝撃吸収手段に主たる衝突荷重が作用することで、歩行者の脚部等の被衝突体へ与える衝撃を低減することができる。一方、車幅方向の長さが大きい壁・車両等の被衝突体と衝突した場合には、車両のフロントサイドメンバからなる第1衝撃吸収手段に主たる衝突荷重を迅速且つ効率的に伝達することができるため、第1衝撃吸収手段による衝撃吸収を迅速且つ効率的に行うことができる。この結果、歩行者保護と乗員保護とを両立できる。また、荷重伝達手段は、車幅方向に延びる連結部によって互いに連結され連結部の車幅方向両側に配置された一組の伸縮部材である荷重入力部の双方に略同等の衝突荷重が入力された場合には、第1衝撃吸収手段に主たる衝突荷重を伝達する。また、荷重伝達手段は、荷重入力部のうちの一方にのみ衝突荷重が入力された場合には、他方の伸縮部材を介して、第2衝撃吸収手段に主たる衝突荷重を伝達する。この結果、簡単な構成で歩行者保護と乗員保護とを両立できる。
請求項3記載の本発明は、請求項2に記載の車両の衝撃吸収構造において、前記第2衝撃吸収手段は樹脂材からなりバンパリインフォースメントを覆うバンパフェイスであることを特徴とする。
従って、樹脂材からなりバンパリインフォースメントを覆うバンパフェイスが変形または破損することによって、衝突エネルギーを吸収することができる。従って、被衝突体に作用する衝撃力を小さくすることができるため、歩行者の脚部等の被衝突体へ与える衝撃を低減することができる。
【0014】
【発明の実施の形態】
本発明における車両の衝撃吸収構造の第1実施形態を図1〜図5に従って説明する。
【0015】
なお、図中矢印FRは車両前方方向を、矢印UPは車両上方方向を示す。
【0016】
図1に示される如く、本実施形態では、自動車車体における前部の車幅方向両端下部近傍に車体前後方向に沿って配設された第1衝撃吸収手段を構成する車両前部の骨格部材としての左右一対のフロントサイドメンバ10の先端部(前端部)に、クラッシュボックス12を介して、バンパリインフォースメント14が取り付けられている。なお、フロントサイドメンバ10、クラッシュボックス12、及びバンパリインフォースメント14は、例えば、アルミニウムの押出し成形品からなる断面矩形状の閉断面構造とされている。
【0017】
図2に示される如く、バンパリインフォースメント14におけるクラッシュボックス12との連結部となる部位14Aには、車両上下方向に貫通する貫通孔18が形成されている。これらの貫通孔18には、段付ボルト20とナット22とによって、荷重伝達手段を構成する回転部材としての回転メンバ26が回転可能に軸支されている。なお、回転メンバ26の車幅方向から見た断面形状は、開口部を車両後方へ向けたコ字状となっている。
【0018】
図3に示される如く、回転メンバ26の車両上下方向から見た形状は、車幅方向に延びる長手方向の略中央部26Aから車幅方向外側の荷重入力部26B及び車幅方向内側の荷重入力部26Cがそれぞれ円弧状に前方へ延設された湾曲形状とされている。
【0019】
図2に示される如く、回転メンバ26の略中央部26Aには、車両上下方向に貫通する貫通孔28が形成されており、これらの貫通孔28には、段付ボルト20が挿入されている。従って、回転メンバ26は、バンパリインフォースメント14に対して、段付ボルト20を中心に図3における車幅内側方向(図3の矢印A方向)と車幅外側方向(図3の矢印B方向)とへ回転可能に軸支されている。
【0020】
また、回転メンバ26の前壁部26Dの車幅方向中央部に形成された凹部30内には、発泡ウレタン等からなる衝撃吸収材32が配設されており、回転メンバ26及びバンパリインフォースメント14は、樹脂材からなるバンパフェイス36によって覆われている。
【0021】
図3に示される如く、回転メンバ26は第2衝撃吸収手段としてのバンパフェイス36の内側面36Aと接近しており、例えば、回転メンバ26が回転した場合には、回転メンバ26における車幅方向外側の荷重入力部26Bと車幅方向内側の荷重入力部26Cとの何れか一方が、バンパフェイス36の内側面36Aに当接しこれを押圧するようになっている。
【0022】
次に、本実施形態の作用を説明する。
【0023】
本実施形態では、図4に示される如く、回転メンバ26の回転中心である段付ボルト20から車幅方向にずれた荷重入力部26B、26Cの何れか一方、例えば、車幅方向内側の荷重入力部26Cに、衝突部位における車幅方向の長さが小さい、歩行者の脚部等の被衝突体S1が衝突した場合には、回転メンバ26が段付ボルト20を中心に図4の矢印A方向へ回転する。この結果、例えば、回転メンバ26の車幅方向外側の荷重入力部26Bがバンパフェイス36の内側面36Aを押圧するため、バンパフェイス36が変形または破損することによって、衝突エネルギーを吸収することができる。従って、被衝突体S1に作用する衝撃力F1を小さくすることができるため、歩行者の脚部等の被衝突体S1へ与える衝撃を低減することができる。
【0024】
一方、図5に示される如く、衝突部位における車幅方向の長さが大きい壁・車両等の被衝突体S2と衝突した場合には、被衝突体S2が回転メンバ26の回転中心となる段付ボルト20の車幅方向両側、即ち、車幅方向外側の荷重入力部26Bと車幅方向内側の荷重入力部26Cとの双方に衝突する。この結果、回転メンバ26は回転せず、被衝突体S2への衝撃力F2が大きくなり、衝突荷重F3は、段付ボルト20とバンパリインフォースメント14を介してクラッシュボックス12とフロントサイドメンバ10とに迅速且つ効率的に伝達される。このため、例えば、クラッシュボックス12とフロントサイドメンバ10とが図5に示される如く圧縮変形することで、衝撃吸収を迅速且つ効率的に行うことができる。
【0025】
この結果、本実施形態では、歩行者保護と乗員保護とを両立できる。
【0026】
また、本実施形態では、バンパフェイス36を第2衝撃吸収手段として使用でき、例えば、ゴムダンパ等で構成する第2衝撃吸収手段をバンパリインフォースメント14と回転メンバ26との当接部間等に別途設ける必要がないため、部品点数を低減できる。
【0027】
なお、図6に示される如く、バンパリインフォースメント14におけるクラッシュボックス12との連結部にあたる部位14A以外の部位、例えば、バンパリインフォースメント14の車幅方向中央部14B等にも回転メンバ26を配設した構成としても良い。また、回転メンバ26が回転した際の第2衝撃吸収手段としてのゴムダンパ等をバンパリインフォースメント14と回転メンバ26との当接部間等に別途設けた構成としても良い。
【0028】
次に、本発明の車両の衝撃吸収構造における第2実施形態を図7〜図11に従って説明する。
【0029】
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
【0030】
図7に示される如く、本実施形態では、バンパリインフォースメント14の前面14Cに、車幅方向に沿って荷重伝達手段である伸縮部材としての衝撃伝達装置40が接着等により固定されており、衝撃伝達装置40はオイル等の流体42が充填された樹脂等の容器44で構成されている。
【0031】
図8に示される如く、衝撃伝達装置40における車幅方向両端部には、それぞれ蛇腹状の伸縮部材とされた荷重入力部40A、40Bが車両前方に向けて形成されており、これらの荷重入力部40A、40Bは、バンパリインフォースメント14におけるクラッシュボックス12との連結部となる部位14Aを挟んで車幅方向両側に形成されている。
【0032】
図9に示される如く、衝撃伝達装置40における荷重入力部40Aと荷重入力部40Bとは、断面積T1が大きな連結部40Cによって互いに連結されており、車幅方向両端部の荷重入力部40Aは断面積T2(T2<T1)が小さい連結部40Dによって互いに連結されている。また、連結部40Dの車幅方向両端部近傍には、ストッパ40Eが形成されており、ストッパ40Eは所定値以上の内圧で開くようになっている。
【0033】
従って、図9に示される如く、衝撃伝達装置40における荷重入力部40Aと荷重入力部40Bとのうちの一方、例えば、荷重入力部40Aに、衝突部位における車幅方向の長さが小さい歩行者の脚部等の被衝突体S1が衝突した場合には、荷重入力部40Aが圧縮され、荷重入力部40A内のオイル等の流体42が、矢印Wで示すように、連結部40Cを通り、荷重入力部40Bへ移動し、荷重入力部40Bを伸ばし、バンパフェイス36の内側面36Aに当接しこれを押圧するようになっている。
【0034】
一方、図10に示される如く、衝突部位における車幅方向の長さが大きい壁・車両等の被衝突体S2と衝突した場合には、被衝突体S2が衝撃伝達装置40における荷重入力部40Aと荷重入力部40Bとの双方に当接するようになっている。
【0035】
更に、荷重入力部40A、40B内のオイル等の流体42が圧縮され内圧が所定値を超えると、図11に示される如く、ストッパ40Eが開き、流体42は、矢印Wで示すように、連結部40Dを通り、反対側の荷重入力部40A、40Bへ移動するようになっている。
【0036】
次に、本実施形態の作用を説明する。
【0037】
本実施形態では、図9に示される如く、衝撃伝達装置40における荷重入力部40Aと荷重入力部40Bとのうちの一方、例えば、荷重入力部40Aに、衝突部位における車幅方向の長さが小さい歩行者の脚部等の被衝突体S1が衝突した場合には、荷重入力部40Aが圧縮され、荷重入力部40A内のオイル等の流体42が、矢印Wで示すように、連結部40Cを通り、荷重入力部40Bへ移動し、荷重入力部40Bを伸ばす。この結果、荷重入力部40Bがバンパフェイス36の内側面36Aを押圧するため、バンパフェイス36が変形または破損することによって、衝突エネルギーを吸収することができる。従って、被衝突体S1に作用する衝撃力F1を小さくすることができるため、歩行者の脚部等の被衝突体S1へ与える衝撃を低減することができる。
【0038】
一方、衝突部位における車幅方向の長さが大きい壁・車両等の被衝突体S2と衝突した場合には、被衝突体S2が衝撃伝達装置40における荷重入力部40Aと荷重入力部40Bとの双方に当接する。この結果、荷重入力部40Aと荷重入力部40Bとの双方が殆ど圧縮せず、被衝突体S2への衝撃力F2が大きくなり、衝突荷重F3は、衝撃伝達装置40とバンパリインフォースメント14を介してクラッシュボックス12とフロントサイドメンバ10とに迅速且つ効率的に伝達される。このため、例えば、クラッシュボックス12と一対のフロントサイドメンバ10とが圧縮変形することで、衝撃吸収を迅速且つ効率的に行うことができる。
【0039】
この結果、本実施形態では、歩行者保護と乗員保護とを両立できる。
【0040】
また、本実施形態では、バンパフェイス36を第2衝撃吸収手段として使用でき、例えば、ゴムダンパ等で構成する第2衝撃吸収手段を別途設ける必要がないため、部品点数を低減できる。
【0041】
また、本実施形態では、図11に示される如く、荷重入力部40A、40B内のオイル等の流体42が圧縮され内圧が所定値を超えるとストッパ40Eが開く。この結果、流体42は、矢印Wで示すように、連結部40Dを通り、反対側の荷重入力部40A、40Bへ移動し、被衝突体S2が衝突した荷重入力部40Aと荷重入力部40Bとが圧縮変形し、反対側の荷重入力部40Aと荷重入力部40Bとが延びる。このため、衝撃伝達装置40の破裂を防止できる。
【0042】
なお、バンパリインフォースメント14におけるクラッシュボックス12との連結部となる部位14A以外の部位、例えば、バンパリインフォースメント14の車幅方向中間部にも荷重入力部40A、40Bを配設する構成としても良い。
【0043】
以上に於いては、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、一対のフロントサイドメンバ10の先端部に、クラッシュボックス12を介して、バンパリインフォースメント14を取り付けたが、これに代えて、一対のフロントサイドメンバ10の先端部に、クラッシュボックス12を介さないで、バンパリインフォースメント14を取り付けた構成としても良い。また、一対のフロントサイドメンバ10、クラッシュボックス12、バンパリインフォースメント14は、マグネシウム等の他の金属からなる押出し成形品としても良い。また、一対のフロントサイドメンバ10、クラッシュボックス12、バンパリインフォースメント14は、プレス成形品としても良い。
【0044】
【発明の効果】
請求項1に記載の本発明における車両の衝撃吸収構造は、車両のフロントサイドメンバからなる第1衝撃吸収手段と、樹脂材からなり車両のバンパリインフォースメントを覆うバンパフェイスである第2衝撃吸収手段と、車両のバンパリインフォースメントに設けられ、車両上下方向から見た形状が、車幅方向に延びる長手方向の略中央部から車幅方向両側の荷重入力部がそれぞれ円弧状に前方へ延設された湾曲形状とされ、前壁部の車幅方向中央部には凹部が形成されており、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を前記第1衝撃吸収手段と前記第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、を有し、前記荷重伝達手段は、前記バンパリインフォースメントに水平面内で回転可能に軸支され、前記第2衝撃吸収手段に接近して長手方向の略中央部を回転中心とする回転部材であり、被衝突体との衝突の際に接触する車幅方向両側の荷重入力部の双方に略同等の衝突荷重が入力された場合には、第1衝撃吸収手段に衝突荷重を伝達すると共に、車幅方向両側の荷重入力部の一方にのみ衝突荷重が入力された場合には、他方の荷重入力部を介して、第2衝撃吸収手段に衝突荷重入力方向とは反対方向へ衝突荷重を伝達するため、簡単な構成で歩行者保護と乗員保護とを両立できるという優れた効果を有する。また、歩行者の脚部等の被衝突体へ与える衝撃を低減することができるという優れた効果を有する。
【0047】
請求項2記載の本発明は、車両のフロントサイドメンバからなる第1衝撃吸収手段と、車両のフロントサイドメンバ以外からなる第2衝撃吸収手段と、車両のバンパリインフォースメントに設けられ、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を第1衝撃吸収手段と第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、を有し、荷重伝達手段は、被衝突体との衝突の際に接触する少なくとも2箇所の荷重入力部を有しており、荷重入力部の全てに略同等の衝突荷重が入力された場合には、第1衝撃吸収手段に衝突荷重を伝達すると共に、荷重入力部のうちの一部にのみ衝突荷重が入力された場合には、他の荷重入力部を介して、第2衝撃吸収手段に衝突荷重入力方向とは反対方向へ衝突荷重を伝達すると共に、荷重伝達手段は、車幅方向に延びる連結部によって互いに連結された少なくとも一組の荷重入力部を備え、該一組の荷重入力部は連結部の車幅方向両側に配置され、内部に流体を充填した伸縮部材であるため、簡単な構成で歩行者保護と乗員保護とを両立できるという優れた効果を有する。
請求項3記載の本発明は、請求項2に記載の車両の衝撃吸収構造において、第2衝撃吸収手段は樹脂材からなりバンパリインフォースメントを覆うバンパフェイスであるため、歩行者の脚部等の被衝突体へ与える衝撃を低減することができるという優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る車両の衝撃吸収構造を示す車両斜め前方から見た斜視図である。
【図2】本発明の第1実施形態に係る車両の衝撃吸収構造を示す車両斜め前方から見た分解斜視図である。
【図3】本発明の第1実施形態に係る車両の衝撃吸収構造を示す水平断面図である。
【図4】本発明の第1実施形態に係る車両の衝撃吸収構造の作用説明図である。
【図5】本発明の第1実施形態に係る車両の衝撃吸収構造の作用説明図である。
【図6】本発明の第1実施形態の変形例に係る車両の衝撃吸収構造を示す車両斜め前方から見た斜視図である。
【図7】本発明の第2実施形態に係る車両の衝撃吸収構造を示す車両斜め前方から見た斜視図である。
【図8】本発明の第2実施形態に係る車両の衝撃吸収構造を示す水平断面図である。
【図9】本発明の第2実施形態に係る車両の衝撃吸収構造の作用説明図である。
【図10】本発明の第2実施形態に係る車両の衝撃吸収構造の作用説明図である。
【図11】本発明の第2実施形態に係る車両の衝撃吸収構造の作用説明図である。
【図12】従来技術の車両の衝撃吸収構造を示す側断面図である。
【図13】従来技術の車両の衝撃吸収構造における衝突エネルギー撃吸収体を示す斜視図である。
【図14】従来技術の車両の衝撃吸収構造における衝突エネルギー吸収体の作用を説明する平面図であり、(A)は分離体の変形前を、(B)は分離体の変形状態を示す。
【符号の説明】
10 フロントサイドメンバ(第1衝撃吸収手段)
12 クラッシュボックス
14 バンパリインフォースメント
26 回転メンバ(荷重伝達手段、回転部材)
26B 回転メンバの荷重入力部
26C 回転メンバの荷重入力部
36 バンパフェイス(第2衝撃吸収手段)
40 エネルギー伝達装置(荷重伝達手段、伸縮部材)
40A エネルギー伝達装置の荷重入力部(伸縮部材)
40B エネルギー伝達装置の荷重入力部(伸縮部材)
42 流体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shock absorbing structure for a vehicle, and more particularly to a shock absorbing structure for a vehicle having shock absorbing means for absorbing a collision load at the time of a collision.
[0002]
[Prior art]
Conventionally, an example of a shock absorbing structure for a vehicle having shock absorbing means for absorbing a collision load at the time of a collision is disclosed in Japanese Patent Laid-Open No. 11-208389.
[0003]
As shown in FIG. 12, in this conventional technique, an impact absorbing means (also referred to as a collision energy absorber) is provided between a front part of a bumper reinforcement (also referred to as a bumper armature) 100 and a bumper face (also referred to as a bumper fascia) 102. ) 104, and as shown in FIG. 13, the shock absorbing means 104 has a lower block 106 and a plurality of separators 108 arranged in a row at appropriate intervals in the vehicle width direction. And an upper block 110 configured as described above. For this reason, when the bumper collides with the pedestrian's leg, as shown in FIGS. 14 (A) and 14 (B), the leg 112 is positioned between the adjacent separators 108 in the vehicle width direction. Intrusion is caused by bending deformation to suppress an increase in impact force. On the other hand, when the bumper collides with the wall, the lower block 106 and the upper block 110 are compressed and deformed in the front-rear direction to increase the collision energy absorption amount.
[0004]
[Problems to be solved by the invention]
However, in this shock absorbing structure for a vehicle, the bumper reinforcement 100 is compressed because the lower block 106 and the upper block 110 are compressed and deformed in the front-rear direction when the vehicle collides with a collision target such as a wall or a vehicle. It is conceivable that the load transmission to the skeleton member at the end of the vehicle, such as the side member that supports the vehicle, is delayed, and the energy absorption by the skeleton member is delayed. Further, as shown in FIGS. 14A and 14B, the upper block 110 can be easily deformed, so that an impact force cannot be generated during a collision.
[0005]
In view of the above facts, an object of the present invention is to provide a vehicle shock absorbing structure that can achieve both pedestrian protection and passenger protection.
[0006]
[Means for Solving the Problems]
The shock absorbing structure for a vehicle according to the first aspect of the present invention includes a first shock absorbing means that is a front side member of the vehicle and a second shock absorbing means that is a bumper face made of a resin material and covering the bumper reinforcement of the vehicle. And the bumper reinforcement of the vehicle, as viewed from the vehicle vertical direction, the load input portions on both sides in the vehicle width direction extend forward in an arc from the substantially central portion in the longitudinal direction extending in the vehicle width direction. A concave portion is formed in the vehicle width direction center portion of the front wall portion, and the main impact load is caused to vary depending on the length in the vehicle width direction at the collision site of the collided body. has a load transmission means for transmitting to one of said the absorbent means second shock absorbing means, wherein the load transmission means, the shaft rotatably in a horizontal plane to the bumper reinforcement Is, the closer to the second shock absorbing means is a rotary member to rotate about the substantially central portion in the longitudinal direction, both the vehicle width direction on both sides of the load input portion in contact during the collision with the collision object If a collision load is input to the first shock absorbing means, and the collision load is input only to one of the load input portions on both sides in the vehicle width direction. A collision load is transmitted to the second impact absorbing means in the opposite direction to the collision load input direction via the other load input portion.
[0007]
Therefore, when the vehicle collides with the impacted body, the load transmitting means has a first impact absorbing means consisting of a front side member of the vehicle due to the difference in the length in the vehicle width direction at the collision site of the impacted body, The transmission part of the main collision load is changed to the second shock absorbing means which is a bumper face made of a resin material and covering the bumper reinforcement of the vehicle . As a result, for example, when the vehicle collides with a collision target such as a leg portion of a pedestrian whose length in the vehicle width direction is small , the second shock absorbing means that is a bumper face made of a resin material and covering the bumper reinforcement of the vehicle. As a result of the main collision load acting, it is possible to reduce the impact applied to the collision target such as the pedestrian's leg. On the other hand, when the vehicle collides with a collision object such as a wall or a vehicle having a large length in the vehicle width direction, the main collision load is quickly and efficiently transmitted to the first shock absorbing means including the front side member of the vehicle. Therefore, shock absorption by the first shock absorbing means can be performed quickly and efficiently. As a result, both pedestrian protection and passenger protection can be achieved. In addition, the load transmitting means is pivotally supported by the bumper reinforcement at a substantially central portion in the longitudinal direction extending in the vehicle width direction so as to be rotatable in a horizontal plane, and is close to the second shock absorbing means. The rotating member has load input portions on both sides in the width direction. For this reason, when a substantially equal collision load is input to both of the at least two load input portions, the collision load is transmitted to the first shock absorbing means. Further, when a collision load is input to only one of the load input portions, the collision load is transmitted to the second shock absorbing means in the direction opposite to the collision load input direction via the other load input portion. . As a result, both pedestrian protection and occupant protection can be achieved efficiently. Further, the shape of the rotating member viewed from the vehicle vertical direction is a curved shape in which the load input portions on both sides in the vehicle width direction extend forward in an arc shape from the substantially central portion in the longitudinal direction extending in the vehicle width direction. And the recessed part is formed in the vehicle width direction center part of the front wall part of a rotation member. For this reason, when a collision object such as a pedestrian's leg, which has a small length in the vehicle width direction, collides with any one of the load input portions, the rotating member rotates about the axis. . As a result, the main impact load acts on the second impact absorbing means from either one of the load input portions, so that the impact applied to the impacted body such as the pedestrian's leg portion can be reduced.
[0012]
According to a second aspect of the present invention, there is provided a first impact absorbing means comprising a front side member of a vehicle, a second impact absorbing means comprising a portion other than the front side member of the vehicle, and a bumper reinforcement of the vehicle. Load transmitting means for transmitting a main collision load to either the first shock absorbing means or the second shock absorbing means depending on the difference in length in the vehicle width direction at the body collision site, The transmission means has at least two load input portions that come into contact with each other when a collision with a collision object occurs. When a substantially equal collision load is input to all of the load input portions, the transmission means When a collision load is transmitted to one impact absorbing means and a collision load is input to only a part of the load input portion, the second impact absorbing means is sent to the second impact absorbing means via another load input portion. Collision load input The load transmitting means includes at least one set of load input portions connected to each other by a connecting portion extending in the vehicle width direction, and the set of load input portions is It is the expansion-contraction member which is arrange | positioned at the vehicle width direction both sides of a connection part, and was filled with the fluid inside.
[0013]
Therefore, when the vehicle collides with the collision object, the load transmission means provided in the bumper reinforcement of the vehicle causes the front side member of the vehicle depending on the difference in the vehicle width direction length at the collision part of the collision object. The main impact load transmission site is changed between the first shock absorbing means composed of the above and the second shock absorbing means composed of other than the front side member of the vehicle. As a result, for example, when the vehicle collides with an impacted body such as a leg of a pedestrian whose length in the vehicle width direction is small, the main collision load acts on the second impact absorbing means other than the front side member of the vehicle. Thereby, the impact given to to-be-collised bodies, such as a pedestrian's leg part, can be reduced. On the other hand, when the vehicle collides with a collision object such as a wall or a vehicle having a large length in the vehicle width direction, the main collision load is quickly and efficiently transmitted to the first shock absorbing means including the front side member of the vehicle. Therefore, shock absorption by the first shock absorbing means can be performed quickly and efficiently. As a result, both pedestrian protection and passenger protection can be achieved. The load transmitting means is connected to each other by a connecting portion extending in the vehicle width direction, and a substantially equivalent collision load is input to both of the load input portions which are a pair of extendable members disposed on both sides of the connecting portion in the vehicle width direction. If this happens, the main collision load is transmitted to the first shock absorbing means. In addition, when the collision load is input to only one of the load input units, the load transmission unit transmits the main collision load to the second shock absorbing unit via the other elastic member. As a result, it is possible to achieve both pedestrian protection and passenger protection with a simple configuration.
According to a third aspect of the invention, the shock absorbing structure for a vehicle according to claim 2, wherein the second shock absorbing means, characterized in that a bumper face covering the bumper reinforcement made of a resin material.
Therefore, collision energy can be absorbed when the bumper face made of a resin material and covering the bumper reinforcement is deformed or broken. Therefore, since the impact force acting on the impacted body can be reduced, the impact applied to the impacted body such as the pedestrian's legs can be reduced.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A vehicle impact absorbing structure according to a first embodiment of the present invention will be described with reference to FIGS.
[0015]
In the figure, the arrow FR indicates the vehicle forward direction, and the arrow UP indicates the vehicle upward direction.
[0016]
As shown in FIG. 1, in this embodiment, as a skeleton member of a vehicle front portion constituting first shock absorbing means disposed along the vehicle body longitudinal direction in the vicinity of the lower portions of both ends of the front portion of the vehicle body in the vehicle width direction. A bumper reinforcement 14 is attached to the front end (front end) of the pair of left and right front side members 10 via a crash box 12. The front side member 10, the crash box 12, and the bumper reinforcement 14 have, for example, a closed cross-sectional structure having a rectangular cross section made of an extruded product of aluminum.
[0017]
As shown in FIG. 2, a through-hole 18 that penetrates in the vehicle vertical direction is formed in a portion 14 </ b> A that is a connection portion with the crash box 12 in the bumper reinforcement 14. In these through holes 18, a rotating member 26 as a rotating member constituting a load transmitting means is rotatably supported by a stepped bolt 20 and a nut 22. In addition, the cross-sectional shape seen from the vehicle width direction of the rotating member 26 is a U-shape with the opening facing the rear of the vehicle.
[0018]
As shown in FIG. 3, the shape of the rotary member 26 as viewed from the vehicle vertical direction is such that the load input portion 26 </ b> B outside the vehicle width direction and the load input inside the vehicle width direction from the substantially central portion 26 </ b> A in the longitudinal direction extending in the vehicle width direction. Each of the portions 26C has a curved shape extending forward in an arc shape.
[0019]
As shown in FIG. 2, through holes 28 penetrating in the vehicle vertical direction are formed in a substantially central portion 26 </ b> A of the rotating member 26, and stepped bolts 20 are inserted into these through holes 28. . Therefore, the rotating member 26 is centered on the stepped bolt 20 with respect to the bumper reinforcement 14 in the vehicle width inner direction (arrow A direction in FIG. 3) and the vehicle width outer direction (arrow B direction in FIG. 3). It is pivotally supported so that it can rotate.
[0020]
Further, an impact absorbing material 32 made of foamed urethane or the like is disposed in a recess 30 formed in the center portion in the vehicle width direction of the front wall portion 26D of the rotating member 26, and the rotating member 26 and the bumper reinforcement 14 are disposed. Is covered with a bumper face 36 made of a resin material.
[0021]
As shown in FIG. 3, the rotating member 26 is close to the inner surface 36A of the bumper face 36 as the second shock absorbing means. For example, when the rotating member 26 rotates, the rotating member 26 in the vehicle width direction Either the outer load input portion 26B or the load input portion 26C on the inner side in the vehicle width comes into contact with and presses the inner side surface 36A of the bumper face 36.
[0022]
Next, the operation of this embodiment will be described.
[0023]
In the present embodiment, as shown in FIG. 4, any one of the load input portions 26 </ b> B and 26 </ b> C shifted in the vehicle width direction from the stepped bolt 20 that is the rotation center of the rotation member 26, for example, the load on the inner side in the vehicle width direction. When the collision object S1 such as a pedestrian's leg portion collides with the input portion 26C in the vehicle width direction at the collision portion, the rotating member 26 is centered on the stepped bolt 20 and the arrow in FIG. Rotate in direction A. As a result, for example, the load input portion 26B on the outer side in the vehicle width direction of the rotating member 26 presses the inner side surface 36A of the bumper face 36, so that the bumper face 36 is deformed or broken, so that the collision energy can be absorbed. . Therefore, since the impact force F1 acting on the collided body S1 can be reduced, the impact applied to the collided body S1 such as a leg part of a pedestrian can be reduced.
[0024]
On the other hand, as shown in FIG. 5, when the vehicle collides with a colliding body S2 such as a wall or a vehicle having a large length in the vehicle width direction at the collision site, the colliding body S2 becomes a rotation center of the rotating member 26. The impact bolt 20 collides with both sides in the vehicle width direction, that is, both the load input portion 26B on the outside in the vehicle width direction and the load input portion 26C on the inside in the vehicle width direction. As a result, the rotating member 26 does not rotate, the impact force F2 to the collision target S2 increases, and the collision load F3 is generated between the crash box 12 and the front side member 10 via the stepped bolt 20 and the bumper reinforcement 14. Quickly and efficiently. For this reason, for example, the crash box 12 and the front side member 10 are compressed and deformed as shown in FIG.
[0025]
As a result, in this embodiment, both pedestrian protection and occupant protection can be achieved.
[0026]
Further, in the present embodiment, the bumper face 36 can be used as the second shock absorbing means. For example, the second shock absorbing means constituted by a rubber damper or the like is separately provided between the contact portions between the bumper reinforcement 14 and the rotary member 26. Since it is not necessary to provide, the number of parts can be reduced.
[0027]
In addition, as shown in FIG. 6, the rotating member 26 is also disposed in a portion other than the portion 14 </ b> A corresponding to the connection portion with the crash box 12 in the bumper reinforcement 14, for example, the center portion 14 </ b> B in the vehicle width direction of the bumper reinforcement 14. It is good also as the structure which carried out. Further, a rubber damper or the like as second shock absorbing means when the rotating member 26 rotates may be separately provided between the contact portions between the bumper reinforcement 14 and the rotating member 26.
[0028]
Next, a second embodiment of the vehicle shock absorbing structure of the present invention will be described with reference to FIGS.
[0029]
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0030]
As shown in FIG. 7, in this embodiment, an impact transmission device 40 as an elastic member, which is a load transmission means, is fixed to the front surface 14C of the bumper reinforcement 14 along the vehicle width direction by adhesion or the like. The transmission device 40 includes a container 44 made of resin or the like filled with a fluid 42 such as oil.
[0031]
As shown in FIG. 8, load input portions 40A and 40B, each of which is a bellows-like elastic member, are formed at both ends in the vehicle width direction of the impact transmission device 40 so as to face the front of the vehicle. The portions 40A and 40B are formed on both sides in the vehicle width direction with a portion 14A serving as a connection portion with the crash box 12 in the bumper reinforcement 14 interposed therebetween.
[0032]
As shown in FIG. 9, the load input portion 40A and the load input portion 40B in the impact transmission device 40 are connected to each other by a connection portion 40C having a large cross-sectional area T1, and the load input portions 40A at both ends in the vehicle width direction are The cross-sectional area T2 (T2 <T1) is connected to each other by a connecting part 40D. Further, stoppers 40E are formed in the vicinity of both ends in the vehicle width direction of the connecting portion 40D, and the stopper 40E is opened with an internal pressure equal to or greater than a predetermined value.
[0033]
Therefore, as shown in FIG. 9, a pedestrian having a small length in the vehicle width direction at the collision site is included in one of the load input portion 40A and the load input portion 40B in the impact transmission device 40, for example, the load input portion 40A. When the colliding body S1 such as a leg portion of the vehicle collides, the load input portion 40A is compressed, and the fluid 42 such as oil in the load input portion 40A passes through the connecting portion 40C as indicated by an arrow W, It moves to the load input portion 40B, extends the load input portion 40B, contacts the inner side surface 36A of the bumper face 36, and presses it.
[0034]
On the other hand, as shown in FIG. 10, when the collision object S2 collides with a collision object S2 such as a wall or a vehicle having a large length in the vehicle width direction at the collision part, the collision object S2 is a load input unit 40A in the impact transmission device 40. And the load input portion 40B.
[0035]
Further, when the fluid 42 such as oil in the load input portions 40A and 40B is compressed and the internal pressure exceeds a predetermined value, the stopper 40E is opened as shown in FIG. It passes through the part 40D and moves to the load input parts 40A and 40B on the opposite side.
[0036]
Next, the operation of this embodiment will be described.
[0037]
In the present embodiment, as shown in FIG. 9, the length in the vehicle width direction at the collision portion of one of the load input portion 40 </ b> A and the load input portion 40 </ b> B in the impact transmission device 40, for example, the load input portion 40 </ b> A. When a collision object S1 such as a leg of a small pedestrian collides, the load input unit 40A is compressed, and the fluid 42 such as oil in the load input unit 40A is connected to the connecting unit 40C as indicated by an arrow W. And move to the load input unit 40B to extend the load input unit 40B. As a result, since the load input portion 40B presses the inner side surface 36A of the bumper face 36, the bumper face 36 is deformed or broken, so that the collision energy can be absorbed. Therefore, since the impact force F1 acting on the collided body S1 can be reduced, the impact applied to the collided body S1 such as a leg part of a pedestrian can be reduced.
[0038]
On the other hand, when the vehicle collides with a colliding body S2 such as a wall or a vehicle having a large length in the vehicle width direction at the collision site, the colliding body S2 is formed between the load input unit 40A and the load input unit 40B in the impact transmission device 40. Abut on both sides. As a result, both the load input portion 40A and the load input portion 40B are hardly compressed, the impact force F2 to the collision target S2 is increased, and the collision load F3 is transmitted via the impact transmission device 40 and the bumper reinforcement 14. Thus, the crash box 12 and the front side member 10 are quickly and efficiently transmitted. For this reason, for example, when the crash box 12 and the pair of front side members 10 are compressed and deformed, shock absorption can be performed quickly and efficiently.
[0039]
As a result, in this embodiment, both pedestrian protection and occupant protection can be achieved.
[0040]
In the present embodiment, the bumper face 36 can be used as the second shock absorbing means. For example, it is not necessary to separately provide the second shock absorbing means constituted by a rubber damper or the like, so that the number of parts can be reduced.
[0041]
In the present embodiment, as shown in FIG. 11, when the fluid 42 such as oil in the load input portions 40A and 40B is compressed and the internal pressure exceeds a predetermined value, the stopper 40E is opened. As a result, as shown by the arrow W, the fluid 42 passes through the connecting portion 40D and moves to the load input portions 40A and 40B on the opposite side, and the load input portion 40A and the load input portion 40B where the collision object S2 collides Is compressed and deformed, and the load input portion 40A and the load input portion 40B on the opposite side extend. For this reason, rupture of the impact transmission device 40 can be prevented.
[0042]
In addition, it is good also as a structure which arrange | positions load input part 40A, 40B also to site | parts other than site | part 14A used as the connection part with the crash box 12 in the bumper reinforcement 14, for example, the intermediate part of the bumper reinforcement 14 in the vehicle width direction. .
[0043]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art. For example, in the above embodiment, the bumper reinforcement 14 is attached to the front ends of the pair of front side members 10 via the crash box 12, but instead, the front ends of the pair of front side members 10 are A configuration in which the bumper reinforcement 14 is attached without using the crash box 12 may be adopted. Further, the pair of front side members 10, the crash box 12, and the bumper reinforcement 14 may be formed by extrusion from other metals such as magnesium. Further, the pair of front side members 10, the crash box 12, and the bumper reinforcement 14 may be press-formed products.
[0044]
【The invention's effect】
The shock absorbing structure for a vehicle according to the first aspect of the present invention includes a first shock absorbing means that is a front side member of the vehicle and a second shock absorbing means that is a bumper face made of a resin material and covering the bumper reinforcement of the vehicle. In the bumper reinforcement of the vehicle, the shape viewed from the vertical direction of the vehicle is such that the load input portions on both sides in the vehicle width direction extend forward in a circular arc shape from the substantially central portion in the longitudinal direction extending in the vehicle width direction. And a concave portion is formed in the center portion in the vehicle width direction of the front wall portion, and the main impact load is absorbed by the first impact absorption due to the difference in the length in the vehicle width direction at the collision portion of the collision target. has a load transmission means for transmitting to any of the means and the second shock absorbing means, wherein the load transmitting means is rotatably journalled is in a horizontal plane to the bumper reinforcement The a rotating member approaches the second shock absorbing means to rotate about a substantially central portion in the longitudinal direction, substantially in both the load input portion in the vehicle width direction on both sides in contact during the collision with the collision object When an equivalent collision load is input, the collision load is transmitted to the first shock absorbing means, and when the collision load is input only to one of the load input portions on both sides in the vehicle width direction, the other load Since the collision load is transmitted to the second shock absorbing means in the direction opposite to the collision load input direction via the input unit, the pedestrian protection and the occupant protection can be achieved with a simple configuration. Moreover, it has the outstanding effect that the impact given to to-be-collided bodies, such as a pedestrian's leg part, can be reduced.
[0047]
According to a second aspect of the present invention, there is provided a first impact absorbing means composed of a front side member of a vehicle, a second impact absorbing means composed of other than the front side member of the vehicle, and a bumper reinforcement of the vehicle. Load transmission means for transmitting a main collision load to one of the first shock absorption means and the second shock absorption means according to the difference in length in the vehicle width direction at the collision site. It has at least two load input parts that come into contact with the object to be collided, and when a substantially equal collision load is input to all of the load input parts, it collides with the first shock absorbing means. When a load is transmitted and a collision load is input to only a part of the load input section, the second shock absorbing means is moved in the direction opposite to the collision load input direction via the other load input section. Transmit impact load Both of the load transmission means include at least one set of load input portions connected to each other by a connecting portion extending in the vehicle width direction, and the set of load input portions are arranged on both sides of the connecting portion in the vehicle width direction, Since it is an elastic member filled with fluid, it has an excellent effect that it is possible to achieve both pedestrian protection and passenger protection with a simple configuration.
According to a third aspect of the invention, the shock absorbing structure for a vehicle according to claim 2, the second shock absorbing means for a bumper face covering the bumper reinforcement made of a resin material, the legs or the like of the pedestrian It has the outstanding effect that the impact given to a to-be-collised body can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an impact absorbing structure for a vehicle according to a first embodiment of the present invention as seen from the obliquely forward side of the vehicle.
FIG. 2 is an exploded perspective view of the vehicle shock absorbing structure according to the first embodiment of the present invention as seen from the oblique front of the vehicle.
FIG. 3 is a horizontal sectional view showing a shock absorbing structure for a vehicle according to the first embodiment of the present invention.
FIG. 4 is an operation explanatory view of the vehicle impact absorbing structure according to the first embodiment of the present invention.
FIG. 5 is an operation explanatory view of the vehicle impact absorbing structure according to the first embodiment of the present invention.
FIG. 6 is a perspective view showing a shock absorbing structure for a vehicle according to a modification of the first embodiment of the present invention, as viewed from the front of the vehicle.
FIG. 7 is a perspective view showing a shock absorbing structure for a vehicle according to a second embodiment of the present invention as seen from the obliquely front side of the vehicle.
FIG. 8 is a horizontal sectional view showing an impact absorbing structure for a vehicle according to a second embodiment of the present invention.
FIG. 9 is an operation explanatory diagram of a vehicle shock absorbing structure according to a second embodiment of the present invention.
FIG. 10 is an operation explanatory view of a vehicle shock absorbing structure according to a second embodiment of the present invention.
FIG. 11 is an operation explanatory diagram of a vehicle shock absorbing structure according to a second embodiment of the present invention.
FIG. 12 is a side sectional view showing a conventional shock absorbing structure for a vehicle.
FIG. 13 is a perspective view showing a collision energy strike absorber in a conventional shock absorbing structure for a vehicle.
FIGS. 14A and 14B are plan views for explaining the operation of the collision energy absorber in the impact absorbing structure for a vehicle according to the prior art, in which FIG. 14A shows a state before the separation body is deformed, and FIG.
[Explanation of symbols]
10 Front side member (first shock absorbing means)
12 Crash box 14 Bumper reinforcement 26 Rotating member (load transmission means, rotating member)
26B Rotating Member Load Input Portion 26C Rotating Member Load Input Portion 36 Bumper Face (Second Shock Absorbing Means)
40 Energy transmission device (load transmission means, elastic member)
40A Load input part of energy transmission device (expandable member)
40B Load input part of energy transmission device (expandable member)
42 Fluid

Claims (3)

車両のフロントサイドメンバからなる第1衝撃吸収手段と、
樹脂材からなり車両のバンパリインフォースメントを覆うバンパフェイスである第2衝撃吸収手段と、
前記車両のバンパリインフォースメントに設けられ、車両上下方向から見た形状が、車幅方向に延びる長手方向の略中央部から車幅方向両側の荷重入力部がそれぞれ円弧状に前方へ延設された湾曲形状とされ、前壁部の車幅方向中央部には凹部が形成されており、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を前記第1衝撃吸収手段と前記第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、
を有し、
前記荷重伝達手段は、前記バンパリインフォースメントに水平面内で回転可能に軸支され、前記第2衝撃吸収手段に接近して長手方向の略中央部を回転中心とする回転部材であり、被衝突体との衝突の際に接触する前記車幅方向両側の荷重入力部の双方に略同等の衝突荷重が入力された場合には、前記第1衝撃吸収手段に衝突荷重を伝達すると共に、前記車幅方向両側の荷重入力部の一方にのみ衝突荷重が入力された場合には、他方の荷重入力部を介して、前記第2衝撃吸収手段に前記衝突荷重入力方向とは反対方向へ衝突荷重を伝達することを特徴とする車両の衝撃吸収構造。
First shock absorbing means comprising a front side member of the vehicle;
A second shock absorbing means which is a bumper face made of a resin material and covering the bumper reinforcement of the vehicle;
Provided in the bumper reinforcement of the vehicle, the shape viewed from the vertical direction of the vehicle is such that the load input portions on both sides in the vehicle width direction extend forward in an arc shape from the substantially central portion in the longitudinal direction extending in the vehicle width direction. The first impact absorbing means has a curved shape, and a concave portion is formed in the center portion in the vehicle width direction of the front wall portion, and the main impact load is caused by the difference in the length in the vehicle width direction at the collision site of the collision target. And a load transmitting means for transmitting to any of the second shock absorbing means,
Have
The load transmitting means is a rotating member that is pivotally supported by the bumper reinforcement so as to be rotatable in a horizontal plane, and is a rotating member that approaches the second shock absorbing means and has a substantially central portion in the longitudinal direction as a center of rotation. When a substantially equal collision load is input to both of the load input portions on both sides in the vehicle width direction that come into contact with each other in the event of a collision with the vehicle, the collision load is transmitted to the first shock absorbing means, and the vehicle width When a collision load is input to only one of the load input portions on both sides in the direction, the collision load is transmitted to the second shock absorbing means in the direction opposite to the collision load input direction via the other load input portion. A shock absorbing structure for a vehicle, characterized in that:
車両のフロントサイドメンバからなる第1衝撃吸収手段と、
車両のフロントサイドメンバ以外からなる第2衝撃吸収手段と、
前記車両のバンパリインフォースメントに設けられ、被衝突体の衝突部位における車幅方向の長さの違いによって、主たる衝突荷重を前記第1衝撃吸収手段と前記第2衝撃吸収手段との何れかに伝達する荷重伝達手段と、
を有し、前記荷重伝達手段は、被衝突体との衝突の際に接触する少なくとも2箇所の荷重入力部を有しており、前記荷重入力部の全てに略同等の衝突荷重が入力された場合には、前記第1衝撃吸収手段に衝突荷重を伝達すると共に、前記荷重入力部のうちの一部にのみ衝突荷重が入力された場合には、他の荷重入力部を介して、前記第2衝撃吸収手段に前記衝突荷重入力方向とは反対方向へ衝突荷重を伝達すると共に、前記荷重伝達手段は、車幅方向に延びる連結部によって互いに連結された少なくとも一組の荷重入力部を備え、該一組の荷重入力部は前記連結部の車幅方向両側に配置され、内部に流体を充填した伸縮部材であることを特徴とする車両の衝撃吸収構造。
First shock absorbing means comprising a front side member of the vehicle;
A second shock absorbing means other than the front side member of the vehicle;
Provided in the bumper reinforcement of the vehicle, a main collision load is transmitted to either the first shock absorbing means or the second shock absorbing means depending on the difference in length in the vehicle width direction at the collision portion of the collision target. Load transmitting means for
And the load transmitting means has at least two load input portions that come into contact with each other when a collision occurs with a collision target, and a substantially equivalent collision load is input to all of the load input portions. In the case, the collision load is transmitted to the first shock absorbing means, and when the collision load is input to only a part of the load input section, the first shock absorbing means is connected to the first shock absorbing means via the other load input section. (2) A collision load is transmitted to the impact absorbing means in a direction opposite to the collision load input direction, and the load transmission means includes at least one set of load input portions connected to each other by a connection portion extending in the vehicle width direction, The set of load input portions is an elastic member that is disposed on both sides of the connecting portion in the vehicle width direction and is filled with a fluid therein.
前記第2衝撃吸収手段は樹脂材からなりバンパリインフォースメントを覆うバンパフェイスであることを特徴とする請求項2に記載の車両の衝撃吸収構造。  The vehicle impact absorbing structure according to claim 2, wherein the second impact absorbing means is a bumper face made of a resin material and covering the bumper reinforcement.
JP2001397952A 2001-12-27 2001-12-27 Vehicle shock absorption structure Expired - Fee Related JP4039058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397952A JP4039058B2 (en) 2001-12-27 2001-12-27 Vehicle shock absorption structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397952A JP4039058B2 (en) 2001-12-27 2001-12-27 Vehicle shock absorption structure

Publications (2)

Publication Number Publication Date
JP2003191806A JP2003191806A (en) 2003-07-09
JP4039058B2 true JP4039058B2 (en) 2008-01-30

Family

ID=27603570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397952A Expired - Fee Related JP4039058B2 (en) 2001-12-27 2001-12-27 Vehicle shock absorption structure

Country Status (1)

Country Link
JP (1) JP4039058B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004008435B4 (en) * 2004-02-19 2008-11-13 Benteler Automobiltechnik Gmbh In the area of the crash box reinforced cross member
JP4583214B2 (en) * 2005-03-28 2010-11-17 株式会社神戸製鋼所 Automotive bumper structure
JP4894270B2 (en) * 2006-01-10 2012-03-14 マツダ株式会社 Front body structure of automobile
DE202006020846U1 (en) * 2006-09-01 2010-07-22 Audi Ag Impact protection element for a vehicle and body with such an impact protection element
JP5212615B2 (en) * 2008-01-31 2013-06-19 マツダ株式会社 Vehicle front structure
JP5212616B2 (en) * 2008-02-07 2013-06-19 マツダ株式会社 Vehicle front structure
FR2957869B1 (en) * 2010-03-25 2013-03-08 Peugeot Citroen Automobiles Sa BUILDING STRUCTURE OF A VEHICLE.
JP6212368B2 (en) * 2013-12-03 2017-10-11 株式会社Subaru Pedestrian collision detection device

Also Published As

Publication number Publication date
JP2003191806A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US4431221A (en) Bumper beam for an automobile
EP2033855B1 (en) Pedestrian Safety Structure for a Motor Vehicle Body
JPS6135017B2 (en)
JP4039058B2 (en) Vehicle shock absorption structure
KR20080006539A (en) Device for protecting passengers in a motor vehicle in the event of an energy input caused by a collision and oriented towards a motor vehicle door
CN113044117A (en) Upper longitudinal beam assembly of vehicle front cabin and vehicle with same
JP2004532770A (en) Automobile body with flexible mounted hood
US7128339B2 (en) Automotive knee bolster installation and method of construction
JP2010047209A (en) Vehicular shock-absorbing member, and vehicular occupant crash protector
KR101499447B1 (en) Structure of car body pushed prevention
JP2921876B2 (en) Energy absorption structure on the side of the vehicle
KR101369725B1 (en) The crash box used a car
CN216660059U (en) Front cross beam assembly of right front seat
KR100376464B1 (en) Impact Absorbing Apparatus of Hood for Car
CN219154586U (en) Vehicle body frame structure and vehicle
KR101405848B1 (en) Knee-bolster for vehicle
KR100424745B1 (en) Structure for absorbing shock of a side-door
WO2023089887A1 (en) Internal structure for side sills
KR100683223B1 (en) Bumper structure of automobile
KR200145817Y1 (en) Door reinforcing structure
KR100207848B1 (en) Bolster structure for a vehicle
KR200179129Y1 (en) Center floor panel of a vehicle
KR200183912Y1 (en) Body for vehicle having reforcing and asorbing devices
KR100535581B1 (en) Collision absorbing structure of front side member
KR200197875Y1 (en) The reinforcement structure of rear member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees